T1. Introducere în Python și Flask
1. Introducere în Flask
Un framework web are rolul de a prelua cererile făcute de utilizatori prin browser, de a le direcționa către funcții scrise și de a trimite înapoi un răspuns corespunzător. Dintre framework-urile existente pentru Python, cele mai populare sunt Django și Flask. Django este un framework complet, cu foarte multe componente gata integrate, potrivit pentru proiecte mari și complexe. Flask, în schimb, este un micro-framework: are doar funcționalitățile de bază, pentru proiecte mici.
Pentru a înțelege de ce este nevoie de Flask, trebuie să discutăm puțin despre cum funcționează aplicațiile web. Orice aplicație web se bazează pe comunicarea dintre client și server. Clientul este, în cele mai multe cazuri, un browser web precum Chrome sau Firefox. Serverul este un program care ascultă pe o anumită adresă (de regulă un port, cum ar fi 5000 sau 8000) și așteaptă cereri. Aceste cereri se transmit folosind protocolul HTTP. Atunci când tastăm în browser o adresă precum http://example.com, browserul creează o cerere HTTP de tip GET, pe care o trimite serverului. Serverul procesează cererea, apelează funcțiile definite de programator și trimite înapoi un răspuns – de obicei un text HTML sau un fișier.
Flask are grijă de partea aceasta de legătură: el primește cererea HTTP și o asociază unei funcții Python printr-un mecanism numit rutare. O rută este practic o adresă URL care declanșează o anumită funcție. Spre exemplu, dacă dorim ca atunci când accesăm http://localhost:5000/ să apară mesajul „Salut!”, în Flask definim o rută corespunzătoare și o funcție care returnează acel text.
Pentru a lucra cu Flask, trebuie mai întâi de pregătim mediul de lucru. Primul pas este verificarea faptului că este Python instalat. Recomandat este să se folosească un mediu virtual (virtual environment) pentru fiecare proiect. Acesta izolează bibliotecile instalate, astfel încât fiecare aplicație să aibă propriile dependențe fără să interfereze cu alte proiecte. Crearea unui mediu virtual se face cu comanda python -m venv venv, iar activarea depinde de sistemul de operare: pe Windows se folosește venv\Scripts\activate, iar pe Linux și Mac source venv/bin/activate. Odată activat mediul, putem instala Flask cu ajutorul managerului de pachete pip, prin comanda pip install flask.
După instalare, putem crea primul nostru fișier, app.py. Acesta va fi punctul de pornire al aplicației. Codul minim pentru o aplicație Flask arată astfel:
from flask import Flask
app = Flask(__name__)
@app.route("/")
def hello():
 return "Hello, Flask!"
if __name__ == "__main__":
 app.run(debug=True)

Acest cod conține toată logica necesară pentru a porni un server web simplu. Prima instrucțiune from flask import Flask importă clasa principală din framework. Linia app = Flask(__name__) creează o instanță a aplicației noastre, care va gestiona toate cererile. Decoratorul @app.route("/") leagă funcția hello() de ruta /, adică pagina principală a aplicației. Astfel, atunci când cineva accesează adresa de bază a serverului, Flask va executa funcția hello și va returna textul „Hello, Flask!”. Ultima parte app.run(debug=True) pornește serverul în modul de dezvoltare, ceea ce înseamnă că aplicația se va reîncărca automat la modificarea codului și că erorile vor fi afișate în browser.
Pentru a testa aplicația, rulăm comanda python app.py în terminal. Serverul va porni, de regulă pe adresa http://127.0.0.1:5000/. Dacă deschidem această adresă în browser, vom vedea mesajul „Hello, Flask!”. Acesta este primul proiect: am transformat un simplu script Python într-o aplicație web funcțională.
Ca exercițiu, putem extinde aplicația cu o rută suplimentară. Definim, de exemplu, o funcție care să răspundă pe /about și să returneze un alt mesaj. Codul ar arăta astfel:
@app.route("/about")
def about():
 return "Aceasta este prima mea aplicație web cu Flask."
Acum, accesând http://127.0.0.1:5000/about, serverul va afișa noul text. Prin acest exemplu simplu, putem înțelege esența Flask: fiecare rută definește un punct de intrare, iar funcția asociată produce răspunsul trimis către client.

2. HTML
O pagină web este un document HTML (HyperText Markup Language). HTML descrie structura conținutului, nu aspectul lui vizual. La nivel logic, un document HTML este un „arbore” de elemente (numite și tag-uri), fiecare element putând avea atribute (de ex. href, alt, class) și conținut (text sau alte elemente cuibărite). Browserul construiește din acest text o structură internă numită DOM (Document Object Model), peste care ulterior se aplică stilurile CSS și logica JavaScript.
Fiecare document începe cu declarația de tip:
<!DOCTYPE html>
Aceasta spune browserului că folosim standardul HTML5. Urmează elementul rădăcină:
<html lang="ro">
Atributul lang indică limba conținutului și ajută accesibilitatea și SEO.
Un document HTML are două secțiuni majore:
<head> – metadate despre pagină (nu conținut vizibil). Aici punem titlul, setul de caractere, viewportul pentru dispozitive mobile, legături către fișiere CSS și eventual scripturi care trebuie încărcate în avans:
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>Titlul paginii</title>
 <link rel="stylesheet" href="/static/css/style.css">
</head>
meta charset="utf-8" asigură afișarea corectă a diacriticelor.
meta viewport permite layout responsive pe telefoane.
<body> – conținutul vizibil: titluri, paragrafe, liste, imagini, navigație etc. HTML5 oferă elemente semantice care dau sens structurii:
<header> (antet), <nav> (navigație), <main> (conținut principal — o singură dată pe pagină), <section> (secțiune tematică), <article> (conținut autonom), <aside> (conținut auxiliar), <footer> (subsol). Semantica îi ajută pe cititorii de ecran, motoarele de căutare și pe noi, ca programatori, să înțelegem mai ușor arhitectura paginii.
<!DOCTYPE html>
<html lang="ro">
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>Bun venit</title>
 <link rel="stylesheet" href="/static/css/style.css">
</head>
<body>
 <header>
 <h1>Aplicația mea Flask</h1>
 <nav>
 Acasă
 Despre
 </nav>
 </header>

 <main>
 <section>
 <h2>Salut!</h2>
 <p>Aceasta este prima pagină servită de aplicația noastră.</p>

 </section>
 </main>

 <footer>
 <small>© 2025 Echipa mea</small>
 </footer>
</body>
</html>

3. CSS: stil, aspect, layout
Dacă HTML scrie ce este pe pagină, CSS (Cascading Style Sheets) spune cum arată. CSS lucrează cu selectori (aleg elemente sau grupuri de elemente) și declarații (proprietăți + valori). Există trei moduri de aplicare:
· extern (preferat în producție): fișier .css separat și legat în <head>.
· intern: bloc <style> în <head>.
· inline: atribut style direct pe element (folosit rar; îngreunează mentenanța).
CSS se numește „cascadă” pentru că stilurile se combină și se suprascriu în funcție de:
1. specificitate (inline > #id > .class > element),
2. ordinea apariției (ultimul câștigă, la egalitate de specificitate),
3. moștenire (unele proprietăți se moștenesc — ex. color, font-family).
Un fișier style.css minim:
/* Selectoare element */
body {
 font-family: system-ui, -apple-system, "Segoe UI", Roboto, sans-serif;
 line-height: 1.5;
 color: #222;
 margin: 0; /* elimină marginea implicită a body */
}

/* Selectoare clasă */
.navbar a {
 text-decoration: none;
 padding: 0.5rem 0.75rem;
}

/* Selector id (de folosit rar, doar când e necesar) */
#hero-title {
 font-size: 2rem;
}

/* Pseudo-clase: stări interactive */
a:hover, a:focus {
 text-decoration: underline;
}

/* Pseudo-elemente: conținut decorativ */
button::before {
 content: "► ";
}

/* Modelul de cutie (box model) */
.card {
 border: 1px solid #ddd;
 padding: 1rem; /* spațiu intern */
 margin: 1rem 0; /* spațiu extern */
 border-radius: 0.75rem;
 box-shadow: 0 4px 16px rgba(0,0,0,.06);
 background: #fff;
}

/* Controlul modelului de cutie (utile în layouturi precise) */
*,
*::before,
*::after {
 box-sizing: border-box; /* include border + padding în width/height */
}

/* Layout modern cu Flexbox */
.header,
.navbar {
 display: flex; /* container flex */
 align-items: center; /* aliniere pe axa transversală */
 gap: 0.5rem; /* spațiu între copii */
}

/* Layout responsive: media queries */
@media (max-width: 600px) {
 .navbar {
 flex-direction: column;
 align-items: flex-start;
 }
}

Câteva concepte esențiale:
· Box model: fiecare element are content, padding, border, margin. Înțelegerea sa e fundamentală pentru layout și spacing.
· Afișare (display): block (ocupă lățimea liniei), inline (în fluxul textului), inline-block (mix), flex (layout unidirecțional), grid (layout bidirecțional).
· Poziționare (position): static (implicit), relative (ancoră pentru copii), absolute (scos din flux, poziționat relativ la cel mai apropiat strămoș poziționat), fixed (față de fereastră), sticky (lipicios pe scroll).
· Unități: px, %, em (raportat la fontul elementului), rem (raportat la fontul rădăcinii), vh/vw (procent din viewport).
· Culoare: #hex, rgb(), hsl(). HSL e adesea mai intuitiv pentru nuanțe/contrast.
· Accesibilitate: contrast suficient între text și fundal; nu folosiți culoarea singură ca semnal; asigurați focus vizibil pentru interacțiune cu tastatura.

4. HTML + CSS în Flask: „static” și „templates”
În Flask separăm conținutul (template-uri HTML) de resursele statice (CSS, imagini, JS):
project/
 app.py
 /templates
 base.html
 index.html
 /static
 /css
 style.css
 /img
 logo.png
Folderul templates/ conține fișiere HTML care pot folosi Jinja2 (variabile, blocuri, moștenire de layout).
Folderul static/ conține CSS, imagini și scripturi servite „așa cum sunt”.
În template-uri, linkurile către fișiere statice se scriu dinamic cu url_for('static', filename='...'), ca Flask să genereze calea corectă indiferent de configurare:
templates/base.html:
<!DOCTYPE html>
<html lang="ro">
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>{% block title %}Titlu implicit{% endblock %}</title>

 <!-- legăm CSS-ul corect prin Flask -->
 <link rel="stylesheet" href="{{ url_for('static', filename='css/style.css') }}">
</head>
<body>
 <header class="header navbar">
 <h1 class="site-title">Aplicația Flask</h1>
 <nav class="navbar">
 Acasă
 Despre
 </nav>
 </header>

 <main class="container">
 {% block content %}{% endblock %}
 </main>

 <footer class="footer">
 <small>© 2025</small>
 </footer>
</body>
</html>

templates/index.html:
{% extends "base.html" %}
{% block title %}Acasă{% endblock %}
{% block content %}
 <section class="card">
 <h2 id="hero-title">Salut!</h2>
 <p>Aceasta este prima pagină stilizată cu CSS servită din Flask.</p>

 </section>
{% endblock %}

static/css/style.css
body { font-family: system-ui, -apple-system, "Segoe UI", Roboto, sans-serif; margin: 0; }
.container { max-width: 960px; margin: 0 auto; padding: 1rem; }
.header, .navbar { display: flex; align-items: center; gap: .5rem; padding: .75rem 1rem; background: #f7f7f7; }
.site-title a { text-decoration: none; color: inherit; }
.card { background: #fff; border: 1px solid #e5e5e5; border-radius: 12px; padding: 1rem; box-shadow: 0 6px 24px rgba(0,0,0,.05); margin-top: 1rem; }
img { max-width: 100%; height: auto; display: block; }
app.py (rute care servesc aceste template-uri):
from flask import Flask, render_template, url_for
app = Flask(__name__)
@app.route("/")
def home():
 return render_template("index.html")
@app.route("/about")
def about():
 return render_template("base.html") # de test; ulterior faceți about.html separat
if __name__ == "__main__":
 app.run(debug=True)

url_for se folosește pentru portabilitate: dacă mutăm aplicația în spatele unui prefix sau schimbăm configurația serverului, căile către resurse rămân corecte. În plus, Flask poate atașa automat versiuni („cache-busting”) pentru a forța reîncărcarea fișierelor statice când le modificăm.

