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Introduction

» Started growing from OOP Concepts (1980s - 1990s)
» Object Management Group (OMG) (1997)
» UML 2, major revision (2005)
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Main Problem

What problems can we encounter in modeling?
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Ambiguous Diagrams
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Chaos #1
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Chaos #2
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OOP Pillars

Composition:
» The HAS-A relationship;
» Code reuse through delegation;
> It is very change friendly.
Inheritance:
» The IS-A relationship;
» Code reuse through inheritance;

P It can become very rigid.
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Use Case D. Tips

» Include the most relevant use case (domain specific ones).
> Keep them simple.

» Different diagrams for different types of actors, subsystems or
perspectives.
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Use Case D. Example

Get information

Client App

Get real time map with Open timetables
) locations of vehicles
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Use Case D. Mistakes
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Use Case D. Mistakes
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Class D. Tips

» You can use them to represent the data models or entities
from a RDBMS.

» Keep them small (Generally diagrams should be readable if
you put them in a slide).

> Use multiplicities.
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Class D. Example

Problem Based Learning

@ User

ooooo

userD: Integer
userName: String
userPassword: String
company: String
role: String

o *

@ Route

0

@ Network

O routelD: Integer

O networklD: Integer
O networkName: String
O user: User

1.% 1.*

@ Stop

O stoplD: Integer
O stopMName: String

1

1.*

@ Edge

0 edgelD: Integer
0O stoplD1: Integer
O stoplD2: Integer
O distance: Integer
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Component D. Tips

» [t is usually more abstract than deployment diagram.
P You can use it in order to represent non-concrete things.

» The client side plugs into the interface, the provider exposes
the interface.
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Component D. Example
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Deployment D. Tips

» If you'll be using components into deployment diagrams
maybe you don’t need the component ones.

> Represent a deployment model as close as a real world one.

» Be careful with arrows to not get them tangled.
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Deployment D. Example

CloudPlatform
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Sequence D. Tips

» All the requests should be ended by responses or destruction
occurrences.

» Synchronous requests should be followed by a response or an
asynchronous request.

» Divide the sequences using fragments.
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Sequence D. Example

ClientA | | ServerA
Operator | A2 A2 Database
h T T v
| Authenticate() | | H
——————> i I
| | AuthRequest() | H
| | | RetrieveuserData() _|
| | ————
3 3 3( ValidationData() E
! L AuthResponse() !
| AuthR i i i
< uthResponse() : : '
alt / [operator authorized] H T
! CreateRequest() | | H
—_— | i
i | ProccessRequest() _ | h
| | | ComputeResult() H
i i | StoreData() |
; | RetumResuk() | ;
|_ ShowResult() | | H
= L L I
g g g T
Operator | Clientapp | | serverapp | Database
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Sequence D. Mistakes

User

R
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Activity D. Tips

» Use one initial node and one final node.

» You can split vertically/horizontally based on the subsystem.
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Activity D. Example

Client App

Create Request

Server App

[update_schedule <‘§ generate schedule]

Create Database
Connection

Process Input

Generate Schedule

Retrieve Data

'

Update Data

Save Result
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Activity D. Mistakes
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State Machine D. Tips

» You can group state transitions into states.

» In case you do that provide start and end states.
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State Machine D. Example
o

A
g Y

Idle
\Character is idle Y,

e

Moving
Character is moving
lf Run Walk ' Jump \I
[Character is running | | Character is walklng ICharacter is Jumping /l

T
|
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Strengths

» Multiple perspectives of a system
» Non Ambiguous (if used correctly)

» Varies from simple/intuitive to complex/technical
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Summing up

> Make your diagrams viewer friendly:

> Readable;

> |ntuitive;

» On point;
> A diagram, if put in a slide should be readable.
» Like in life, when creating diagrams:

» Don't overthink;

> Make your point visible;

» Put some love into it;
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Thanks for your attendance/attention!
Questions?
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