АНАЛИЗ И СИНТЕЗ ЦИФРОВЫХ УСТРОЙСТВ

CONF. UNIV. DR. VIORICA SUDACEVSCHI

ОБЩИЕ СВЕДЕНИЯ

- Цель курса изучение логических и арифметических основ цифровых устройств, изучение методов синтеза логических схем.
- Лекции 45 часов
- Семинары 15 часов
- Лабораторные работы— 15 часов
- Кредиты 5
- Две аттестации (на основе тестов, контрольных работ, сдачи лаб.
 Работ), 60% конечной оценки
- Экзамен 40% конечной оценки

ВВЕДЕНИЕ

Количество информации, содержащееся в некотором стандартном сообщении, называется единицей информации. Чаще всего за единицу информации принимается количество информации, посредством которого выделяется одно из двух альтернативных и равновероятных состояний. Эта единица информации может - принимать два равновероятных значения (например, 0 и 1) и называется двоичной единицей, или битом (bit—binary digit, т. е. двоичная цифра).

Информация может быть представлена в одной из двух форм: или непрерывной, или дискретной.

В вычислительных системах на основе микропроцессоров, как и в любых цифровых устройствах, используется дискретная форма представления информации.

ЛОГИЧЕСКИЕ ОСНОВЫ ЦИФРОВЫХ АВТОМАТОВ

Тема 1. Алгебра логики

Основные соотношения булевой алгебры

Для логических функций дизъюнкция, конъюнкция и отрицание справедливы следующие утверждения:

И	или	<u>H</u> ET
$0 \cdot 0 = 0$	0 + 0 = 0	0 = 1
$0 \cdot 1 = 0$	0 + 1 = 1	$\overline{1} = 0$
$1 \cdot 0 = 0$	1 + 0 = 1	

1 + 1 = 1

 $1 \cdot 1 = 1$

рахиомы

1.
$$x + 0 = x$$

$$x \cdot 1 = x$$

Нейтральные элементы

2.
$$x+1=1$$

$$x \cdot 0 = 0$$

3.
$$x + x = x$$

$$x \cdot x = x$$

Идемпотентность

=

4.
$$x = x$$

$$5. x + \overline{x} = 1$$

$$x \cdot \overline{x} = 0$$

Дополняемость

Доказательство методом совершенной индукции:

$$[x=0]$$
 0+0=0

$$[x=1]$$
 1+0=1

СВОЙСТВА (ТЕОРЕМЫ)

No			Теорема
1.	$x_1 + x_2 = x_2 + x_1$	$x_1 \cdot x_2 = x_2 \cdot x_1$	Коммутативность
2.	$(x_1 + x_2) + x_3 = x_1 + (x_2 + x_3)$	$(x_1 \cdot x_2) \cdot x_3 = x_1 \cdot (x_2 \cdot x_3)$	Ассоциативность
3.	$x_1 x_2 + x_1 x_3 = x_1 \cdot (x_2 + x_3)$	$(x_1 + x_2) \cdot (x_1 + x_3) = x_1 + (x_2 \cdot x_3)$	Дистрибутивность
4.	$x_1 + x_1 x_2 = x_1$	$x_1 \cdot (x_1 + x_2) = x_1$	Поглощение
	Доказательство: $x_1 + x_1x_2 = x_1$	$x_1 \cdot 1 + x_1 x_2 = x_1 (1 + x_2) = x_1 \cdot 1 = x_1$	
5.	$x_1 x_2 + x_1 \overline{x_2} = x_1$	$(x_1 + x_2) \cdot (x_1 + \overline{x_2}) = x_1$	Склеивание
	Доказательство: $x_1x_2 + x_1\overline{x_2}$	$= x_1 \cdot (x_2 + \overline{x_2}) = x_1 \cdot 1 = x_1$	
6.	$\overline{x_1 \cdot x_2} = \overline{x_1} + \overline{x_2}$	$\overline{x_1 + x_2} = \overline{x_1} \cdot \overline{x_2}$	Де Моргана

ДОКАЗАТЕЛЬСТВО СВОЙСТВА ДИСТРИБУТИВНОСТИ

$$(x_1 + x_2) \cdot (x_1 + x_3) = x_1 + (x_2 \cdot x_3)$$

$$(x_1 + x_2) \cdot (x_1 + x_3) = x_1 x_1 + x_1 x_3 + x_1 x_2 + x_2 x_3 =$$

$$= x_1 + x_1 x_3 + x_1 x_2 + x_2 x_3 = x_1 (1 + x_3 + x_2) + x_2 x_3 = x_1 + (x_2 x_3)$$

ПРИМЕРЫ

$$x_1x_3 + x_1\overline{x}_2\overline{x}_3x_4 + x_1\overline{x}_3$$

$$x_1 x_3 + x_1 \overline{x}_2 \overline{x}_3 x_4 + x_1 \overline{x}_3 = x_1 x_3 + x_1 \overline{x}_3 + x_1 \overline{x}_2 \overline{x}_3 x_4 = x_1 (x_3 + \overline{x}_3) + x_1 \overline{x}_2 \overline{x}_3 x_4 = x_1 + x_1 \overline{x}_2 \overline{x}_3 x_4 = x_1 (1 + \overline{x}_2 \overline{x}_3 x_4) = x_1$$

ПРИМЕРЫ

$$x_1x_2x_3 + x_3(\overline{x_1}\overline{x_2} \cdot \overline{\overline{x_1}}x_3)$$

$$x_{1}x_{2}x_{3} + x_{3}(\overline{x_{1}}\overline{x_{2}} \cdot \overline{x_{1}}x_{3}) = x_{1}x_{2}x_{3} + x_{3}(x_{1}\overline{x_{2}} + \overline{x_{1}}x_{3}) =$$

$$= x_{1}x_{2}x_{3} + x_{1}\overline{x_{2}}x_{3} + \overline{x_{1}}x_{3}x_{3} = x_{1}x_{2}x_{3} + x_{1}\overline{x_{2}}x_{3} + \overline{x_{1}}x_{3} =$$

$$= x_{1}x_{3}(x_{2} + \overline{x_{2}}) + \overline{x_{1}}x_{3} = x_{1}x_{3} + \overline{x_{1}}x_{3} = x_{3}(x_{1} + \overline{x_{1}}) = x_{3}$$

ЛОГИЧЕСКИЕ ОПЕРАЦИИ И ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ

Для логической функции y=f (x1, x2,...xn) характерно то, что и функция и переменные могут принимать только два значения (0 или 1). Логическая функция n переменных, определена в $m=2^n$ точках. В каждой точке функция может принимать значение 0 или 1. Количество таких функций $N=2^m$.

Для функции 1-ой переменной:

n = 1

m = 2

N = 4.

Четыре формы функции 1-ой переменной:

f _i X	0	1	Представление	Название
f_0	0	0	0	Константа 0
f_1	0	1	X	Переменная х
\mathbf{f}_2	1	0	X -	Отрицание переменной х
f ₃	1	1	1	Константа 1

ологические функции и логические элементы

Название	Функция	Символ	Таблица
			истинности
Инвертор	$f = \overline{x}$		<u>x f</u>
NOT			0 1
			1 0
Буффер	f = x		x f
			0 0
			1 1
Лог. элемент И	$f = x_1 \cdot x_2$		x ₁ x ₂ f
AND		\Box	0 0 0
		\square	0 1 0
			1 0 0
			1 1 1
Лог. элемент ИЛИ	$f = x_1 + x_2$	7	$x_1 x_2 f$
OR		\vdash	0 0 0
			0 1 1
			1 0 1
			1 1 1

> ЛОГИЧЕСКИЕ ФУНКЦИИ И ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ

Лог. элемент <u>И-НЕ</u> NAND Shaffer	$f = \overline{x_1 \cdot x_2}$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Лог. элемент ИЛИ- HE NOR Pirs	$f = \overline{x_1 + x_2}$		$\begin{array}{c cccc} x_1 & x_2 & f \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \end{array}$
Исключающее ИЛИ XOR	$f = x_1 \oplus x_2$		$\begin{array}{c ccccc} x_1 & x_2 & f & & \\ \hline 0 & 0 & 0 & & \\ 0 & 1 & 1 & & \\ 1 & 0 & 1 & & \\ 1 & 1 & 0 & & \\ \end{array}$
Исключающее ИЛИ-НЕ XNOR	$f = \overline{x_1 \oplus x_2}$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ФОРМЫ ПРЕДСТАВЛЕНИЯ ЛОГИЧЕСКИХ ФУНКЦИЙ

- графический (таблица истинности, диаграмма Карно, логическая схема, временная диаграмма);
- 2) цифровой логическая функция представляется при помощи десятичных эквивалентов входных наборов для которых значения ф-ции равно 1 или 0. $F(\underline{x},\underline{y},\underline{z}) = \sum_{} (3,5,6,7)$ $F(\underline{x},\underline{y},\underline{z}) = \prod_{} (0,1,2,4)$
- аналитический (СДНФ, СКНФ, элементарные формы, неэлементарные формы).

ГРАФИЧЕСКИЙ СПОСОБ

- таблица истинности
- диаграмма Карно
- логическая схема
- временная диаграмма

ТАБЛИЦА ИСТИННОСТИ

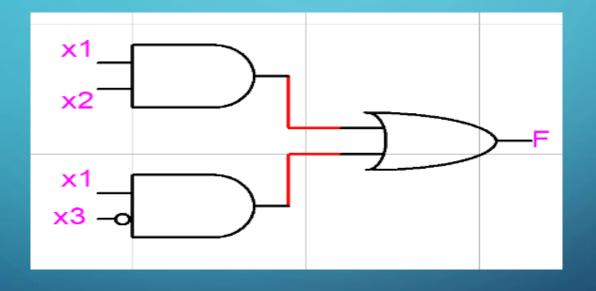
Ex.
$$F(x,y,z) = \sum (2,3,6,7)$$

$$F(x,y,z) = \sum (3,6,7) + *(1,2,4)$$

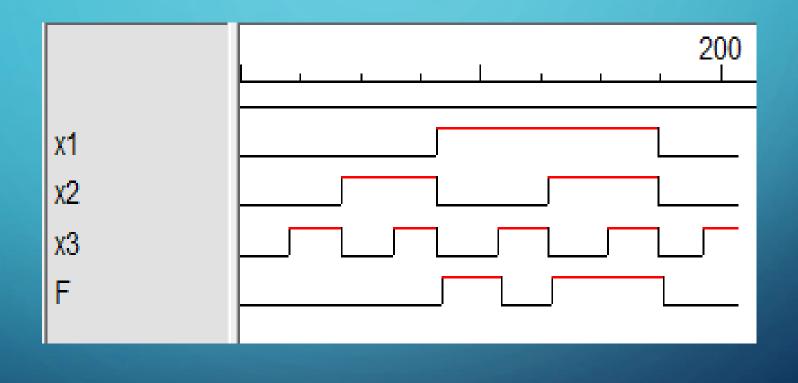
+

	x1	x2	х3	F
0	0	0	0	0
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	0
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

	x1	x2	х3	F
0	0	0	0	0
1	0	0	1	*
2	0	1	0	*
3	0	1	1	1
4	1	0	0	*
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1


ДИАГРАММА КАРНО

_ x1				x1x2				
x2	0	1		x3	00	01	11	10
o	00	10		0	000	010	110	100
1	01	11		1	001	011	111	101
	×1x2							
	x3x4	00	01	11	10			
	00	0000	0100	1100	1000			
	01	0001	0101	1101	1001			
	11	0011	0111	1111	1011			
	10	0010	0110	1110	1010			


код грэя

1 var	2 var.			3 var.		
0	0	0	0	0	0	
1	0	1	0	0	1	
	1	1	0	1	1	
	1	0	0	1	0	
			1	1	0	
			1	1	1	
			1	0	1	
			1	0	0	

ЛОГИЧЕСКАЯ СХЕМА

ВРЕМЕННАЯ ДИАГРАММА

АНАЛИТИЧЕСКИЕ СПОСОБЫ

- Совершенная форма
- Элементарная форма
- Неэлементарная форма

СОВЕРШЕННАЯ ФОРМЫ

x1 x2 x3 F 0 0 0 0 0 1 0 0 1 0 2 0 1 0 1 3 0 1 1 1 4 1 0 0 0 5 1 0 1 0 6 1 1 0 1 7 1 1 1 1

Совершенная дизъюнктивная нормальная форма (СДНФ)

Минтерм – терм (набор) связывающий все переменные прямой или обратной форме знаком конъюнкции по правилу:

$$x_i = \begin{cases} x_i, & npu & x_i = 1 \\ \overline{x}_i, & npu & x_i = 0 \end{cases}$$

$$\boldsymbol{x}_1 \overline{\boldsymbol{x}}_2 \boldsymbol{x}_3$$

СДНФ – дизъюнкция минтермов для которых значения функции равно 1.

$$F = \overline{x_1} x_2 \overline{x_3} + \overline{x_1} x_2 x_3 + x_1 x_2 \overline{x_3} + x_1 x_2 x_3$$

Совершенная конъюнктивная нормальная форма (СКНФ)

Махтерм – терм (набор) связывающий все переменные прямой или обратной форме знаком дизъюнкции по правилу:

$$x_{i} = \begin{cases} x_{i}, & npu & x_{i} = 0\\ \overline{x}_{i}, & npu & x_{i} = 1 \end{cases}$$
$$\overline{x}_{1} + x_{2} + \overline{x}_{3}$$

СКНФ – конъюнкция макстермов для которых значения функции равно 0.

$$F = (x_1 + x_2 + x_3) \cdot (x_1 + x_2 + \overline{x_3}) \cdot (\overline{x_1} + x_2 + x_3) \cdot (\overline{x_1} + x_2 + \overline{x_3})$$

ЭЛЕМЕНТАРНАЯ И НЕЭЛЕМЕНТАРНАЯ ФОРМЫ

1. Элементарные

Минимальная дизъюнктивная форма (МДФ)

$$F = \overline{x_1} x_2 \overline{x_3} + \overline{x_1} x_2 x_3 + x_1 x_2 \overline{x_3} + x_1 x_2 x_3 = \overline{x_1} x_2 (\overline{x_3} + x_3) + x_1 x_2 (\overline{x_3} + x_3) = \overline{x_1} x_2 + x_1 x_2 = x_2$$

Минимальная конъюнктивная форма (МКФ)

$$F = (x_1 + x_2 + x_3) \cdot (x_1 + x_2 + \overline{x_3}) \cdot (\overline{x_1} + x_2 + x_3) \cdot (\overline{x_1} + x_2 + \overline{x_3}) = (x_1 + x_2) \cdot (\overline{x_1} + x_2) = x_2$$

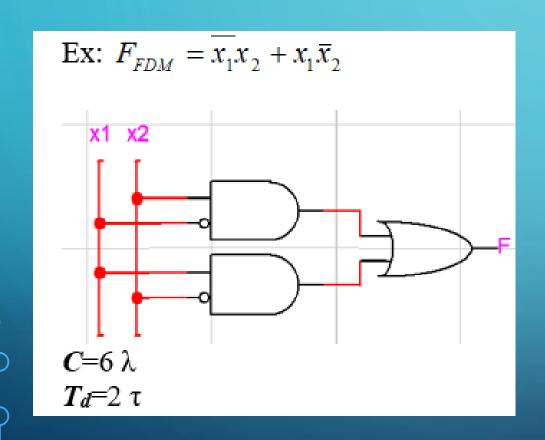
2. Неэлементарная

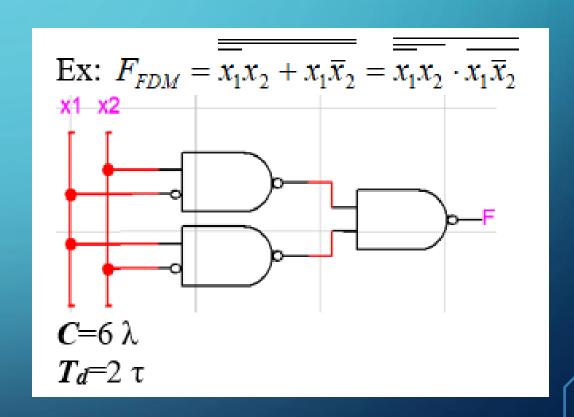
$$F = x_1 x_2 x_3 + x_1 \overline{x}_2 \overline{x}_3 = x_1 \cdot (x_2 x_3 + \overline{x}_2 \overline{x}_3)$$

	x1	x2	хЗ	F
0	0	0	0	0
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	0
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

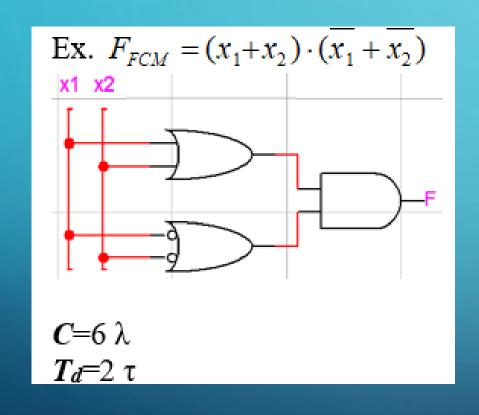
РЕАЛИЗАЦИЯ ЛОГИЧЕСКИХ СХЕМ

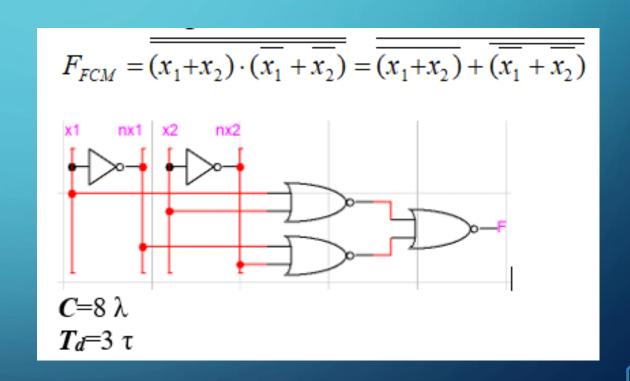
Реализация логической функции означает ее синтез с помощью логических схем.


Стоимость реализации равна количеству входов в логические элементы, которые выполняют заданную функцию.


Обозначается С и измеряется в условных единицах λ

Уровень (время задержки) логической схемы - это максимальное количество элементов, через которые проходит сигнал от входа к выходу.


Обозначается T_d и измеряется в условных единицах т


РЕАЛИЗАЦИЯ ЛОГИЧЕСКИХ СХЕМ

РЕАЛИЗАЦИЯ ЛОГИЧЕСКИХ СХЕМ

