Example 1: One Way ANOVA in Excel

A consumer group wants to compare a new brand of wax (Brand-X) to two leading brands (Sureglow and Microsheen) in terms of Effectiveness of wax. Following data is collected for this purpose:

Brand	Effectiveness	Brand	Effectiveness	Brand	Effectiveness
Sureglow	93	Mirrorsheen	90	Brand_X	105
Sureglow	96	Mirrorsheen	97	Brand_X	91
Sureglow	87	Mirrorsheen	91	Brand_X	95
Sureglow	91	Mirrorsheen	94	Brand_X	107
Sureglow	88	Mirrorsheen	100	Brand_X	90
Sureglow	85	Mirrorsheen	95	Brand_X	96
Sureglow	88	Mirrorsheen	88	Brand_X	92
Sureglow	91	Mirrorsheen	92	Brand_X	94
Sureglow	82	Mirrorsheen	94	Brand_X	84
Sureglow	91	Mirrorsheen	89	Brand_X	86
Sureglow	86	Mirrorsheen	96	Brand_X	82
Sureglow	93	Mirrorsheen	91	Brand_X	91
Sureglow	91	Mirrorsheen	97	Brand_X	106
Sureglow	87	Mirrorsheen	92	Brand_X	90
Sureglow	88	Mirrorsheen	92	Brand_X	91
				Brand_X	92
				Brand_X	91
				Brand_X	106
				Brand_X	98
				Brand_X	97
				Brand_X	80
				Brand_X	97
				Brand_X	91
				Brand_X	99
				Brand_X	86

To run the One-Way ANOVA procedure in Excel, open the data file 'IWay ANOVA in Excel.xlsx', go to the worksheet 'Data in 3 Columns', click on Data/Data Analysis/ANOVA:Single Factor, select Input Range A1:C26, Grouped by Columns, check Labels in First Row Box. give a name to Output Worksheet (ANOVA RESULT, for example), and click on OK.

ANOVA in Excel

ſ	-	Home	Insert	Page Layout	Formulas	Data Re	view N	View			4	Anova: Single Facto	r					
	Ĩ,				ß	Connection Properties	IS A Z↓	A Z Z A	T KC	Clo Re	S	SUMMARY						
	From	From Fro	m From O	ther Existing	Refresh		Z	Sort	Filter 7		_	Groups	Count	Sum	Average	Variance		
	Access	Web Tex	kt Source	es 🐐 🗏 Connection	ns All 😁	See Edit Links				AC.	E	Brand1	15	1337	89.13333	12.98095		
l		Get	External Da	ata	Co	nnections		S	ort & Filter		E	Brand2	15	1398	93.2	11.17143		
		A1	- ()	f _x						_	E	Brand3	25	2337	93.48	53.67667		
	A Brand1 1 Brand1 2 93 3 96 4 87 5 91 6 88 9 91 10 82 11 91 12 86 13 93 14 91 15 87 16 88 19 17 18 19 20 21 22 22 23 24 24 25	A1 Brand2 97 91 94 100 95 88 92 94 89 94 89 94 97 92 92 92 92 92 92 92	C Brand3 105 91 95 107 96 92 94 84 86 82 91 106 90 91 106 90 91 106 92 91 106 92 91 92 91 92 91 92 91 99 97 91	f Anova: Single I Input Input Range: Grouped By: ✓ Labels in f Alpha: 0.0 Output option ○ Qutput Ra ④ New Worl ○ New Worl	irst Row 5 s snge: sheet Ply: book	SASTRECEZ © Columns © Rows ANOVA RES	3 R		OK Cancel Help		<u>₽</u> <u>3</u> <u>8</u> <u>8</u> <u>8</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u>	ANOVA Source of Variation Setween Groups Within Groups Fotal Galaction The P-v Set the P-v State of the P-v	25 55 197.0085 1626.373 1823.382 utput o ralue is f equal	2337 df 2 52 54 f 1-W .0511 mear	93.48 MS 98.50424 31.27641 ay ANC 57 > .0 ns is no	53.67667 F 3.149474 DVA in 95, the t rejec	P-value 0.051157 Excel null ted.	F crit 3.175141
F	igure	1a: Ru	Inning	1-Way AN	OVA in l	Excel												
				-														

Example 2: Two Way ANOVA with Replications in EXCEL

Following table shows drying time of concrete obtained from a set of 12 experiments conducted at 3 levels of CONCRETE amounts, and 2 levels of WATER amounts (see worksheet CONCRETE DATA of file 2Way ANOVA in Excel.xlsx).

CONCRETE(CUPS)	WATER(CUPS)	TIME(MINUTES)
1.5	0.25	23
1.5	0.25	21
1.5	0.5	153
1.5	0.5	161
1.75	0.25	25
1.75	0.25	27
1.75	0.5	159
1.75	0.5	171
2	0.25	29
2	0.25	31
2	0.5	183
2	0.5	187

Test if the factors CONCRETE and WATER have an effect on mean drying time.

Most statistical software packages require the data in the following format:

CONCRETE	WATER	TIME
1	1	23
1	1	21
1	2	153
1	2	161
2	1	25
2	1	27
2	2	159
2	2	171
3	1	29
3	1	31
3	2	183
3	2	187

Excel, however, needs data in a different format (see Example 2a).

In Example 2, there are 2 replicates for each treatment combination, so in Excel, click on

Data/Data Analysis/ANOVA:Two-Factor With Replication Select E1:G7 as the Input Range

STATS24x7.com[©] 2010 ADI-NV, INC.

Type 2 in Rows Per Sample box

Give a name to New Worksheet Ply (RESULT used in this example), then click OK. The output is shown in Figure 2b.

112	- (f _x									
А	В	С	D	E	F	G	Н	L. L.	J		
CONCRETE	WATER	TIME			WATER1	WATER2					
1	1	23		CONCRETE1	23	153					
1	1	21			21	161					
1	2	153		CONCRETE2	25	159					
1	2	161			27	171					
2	1	25		CONCRETE3	29	183					
2	1	27			31	187					
2	2	159									
2	2	171		Anova: Two-Fa	ictor With Re	eplication		ß			
3	1	29		Input							
3	1	31		Input Range:	1	\$E\$1:\$0	i\$7 [s 💻	ОК		
3	2	183		Rows per sar	nole:	2		Ca	ancel		
3	2	187		<u>iconspersor</u>	npici	-			lelp		
				<u>A</u> lpha:	<u>Alpha:</u> 0.05						
				Output option	s						
				Output R	ande:		Ē	S			
				New Worksheet Ply: RESULT							
				<u> </u>							
									/		

Figure 2a: Excel data format and running 2-way ANOVA with Replication in Excel

	А	В	С	D	E	F	G	
1	Anova: Two-Factor W	/ith Replica	tion					
2								
3	SUMMARY	WATER1	WATER2	Total				
4	CONCRETE1							
5	Count	2	2	4				
6	Sum	44	314	358				
7	Average	22	157	89.5				
8	Variance	2	32	6086.333				
9								
10	CONCRETE2							
11	Count	2	2	4				
12	Sum	52	330	382				
13	Average	26	165	95.5				
14	Variance	2	72	6465				
15								
16	CONCRETE3							
17	Count	2	2	4				
18	Sum	60	370	430				
19	Average	30	185	107.5				
20	Variance	2	8	8011.667				
21								
22	Total							
23	Count	6	6					
24	Sum	156	1014					
25	Average	26	169					
26	Variance	14	188.8					
27								
28								
29	ANOVA							
30	Source of Variation	SS	df	MS	F	P-value	F crit	
31	Sample	672	2	336	17.08475	0.003332	5.143253	CONCRETE significa
32	Columns	61347	1	61347	3119.339	2.21E-09	5.987378	WATER significant
33	Interaction	224	2	112	5.694915	0.041074	5.143253	INTERACTION signi
34	Within	118	6	19.66667			L	
35								
36	Total	62361	11					

Figure 2b: Excel Output from 2-way ANOVA with Replication (see worksheet CONCRETE RESULT of file 2Way ANOVA in Excel.xlsx)

Example 3: Two Way ANOVA without Replication in EXCEL

An experiment is conducted to determine whether the brand of laundry detergent used and the water temperature affects the amount of dirt removed dirty laundry, and following data is collected (see worksheet LAUNDRY DATA of file 2Way ANOVA in Excel.xlsx).

	COLD	WARM	НОТ
Brand A	4	8	10
Brand B	7	13	16

In this example, we only have 1 run per treatment combination, so you need to click on the sequence

Data/Data Analysis/ANOVA:Two-Factor Without Replication Select B2:D3 as the Input Range (non-numeric data not allowed in this case) Type output Worksheet Name (LAUNDRY RESULT) and click Ok (see Figure 3a).

	А	В	С	D	E	F			
1		COLD	WARM	HOT					
2	Brand A	4	8	1()				
3	Brand B	7	13	10	5				
4			Mark						
5	Anova: I	wo-Factor	Without R	eplication)		Δ.		
6	Input				(mm)	ОК			
7	<u>I</u> nput Ra	Input Range: \$B\$2;\$D\$3							
8	Label	s				Cancel			
9	<u>A</u> lpha:	0.05				Help			
10									
11		ptions							
12									
13	💿 New	Worksheet <u>P</u> ly	y: LAI	UNDRY RESU					
14	O New	<u>W</u> orkbook							
15									

Figure 3a: Running 2-way ANOVA Without Replication in Excel

The output is shown in Figure 3b.

	А	В	С	D	E	F	G	
1	Anova: Two-Factor Without Replication							
2								
3	SUMMARY	Count	Sum	Average	Variance			
4	Row 1	3	22	7.333333	9.333333			
5	Row 2	3	36	12	21			
6								
7	Column 1	2	11	5.5	4.5			
8	Column 2	2	21	10.5	12.5			
9	Column 3	2	26	13	18			
10								
11								
12	ANOVA							
13	Source of Variation	SS	df	MS	F	P-value	F crit	
14	Rows	32.66667	1	32.66667	28	0.033908	18.51282	BRAND significant
15	Columns	58.33333	2	29.16667	25	0.038462	19	TEMPERATURE significant
16	Error	2.333333	2	1.166667				
17								
18	Total	93.33333	5					

Figure 3b: Output of 2-way ANOVA Without Replication in Excel (see worksheet LAUNDRY OUTPUT of file 2Way ANOVA in Excel.xlsx)

Note that there is no interaction term in this case.