
„De la Realitate la Date,

de la Date, la Baze de Date

De la Baze de Date, la aplicatii Web sau Desktop,

De la interogari (SQL), la SENS,

la înțelegerea fenomenului studiat din Realitate

și la decizii bazate de informație din prelucrare de

Date din Realitate”

Prelegerea Nr.1 Laboratorul Nr. 1
De la Realitate, “poveste / sarcină” , la Date

De la Realitate, “poveste / sarcină” , la Date
Studiu de caz/ Exemplu

• Gestionarea caracteristicilor unui PC - procesor, memorie,
disc și temperatură - asigură performanțe optime,
longevitatea sistemului și previne defecțiunile. Sarcinile
cheie includ monitorizarea utilizării resurselor cu ajutorul
Managerului de activități pentru a identifica blocajele,
defragmentarea sau optimizarea unităților pentru a
îmbunătăți performanța discului, curățarea fișierelor de
sistem și gestionarea programelor de pornire pentru a
elibera memorie, precum și asigurarea unui flux de aer
adecvat și curățarea prafului pentru a menține temperaturi
optime ale componentelor.

De la Date, la Baze de Date
Studiu de caz/ Exemplu - continuare

Pentru a menține funcționarea stabilă și durabilă a PC-ului,

a preveni și diminua riscurile si menține performanța lui,

este necesar să dezvoltăm un Sistem Infomatic, care să

utilizeza Tehnologiile informaționale moderne cum ar fi:

• Sistemele de Gestiune a Bazelor de Date (SGBD)

structurate / cu schemă fixă, (SQLite, Mysql, MS SQL

Server), nestructurate (MongoDB) si a

• limbajelor de programare (Python, Streamlit, PHP,

Tkinter, Flask).

De la Date, la Baze de Date
Studiu de caz/ Exemplu - continuare

SCOPUL lucrării de laborator este de a crea / dezvolta un sistem

informatic privind gestionarea caracteristicilor PC-ului pentru

monitorizarea si administrarea lor, si a asigura performanță,

longevitate, fiabilitate, stabilitate și securitate funcționării PC-ului.

SCOPUL formulat poate fi atins prin următoarele OBIECTIVE:

IN CONTINUARE voi mentiona că structura iesirilor/output-ului, formularea

si formatul lui depind în principiu, de comanda SQL - SELECT..., deoarece

prin ea vom formula interogările la BD pentru a le obține!!!

Obiectivul 1 - pentru Performanță:

Menținerea componentelor reci, prin monitorizarea temperaturii care

urmează să fie poziționată în intervale predefinite, să permită funcționarea
PC-ului la eficiență maximă.

Structura unui SELECT în SQL pentru acest obiectiv

De la Date, la Baze de Date
Studiu de caz/ Exemplu - continuare

Obiectivul 2 - pentru Longevitate:

Căldura excesivă sau utilizarea constantă a resurselor pot duce la defectarea

prematură a componentelor. Gestionarea eficientă prelungește durata de viață a

hardware-ului, reducând necesitatea unor înlocuiri costisitoare.

Structura unui SELECT în SQL pentru acest obiectiv

Obiectivul 3– pentru Fiabilitate și stabilitate:

Gestionarea resurselor previne blocarea sau instabilitatea sistemului.

Supraîncălzirea poate provoca funcționarea defectuoasă a componentelor, ducând

la erori și pierderi de date.

Structura unui SELECT în SQL pentru acest obiectiv

Obiectivul 4– pentru Securitate:

Prin menținerea software-ului și a driverelor actualizate și gestionarea spațiului pe

disc, reducem și vulnerabilitățile de securitate.

Structura unui SELECT în SQL pentru acest obiectiv

Pentru atingerea obiectivelor, este necesar să fie
rezolvate următoarele sarcini de bază cum ar fi:

Monitorizarea și gestionarea utilizării CPU/memoriei

Sarcină: Folosiți Produsul Informatic creat pentru a monitoriza utilizarea CPU, a memoriei si
discului.

Structura unor SELECT în SQL pentru această sarcină

Soluții / Acțiuni:

Identificați procesele care consumă resurse mari și închideți aplicațiile inutile.

Gestionați programele de pornire pentru a le împiedica să se lanseze odată cu PC-ul, eliberând
resurse.

Menținerea sănătății discului

Sarcină: Folosiți utilitare precum Gestionare disc sau Curățare disc.

Soluții / Acțiuni:

Curățare disc: Eliminați fișierele temporare și alte date inutile pentru a elibera spațiu de stocare.

Defragmentare/Optimizare: Pentru hard disk-urile tradiționale (HDD-uri), defragmentarea acestora

poate îmbunătăți performanța; pentru unitățile SSD (Solid State Drive), serviciile de optimizare
efectuează sarcini similare.

Pentru atingerea obiectivelor, este necesar să fie
rezolvate următoarele sarcini de bază cum ar fi:

Controlul și monitorizarea temperaturii

Sarcină: Folosiți Produsul Informatic creat pentru monitorizarea temperaturilor componentelor
utilizând instrumente terțe sau BIOS-ul.

Structura unor SELECT în SQL pentru această sarcină

Soluții / Acțiuni:

Curățați PC-ul: Îndepărtați regulat praful de pe ventilatoare și radiatoare pentru a asigura un flux de

aer adecvat.

Verificați ventilatoarele: Asigurați-vă că toate ventilatoarele carcasei și ventilatoarele CPU/GPU

funcționează corect.

Îmbunătățiți fluxul de aer: Asigurați-vă că PC-ul are o ventilație neobstrucționată pentru a preveni

acumularea de căldură.

Actualizarea și optimizarea sistemului de operare și driverele

Sarcină: Mențineți Windows și driverele de dispozitiv (de exemplu, pentru CPU, GPU) actualizate.

Soluții / Acțiuni:

Instalați actualizări ale sistemului de operare pentru a obține îmbunătățiri de performanță și
remedieri de erori.

Actualizați driverele pentru a vă asigura că acestea comunică eficient cu hardware-ul și sistemul de

operare.

KPI-uri (Key Performance Indicators)
Vom utiliza KPI-urile (Key Performance Indicators) ca punct de plecare pentru formularea sarcinii,

scopului și obiectivelor este o metodă extrem de puternică mai ales în contextul educației tehnice. Iată de ce:

✅ De ce are această abordare drept la existență (și chiar este excelentă)

1. KPI – ul se ancorează în realitate

KPI-urile sunt indicatori concreți, măsurabili, folosiți în industrie. Când studentul pornește de la un KPI,

el nu mai lucrează cu „date abstracte”, ci cu semnale reale despre performanță, stabilitate, securitate

etc.

2. KPI – ul activează gândirea analitică

Formularea scopului și obiectivelor pe baza KPI-urilor îi mobilizează pe proiectanți să gândească

sistemic:

• Ce înseamnă acest indicator?

• Ce îl influențează?

• Cum pot interveni?

3. KPI – ul oferă autonomie, abordare individuală...

Fiecare student având propria sarcină = devine proprietar al unei probleme REALE. El, nu mai

rezolvă „exerciții”, ci proiecte personale cu SENS.

4. KPI – ul leagă perfect sarcina cu SQL și programarea

KPI-ul devine o întrebare. Interogarea SQL devine răspunsul. Aplicația devine acțiunea.

Sugestii pentru rafinarea abordării KPI

1. KPI – ul este utilizat ca o întrebare creativă

Transformăm fiecare KPI într-o întrebare existențială:
1. Temperatura CPU > 90°C → „Respiră sistemul meu prea greu?”

2. Memorie > 80% → „Este sistemul meu copleșit de gânduri?”

3. Disk usage > 90% → „Mai are loc să-și amintească?”

Astfel, inginerul/proiectantul/studentul nu doar interoghează, ci și reflectă.

2. KPI → Scop → Obiectiv → Interogare → Recomandare
Un șablon modular pentru fiecare inginer/proiectant/student (Exemplu):

Etapă Exemplu

KPI CPU usage > 85%

Scop Menținerea performanței sistemului

Obiectiv Identificarea proceselor care suprasolicită CPU

Interogare SQL SELECT model, usage FROM CPU WHERE usage > 85;

Recomandare Închide aplicațiile inutile, optimizează pornirea

Ghid pentru formularea sarcinii pornind de la KPI
Studiu de caz/ Exemplu – continuare

Scopul Ghidului

Să ajute fiecare inginer/proiectant/student să transforme un KPI real într-o sarcină

clară, cu un SCOP personalizat, o serie de OBIECTIVE măsurabile, și apoi să le

obțină cu o interogări SQL dintr-o aplicație concretă urmată de o acțiune digitală.

Structura Ghidului

1. Alege un KPI relevant

Exemple:

• CPU usage > 85%

• Temperatură GPU > 90°C

• Memorie RAM > 80%

• Spațiu pe disc < 10%

2. Formulează sarcina

„Monitorizarea și gestionarea [componenta] pentru a menține [KPI-ul] în limite

optime.”

3. Definește SCOPUL

„Asigurarea performanței / stabilității / securității sistemului prin controlul [KPI].”

Ghid pentru formularea sarcinii pornind de la KPI
Studiu de caz/ Exemplu – continuare

4. Stabilește OBIECTIVELE
1. Identificarea valorilor critice

2. Prevenirea suprasolicitării

3. Optimizarea funcționării

5. Scrie interogările SQL prin care pot fi obținute obiectivele, adică obținute

răspunsurile la intrebarile “Ce doriim?”. “De ce avem nevoie?”/

SQL
SELECT model, usage

FROM [tabela]

JOIN PC ON [tabela].id_pc = PC.id_pc

WHERE usage > [valoare critică];

6. Propune acțiuni digitale /decizii bazate pe SENS, obtinut prin obiective!!!/
1. Închide aplicații inutile

2. Curăță sistemul

3. Optimizează pornirea

7. Reflectează

„Ce-mi spune acest KPI despre sănătatea sistemului meu cercetat?”

10 Șabloane de KPI-uri
Studiu de caz/ Exemplu – continuare

• 1 ⃣ KPI: CPU usage > 85%

• 2 ⃣ KPI: Memorie RAM > 80%

• 3 ⃣ KPI: Spațiu pe disc < 10%

• 4 ⃣ KPI: Temperatură CPU > 90°C

• 5 ⃣ KPI: Temperatură GPU > 85°C

• 6️ ⃣ KPI: Număr de procese active > 100

• 7 ⃣ KPI: CPU usage constant > 70% timp de 10 minute

• 8 ⃣ KPI: SSD usage > 95%

• 9 ⃣ KPI: Temperatură medie > 75°C

• 10 KPI: KPI: Memorie liberă < 20%

Plan modular introductiv –KPI: De la semnal la

soluție , Studiu de caz/ Exemplu – continuare

Ce este un KPI?

Un Key Performance Indicator este un semnal. Un semnal că sistemul tău funcționează bine. Sau că are nevoie de ajutor.

Ce facem la acest pas? (EXEMPLU)

1. Alegem un KPI real (ex: CPU usage > 85%)

2. Îl transformăm într-o sarcină clară

3. Formulăm un scop și obiective

4. Scriem interogări SQL care răspund la întrebare

5. Construim un dashboard interactiv care oferă soluții

Structura gândirii

Etapă Exemplu

KPI CPU usage > 85%

Sarcină Monitorizarea CPU

Scop Menținerea performanței

Obiectiv Identificarea suprasolicitării

Interogare SQL SELECT model, usage FROM CPU WHERE usage > 85;

Recomandare Închide aplicații inutile

Fiecare student este un constructor de sens

Nu învățați doar SQL. Învățați să întrebați lumea

digitală ce are nevoie. Și să răspundeți cu claritate, cu

grijă, cu sens.

De la Interogare la Înțelegere: Construim punți între
REALITATE și DATE, , Studiu de caz/ Exemplu – continuare

Introducere motivațională. Proiectul, “poveste/text”.

Fiecare calculator are componente vitale — procesor, memorie, disc,

temperatură — care trebuie monitorizate și gestionate pentru ca sistemul să

funcționeze bine, să dureze mult și să nu se blocheze. Sarcina noastră este să

creăm un sistem informatic care să ajute la monitorizarea acestor

componente și să ofere soluții pentru optimizarea lor.

Scopul Proiectului

Vrem să dezvoltăm o aplicație, care să ne ajute să înțelegem starea unui PC

și să luăm decizii inteligente/ințelepte pentru:

• Performanță (să funcționeze rapid și eficient),

• Longevitate (să nu se strice repede),

• Fiabilitate (să nu se blocheze sau piardă date),

• Securitate (să nu fie vulnerabil la atacuri sau erori).

Reformulare : „De la nevoi reale la soluții
digitale” , Studiu de caz/ Exemplu – continuare

Sarcina reală (Ce trebuie să facem?)

Fiecare calculator are componente vitale — procesor, memorie, disc, temperatură — care

trebuie monitorizate și gestionate pentru ca sistemul să funcționeze bine, să dureze mult și să

nu se blocheze. Sarcina noastră este să creăm un sistem informatic care să ajute la

monitorizarea acestor componente și să ofere soluții pentru optimizarea lor.

Scopul proiectului (Ce dorim să obținem?)

Vrem să dezvoltăm o aplicație care să ne ajute să înțelegem starea unui PC și să luăm

decizii inteligente pentru:

1. Performanță (să funcționeze rapid și eficient),

2. Longevitate (să nu se strice repede),

3. Fiabilitate (să nu se blocheze sau piardă date),

4. Securitate (să nu fie vulnerabil la atacuri sau erori).

Obiectivele (Cum atingem scopul?) , Studiu de
caz/ Exemplu – continuare

Performanță

Ce dorim: Să menținem componentele reci și eficiente. Cum facem: Interogăm

temperatura componentelor și verificăm dacă sunt în intervalul optim.
sql

SELECT model, component, value

FROM Temperatura

JOIN PC ON Temperatura.id_pc = PC.id_pc

WHERE value BETWEEN 30 AND 70;

Longevitate

Ce dorim: Să evităm uzura excesivă. Cum facem: Verificăm dacă procesorul este

suprasolicitat și luăm măsuri.
sql

SELECT model, usage

FROM CPU

JOIN PC ON CPU.id_pc = PC.id_pc

WHERE usage < 50;

Obiectivele (Cum atingem scopul?) ,
Studiu de caz/ Exemplu – continuare

Fiabilitate și stabilitate

Ce dorim: Să prevenim blocajele și erorile. Cum facem: Monitorizăm memoria și

identificăm suprasarcinile.

sql

SELECT model, usage

FROM Memorie

JOIN PC ON Memorie.id_pc = PC.id_pc

WHERE usage > 80;

Securitate

Ce dorim: Să evităm vulnerabilitățile. Cum facem: Verificăm spațiul pe disc și

actualizările de sistem.

sql

SELECT model, usage

FROM Disk

JOIN PC ON Disk.id_pc = PC.id_pc

WHERE usage > 90;

Cum se leagă toate aceste idei si abordări?

Frontend (ce vede utilizatorul): Interfață creată cu Python, Streamlit, Flask,

Tkinter sau PHP — unde utilizatorul poate vedea datele și lua decizii.

Backend (ce se întâmplă în spate): Baza de date SQLite, unde sunt stocate

informațiile despre PC și unde se fac interogările SQL.

Liantul: Comenzile SELECT, INSERT, UPDATE, DELETE sunt puntea dintre ce

vrem să aflăm și cum obținem răspunsul.

Mesaj final pentru ingineri/proiectanți/studenți

„Nu învățați SQL ca pe o limbă străină. Învățați-l ca pe un mod de a pune întrebări

despre lumea digitală. Fiecare interogare e o întrebare ce urmează să găsească

răspunsul in lumea reală. Fiecare tabelă e o parte dintr-un sistem viu ce reflectă o

entitate/obiect sau mai multe, ce interaxționează între ele. Fiecare aplicație pe care o

dezvoltăm este o soluție la o nevoie reală.

Plan motivațional pentru lucr. de laborator Nr.1

Laboratorul ca punte între gândire și acțiune

Ce trebuie făcut? Să înțelegem cum funcționează un PC și cum îl putem

proteja.

Ce dorim? Să construim o aplicație care ne ajută să monitorizăm, să

prevenim și să optimizăm.

Cum facem? Prin interogări SQL clare și aplicații frontend care transformă

datele în decizii.

Fiecare interogare SQL este o întrebare despre REALITATE

SELECT = Ce vreau să aflu?

WHERE = Ce condiții pun ca să fie relevant?

JOIN = Cum leg realitățile între ele?

Fiecare inginer/proiectant/student este un constructor de punți

Între date și sens. Între sistem și decizie. Între ce trebuie făcut și cum se face.

Modulul 1: Cu ce începem? Cu Modelarea,
Studiu de caz/ Exemplu – continuare

Sarcina reală Un calculator respiră prin procesor, memorie,

disc și temperatură. Când ele sunt în echilibru, sistemul

trăiește, când sunt ignorate, sistemul se sufocă si sboieste....

Scopul lucrării

Crearea unui sistem informatic pentru monitorizarea și administrarea

caracteristicilor PC-ului: procesor, memorie, disc și temperatură —

pentru a asigura performanță, longevitate, fiabilitate, stabilitate și

securitate.

SCOPUL nostru Să construim o aplicație care ascultă aceste
respirații, Care le înțelege, Care le transformă în decizii,

Studiu de caz/ Exemplu – continuare
Obiectivele noastre

1. Să păstrăm temperatura în limitele vieții.

2. Să protejăm resursele de uzură.

3. Să prevenim blocajele și erorile.

4. Să păstrăm sistemul curat și sigur.

Instrumentele noastre

SQL: limbajul întrebărilor.

Python, Streamlit, Flask, Tkinter, PHP: limbajele răspunsurilor.

Abordarea boastră
1. Scriem un SELECT.

2. Punem un WHERE.

3. Legăm cu JOIN.

4. Validăm cu ochii și cu gândul.

„Nu învățați doar să interogați o bază de date. Învățați să întrebați lumea digitală ce are

nevoie. Și să răspundeți cu claritate, cu grijă, cu sens.”

Modulul 1: Modelarea,
Studiu de caz/ Exemplu – continuare

Obiective și

interogări SQL
1️⃣ Performanță

SQL
SELECT model, component, value

FROM PC

JOIN Temperatura ON PC.id_pc =

Temperatura.id_pc

WHERE value BETWEEN 30 AND

70;

2️⃣ Longevitate

SQL
SELECT model, usage

FROM CPU

JOIN PC ON CPU.id_pc = PC.id_pc

WHERE usage < 50;

Obiective și interogări

SQL
3️⃣ Fiabilitate și stabilitate

SQL
SELECT model, usage

FROM Memorie

JOIN PC ON Memorie.id_pc = PC.id_pc

WHERE usage > 80;

4️⃣ Securitate

SQL
SELECT model, usage

FROM Disk

JOIN PC ON Disk.id_pc = PC.id_pc

WHERE usage > 90;

LAB. Nr.1: De la Interogare la Înțelegere, Studiu
de caz/ Exemplu – continuare

Ce trebuie făcut? Monitorizarea componentelor PC: CPU, memorie, disc,

temperatură.

Ce dorim? Să construim o aplicație care oferă performanță, longevitate,

fiabilitate și securitate.

Cum facem?

Backend: SQLite + interogări SQL (SELECT, JOIN, WHERE, CRUD)

Frontend: Python, Streamlit, Flask, Tkinter, PHP

Modulul 1: Modelarea Sarcini practice. SQL,
Studiu de caz/ Exemplu – continuare

✅ Monitorizarea CPU/Memorie/Disc

SELECT model, usage FROM CPU JOIN PC ON CPU.id_pc =

PC.id_pc;

SELECT model, usage FROM Memorie JOIN PC ON

Memorie.id_pc = PC.id_pc;

SELECT model, usage FROM Disk JOIN PC ON Disk.id_pc =

PC.id_pc;

✅ Controlul temperaturii

SELECT model, component, value FROM Temperatura JOIN PC

ON Temperatura.id_pc = PC.id_pc;

Modulul 1: Modelarea Reflecție finală SQL
Studiu de caz/ Exemplu – continuare

Reflecție finală

Fiecare interogare SQL este o întrebare despre REALITATE. Fiecare

tabelă este o reflecție a unei componente din REALITATE. Fiecare

limbaj este o fereastră spre înțelegere. Fiecare inginer / student este un

constructor de punți între DATE și SENS.

Fiind ingineri/proiectanți/studenți Dvs sunteți modelatori și

constructori ai propriei vieți digitale. Când scriem un SELECT, noi

NU doar interogăm o bază de date — noi învațăm să punem întrebări

clare, să filtrăm, să conectăm și să înțelegem REALITATEA.

Reflecție finală, concluzii generale,
Studiu de caz/ Exemplu – continuare

Transformă fiecare interogare SQL într-o întrebare existențială.

Nu întreba doar „Ce temperatură are CPU-ul?” — întreabă:

„Este sistemul meu în echilibru? Ce-mi spune temperatura despre sănătatea lui?”

Folosește explicații simple și vizuale:

SELECT = „Ce vreau să aflu?”

WHERE = „Ce condiții pun ca să fie relevant?”

JOIN = „Cum leg realitățile între ele?”

Construiește elemente de reflecție: După fiecare interogare, incercați să răspundeți la

următoarele întrebări:

Ce am aflat?

Ce înseamnă asta pentru sistem?

Ce decizie pot lua?

Vertabelo – tool-sul spre structura BD
Studiu de caz/ Exemplu – continuare

Vertabelo – tool-sul spre structura BD
Studiu de caz/ Exemplu – continuare

Vertabelo – tool-sul spre structura BD
Studiu de caz/ Exemplu – continuare

Modelarea datelor – modelul Conceptual,
Studiu de caz/ Exemplu – continuare

Ce este o diagrama entitate-relație?

O diagramă entitate-relație (DER/ERD) este o reprezentare picturală a

informațiilor care pot fi captate de o bază de date. O astfel de „imagine” servește două

scopuri.

Permite profesioniștilor din domeniul bazelor de date să descrie un design general

concis, dar precis. O diagramă ER poate fi ușor transformată într-o schemă

relațională.

Modelul conceptual are ca scop stabilirea entităților si a atributelor ce le descriu precum si

legăturile dintre entitati.

Modelarea datelor – modelul logic
Studiu de caz/ Exemplu – continuare

1. Modelul logic de date definește structura elementelor de date și

stabilește relațiile dintre acestea prin atribute.

Modelarea datelor – modelul fizic
Studiu de caz/ Exemplu – continuare

CREATE TABLE PC (

id_pc INTEGER PRIMARY KEY,

model TEXT

);

CREATE TABLE CPU (

id_cpu INTEGER PRIMARY KEY,

id_pc INTEGER,

usage INTEGER,

FOREIGN KEY(id_pc) REFERENCES

PC(id_pc)

);

CREATE TABLE Memorie (

id_memorie INTEGER PRIMARY KEY,

id_pc INTEGER,

usage INTEGER,

FOREIGN KEY(id_pc) REFERENCES

PC(id_pc)

);

CREATE TABLE Disk (

id_disk INTEGER PRIMARY KEY,

id_pc INTEGER,

usage INTEGER,

FOREIGN KEY(id_pc) REFERENCES

PC(id_pc)

);

CREATE TABLE Temperatura (

id_temp INTEGER PRIMARY KEY,

id_pc INTEGER,

component TEXT,

value INTEGER,

FOREIGN KEY(id_pc) REFERENCES

PC(id_pc)

);

✨Moment de reflecție: Ce înseamnă să transformăm o componentă

fizică într-un rând într-o tabelă?

1. Modelul fizic de date stabilestemodelul de date specific bazei de date.

Modulul 2: Crearea bazei de date în SQLite
Studiu de caz/ Exemplu – continuare

CREATE TABLE PC (

id_pc INTEGER PRIMARY KEY,

model TEXT

);

CREATE TABLE CPU (

id_cpu INTEGER PRIMARY KEY,

id_pc INTEGER,

usage INTEGER,

FOREIGN KEY(id_pc) REFERENCES

PC(id_pc)

);

CREATE TABLE Memorie (

id_memorie INTEGER PRIMARY KEY,

id_pc INTEGER,

usage INTEGER,

FOREIGN KEY(id_pc) REFERENCES

PC(id_pc)

);

CREATE TABLE Disk (

id_disk INTEGER PRIMARY KEY,

id_pc INTEGER,

usage INTEGER,

FOREIGN KEY(id_pc) REFERENCES

PC(id_pc)

);

CREATE TABLE Temperatura (

id_temp INTEGER PRIMARY KEY,

id_pc INTEGER,

component TEXT,

value INTEGER,

FOREIGN KEY(id_pc) REFERENCES

PC(id_pc)

);

CLI – Command-Line Interface, GUI

Modulul 3: Operații CRUD în SQLite

Studiu de caz/ Exemplu – continuare

Scop: Să învățăm cum se populează și se modifică realitatea digitală.

▪ Create: INSERT INTO CPU (id_pc, usage) VALUES (1, 45);

▪ Read: SELECT * FROM CPU WHERE usage > 80;

▪ Update: UPDATE CPU SET usage = 30 WHERE id_cpu = 1;

▪ Delete: DELETE FROM CPU WHERE id_cpu = 1;

✨Moment de reflecție: Ce înseamnă să „ștergi” o componentă? Ce

rămâne?

Modulul 4: Interogări MONO în CLI SQLite

Studiu de caz/ Exemplu – continuare

Scop: Să înțelegem cum SELECT-ul devine fereastră spre realitate.

Obiectiv 1 – Performanță (temperaturi optime)

Cod Sql

SELECT model, component, value

FROM PC

JOIN Temperatura ON PC.id_pc = Temperatura.id_pc

WHERE value BETWEEN 30 AND 70;

Obiectiv 2 – Longevitate (resurse sub control)

Cod Sql

SELECT model, usage

FROM CPU

JOIN PC ON CPU.id_pc = PC.id_pc

WHERE usage < 50;

Modulul 4: Interogări MONO în CLI SQLite

Studiu de caz/ Exemplu – continuare

Scop: Să înțelegem cum SELECT-ul devine fereastră spre realitate.

Obiectiv 3 – Fiabilitate și stabilitate (evitarea blocajelor)

Cod Sql

SELECT model, usage

FROM Memorie

JOIN PC ON Memorie.id_pc = PC.id_pc

WHERE usage > 80;

Obiectiv 4 – Securitate (spațiu pe disc)

Cod Sql

SELECT model, usage

FROM Disk

JOIN PC ON Disk.id_pc = PC.id_pc

WHERE usage > 90;

✨Moment de reflecție: Ce înseamnă să definești „normalul” printr-un WHERE?

Modulul 5: Scriptul în limbaje de programare Python

Studiu de caz/ Exemplu – continuare
BD SQLITE 'pc_metriks.db'

Tabelul PC

Tabelul Temperatura

Modulul 5: Scriptul în limbaje de programare Flask

BD SQLITE 'pc_metriks.db'

Tabelul PC

Tabelul Temperatura
lansare in Pycharm

Modulul 5: Scriptul în limbaje de programare Streamlit

BD SQLITE 'pc_metriks.db'

Tabelul PC

Tabelul Temperatura

Modulul 5: Scriptul în limbaje de programare Tkinter

BD SQLITE 'pc_metriks.db'

Tabelul PC

Tabelul Temperatura

Concluzii

• Fiecare interogare SQL e o întrebare despre
REALITATE.

• Fiecare tabelă este o metaforă a unei entitati ce
reflectă REALITATEA modelată.

• Fiecare limbaj e o fereastră spre înțelegere a
REALITĂȚII.

• Fiecare inginer / student / proiectant este un
constructor de punți între DATE și SENS.

