Combinational Logic Circuit Synthesis

Task

- 1. Find minimal sum and minimal product for the logical functions y1 and y2 (Table 1). Variant correspond to the order number in the register of the group.
- 2. Design the logic circuits for both functions according to the minimal sum using NAND gates (apply De Morgan theorem).
- 3. Design the logic circuits for both functions according to the minimal product using NOR gates (apply De Morgan theorem).
- 4. Design the logic circuit for function y1 according to the canonical sum using NAND gates (apply De Morgan theorem).
- 5. For all circuits calculate the cost and delay time

Report

The report for the laboratory work will include:

- 1. Individual task according to the variant;
- 2. Minimization of logic functions for 1s and 0s (4 minimizations);
- 3. Designed logic circuits (5 logic circuits). For each circuit calculate the cost and delay time;
- 4. Conclusions

Tabel 1

	Tubel 1
Nr.	Logic functions
Var.	
1	2
1	$y_1 = \lor (0,1,2,4,5,7,9,10,11,14,15)$
	$y_2 = \vee (2,3,4,5,8,9,12,13)$
2	$y_1 = \lor (1,3,4,7,8,10,12,13,14)$
	$y_2 = \vee (3,4,5,7,9,11,13,14,15)$
3	$y_1 = \vee (0,2,4,5,8,10,12,14)$
	$y_2 = \vee (1,2,3,4,7,8,9,12,13,14)$
4	$y_1 = \lor (0,2,3,5,6,7,9,11,12,13,14)$
	$y_2 = \vee (1,2,4,5,6,8,9,11,14,15)$
5	$y_1 = \lor (2,4,5,7,8,9,12,14,15)$
	$y_2 = \vee (0,1,2,7,8,10,11,14)$
6	$y_1 = \lor (1,2,4,5,6,8,10,14,15)$
	$y_2 = \vee (0,1,2,5,6,7,9,11,12,13)$
7	$y_1 = \lor (0,1,5,6,7,8,10,12,14,15)$
	$y_2 = \vee (1,2,4,8,9,10,11,12)$
1	

Tabel 1 (continuation)

1	2
8	$y_1 = \lor (0,1,2,4,6,8,11,12,15)$
	$y_2 = \vee (0,1,2,5,6,7,8,9,12,13)$
9	$y_1 = \vee (0,2,4,5,7,8,10,12,15)$
	$y_2 = \vee (2,3,4,5,7,8,9,11,12,14)$
10	$y_1 = \lor (0,3,4,5,6,8,10,12,13)$
	$y_2 = \vee (4,5,6,7,9,11,12,13,14)$
11	$y_1 = \lor (1,2,4,5,8,9,10,12,13,14,)$
	$y_2 = \sqrt{(3,4,5,7,8,9,11,12,13)}$
12	$y_1 = \lor (0,1,2,4,5,8,9,12,14,)$
	$y_2 = \vee (1,2,3,5,6,8,10,11,12)$
13	$y_1 = \lor (0,2,4,5,6,7,9,12,13,15)$
	$y_2 = \lor (2,3,4,5,7,8,9,10,11,)$
14	$y_1 = \lor (0,2,3,4,6,9,10,11,13,14,15)$
	$y_2 = \sqrt{(3,4,5,7,8,10,11,14,15,)}$

Tabel 1 (continuation)

1	2
15	$y_1 = \lor (0,1,4,5,7,8,10,11,12)$
	$y_2 = \vee (1,3,5,6,7,9,10,12,15)$
16	$y_1 = \lor (0,2,3,4,6,7,9,11,12,13)$
	$y_2 = \vee (3,4,5,8,9,11,12,14)$
17	$y_1 = \lor (0,3,4,5,7,8,12,13,14)$
	$y_2 = \vee(2,4,5,6,8,10,11,15)$
18	$y_1 = \lor (1,2,3,4,6,7,8,9,10)$
	$y_2 = \lor (2,3,5,6,7,10,12,15)$
19	$y_1 = \lor (0,1,2,5,6,7,14,15)$
	$y_2 = \lor (2,3,4,7,8,9,10,12,13,14,15)$
20	$y_1 = \lor (3,4,5,6,7,8,10,12,13)$
	$y_2 = \vee(0,1,2,5,6,8,9,11,12,14)$
21	$y_1 = \lor (1,2,6,7,9,11,12,13,14)$
	$y_2 = \lor (2,3,4,6,7,8,9,11,14,15)$

Tabel 1 (continuation)

1	2
22	$y_1 = \lor (4,5,7,8,9,10,12,13)$
	$y_2 = \vee (1,2,3,4,5,6,7,12,14)$
23	$y_1 = \lor (0,1,2,6,7,9,11,12,14)$
	$y_2 = \vee (1,3,4,5,7,9,11,13,14)$
24	$y_1 = \lor (0,2,3,4,6,7,8,12,15)$
	$y_2 = \vee (2,3,4,5,7,9,11,13)$
25	$y_1 = \lor (0,1,2,3,5,6,7,8,11,12,13)$
	$y_2 = \vee (1,2,3,8,9,10,12,13,15)$
26	$y_1 = \lor (0,1,2,5,6,7,10,11,14)$
	$y_2 = \sqrt{(0,2,3,4,7,8,9,10,12,13)}$
27	$y_1 = \lor (1,3,4,5,6,7,8,10,11,13)$
	$y_2 = \sqrt{(0,1,2,4,6,8,9,11,12,13)}$