Number of clusters Clustering


http://www.holehouse.org/mlclass/13_Clustering.html
Previous Next Index
Unsupervised learning - introduction
· Talk about clustering
· Learning from unlabeled data
· Unsupervised learning
· 
· Useful to contras with supervised learning
· Compare and contrast
· Supervised learning
· Given a set of labels, fit a hypothesis to it
· Unsupervised learning
· Try and determining structure in the data
· Clustering algorithm groups data together based on data features
· What is clustering good for
· 
· Market segmentation - group customers into different market segments
· Social network analysis - Facebook "smartlists"
· Organizing computer clusters and data centers for network layout and location
· Astronomical data analysis - Understanding galaxy formation
K-means algorithm
· Want an algorithm to automatically group the data into coherent clusters
· K-means is by far the most widely used clustering algorithm
Overview
· Take unlabeled data and group into two clusters
[image: http://www.holehouse.org/mlclass/13_Clustering_files/Image.png]
· Algorithm overview
· 1) Randomly allocate two points as the cluster centroids
· Have as many cluster centroids as clusters you want to do (K cluster centroids, in fact)
· In our example we just have two clusters
· 2) Cluster assignment step
· Go through each example and depending on if it's closer to the red or blue centroid assign each point to one of the two clusters
· To demonstrate this, we've gone through the data and "colour" each point red or blue
[image: http://www.holehouse.org/mlclass/13_Clustering_files/Image%20%5b1%5d.png]
· 3) Move centroid step
· Take each centroid and move to the average of the correspondingly assigned data-points 
[image: http://www.holehouse.org/mlclass/13_Clustering_files/Image%20%5b2%5d.png]
· Repeat 2) and 3) until convergence
· More formal definition
· Input: 
· K (number of clusters in the data)
· Training set {x1, x2, x3 ..., xn) 
· Algorithm:
· Randomly initialize K cluster centroids as {μ1, μ2, μ3 ... μK}
[image: http://www.holehouse.org/mlclass/13_Clustering_files/Image%20%5b3%5d.png]
· 
· Loop 1
· This inner loop repeatedly sets the c(i) variable to be the index of the closes variable of cluster centroid closes to xi 
· i.e. take ith example, measure squared distance to each cluster centroid, assign c(i)to the cluster closest
[image: http://www.holehouse.org/mlclass/13_Clustering_files/Image%20%5b4%5d.png]
· Loop 2
· 
· Loops over each centroid calculate the average mean based on all the points associated with each centroid from c(i)
· What if there's a centroid with no data
· 
· Remove that centroid, so end up with K-1 classes
· Or, randomly reinitialize it
· 
· Not sure when though...
K-means for non-separated clusters
· So far looking at K-means where we have well defined clusters
· But often K-means is applied to datasets where there aren't well defined clusters
· e.g. T-shirt sizing
[image: http://www.holehouse.org/mlclass/13_Clustering_files/Image%20%5b5%5d.png]
· Not obvious discrete groups
· Say you want to have three sizes (S,M,L) how big do you make these?
· One way would be to run K-means on this data
· May do the following
[image: http://www.holehouse.org/mlclass/13_Clustering_files/Image%20%5b6%5d.png]
· So creates three clusters, even though they aren't really there
· Look at first population of people
· Try and design a small T-shirt which fits the 1st population
· And so on for the other two
· This is an example of market segmentation 
· 
· Build products which suit the needs of your subpopulations

K means optimization objective
· Supervised learning algorithms have an optimization objective (cost function)
· K-means does too
· K-means has an optimization objective like the supervised learning functions we've seen
· Why is this good?
· 
· Knowing this is useful because it helps for debugging
· Helps find better clusters
· While K-means is running we keep track of two sets of variables
· ci is the index of clusters {1,2, ..., K} to which xi is currently assigned
· i.e. there are m ci values, as each example has a ci value, and that value is one the the clusters (i.e. can only be one of K different values)
· μk, is the cluster associated with centroid k
· Locations of cluster centroid k
· So there are K 
· So these the centroids which exist in the training data space
·  μci, is the cluster centroid of the cluster to which example xi has been assigned to
· This is more for convenience than anything else
· You could look up that example i is indexed to cluster j (using the c vector), where j is between 1 and K
· Then look up the value associated with cluster j in the μ vector (i.e. what are the features associated with μj)
· But instead, for easy description, we have this variable which gets exactly the same value 
· Lets say xi as been assigned to cluster 5
· Means that
· ci = 5
· μci, = μ5
· Using this notation we can write the optimization objective;
[image: http://www.holehouse.org/mlclass/13_Clustering_files/Image%20%5b7%5d.png]
· i.e. squared distances between training example xi and the cluster centroid to which xi has been assigned to
· This is just what we've been doing, as the visual description below shows;
[image: http://www.holehouse.org/mlclass/13_Clustering_files/Image%20%5b8%5d.png]
· The red line here shows the distances between the example xi and the cluster to which that example has been assigned
· Means that when the example is very close to the cluster, this value is small
· When the cluster is very far away from the example, the value is large
· This is sometimes called the distortion (or distortion cost function)
· So we are finding the values which minimizes this function;
[image: http://www.holehouse.org/mlclass/13_Clustering_files/Image%20%5b9%5d.png]
· If we consider the k-means algorithm
· The cluster assigned step is minimizing J(...) with respect to c1, c2 ... ci 
· i.e. find the centroid closest to each example
· Doesn't change the centroids themselves
· The move centroid step
· We can show this step is choosing the values of μ which minimizes J(...) with respect to μ
· So, we're partitioning the algorithm into two parts
· First part minimizes the c variables
· Second part minimizes the J variables
· We can use this knowledge to help debug our K-means algorithm
Random initialization
· How we initialize K-means
· And how avoid local optimum
· Consider clustering algorithm
· Never spoke about how we initialize the centroids
· A few ways - one method is most recommended
· Have number of centroids set to less than number of examples (K < m) (if K > m we have a problem)0
· Randomly pick K training examples
· Set μ1 up to μK to these example's values
· K means can converge to different solutions depending on the initialization setup
· Risk of local optimum
[image: http://www.holehouse.org/mlclass/13_Clustering_files/Image%20%5b10%5d.png]
· The local optimum are valid convergence, but local optimum not global ones
· If this is a concern
· We can do multiple random initializations
· See if we get the same result - many same results are likely to indicate a global optimum
· [bookmark: _GoBack]Algorithmically we can do this as follows;
[image: http://www.holehouse.org/mlclass/13_Clustering_files/Image%20%5b11%5d.png]
· A typical number of times to initialize K-means is 50-1000
· Randomly initialize K-means
· For each 100 random initialization run K-means
· Then compute the distortion on the set of cluster assignments and centroids at convergent
· End with 100 ways of cluster the data
· Pick the clustering which gave the lowest distortion
· If you're running K means with 2-10 clusters can help find better global optimum
· 
· If K is larger than 10, then multiple random initializations are less likely to be necessary
· First solution is probably good enough (better granularity of clustering)
How do we choose the number of clusters?
· Choosing K?
· Not a great way to do this automatically
· Normally use visualizations to do it manually
· What are the intuitions regarding the data?
· Why is this hard
· Sometimes very ambiguous
· e.g. two clusters or four clusters
· Not necessarily a correct answer
· This is why doing it automatic this is hard
Elbow method
· Vary K and compute cost function at a range of K values
· As K increases J(...) minimum value should decrease (i.e. you decrease the granularity so centroids can better optimize)
· Plot this (K vs J())
· Look for the "elbow" on the graph
[image: http://www.holehouse.org/mlclass/13_Clustering_files/Image%20%5b12%5d.png]
· Chose the "elbow" number of clusters
· If you get a nice plot this is a reasonable way of choosing K
· Risks
· Normally you don't get a a nice line -> no clear elbow on curve
· Not really that helpful
Another method for choosing K
· Using K-means for market segmentation
· Running K-means for a later/downstream purpose
· See how well different number of clusters serve you later needs
· e.g.
· T-shirt size example
· If you have three sizes (S,M,L)
· Or five sizes (XS, S, M, L, XL)
· Run K means where K = 3 and K = 5
· How does this look
[image: http://www.holehouse.org/mlclass/13_Clustering_files/Image%20%5b13%5d.png]
· This gives a way to chose the number of clusters
· Could consider the cost of making extra sizes vs. how well distributed the products are
· How important are those sizes though? (e.g. more sizes might make the customers happier)
· So applied problem may help guide the number of clusters

image4.png
Repeat {
fori=1tom
¢ :=index (from 1 to K) of cluster centroid
closest to z(%)
fork=1to K
i :=average (mean) of points assigned to cluster k& }




image5.png




image6.png
Weight

T-shirt sizing





image7.png
Weight

T-shirt sizing

Height




image8.png
Lo~
I, ™, k) = EZHJJ“) - pew |I?
i=1




image9.png




image10.png
Lomin (e )

Hiseees K




image11.png
GLOBAL OPTIMUM

LOCAL OPTIMA




image12.png
Fori=1to0 100 { )
Randomly initialize K-means.

Run K-means. Get ¢, ... ¢c(™ py, ..

Compute cost function (distortion)
J(eM, ™ )y

MK




image13.png
Cost function .J

1

b’

/Y

2 3 4 5 6
K (no. of clusters)

7

8




image14.png
Weight

T-shirt sizing L

Weight

s

T-shirt sizing

V\L%\

Height

Height

(S




image1.png




image2.png




image3.png




