UML For PBL

Vasile Drumea

November 12, 2023



Introduction
History
Problems

Ambiguity
Chaos

Diagrams
Important OOP Stuff

Structural
Use Case
Class
Component
Deployment

Behavioral
Sequence
Activity
State Machine

Strengths

Problem Based Learning Vasile Drumea



Introduction

» Started growing from OOP Concepts (1980s - 1990s)
» Object Management Group (OMG) (1997)
» UML 2, major revision (2005)

Problem Based Learning Vasile Drumea



Main Problem

What problems can we encounter in modeling?

Problem Based Learning Vasile Drumea



Ambiguous Diagrams

- N

—<_ What is the execution order suggested by the flowchart?
\ g8 Y

A 1,23 ) & 13,2 -~
-C: 1 and then either 3 or 2,3’1,\\ - D: Either (1,2) or (1,2,3)

Problem Based Learning Vasile Drumea

,//



Chaos #1

Problem Based Learning Vasile Drumea 6



Chaos #2

advanced-build

neodj-sery dvanced

community-build

neodj-server

neodj-udc neodj-community

|

neodj-management
L

<
I

server-api

neodj-ha

i neodj-enterprise

o |

neodj-backup

[ neodj-com
—

neo4j-consistency-check|

enterprise-build

neodj-server-enterpri: 9

Problem Based Learning

Vasile Drumea




OOP Pillars

Composition:
» The HAS-A relationship;
» Code reuse through delegation;
> It is very change friendly.
Inheritance:
» The IS-A relationship;
» Code reuse through inheritance;

P It can become very rigid.

Problem Based Learning Vasile Drumea



Use Case D. Tips

» Include the most relevant use case (domain specific ones).
> Keep them simple.

» Different diagrams for different types of actors, subsystems or
perspectives.

Problem Based Learning Vasile Drumea



Use Case D. Example

Get information

Client App

Get real time map with Open timetables
) locations of vehicles
P S —— extends_ - -~

e{te_ngs_ B

Open route details

ser

Problem Based Learning

Vasile Drumea

10



Use Case D. Mistakes

i <<|nclude>:©
— <<inlude>>— PQ

User

s
s

<<inlude>>
-

’

Problem Based Learning Vasile Drumea



Use Case D. Mistakes

Problem Based Learning Vasile Drumea

12



Class D. Tips

» You can use them to represent the data models or entities
from a RDBMS.

» Keep them small (Generally diagrams should be readable if
you put them in a slide).

> Use multiplicities.

Problem Based Learning Vasile Drumea

13



Class D. Example

Problem Based Learning

@ User

ooooo

userD: Integer
userName: String
userPassword: String
company: String
role: String

o *

@ Route

0

@ Network

O routelD: Integer

O networklD: Integer
O networkName: String
O user: User

1.% 1.*

@ Stop

O stoplD: Integer
O stopMName: String

1

1.*

@ Edge

0 edgelD: Integer
0O stoplD1: Integer
O stoplD2: Integer
O distance: Integer

Vasile Drumea




Component D. Tips

» [t is usually more abstract than deployment diagram.
P You can use it in order to represent non-concrete things.

» The client side plugs into the interface, the provider exposes
the interface.

Problem Based Learning Vasile Drumea

15



Component D. Example

Some Group \

T First Component O T Another Component
HTTP

7
Other Groups
Second Component i Example 1
FTP

My5ql
y5q

This is my folder

Foo

Frame 4 I

S —— _—

Problem Based Learning Vasile Drumea

16



Deployment D. Tips

» If you'll be using components into deployment diagrams
maybe you don’t need the component ones.

> Represent a deployment model as close as a real world one.

» Be careful with arrows to not get them tangled.

Problem Based Learning Vasile Drumea

17



Deployment D. Example

CloudPlatform

—— a a
MQTT Broker Web Server

d

X

User0

L] L}
Mobile Client PC Client

[Vehlc\e(}] [Vehlc\el] [Veh\c\ez]

Problem Based Learning Vasile Drumea 18



Sequence D. Tips

» All the requests should be ended by responses or destruction
occurrences.

» Synchronous requests should be followed by a response or an
asynchronous request.

» Divide the sequences using fragments.

Problem Based Learning Vasile Drumea

19



Sequence D. Example

ClientA | | ServerA
Operator | A2 A2 Database
h T T v
| Authenticate() | | H
——————> i I
| | AuthRequest() | H
| | | RetrieveuserData() _|
| | ————
3 3 3( ValidationData() E
! L AuthResponse() !
| AuthR i i i
< uthResponse() : : '
alt / [operator authorized] H T
! CreateRequest() | | H
—_— | i
i | ProccessRequest() _ | h
| | | ComputeResult() H
i i | StoreData() |
; | RetumResuk() | ;
|_ ShowResult() | | H
= L L I
g g g T
Operator | Clientapp | | serverapp | Database

Problem Based Learning

Vasile Drumea




Sequence D. Mistakes

User

R

Problem Based Learning

Vasile Drumea

21



Activity D. Tips

» Use one initial node and one final node.

» You can split vertically/horizontally based on the subsystem.

Problem Based Learning Vasile Drumea

22



Activity D. Example

Client App

Create Request

Server App

[update_schedule <‘§ generate schedule]

Create Database
Connection

Process Input

Generate Schedule

Retrieve Data

'

Update Data

Save Result

Problem Based Learning

Show Result

Vasile Drumea

23



Activity D. Mistakes

Problem Based Learning l

Vasile Drumea

24



State Machine D. Tips

» You can group state transitions into states.

» In case you do that provide start and end states.

Problem Based Learning Vasile Drumea

25



State Machine D. Example
o

A
g Y

Idle
\Character is idle Y,

e

Moving
Character is moving
lf Run Walk ' Jump \I
[Character is running | | Character is walklng ICharacter is Jumping /l

T
|

Problem Based Learning Vasile Drumea



Strengths

» Multiple perspectives of a system
» Non Ambiguous (if used correctly)

» Varies from simple/intuitive to complex/technical

Problem Based Learning Vasile Drumea

27



Summing up

> Make your diagrams viewer friendly:

> Readable;

> |ntuitive;

» On point;
> A diagram, if put in a slide should be readable.
» Like in life, when creating diagrams:

» Don't overthink;

> Make your point visible;

» Put some love into it;

Problem Based Learning Vasile Drumea

28



Thanks for your attendance/attention!
Questions?



	Introduction
	History
	Problems

	Diagrams
	Important OOP Stuff
	Structural
	Behavioral
	Strengths


