
Объектно-ориентированное
программирование

UTM, FCIM, POO 21.6, Brânzan Leon © 2023

XIX. Дизайн относительно данных

Object-oriented programming

Data-oriented design

https://youtu.be/rX0ItVEVjHc&t=4580s

"You don't care how long it takes. Great. But people who don't care how long it
takes is also the reason why I have to wait 30 seconds for Word to boot."

http://www.youtube.com/watch?v=rX0ItVEVjHc&t=4580
https://youtu.be/rX0ItVEVjHc?si=aakwVY4r0H8VpPtE

"Software is getting slower more rapidly than
hardware becomes faster."

N. Wirth

XIX. Data-oriented design 1 / 00Object-oriented programming

leon.brinzan@iis.utm.mdUTM, FCIM, POO 21.6, Brânzan Leon © 2025

Мотивация

http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/

http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/

Тренды в архитектуре процессоров

https://youtu.be/ICKIMHCw--Y

https://youtu.be/ICKIMHCw--Y

https://youtu.be/Nz9SiF0QVKY

Промежуточные выводы

1. Использованные данные кэшируются, кэш бывает нескольких уровней
2. Кэш сохраняет данные в “линию” (cache line), используя хэш-таблицу с

открытой адресацией, количество “бакетов” сильно ограничено
3. Механизм угадывания пытается заранее определить линию, которая

понадобится процессору
a. кэшируется то, что понадобится в будущем (temporal locality)
b. соседние байты тоже кэшируются на всякий случай (spatial locality)

4. Кэш не всегда общий для разных ядер/потоков
5. Не все типы данных одинаково хорошо кэшируются

https://youtu.be/Nz9SiF0QVKY?si=PKAF3lmUopMGrqbZ

https://manybutfinite.com/post/intel-cpu-caches/

Устройство кэша

https://manybutfinite.com/post/intel-cpu-caches/

Ключевые моменты

1. Работа с памятью – это медленно
2. Работа с процессором – это быстро
3. Кэш процессора ограничен в объеме
4. Объекты в памяти нужно делать меньше, особенно в тех

местах программы, где этих объектов много

Хитрости чтобы выжать все до капли из процессора
Взятие обратного квадратного корня

float Q_rsqrt(float number) {
long i;
float x2, y;
const float threehalfs = 1.5F;
x2 = number * 0.5F;
y = number;
i = * (long *) &y; // evil floating point bit level hacking
i = 0x5f3759df - (i >> 1); // what the fuck?
y = * (float *) &i;
y = y * (threehalfs - (x2 * y * y));
return y;

}

https://www.beyond3d.com/content/articles/8/

https://www.beyond3d.com/content/articles/8/

Минимальный элемент без ветвления (останется не обнуленным):

int min(int a, int b) {
 return a * (a < b) + b * (b <= a);
}

int min(int a, int b) {
 // precondition: INT_MIN <= (a - b) <= INT_MAX
 return b + ((a - b) & ((a - b) >> (sizeof(int) * CHAR_BIT - 1)));
}

https://graphics.stanford.edu/~seander/bithacks.html

https://graphics.stanford.edu/~seander/bithacks.html

Двоичный поиск без рекурсии:

size_t bsearch(size_t needle, const size_t haystack[16]) {
 size_t i = (haystack[8] <= needle) ? 8 : 0;
 i += (haystack[i + 4] <= needle) ? 4 : 0;
 i += (haystack[i + 2] <= needle) ? 2 : 0;
 i += (haystack[i + 1] <= needle) ? 1 : 0;
 return i;
}

Выбор без ветвления:

#define BRANCHLESS_IF(f,x) ((x) & -((typeof(x))!!(f)))

#define BRANCHLESS_IF_ELSE(f,x,y) (((x) & -((typeof(x))!!(f))) | \
 ((y) & -((typeof(y)) !(f))))

Почему так не надо делать

void filter_loop(const std::vector<Type>& data, …) {
 Type sum = 0;
 // …
 {
 for(auto x : data) {
 if(x < 6) {
 sum += x;
 }
 }
 }
}

Современный компилятор знает лучше вас

https://godbolt.org/z/nCx7st

pxor xmm1, xmm1
movss xmm2, DWORD PTR .LC4[rip]
mov rax, rcx
cmp rcx, rdx
je .L9
movss xmm0, DWORD PTR [rax]
comiss xmm2, xmm0 ; if(x < 6)
jbe .L10
addss xmm1, xmm0 ; sum += x

Type = float: Type = int:

xor ebx, ebx
mov rax, r8
cmp r8, rdi
je .L9
mov edx, DWORD PTR [rax]
cmp edx, 6 ; sum += x
lea ecx, [rbx+rdx]
cmovl ebx, ecx
add rax, 4
cmp rdi, rax
jne .L11

https://godbolt.org/z/nCx7st

https://youtu.be/1X88od0miHs

https://www.youtube.com/playlist?list=PL2HVqYf7If8cY4wLk7JUQ2f0JXY_xMQm2

Современный компилятор знает лучше вас

http://www.youtube.com/watch?v=1X88od0miHs&t=232
https://youtu.be/1X88od0miHs
https://www.youtube.com/playlist?list=PL2HVqYf7If8cY4wLk7JUQ2f0JXY_xMQm2

Объекты в памяти должны быть маленькими

int a; // 4, 4
bool b; // 1, 1
struct { int a; };
struct { bool b; };
union { int a; bool b; }
struct { int a; bool b; } // массив этих структур?
struct { int a; int *p; int b; }
struct { int a; int b; int *p; }
struct { int a; int b; int *p; bool b; }

Объекты в памяти должны быть маленькими

int a; // 4, 4
bool b; // 1, 1
struct { int a; };
struct { bool b; };
union { int a; bool b; } // 4, 4
struct { int a; bool b; } // 4, 8
struct { int a; int *p; int b; } // 8, 24
struct { int a; int b; int *p; } // 8, 16
struct { int a; int b; int *p; bool b; } // 8, 24

https://youtu.be/IroPQ150F6c

https://vimeo.com/649009599

https://youtu.be/IroPQ150F6c
http://www.youtube.com/watch?v=IroPQ150F6c&t=184
https://vimeo.com/649009599

https://ziglang.org/

const std = @import("std");
const parseInt = std.fmt.parseInt;

test "parse integers" {
 const input = "123 67 89,99";
 const ally = std.testing.allocator;

 var list = std.ArrayList(u32).init(ally);
 // Ensure the list is freed at scope exit.
 // Try commenting out this line!
 defer list.deinit();

 var it = std.mem.tokenizeAny(u8, input, " ,");
 while (it.next()) |num| {
 const n = try parseInt(u32, num, 10);
 try list.append(n);
 }

 const expected = [_]u32{ 123, 67, 89, 99 };

 for (expected, list.items) |exp, actual| {
 try std.testing.expectEqual(exp, actual);
 }
}

https://ziglang.org/

https://youtu.be/IroPQ150F6c

Объекты is_invisible() тоже обрабатываются

https://youtu.be/IroPQ150F6c
http://www.youtube.com/watch?v=IroPQ150F6c&t=764

Состояние объекта вне данных (out of band)
Трюк 1. Вместо флагов в данных, группируйте сами данные в таблицах

// Булевое поле вынуждает терять 3 байта на каждом объекте:
struct s { int a; bool b; };
s arraylist[100] = {}; // sizeof(arraylist) == 800

// сама информация может храниться без булевого поля:
struct s { int a; }
s a_list[50] = {}; // sizeof(a_list) == 200
s b_list[50] = {}; // sizeof(b_list) == 200

* Проверки флага тоже не нужны при такой схеме хранения

“From a database perspective, the out-of-band method
is like normalizing your data with foreign key indexes;
damn those RDS architects back in the 60s & 70s were
on to something”

https://youtu.be/IroPQ150F6c

https://youtu.be/IroPQ150F6c

Относительная адресация против абсолютной
Трюк 2. Пользуйтесь целыми числами вместо указателей (х2 экономия памяти)

// вместо хранения конкретного адреса:
struct s { String *a; String *b; } str;
str.a = malloc(sizeof(String)); str.b = malloc(sizeof(String));

// хранится расстояние от одного объекта до другого:
struct s { unsigned a; unsigned b; } str;
String n[2]; str.a = 0; str.b = 1;

https://floooh.github.io/2018/06/17/handles-vs-pointers.html

https://floooh.github.io/2018/06/17/handles-vs-pointers.html

Отдельно про массивы
Трюк 3. Вместо массива разнотипных данных – структура всех данных,
организованных по типу

enum v { fast, slow };
struct s { int *a; v b; }; // sizeof(s) == 16
s arraylist[100] = {}; // sizeof(arraylist) == 1600

// информация о классификации может быть частью структуры:
struct s { int *as[100]; v vs[100]; };
s multiarray = {}; // sizeof(s) == 800 + 400

* Шаблон “Structure of Arrays” (Multi-array в некоторых языках)

Ассоциативные массивы
Трюк 4. Если составное поле объекта часто пустует (sparse array), его можно
хранить отдельно в ассоциативном массиве

// вместо хранения пустых списков в объекте:
struct s { int a; int b; int list[4]; }; // sizeof(s) == 24
s arraylist[100] = {}; // sizeof(arraylist) == 2400
// можно хранить в другой таблице по ключу:
struct s { int a; int b; }; // sizeof(s) == 8
s arraylist[100] = {}; // sizeof(arraylist) == 800
map<unsigned, int[4]> m = {}; // sizeof(m) == [0, (20 * n)]

* Не считая служебной информации самого контейнера map<>

Чуть более сложный пример
const Monster = struct { // 32 bytes
 x: u32; y: u32;
 extra: union(enum) { // 24 bytes
 bee: Bee, human: Human,
 };
 const Bee = struct { // 1 byte
 color: Color,
 const Color = { yellow, black, red };
 };
 const Human = struct { // 20 bytes
 hat: u32, shoes: u32, shirt: u32, pants: u32,
 has_braces: bool,
 };
};

Чуть более сложный пример
const Monster = struct { // 12 bytes
 x: u32; y: u32; tag: Tag,
 const Tag = enum { bee, human };
 const Bee = struct { // 16 bytes
 base: Monster,
 color: Color,
 const Color = { yellow, black, red };
 };
 const Human = struct { // 32 bytes
 base: Monster,
 hat: u32, shoes: u32, shirt: u32, pants: u32,
 has_braces: bool,
 };
};

Чуть более сложный пример
const Monster = struct { // 13-29 bytes
 tag: Tag; common: Common;
 const Tag = enum {
 bee_yellow, human_naked,
 bee_black, human_braces_naked,
 bee_red, human_clothed,
 human_braces_clothed,
 };
 const Common = struct { // 12 bytes
 x: u32, y: u32, index: u32,
 };
 const HumanClothed = struct { // 16 bytes
 hat: u32, shoes: u32, shirt: u32, pants: u32,
 };
};

● Облегчайте процесс кэширования – храните данные в простых
блоках байтов (contiguous memory)

● Группируйте данные в зависимости от порядка доступа к ним
(packed cache space)

● Инструкции тоже кэшируются – редко используемый (cold) код
должен вызываться отдельно от часто используемого (hot) кода

● Структуры массивов – ваши друзья

Выводы

10 шагов к успеху

class Base { int a; int b; };
class X : public Base {
 bool hidden; std::string id; bool special;
public:
 std::function<void(std::string)> on_hide; // strategy pattern
 void update() {
 if (hidden) { on_hide(id); }
 else if (get_config().SPEC || special) {...} else {...}
 }
};
using px = std::unique_ptr<X>;

std::vector<px> items; for (auto e : items) e.update();

Шаг 1. Признать, что у вас есть проблема

10 шагов к успеху

struct Y : public Base {
 bool hidden; std::string id; bool special;
 std::function<void(std::string)> on_hide;
};

using py = std::unique_ptr<Y>;

void update(const std::vector<py>& items) {
 for (auto e : items) {
 if (e.hidden) e.on_hide(e.id);
 else if (get_config().SPEC || e.special) {...} else {...}
 }
}

Шаг 2. От объекта с поведением к просто объекту (plain ol’ data)

https://www.youtube.com/watch?v=WwkuAqObplU

https://www.youtube.com/watch?v=WwkuAqObplU
http://www.youtube.com/watch?v=WwkuAqObplU&t=1646

10 шагов к успеху

struct Y : public Base {
 bool hidden; std::string id; bool special;
 std::function<void(std::string)> on_hide;
};

using py = std::unique_ptr<Y>;

void update(std::list<py>& items) {
 for (auto e : items) {
 if (e.hidden) items.erase(e); // observer pattern
 else if (get_config().SPEC || e.special) {...} else {...}
 }
}

Шаг 3. Сохранять объекты в кэше как можно дольше

10 шагов к успеху

struct Y : public Base {
 bool hidden; std::string id; bool special;
};

using py = std::unique_ptr<Y>;

void update(std::list<py>& items) {
 auto is_special = get_config().SPEC;
 for (auto e : items) {
 if (e.hidden) items.erase(e); // observer pattern
 else if (is_special || e.special) {...} else {...}
 }
}

Шаг 4. Мемоизация результатов (10% прирост производительности)

10 шагов к успеху

struct Y : public Base {
 bool hidden; std::string id; bool special;
};

void update(std::list<Y>& items) {
 auto is_special = get_config().SPEC;
 for (auto e : items) {
 if (e.hidden) items.erase(e); // observer pattern
 else if (is_special || e.special) {...} else {...}
 }
}

Шаг 5. Отказаться от объектов “на куче” (30%)

10 шагов к успеху

struct Y : public Base {
 bool hidden; bool special; std::string id;
};

void update(std::list<Y>& items) {
 auto is_special = get_config().SPEC;
 for (auto e : items) {
 if (e.hidden) items.erase(e); // observer pattern
 else if (is_special || e.special) {...} else {...}
 }
}

Шаг 6. Иметь ввиду организацию объектов в памяти (10%)

10 шагов к успеху

struct Y : public Base {
 bool hidden; bool special; unsigned id;
};

void update(std::list<Y>& items) {
 auto is_special = get_config().SPEC;
 for (auto e : items) {
 if (e.hidden) items.erase(e); // observer pattern
 else if (is_special || e.special) {...} else {...}
 }
}

Шаг 7. Не использовать string без необходимости (20%)

Можно было обратить внимание

bool hidden; bool special;

!hidden && special // OK

!hidden && !special // OK

 hidden && special // ???

 hidden && !special // ???

10 шагов к успеху

enum states { shown, shown_special, hidden };
struct Y : public Base {
 unsigned id; states state;
};

void update(std::list<Y>& items) {
 for (auto e : items) {
 if (is_special || e.state == shown_special) {...} else {...}
 }
 items = items | std::ranges::filter(
 [](auto e){ return e.state != hidden; })
 | std::views::to<std::list>();
}

Шаг 8. Избавиться от некорректных состояний и лишних удалений (66%)

10 шагов к успеху

enum states { shown, shown_special, hidden };

struct Y : public Base {
 unsigned id; states state;
};

void update(std::priority_queue<Y>& items) {
 auto is_special = get_config().SPEC;
 for (auto e : items) {
 if (is_special || e.state == shown_special) {...} else {...}
 } for (; items.size(); items.pop())
 if (items.top().state == shown) break;
}

Шаг 9. Использовать контейнер, более подходящий под задачу (75% прирост)

10 шагов к успеху

class Base { int a; int b; };

struct Y : public Base { unsigned id; };

std::vector<Y> norm;
std::vector<Y> spec;
std::vector<Y> hidden;

void update_norm (std::vector<Y>&);
void update_spec (std::vector<Y>&);
void update_hidden(std::vector<Y>&);

Шаг 10. Кодировать состояние объектов в коллекциях

Data-oriented vs. Object-oriented
struct Shape {
 Shape(const Shape&) = delete;
 Shape& operator=(const Shape&) = delete;
 virtual ~Shape() = 0;
 virtual void draw(Window&) const = 0;
 virtual float area() const = 0;
private:
 Color c;
 bool is_visible;
};

struct Circle : Shape {
 void draw(Window &w) const override {
 if(is_visible()) { ... }
 }
};

struct Square : Shape { ... };

std::vector<std::unique_ptr<Shape>> data;

for(auto& ptr : data)
 ptr->draw(window);

struct Button {
 std::string text;
 std::unique_ptr<Shape> shape;
};

struct Button {
 std::string text;
 std::variant<Circle, Square> shape;
};

● Вызовы извне данных в кэше (pointer indirection)
● Объем кэша используется неэффективно (alignment, padding)
● Виртуальные вызовы внутри работающего цикла (“hot” code)
● Объекты is_invisible() тоже обрабатываются

DOD vs. OOD

DOD vs. OOD (продолжение)
struct Circle {
 Point center;
 float radius;
};

struct Square {
 Point top;
 float size;
};

struct Shape {
 int type;
 size_t index;
};

struct Shapes {
 std::vector<Circle> circles;
 std::vector<Squares> squares;
};

float area(const Shapes& geometry) {
 float res = 0;
 for(auto& c : geometry.circles) ...
 for(auto& s : geometry.squares) ...
 return res;
}

struct ShapesRender {
 std::vector<std::pair<Shape, Color>> visible;
};

void draw(Window& window, const ShapesRender& render,
 const Shapes& geometry)
{
 for(auto [id, color] : render.visible)
 draw(window, geometry.circles[id.index], color);
 draw(window, geometry.square[id.index], color);
}

Structure of arrays (SoA)

struct ShapesRender {
 std::vector<std::pair<Shape, Color>> visible;
};

struct ShapesRender {
 std::vector<int> type;
 std::vector<size_t> index;
 std::vector<Color> color;
};

struct Circle {
 Point center;
 float radius;
};

struct Square {
 Point top;
 float size;
};

struct Shape {
 int type;
 size_t index;
};

struct Shapes {
 std::vector<Circle> circles;
 std::vector<Squares> squares;
};

"Object-oriented programming aficionados think that everything
is an object.... this [isn't] so. There are things that are objects.
Things that have state and change their state are objects. And
then there are things that are not objects. A binary search is not
an object. It is an algorithm."

A. Stepanov

https://www.youtube.com/watch?v=LC1yxlicWUs
Everything is an object?

http://www.youtube.com/watch?v=LC1yxlicWUs&t=2990
https://www.youtube.com/watch?v=LC1yxlicWUs

