Software Systems Architecture

Quality Attributes

Postaru Andrei

Understanding Quality Attributes

Quality Attribute (QA) is a measurable
or testable property of a system that is
used to indicate how well the system
satisfies the needs of its stakeholders
beyond the basic function of the
system

Quality Attribute Considerations

Problems with most discussions of system quality

attributes:

1. The definitions provided for an attribute are not
testable. It is meaningless to say that a system will
be “modifiable.” Every system will be modifiable
with respect to one set of changes and not
modifiable with respect to another.

2. Discussion often focuses on which quality a
particular issue belongs to. Is a denial-of-service
attack on a system an aspect of availability, an
aspect of performance, an aspect of security, or an
aspect of usability?

Quality Attribute Considerations

3. Each attribute community has developed its own
vocabulary. The performance community has “events”
arriving at a system, the security community has
“attacks” arriving at a system, the availability
community has “faults” arriving, and the usability
community has “user input.” All of these may actually
refer to the same occurrence, but they are described
using different terms.

Quality Attribute Considerations

A solution to the first two problems (untestable
definitions and overlapping issues) is to use quality
attribute scenarios as a means of characterizing quality
attributes. A solution to the third problem is to illustrate
the concepts that are fundamental to that attribute
community in a common form.

Quality Attribute Scenarios

We use a common form to specify all QA requirements
as scenarios.

Quality attribute scenarios have six parts:

Quality Attribute Scenarios

- Stimulus. We use the term “stimulus” to describe an event arriving at the
system or the project. The stimulus can be an event to the performance
community, a user operation to the usability community, or an attack to the
security community, and so forth. We use the same term to describe a
motivating action for developmental qualities. Thus, a stimulus for
modifiability is a request for a modification; a stimulus for testability is the
completion of a unit of development.

.- Stimulus source. A stimulus must have a source—it must come from
somewhere. Some entity (a human, a computer system, or any other actor)
must have generated the stimulus. The source of the stimulus may affect how
it is treated by the system. A request from a trusted user will not undergo the
same scrutiny as a request by an untrusted user.

Quality Attribute Scenarios

- Response. The response is the activity that occurs as the result of the arrival of
the stimulus. The response is something the architect undertakes to satisfy. It
consists of the responsibilities that the system (for runtime qualities) or the
developers (for development-time qualities) should perform in response to
the stimulus. For example, in a performance scenario, an event arrives (the
stimulus) and the system should process that event and generate a response.
In a modifiability scenario, a request for a modification arrives (the stimulus)
and the developers should implement the modification—without side effects
—and then test and deploy the modification.

- Response measure. When the response occurs, it should be measurable in some
fashion so that the scenario can be tested—that is, so that we can determine if
the architect achieved it. For performance, this could be a measure of latency
or throughput; for modifiability, it could be the labor or wall clock time
required to make, test, and deploy the modification.

Quality Attribute Scenarios

- Environment. The environment is the set of circumstances in which the
scenario takes place. Often this refers to a runtime state: The system may be
in an overload condition or in normal operation, or some other relevant state.
For many systems, “normal” operation can refer to one of a number of modes.
For these kinds of systems, the environment should specify in which mode
the system is executing. But the environment can also refer to states in which
the system is not running at all: when it is in development, or testing, or
refreshing its data, or recharging its battery between runs. The environment
sets the context for the rest of the scenario. For example, a request for a
modification that arrives after the code has been frozen for a release may be
treated differently than one that arrives before the freeze. The fifth successive
failure of a component may be treated differently than the first failure of that
component.

- Artifact. The stimulus arrives at some target. This is often captured as just the
system or project itself, but it’s helpful to be more precise if possible. The
artifact may be a collection of systems, the whole system, or one or more
pieces of the system. A failure or a change request may affect just a small
portion of the system. A failure in a data store may be treated differently than
a failure in the metadata store. Modifications to the user interface may have
faster response times than modifications to the middleware.

The parts of a quality attribute
scenario

%

o Measure

A general scenario for
avallability

Source Artifact S A AN

s Response \ ¥
»| Processors, communication
Stimulus chanels, storage, processes,

affected artifacts in the

system’s environment
Environment Measure
Internal/external: Fault: omission, Normal operation, Prevent the fault Time or time interval
people, hardware, crash, incorrect startup, shutdown, from becoming a when the system must
software, physical timing, incorrect repair mode, degraded failure be available
infrastructure, response operation, overloaded Detect the fault Availability perentage
physical D Recover fromthe Time to detect the fault

environment
fault

Quality Attributes

1.Availability
2.Deployability
3.Energy Eficiency
4.Integrability
5.Modifiability
6.Performance
/.Safety
8.Security
9.Testability
10.Usability

Availability

Availability refers to a property of software—namely, that it is there and ready to
carry out its task when you need it to be. This is a broad perspective and
encompasses what is normally called reliability (although it may encompass
additional considerations such as downtime due to periodic maintenance).
Availability builds on the concept of reliability by adding the notion of recovery—
that is, when the system breaks, it repairs itself. Repair may be accomplished by
various means

Availability

A failure is the deviation of the system from its
specification, where that deviation is externally
visible. Determining that a failure has occurred
requires some external observer in the
environment.

A failure’s cause is called a fault. A fault can be
either internal or external to the system under
consideration. Intermediate states between the
occurrence of a fault and the occurrence of a failure
are called errors. Faults can be prevented,
tolerated, removed, or forecast.

Availability

Distinguishing between faults and failures allows us to discuss repair strategies. If
code containing a fault is executed but the system is able to recover from the fault
without any observable deviation from the otherwise specified behavior, we say
that no failure has occurred.

System Availability
Requirements

Availability Downtime/90 Days Downtime/Year
99.0 % 21 hr, 36 min 3 days, 15.6 hr
99.9 % 2 hr, 10 min 8 hr, 0 min, 46 sec
99.99 % 12 min, 58 sec 52 min, 34 sec
09.999 % | min, I8 sec 5 min, 15 sec

99.9999 %

8 sec

32 sec

Avallability General Scenario

Portion of Description Possible Values

Scenario

Source This specifies where the fault comes | Internal/external: people, hardware,
from. software, physical infrastructure, physical

environment

Stimulus The stimulus to an availability Fault: omission, crash, incorrect timing,
scenario is a fault. incorrect response

Artifact This specifies which portions of the Processors, communication channels,
system are responsible for and storage, processes, affected artifacts in the
affected by the fault, system’s environment

Environment We may be interested in not only how | Normal operation, startup, shutdown,
a system behaves in its “normal” repair mode, degraded operation,
environment, but also how it behaves | overloaded operation
in situations such as when it is already
recovering from a fault,

Avallability General Scenario

Response The most commonly desired response | Prevent the fault from becoming a failure
18 to prevent the fault from becoming
a failure, but other responses may also
be important, such as notifying people | * Lo the fault

or logging the fault for later analysis. | « Notify the appropriate entities (people
This section specifies the desired or systems)

system response,

Detect the fault:

* Recover from the fault

* Disable the source of events causing
the fault

* Be temporarily unavailable while a
repair s being effected

* Fix or mask the fault/failure or
contain the damage it causes

* Operate in a degraded mode while a
repair 1s being effected

Avallability General Scenario

Response We may focus on a number of * Time or time interval when the
measure measures of availability, depending on system must be available
s prit1oal ity » carviee Reino e 4 e .
the criticality of the service being + Availability percentage (e.g., 99.999

provided, per cent)

* Time to detect the fault
* Time to repair the fault

* Time or time interval in which system
can be in degraded mode

* Proportion (e.g., 99 percent) or rate
(¢.g.,up to 100 per second) of a
certain class of faults that the system
prevents, or handles without failing

Avallability General Scenario

Source

2

Serverin a
server farm

Stimulus

Server
fails

Artifact

Server

Response

— —

Environment

Mormal
operation

System informs
operator

System continues
to operate

Response
Measure

Mo downtime

Tactics for Availability

Detect Faults

]
Monitor

Ping/Echo
Heartbeat
Timestamp
Condition Monitoring
Sanity Checking
Voting

Exception Detection
Self-Test

Availability Tactics

Recover from Faults Prevent Faults
Preparation Reintroduction
and Repair l
|

Redundant Spare Shadow Removal from Service
Rollback State Resynchronization Transactions
Exception Handling Escalating Restart Predictive Model
Software Upgrade Nonstop Forwarding Exception Prevention
Retry Increase Competence Set

Ignore Faulty Behavior
Graceful Degradation

Reconfiguration

Tactics for Availability

Detect Faults

]
Monitor

Ping/Echo
Heartbeat
Timestamp
Condition Monitoring
Sanity Checking
Voting

Exception Detection
Self-Test

Availability Tactics

Recover from Faults Prevent Faults
Preparation Reintroduction
and Repair l
|

Redundant Spare Shadow Removal from Service
Rollback State Resynchronization Transactions
Exception Handling Escalating Restart Predictive Model
Software Upgrade Nonstop Forwarding Exception Prevention
Retry Increase Competence Set

Ignore Faulty Behavior
Graceful Degradation

Reconfiguration

Patterns for Availability

- Active redundancy (hot spare). For stateful components, this refers to a
configuration in which all of the nodes (active or redundant spare) in a

protection group® receive and process identical inputs in parallel, allowing
the redundant spare(s) to maintain a synchronous state with the active
node(s). Because the redundant spare possesses an identical state to the active
processor, it can take over from a failed component in a matter of
milliseconds. The simple case of one active node and one redundant spare
node is commonly referred to as one-plus-one redundancy. Active
redundancy can also be used for facilities protection, where active and
standby network links are used to ensure highly available network
connectivity.

4 A protection group is a group of processing nodes in which one or more nodes are “active,”
with the remaining nodes serving as redundant spares.

Patterns for Availability

- Passive redundancy (warm spare). For stateful components, this refers to a
configuration in which only the active members of the protection group
process input traffic. One of their duties is to provide the redundant spare(s)
with periodic state updates. Because the state maintained by the redundant
spares is only loosely coupled with that of the active node(s) in the protection
group (with the looseness of the coupling being a function of the period of the
state updates), the redundant nodes are referred to as warm spares. Passive
redundancy provides a solution that achieves a balance between the more
highly available but more compute-intensive (and expensive) active
redundancy pattern and the less available but significantly less complex cold
spare pattern (which is also significantly cheaper).

- Spare (cold spare). Cold sparing refers to a configuration in which redundant
spares remain out of service until a failover occurs, at which point a power-

on-reset’ procedure is initiated on the redundant spare prior to its being
placed in service. Due to its poor recovery performance, and hence its high
mean time to repair, this pattern is poorly suited to systems having high-
availability requirements.

> A power-on-reset ensures that a device starts operating in a known state.

Patterns for Availability

Benefits:

- The benefit of a redundant spare is a system that continues to function
correctly after only a brief delay in the presence of a failure. The
alternative is a system that stops functioning correctly, or stops
functioning altogether, until the failed component is repaired. This repair

could take hours or days.

TradeofTs:

- The tradeoff with any of these patterns is the additional cost and
complexity incurred in providing a spare.
- The tradeoff among the three alternatives is the time to recover from a

failure versus the runtime cost incurred to keep a spare up-to-date. A hot
spare carries the highest cost but leads to the fastest recovery time, for

example.

