
Объектно-ориентированное
программирование

UTM, FCIM, POO 21.6, Brânzan Leon © 2024

VIII. Полиморфизм

Object-oriented programming

Polymorphism

Что такое OOP?
https://youtube.com/clip/UgkxMjTVfez-AB1gsyvoIpeprL2pc5YxvGjB?si=VIhZaa0uoTkcql6n

VIII. PolymorphismObject-oriented programming

https://youtube.com/clip/UgkxMjTVfez-AB1gsyvoIpeprL2pc5YxvGjB?si=VIhZaa0uoTkcql6n
http://www.youtube.com/watch?v=P2yr-3F6PQo&t=994

“I think that object orientedness is almost as much
of a hoax as artificial intelligence.”

A. Stepanov

VIII. PolymorphismObject-oriented programming

“Полиморфизм” в Smalltalk 72

“This led to a style of finding generic behaviors for message symbols.
"Polymorphism" is the official term (I believe derived from Strachey), but it is
not really apt as its original meaning applied only to functions that could take
more than one type of argument. ”

A. C. Kay

“In more sophisticated programming languages, however, we use the type to tell
us what sort of object we are dealing with (i.e., to restrict its range to one sort of
object). We also expect the compiling system to check that we have not made
silly mistakes (such as multiplying two labels) and to interpret correctly
ambiguous symbols (such as +) which mean different things according to the
types of their operands. We call ambiguous operators of this sort polymorphic
as they have several forms depending on their arguments.”

C. Strachey

“Fundamental Concepts in Programming Languages”, 1967

Object-oriented programming

https://reed.cs.depaul.edu/jriely/447/assets/articles/strachey-fundamental-concepts-in-programming-languages.pdf

VIII. Polymorphism

https://reed.cs.depaul.edu/jriely/447/assets/articles/strachey-fundamental-concepts-in-programming-languages.pdf

“The evolution of languages from untyped universes to monomorphic and then
polymorphic type systems[...], mechanisms for polymorphism such as
overloading, coercion, subtyping, and parameterization[...], a unifying
framework for polymorphic type systems[...] in terms of the typed λ-calculus
augmented to include binding of types by quantification as well as binding of
values by abstraction.”

L. Cardelli

“On Understanding Types, Data Abstraction, and Polymorphism”, 1985

Object-oriented programming

http://lucacardelli.name/Papers/OnUnderstanding.A4.pdf

VIII. Polymorphism

http://lucacardelli.name/Papers/OnUnderstanding.A4.pdf

Приведение типов и перегрузка

3 + 4
3.0 + 4
3 + 4.0
3.0 + 4.0

VIII. PolymorphismObject-oriented programming

Приведение типов и перегрузка

3 + 4
3.0 + 4
3 + 4.0
3.0 + 4.0

● оператор “+” перегружен четыре раза
● оператор “+” перегружен два раза: для целых и дробных чисел
● оператор “+” не перегружен, а определен только для дробных чисел

VIII. PolymorphismObject-oriented programming

Приведение типов и перегрузка

3 + 4
4 + 3
“3” + “4”
“4” + “3”

VIII. PolymorphismObject-oriented programming

Приведение типов и перегрузка

3 + 4 // 7
4 + 3 // 7
“3” + “4” // “34”
“4” + “3” // “43”

VIII. PolymorphismObject-oriented programming

Перегружать операторы так, как оператор + перегружен для строк в С++, в
подавляющем большинстве случаев не следует. Такая перегрузка оператора
игнорирует математические свойства фундаментальных операций и
выработанную интуицию о природе математических операций.

Обобщенные арифметические операции в Scheme

> (+ 1 2 3) # Exact Integer
6
> (+ 1 (/ 2 3)) # Exact Rational
5/3
> (+ 1 (sqrt 2)) # Inexact Real
2.414213562373095
> (+ 1 (sqrt -2)) # Inexact Complex
1+1.4142135623730951i
> (+ 1 (sqrt -4)) # Exact Complex
1+2i

Виды полиморфизма

● Универсальный
○ параметризация
○ включение (inclusion, sub-typing)

● Специальный (ad-hoc)
○ перегрузка (overloading)
○ приведение (coercion)

VIII. PolymorphismObject-oriented programming

Приведение типов (ad-hoc)

Явное:

auto i = (int)abs(negative);
// или
auto i = int(abs(negative));
// или
auto i = static_cast<int>(abs(negative));

Неявное:

int *p = malloc(sizeof(int) * 10);

VIII. PolymorphismObject-oriented programming

Управление неявным приведением классов в С++

● Создание подходящего конструктора, который принимает
аргумент заданного типа

● Перегрузка оператора присваивания, которая принимает
аргумент заданного типа

● Перегрузка оператора приведения типа

VIII. PolymorphismObject-oriented programming

Управление неявным приведением классов в С++
class A { … };

struct B {
 // приведение из типа A (конструктор)
 B(const A &x) {}
 // приведение из типа А (присваивание)
 B& operator=(const A &x) { return *this; }
 // приведение к A
 operator A() { return A(); }
};

https://cplusplus.com/doc/tutorial/typecasting/

VIII. PolymorphismObject-oriented programming

https://cplusplus.com/doc/tutorial/typecasting/

Полиморфизм под-типов (tagged union)

enum tag { Char, Int, Double };

union types {
 char char_;
 int int_;
 double double_;
};

struct variant {
 tag tag_;
 types type_;
};

void f(const variant &var) {
 switch(var.tag_) {
 case Char:
 // версия для var.type_.char_
 break;
 case Int:
 // версия для var.type_.int_
 break;
 case Double:
 // версия для var.type_.double_
 break;
 default:
 break;
 }
}

VIII. PolymorphismObject-oriented programming

Полиморфизм под-типов (abstract base class)
class abstract_data_t {
public:
 virtual iterator find(int) = 0;
 …
};

class vector: public abstract_data_t {
public:
 iterator find(int) override;
 …
private:
 int *p{nullptr};
};

VIII. PolymorphismObject-oriented programming

Полиморфизм под-типов

vector v = {1, 2, 3, 4};
…
list l = {5, 4, 3, 2, 1};
…
abstract_data_t *a = &v;
abstract_data_t *b = &l;
…
a->find(4);
b->find(4);

https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/object-oriented/polymorphism

VIII. PolymorphismObject-oriented programming

https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/object-oriented/polymorphism

https://youtu.be/zjkuXtiG1og

Виртуальные функции

http://www.youtube.com/watch?v=zjkuXtiG1og&t=460
https://youtu.be/zjkuXtiG1og

auto x = prod({1, 2, 3}, {4, 5, 6});

auto y = prod({1.0, 2.0}, {4.5, 5.0});

auto z = prod({"a", "b"}, {"c", "d"});

VIII. PolymorphismObject-oriented programming

Перегрузка функций (ad-hoc)
int prod(int (&a)[10], int (&b)[10]) {
 int k = 0;
 for(size_t i = 0; i < 10; i++) {
 k += a[i] * b[i];
 }
 return k;
}

std::string prod(std::string (&a)[10], std::string(&b)[10]) {
 std::string k = “”;
 for(size_t i = 0; i < 10; i++) {
 k += a[i] + b[i];
 }
 return k;
}

VIII. PolymorphismObject-oriented programming

Параметризация в С++

template <typename T, size_t n>
auto prod(const T(&a)[n], const T(&b)[n]) {
 T k = 0;
 for(size_t i = 0; i < n; i++) {
 k += a[i] * b[i];
 }
 return k;
}

VIII. PolymorphismObject-oriented programming

Параметризация в С++

template <typename T, size_t n>
auto prod(const T(&a)[n], const T(&b)[n]) {
 T k = T{};
 for(size_t i = 0; i < n; i++) {
 k += a[i] * b[i];
 }
 return k;
}

VIII. PolymorphismObject-oriented programming

https://youtu.be/FshTrPe_Woc?t=128

https://youtu.be/FshTrPe_Woc?t=128

Виды полиморфизма

● Универсальный (единая структура типов)
○ параметризация
○ включение

● Специальный (разная структура типов)
○ перегрузка
○ приведение

VIII. PolymorphismObject-oriented programming

Runtime vs compile-time

● Написанный код не указывает явно на типы данных, которые
используются в приложении, вместо этого логика программы использует
основные свойства ожидаемых типов

● Детали реализации подбираются или уточняются во время работы
приложения (dynamic dispatch)

● На это можно смотреть как на один общий тип, который
конфигурируется при обращении к объекту, чтобы предоставлять
разное поведение

https://www.youtube.com/watch?v=uM72qP5Wh18

https://www.youtube.com/watch?v=uM72qP5Wh18

● инкапсуляция (абстракция состояния и избавление от манипуляции
состоянием в коде, public и private)

● наследование
● полиморфизм
● делегация? (forwarding, move semantics)

● динамическое связывание (виртуальные функции)

● абстракция (скрытая реализация, открытый интерфейс)

● подмена типов? (subtyping)

Object-oriented programming

Что такое OOP?

● инкапсуляция (абстракция состояния и избавление от манипуляции
состоянием в коде, public и private)

● наследование
● полиморфизм
● делегация? (forwarding, move semantics)

● динамическое связывание (виртуальные функции)

● абстракция (скрытая реализация, открытый интерфейс)

● подмена типов
● обобщенные типы данных (generics)

Object-oriented programming

Что такое OOP?

