OOBbEKTHO-OPUEHTUPOBAHHOE
nporpamMMmpoBaHmne

XIX. AnsanH oTHOCUTENBHO AaHHbIX

https://voutu.be/rX0ItVEViHc&t=4580s

"You don't care how long it takes. Great. But people who don't care how long it
takes 1s also the reason why I have to wait 30 seconds for Word to boot."

http://www.youtube.com/watch?v=rX0ItVEVjHc&t=4580
https://youtu.be/rX0ItVEVjHc?si=aakwVY4r0H8VpPtE

Object-oriented programming XIX. Data-oriented design 1/00

"Software 1s getting slower more rapidly than
hardware becomes faster."

N. Wirth

UTM, FCIM, POO 21.6, Branzan Leon © 2025 leon.brinzan@iis.utm.md

MotuBaumsa ..

“Simple” register-register op (ADD,OR,etc.)
Memory write

Bypass delay: switch between

integer and floating-point units

“Right” branch of “if”
Floating-point/vector addition
Multiplication (integer/float/vector)
Return error and check

L1 read

TLB miss

L2 read

“Wrong” branch of “if" (branch misprediction)
Floating-point division

128-bit vector division

Atomics/CAS

C function direct call

Integer division

C function indirect call

C++ virtual function call

L3 read

Main RAM read

NUMA: different-socket atomics/CAS
(guesstimate)

NUMA: different-socket L3 read
Allocation+deallocation pair (small objects)
NUMA: different-socket main RAM read
Kernel call

Thread context switch (direct costs)
C++ Exception thrown+caught

Thread context switch (total costs,
including cache invalidation)

Operation Cost in CPU Cycles

10° 10! 102 10* 104 10° 10¢
03]
2]
=]
=
=0
-
=
=
=
oo |
[oeo |
[100-150]
100-300

10000 - 1 million

http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/

http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/

TpeHabl B apXUTEKTYP

107
10°
10°
10*
10°
10°
10’

10°

e NpoLEeccopoB

-

1 1

M
. A‘ ES
Asda
A&‘
Aa
. ‘t‘A
- o

Single-Thread

oS *‘ o *®% | oorformance
2 ‘i ‘;AJ..» . | (SpecINT x 10°)
4 "ﬁ s
AA L AR A Fre MH
1 oin. s .c;‘;.!’wﬂ.‘ ge | Frequency (MHz)
. .
. ’ﬂ-. 5 ‘; *e Typical Power
= e b " "',n',vwgw vy g | (Watts)
e . - .,'v:‘{ 3 e .::.'! | Number of
LA . = iy i s Logical Cores
A m 4 v v vY vwvvw ~
-‘ - R TR R Sre———. A
1 1 1 1
1970 1980 1990 2000 2010 2020

https://voutu.be/ICKIMHCw--Y

https://youtu.be/ICKIMHCw--Y

[l POMEXYTOYHbIE BbIBOAbI

1. Mcnonb3oBaHHbIE JAHHbIE KILUMPYHOTCS, KO OblBAeT HECKOSTbKUX YPOBHEN

2. Kaw coxpaHsieT gaHHble B “nnHM0” (cache line), ncnonbe3ysa xaw-tadnuuy ¢
OTKPbITOW agpecauunen, Konm4yecTBo “6akeToB” CUNbHO OrpaHNYeHo

3. MexaHnam yragbiBaHuUA nMblTaeTcd 3apaHee onpeaennTb NIMHMK0, KoTopas

noHagobuTtcs npoueccopy

a. KawwupyeTcs To, YToO NoHagobutca B byayuwem (temporal locality)
b. cocegHue 6anTbl TOXe KALLMPYIOTCA Ha BCAKUIM cnyyan (spatial locality)

4. Koaw He Bcerga obLwum ansg pasHblx 90ep/NoTOKOB
5. He Bce Tunbl gaHHbIX OAMHAKOBO XOPOLLO K3LUMPYHOTCS

https://voutu.be/Nz9SiFOQVKY

https://youtu.be/Nz9SiF0QVKY?si=PKAF3lmUopMGrqbZ

YCTPOWUCTBO Kalla

L1 Cache - 32KB, 8-way sel associative, 64-byte cache lines

1. Pick cache set (row) by index

I6-bit memory location as interpreted by the L1 cache:

Offset into
cache line

Directory @ hay @

64-byte line
64-byte 1lipe

64 rows * 64 bytes
4KB per way

A

4KB * 8 = 32KB total

https://manybutfinite.com/post/intel-cpu-caches/

https://manybutfinite.com/post/intel-cpu-caches/

KrntoyeBble MOMEHTbI

N\ e

PaboTta ¢ namaTbio — 3TO MeaneHHO

PaboTa ¢ npoLeccopom — 3T0 ObICTPO

Kaw npoueccopa orpaHnyeH B oobeme

ObBbEeKTbl B NAMATU HYXXHO AenaTtb MeHbLUEe, 0CODEHHO B TEX
MecTax nporpamMmbl, rae 3TMX 06bEKTOB MHOIO

Xntpoct 4yTobbl BbiXKaTb BCe A0 Kanmu u3 npoueccopa

B3aTre obpaTHOro kBagpaTHOro KOPHS

float Q rsqrt(float number) {
long i;
float x2, y;
const float threehalfs = 1.5F;

X2 = number * 0.5F;

y = number;

i =%* (long *) &y; // evil floating point bit level hacking
i = ex5f3759df - (i >> 1); // what the fuck?

y =* (float *) &i;

y =y * (threehalfs - (x2 *y *vy));

return y;

https://www.bevond3d.com/content/articles/8/

https://www.beyond3d.com/content/articles/8/

MwuHMManbHLIN areMeHT 6e3 BeTBNeHns (ocTaHeTCA He OBHYIEHHbIM):

int min(int a, int b) {
return a * (a < b) + b * (b <= a);

}

int min(int a, int b) {

// precondition: INT_MIN <= (a - b) <= INT_MAX

return b + ((a - b) & ((a - b) > (sizeof(int) * CHAR_BIT - 1)));
}

https://graphics.stanford.edu/~seander/bithacks.html

https://graphics.stanford.edu/~seander/bithacks.html

[1BONYHbIN Nonuck 6e3 pekypcuu:

size t bsearch(size_t needle, const size t haystack[16]) {

size_ t i = (haystack[8] <= needle) ? 8 : 0;
i += (haystack[i + 4] <= needle) ? 4 : ©O;
i += (haystack[i + 2] <= needle) ? 2 : ©;
i += (haystack[i + 1] <= needle) ? 1 : ©;

return i;

Bbibop 6€3 BETBNEHUS:

#tdefine

#tdefine

BRANCHLESS_IF(f,x) ((x) & =-((typeof(x))!!(f)))

BRANCHLESS_IF_ELSE(f,x,y)

(((x) & -((typeof(x))!!1())) | \
((y) & -((typeof(y)) !1(f))))

[Tloyemy Tak He Hago Aenatb

void filter loop(const std::vector<Type>& data, ...) {
Type sum = 0,

{
for(auto x : data) {
if(x < 6) {
sum += X;
}
}
}

CoBpeMEHHbIN KOMMUNATOP 3HAET Nnyullie Bac

Type = float:

pxor xmml, xmml
Movss xmm2, DWORD PTR .LC4[rip]
mov rax, rcx

cmp rcx, rdx

je .L9

movss xmm@, DWORD PTR [rax]
comiss xmm2, Xxmmo ; if(x < 6)
jbe .L10

addss xmml, xmmo ; sum += X

https://godbolt.org/z/nCx7 st

Type = int:
xor ebx,
mov rax,
cmp r8,
je .L9
mov edx,
cmp edx,
lea ecx,
cmovl ebx,
add rax,
cmp rdi,
jne .L11

ebx
r8

rdi

DWORD PTR [rax]

6

[rbx+rdx]
ecx

4

rax

; sum += X

https://godbolt.org/z/nCx7st

COBpeMeHHbIﬁ KOMMUITATOP 3HAET J1y4ylle BacC
https://youtu.be/1X880d0miHs

https://www.youtube.com/playlist?list=PL2HVqYf71f8cY4wLk7JUQ2f0JXY xMQm2

http://www.youtube.com/watch?v=1X88od0miHs&t=232
https://youtu.be/1X88od0miHs
https://www.youtube.com/playlist?list=PL2HVqYf7If8cY4wLk7JUQ2f0JXY_xMQm2

ObbeKkTbl B NnaMATU OOMKHbI ObITb ManeHbKUMU

int a;

bool b;

struct
struct
union

struct
struct
struct
struct

Nl e e e e

/] 4, 4
/] 1, 1
int a; };
bool b; };
int a; bool b; }
int a; bool b; } // maccuB 3TUX CTPYKTYp?
int a; int *p; int b; }
int a; int b; int *p; }
int a; int b; int *p; bool b; }

ObbeKkTbl B NnaMATU OOMKHbI ObITb ManeHbKUMU

int a;
bool b;
struct
struct
union

struct
struct
struct
struct

e e e e e N

//
//
int a; };
bool b; };
int a; bool b; } //
int a; bool b; } //
int a; int *p; int b; } //
int a; int b; int *p; } //
int a; int b; int *p; bool b; } //

=
-

>

0O 00 00 ~ b

=

24
16
24

https://voutu.be/lroPQ150F6¢

Memory Layout

struct { Natural Alignment (bytes) = 8
a: u3z,
u3z2,

b: Size (bytes) = 24
c: u64q,
d:

https://youtu.be/IroPQ150F6c
http://www.youtube.com/watch?v=IroPQ150F6c&t=184
https://vimeo.com/649009599

Z1ZIG

https://ziglang.org/

const std = @import("std");
const parselnt = std.fmt.parselnt;

test "parse integers" {
const input = "123 67 89,99";
const ally = std.testing.allocator;

var list = std.ArrayList(u32).init(ally);
// Ensure the list is freed at scope exit.
// Try commenting out this line!

defer list.deinit();

var it = std.mem.tokenizeAny(u8, input, " ,");
while (it.next()) |num]| {

const n = try parseInt(u32, num, 10);

try list.append(n);
}

const expected = [_]Ju32{ 123, 67, 89, 99 };

for (expected, list.items) |exp, actual]| {
try std.testing.expectEqual(exp, actual);

}

https://ziglang.org/

ObbekThl is_invisible() Toxxe obpabaTbiBatoTcH

https://voutu.be/lroPQ150F6¢

Memory Layout

struct { Natural Alignment (bytes) = 8
u3z2,
u3z,
164,

Size (bytes) = 24

https://youtu.be/IroPQ150F6c
http://www.youtube.com/watch?v=IroPQ150F6c&t=764

CocTtosiHne obbekTa BHe AgaHHbIX (out of band)

Tptok 1. BmecTo chnaroB B AaHHbIX, rpynnnMpynTe camn gaHHble B Tabnuuax

// byneBoe none BbIHY)XAaeT TepsATb 3 6anTa Ha KaXgom obbekTe:
struct s { int a; bool b; };
s arraylist[100] = {}; // sizeof(arraylist) == 800

// cama uHpopmauma MOXeT XpaHuTbcs 6e3 byneBoro nons:
struct s { int a; }

s a_list[50] = {}; // sizeof(a_list) == 200

s b_list[50] = {}; // sizeof(b_list) == 200

* NpoBepkn donara ToXxe He HYXXHbl NPU TaKoWU CXEME XpaHEHUS

“From a database perspective, the out-of-band method
is like normalizing your data with foreign key indexes;
damn those RDS architects back in the 60s & 70s were

on to something”

https://voutu.be/lroPQ150F6¢

https://youtu.be/IroPQ150F6c

OTHOCuTErnNbHasa agpecaumns npPoTuB abcontoTHON

Tptok 2. INonb3yntech LenbiMn YucraMmm BMECTO ykasartenemn (X2 9KOHOMUA NaMsATn)

// BMECTO XpaHeHWA KOHKPEeTHOro agpeca:
struct s { String *a; String *b; } str;
str.a = malloc(sizeof(String)); str.b = malloc(sizeof(String));

// XpaHUTCS paccTosiHne OT OAHOro obbekTa OO OpYroro:

struct s { unsigned a; unsigned b; } str;
String n[2]; str.a = 0; str.b = 1;

https://floooh.qgithub.io/2018/06/17/handles-vs-pointers.htmi

https://floooh.github.io/2018/06/17/handles-vs-pointers.html

OTOenbHO NPo MaccuBbl

TpI-OK 3. BmecTo maccuBa Pa3HOTUINMHbLIX OaHHbIX — CTPYKTYpPaA BCEX AAHHDbIX,
OpraHM3oBaHHbIX MO TUMY

enum v { fast, slow };
struct s { int *a; v b; }; // sizeof(s) == 16
s arraylist[100] = {}; // sizeof(arraylist) == 1600

// VHdopMauusi 0 Knaccudukaunum MOXET OblTb YacCTbl) CTPYKTYPbI:
struct s { int *as[100]; v vs[100]; };
s multiarray = {}; // sizeof(s) == 800 + 400

* WabnoH “Structure of Arrays” (Multi-array B HeKOTOPbIX sA3bIKaX)

AccolnaTnBHbIE MACCUBbI

Tptok 4. Ecnn coctaBHOEe none obbekTa 4acTo NycTyeT (sparse array), ero MOXHo

XpaHUTb OTAENMbHO B acCounatTMuBHOM MacCuMBe

// BMECTO XpaHEHUsI MyCTbIX CMUCKOB B OOBLEKTE:

struct s { int a; int b; int list[4]; }; // sizeof(s) == 24

2400

s arraylist[100] = {}; // sizeof(arraylist)

// MOXHO XpaHWTb B Apyron Tabnuue no Knwudy:

struct s { int a; int b; }; // sizeof(s) ==
s arraylist[100] = {}; // sizeof(arraylist)

800

map<unsigned, int[4]> m = {}; // sizeof(m) == [0, (20 * n)]

* He cuutas cnykebHon nHdopmaumm camoro KOHTenHepa map<>

UyTb Donee CnoXHbin Nnpumep

const Monster = struct { // 32 bytes

}s

X: u32; y: u32;

extra: union(enum) {
bee: Bee, human: Human,
¥
const Bee = struct {
color: Color,
const Color = { yellow, black, red };
¥

const Human = struct {

hat: u32, shoes: u32, shirt: u32, pants:

has_braces: bool,

s

u3d2,

UyTb Donee CnoXHbin Nnpumep

const Monster = struct {
X: u32; y: u32; tag: Tag,
const Tag = enum { bee, human };
const Bee = struct {
base: Monster,
color: Color,
const Color = { yellow, black, red };
¥
const Human = struct {
base: Monster,

hat: u32, shoes: u32, shirt: u32, pants:

has_braces: bool,
¥
¥

u3d2,

UyTb Donee CnoXHbin Nnpumep

const Monster = struct { // 13-29 bytes
tag: Tag; common: Common;
const Tag = enum {
bee_yellow, human_naked,
bee black, human_braces_naked,
bee red, human_clothed,
human_braces_clothed,
¥
const Common = struct {
X: u32, y: u32, index: u32,
¥
const HumanClothed = struct {
hat: u32, shoes: u32, shirt: u32, pants: u32,
¥
}s

BbiBOAbI

e OOneryamTe NpoUECC KIALWMPOBAHUA — XPaHUTE OaHHble B MPOCTbIX
brniokax 6amnToB (contiguous memory)

e [pynnupynute OaHHble B 3aBUCUMMOCTW OT Mopsgka AoCTyrna K HUM
(packed cache space)

e VIHCTpyKUMM TOXe KILWMPYKTCA — pedko ucnosib3yembln (cold) kog
OOIMKEH BbI3biBATbCA OTAENbHO OT YacTo ncnornbdyemoro (hot) koga

e CTpYKTYypbl MaccuBoOB — Balln pYy3b4

10 waros Kk ycnexy

Lar 1. lNpnaHatk, 4TO Yy Bac ectb npobnema

class Base { int a; int b; };
class X : public Base {
bool hidden; std::string id; bool special;
public:
std: :function<void(std::string)> on_hide;
void update() {
if (hidden) { on_hide(id); }
else if (get_config().SPEC || special) {...} else {...}
}
}s5

using px = std::unique_ptr<X>;

std::vector<px> items; for (auto e : items) e.update();

10 waros Kk ycnexy
Lar 2. OT ob6bekTa ¢ noBegeHneM K npocto obbekTy (plain ol’ data)

struct Y : public Base {
bool hidden; std::string id; bool special;
std: :function<void(std: :string)> on_hide;

}s5
using py = std::unique_ptr<Y>;

void update(const std::vector<py>& items) {
for (auto e : items) {
if (e.hidden) e.on_hide(e.id);
else if (get_config().SPEC || e.special) {...} else {...}

https://www.youtube.com/watch?v=\WwkuAqgObplU

Intro To Data Oriented Design

https://www.youtube.com/watch?v=WwkuAqObplU
http://www.youtube.com/watch?v=WwkuAqObplU&t=1646

10 waros Kk ycnexy
LLar 3. CoxpaHsaTb 06beKTbI B K3LLIE KaK MOXXHO AonbLue

struct Y : public Base {
bool hidden; std::string id; bool special;
std: :function<void(std: :string)> on_hide;

}s5
using py = std::unique_ptr<Y>;

void update(std::list<py>& items) {
for (auto e : items) {
if (e.hidden) items.erase(e);
else if (get_config().SPEC || e.special) {...} else {...}

10 waros Kk ycnexy

Lar 4. Memousauus pesynsratoB (10% npupocT nponsBoauTeSIbHOCTH)

struct Y : public Base {
bool hidden; std::string id; bool special;

}s5
using py = std::unique_ptr<Y>;

void update(std::list<py>& items) {
auto is special = get_config().SPEC;
for (auto e : items) {
if (e.hidden) items.erase(e);
else if (is_special || e.special) {...} else {...}

10 waros Kk ycnexy

LLar 5. OTkasaTbca oT 06bekToB “Ha ky4ye” (30%)

struct Y : public Base {
bool hidden; std::string id; bool special;

s

void update(std::list<Y>& items) {
auto is special = get_config().SPEC;
for (auto e : items) {
if (e.hidden) items.erase(e);
else if (is_special || e.special) {...} else {...}

10 waros Kk ycnexy

Lar 6. MmeTb BBNOYy opraHnsauunto o6bektoB B namsatn (10%)

struct Y : public Base {
bool hidden; bool special; std::string id;

s

void update(std::list<Y>& items) {
auto is special = get_config().SPEC;
for (auto e : items) {
if (e.hidden) items.erase(e);
else if (is_special || e.special) {...} else {...}

10 waros Kk ycnexy

LLlar 7. He ncnonb3oBathb string 6e3 HeobxoanmocTtun (20%)

struct Y : public Base {
bool hidden; bool special; unsigned id;

s

void update(std::list<Y>& items) {
auto is special = get_config().SPEC;
for (auto e : items) {
if (e.hidden) items.erase(e);
else if (is_special || e.special) {...} else {...}

Mo>XHO ObINno 06paTUTL BHUMAHME

bool hidden; bool special;
Thidden && special

lThidden && !special

hidden & & special ???

hidden && !special ???

10 waros Kk ycnexy

LLar 8. N36aBUTbCS OT HEKOPPEKTHBIX COCTOSIHUIN U NINLWIHUX yaaneHum (66%)

enum states { shown, shown_special, hidden };
struct Y : public Base {
unsigned id; states state;

s

void update(std::list<Y>& items) {
for (auto e : items) {

if (is_special || e.state == shown_special) {...} else {...

}
items = items | std::ranges::filter(
[](auto e){ return e.state != hidden; })
| std::views: :to<std::1list>();

10 waros Kk ycnexy

LLar 9. cnonb3oBaTtb KOHTENHEP, 6onee noaxoadawmin nog 3agady (75% npupocrT)

enum states { shown, shown_special, hidden };

struct Y : public Base {
unsigned id; states state;

s

void update(std::priority queue<Y>& items) {
auto is special = get _config().SPEC;
for (auto e : items) {
if (is_special || e.state == shown_special) {...} else {...}
} for (; items.size(); items.pop())
if (items.top().state == shown) break;

10 waros Kk ycnexy

LLlar 10. KognpoBaTb COCTOSIHME OOBLEKTOB B KOMSEKLMSAX

class Base { int a; int b; };
struct Y : public Base { unsigned id; };

std: :vector<Y> norm;
std: :vector<Y> spec;
std: :vector<Y> hidden;

void update_norm (std::vector<Y>&);
void update_spec (std::vector<Y>&);
void update_hidden(std: :vector<Y>&);

Data-oriented vs. Object-oriented

struct Shape { std: :vector<std: :unique_ptr<Shape>> data;
Shape(const Shape&) = delete;
Shape& operator=(const Shape&) = delete; for(auto& ptr : data)
virtual ~Shape() = ; ptr->draw(window) ;

virtual void draw(Window&) const = O;
virtual float area() const = 0;

private:

Color c; struct Button {

bool is_visible; std: :string text;
}s std: :unique_ptr<Shape> shape;
struct Circle : Shape {)

void draw(Window &w) const override {

if(is_visible()) { ... }

} struct Button {

}; std: :string text;

std: :variant<Circle, Square> shape;
struct Square : Shape { ... }; };

DOD vs. OOD

Bbi30Bbl M3BHE AaHHbIX B KaLle (pointer indirection)

Obbem Kkala ncnonbadyetrca HeadpdekTneHo (alignment, padding)
BupTyanbHble BbI30Bbl BHYTPpUY paboTatowero unkna (“hot” code)
Ob6bekThl is_invisible() Toxxe obpabaTtkiBatoTCs

DOD vs. OOD (npogomnxeHue)

struct Circle {
Point center;
float radius;

}s

struct Square {
Point top;
float size;

}s

struct Shape {
int type;
size_t index;

}s

struct Shapes {
std: :vector<Circle> circles;
std: :vector<Squares> squares;

}s

float area(const Shapes& geometry) {
float res = 0;
for(auto& c : geometry.circles) ...
for(auto& s : geometry.squares) ...
return res;

struct ShapesRender {
std: :vector<std: :pair<Shape, Color>> visible;

}s

void draw(Window& window, const ShapesRender& render,
const Shapes& geometry)

{
for(auto [id, color] : render.visible)
draw(window, geometry.circles[id.index], color);
draw(window, geometry.square[id.index], color);
}

Structure of arrays (SoA)

struct Circle {
Point center;
float radius;

}s

struct Square {
Point top;
float size;

}s

struct Shape {
int type;
size_t index;

}s

struct Shapes {
std: :vector<Circle> circles;
std::vector<Squares> squares;

}s

struct ShapesRender {

std: :vector< e EIQE EI eI > visible;
}s

struct ShapesRender {
std: :vector<int> type;
std::vector<size_t> index;
std: :vector<Color> color;

}s

"Object-oriented programming aficionados think that everything
1s an object.... this [isn't] so. There are things that are objects.
Things that have state and change their state are objects. And
then there are things that are not objects. A binary search is not
an object. It 1s an algorithm."

A. Stepanov

Everything is an object?
https://www.youtube.com/watch?v=LC1yxlicWUs

OOP HAS DONE A
LOT OF DAMAGE...

http://www.youtube.com/watch?v=LC1yxlicWUs&t=2990
https://www.youtube.com/watch?v=LC1yxlicWUs

