
Lab 4. Automated digital forensic analysis tool

Write a tool in C++ using WinAPI, not third party libraries, which will implement one of these features:

The task is chosen based on the group list. Just ask me, if you are not sure about your number.

1. Extract system processes details and save in a JSON file:

Process ID: e.g., 1201;

Executable File Path: e.g., C:\Program Files (x86)\Mozilla Firefox\firefox.exe;

Digital Signature Validity: trusted & integral, untrusted/corrupted, or not present.

2. The network information for each process will be saved in a JSON file, including the

following:

Process ID;

Local address and port;

Destination address and port (if present);

Transport layer protocol used;

State (e.g., ESTABLISHED, LISTENING).

If a process has no open network sockets, it will not be included in the file.

3. Extract WinAPI Imports from a PE Executable and Identify Malicious Ones

Identify suspicious functions such as: IsDebuggerPresent, VirtualAllocEx, WriteProcessMemory,

CreateRemoteThread, SetWindowsHookEx, etc.

Useful resources:

A dive into the PE file format;

101 Editor;

For the JSON part, you may use third-party libraries. A popular C++ implementation is nlohmann/json.

Conditions:

Use WinAPI directly, without libraries (for the core task);

The code will be accompanied by links to the respective documentation;

The results of the tasks must include the malicious program developed in Practical Work No. 2.

What you should learn after completing these tasks:

understand the difference between types like NT_IMAGE_HEADERS and PNT_IMAGE_HEADERS (the

latter is a pointer to the structure);

what a handle is and how it is used in the WinAPI;

the difference between A and W function suffixes (ANSI vs. Wide/Unicode);

the distinction between Ex and non-Ex function variants (e.g., CreateFile vs. CreateFileEx);

Lab4.md 2025-05-06

1 / 2

https://0xrick.github.io/win-internals/pe6/
https://www.sweetscape.com/010editor/
https://github.com/nlohmann/json
file:///home/catalin/UTM/2024-25/PMRI/Lab2.md


how to create and configure a project in Visual Studio;

how to use what Windows provides for developers (headers, libraries, SDKs);

how to read and navigate Microsoft's documentation (MSDN / learn.microsoft.com);

the importance of checking return values and handling errors properly;

basic usage of debugging tools (e.g., Visual Studio debugger).

These principles, such as understanding low-level system interaction, handling resources, and utilizing

platform-specific development tools, are universal across all operating systems and major frameworks,

including systems like Linux, macOS, Android, and large frameworks such as .NET or Java.

Lab4.md 2025-05-06

2 / 2


