
Объектно-ориентированное
программирование

UTM, FCIM, POO 21.6, Brânzan Leon © 2025

VII. Наследование

Object-oriented programming

Inheritance

“Inheritance programming shows the power of differential
description. A generic ‘object’ is displayed as a cloud. One can make
a rectangle from the undifferentiated object by saying, in effect, ‘I want
something just like that except...’”

A. C. Kay

“Computer Software (1984)”

VII. InheritanceObject-oriented programming

https://rmod-files.lille.inria.fr/FreeBooks/Art/artAdded174186187Final.pdf

VII. InheritanceObject-oriented programming

https://rmod-files.lille.inria.fr/FreeBooks/Art/artAdded174186187Final.pdf

Наследование в Smalltalk-76
Class new title: 'Window';
 fields='frame';
 asFollows!
Scheduling
startup
 [frame contains: stylus =>
 self enter.
 repeat:
 [frame contains: stylus loc =>
 [keybard active => [self keyboard]
 stylus down => [self pendown]]
 self outside => []
 stylus down => [^self leave]]]
 ^false]
Default Event Responses
enter [self show]
leave
outside [^false]
pendown
keyboard [keyboard next. frame flash]
Image
show

Class new title= 'DocWindow';
 subclassof: Window;
 flelds='document scrollbar edit Menu';
 asFollows!
Event Responses
enter [self show.editMenu show.scrollbar show]
leave [document hideselection.editMenu
hide.scrollbar hide]
outside
 [editMenu startup => []
 scrollbar startup => [self showDoc]
 ^false]
pendown [document pendown]
keyboard [document keyboard]
Image
show [super show.self showDoc]
showDoc [doucument showin: frame at: scrollbar
position]
title [^document title]

VII. InheritanceObject-oriented programming

“We needed a better theory about inheritance entirely (and still do). For
example, inheritance and instancing (which is a kind of inheritance)
muddles both pragmatics (such as factoring code to save space) and
semantics (used for way too many tasks such as: specialization,
generalization, speciation, and so forth).”

A. C. Kay

“Early History of Smalltalk (1993)”

VII. InheritanceObject-oriented programming

“A number of inheritance ideas were tried out in Smalltalk-72, none
of which I liked all that much. My favorite were the "slot inheritance"
experiments that were done by Larry Tesler. Slot inheritance was
invented for AI and other reasoning systems – and also for providing
protection of polymorphic meanings. For many objects, the contents
of the instance variables can be thought of as "parts". Thus, one could
imagine a lookup strategy that would search down through the instance
variables for ideas and info about the object.”

A. C. Kay

"One problem with almost all inheritance mechanisms is that they compromise
data abstraction to an extent. In languages with inheritance, a data abstraction
implementation (i.e., a class) has two kinds of users. There are the “outsiders”
who simply use the objects by calling the operations. But in addition there are the
“insiders.” These are the subclasses, which are typically permitted to violate
encapsulation. There are three ways that encapsulation can be violated: the
subclass might access an instance variable of its superclass, call a private
operation of its superclass, or refer directly to superclasses of its superclass."

B. Liskov (1987)

“Data Abstraction and Hierarchy”

https://www.cs.tufts.edu/~nr/cs257/archive/barbara-liskov/data-abstraction-and-hie
rarchy.pdf

https://www.cs.tufts.edu/~nr/cs257/archive/barbara-liskov/data-abstraction-and-hierarchy.pdf
https://www.cs.tufts.edu/~nr/cs257/archive/barbara-liskov/data-abstraction-and-hierarchy.pdf

“[Smalltalk] encourages people to see inheritance as the sole or at least
primary way of organizing programs and to organize classes into
single-rooted hierarchies. In C++, classes are types and inheritance is by no
means the only means of organizing programs.”

B. Stroustrup

VII. InheritanceObject-oriented programming

VII.a. Язык C++
C++

Object-oriented programming

“Such partial similarity fairly often applied to processes in different simulation
models, indicating that programming effort could be saved by somehow
preprogramming the common properties”

K. Nygaard

(1978)

Опять Simula

VI. ObjectsObject-oriented programming

Иерархии классов в Simula
link class car (license number, weight);
 integer license number; real weight; …
car class truck (load);
 ref (list) load; …
car class bus (capacity);
 integer capacity;
 begin ref (person) array passenger
 [1 : capacity] …
 end;

list class bridge;
 begin real load; …
 end;

Влияние Simula на С++

● Классы ведут себя как сопрограммы (легко писать симуляции многопоточности)

● Конструкторы, оператор new
● Статическая система типов1 данных (компилятор выявляет ошибки программиста

еще до запуска программы)
● Программы легко организовываются в иерархию подпрограмм2

● Сам язык оставлял желать лучшего (linking time, связывание классов занимало
очень много времени3, большие программы писать было тяжело; run-time type checking;
garbage collection etc.)

● Классы позволяют мыслить о сущностях в программах напрямую

https://dl.acm.org/doi/pdf/10.1145/234286.1057836

VII. InheritanceObject-oriented programming

https://dl.acm.org/doi/pdf/10.1145/234286.1057836

https://www.youtube.com/watch?v=ZXc_z1sNbfA

http://www.youtube.com/watch?v=ZXc_z1sNbfA&t=310
https://www.youtube.com/watch?v=ZXc_z1sNbfA

Классы позволяют мыслить о сущностях в программах
напрямую

“A compile-time* hierarchy1 that matches the domain
model.”

M. “Mahk” LeBlanc

*Не хватает уточнения, что она инкапсулирована

https://www.youtube.com/watch?v=04ksL1hf_p8

C++ Object-oriented hierarchy of encapsulation

http://www.youtube.com/watch?v=04ksL1hf_p8&t=34
https://www.youtube.com/watch?v=04ksL1hf_p8

1. Объект – это описание процесса, представляющего собой
инкапсулированную систему, все отношения которой с другими
системами устанавливаются посредством какого-то протокола и
определяют комплексные системы в какой-то предметной области
(domain).
a. ООП – это программирование цепочек сообщений от одних объектов к другим согласно

общим правилам.
2. Объект – это модель сущности из предметной области (domain), которая

описывает все отношения этой модели с другими моделями из той же
области.
a. ООП – это программирование иерархий объектов для их последующего использования в

виде основных компонентов, которые взаимодействуют с программой.

Что такое OOP?

“The most treacherous metaphors are the ones that seem to work
for a time – because they can keep more powerful insights from
bubbling up. As a result, progress is slow.”

J. Raskin (1994?)

VII.b. Механизм наследования в С++
Inheritance in C++

Object-oriented programming

Три основных элемента дизайна С++
● Организационная структура программы как в Simula (иерархии классов,

многопоточность, статическая система типов)

“Support for program organization--that is, classes, some form of class
hierarchies, some form of support for concurrency, and strong (that is, static)
checking of a type system based on classes. This I saw as support for the
process of inventing programs”

B. Stroustrup

VII. InheritanceObject-oriented programming

Три основных элемента дизайна С++
● Организационная структура программы как в Simula (иерархии классов,

многопоточность, статическая система типов)
● Высокая производительность1 (как при сборке программ, так и в работе)

“Produce programs that ran as fast as BCPL programs and shared BCPL's
ability to easily combine separately compiled units into a program”

B. Stroustrup

VII. InheritanceObject-oriented programming

Три основных элемента дизайна С++
● Организационная структура программы как в Simula (иерархии классов,

многопоточность, статическая система типов)
● Высокая производительность (как при сборке программ, так и в работе)

● Портативность (“железо”, операционные системы)

“The "good" implementation I needed would typically not be available until
"next year" and only on a machine I couldn't afford. This implied that a tool
must have multiple sources of implementations.”

B. Stroustrup

VII. InheritanceObject-oriented programming

Организационная структура программы
1. Классы (“абстрактные типы данных”)
2. Подклассы
3. Контроль доступа (public/private)
4. Конструкторы и деструкторы
5. Функции-обертки (call/return wrappers)
6. Дружественные классы (friend)
7. Статическая система типов и приведение типов для

аргументов функций
8. “Инлайнинг” функций1 (inline)
9. Аргументы по умолчанию

10. Перегрузка оператора присваивания

VII. InheritanceObject-oriented programming

Основные инструменты С++

1. Виртуальные функции1.
2. Перегрузка функций и операторов.
3. Ссылочные переменные.
4. Константные переменные - const.
5. Классы как интерфейсы.

VII. InheritanceObject-oriented programming

Абстрактные типы данных против классов
struct date { int day, month, year; };
struct date today;
extern void set_date();
extern void next_date();
extern void print_date();
extern void next_today();

class date {
 int day, month, year;
 friend void set_date(date*, int, int, int),
 next_date(date*),
 print_date(date*), next_today();
};

VII. InheritanceObject-oriented programming

Зачем нужны виртуальные1 функции
enum kind { circle, triangle, square };

class shape {
 point center;
 color col;
 kind k; // необходимо дополнительное поле для конкретизации вида фигуры
public:
 // реализация открытых методов здесь
 void draw() {
 switch(k) {
 case circle: // логика, которая рисует круг
 break;
 case triangle: // логика, которая рисует треугольник
 break;
 case square: // логика, которая рисует квадрат
 }
 }
};

VII. InheritanceObject-oriented programming

Виртуальные функции в С++
class shape {
 point center;
 color col;
 // дополнительное поле не нужно
public:
 virtual void draw();
 // реализация открытых методов здесь
};

class circle : public shape {
 int radius;
public:
 void draw () { /* логика, которая рисует круг */ }
};

void draw_all(shape** v, int size) {
 for (size_t i = 0; i < size; ++i) v[i].draw();
}

VII. InheritanceObject-oriented programming

Поддержка ООП в С++

1. Наследование (1979)
2. Виртуальные функции (1983)
3. Инкапсуляция (1983)
4. Абстрактные классы и множественное наследование (1987)

● Большинство классов не предназначены для включения в иерархии
● Большинство иерархий не нуждается во множественном наследовании
● Множественное наследование интерфейсов необходимо в контексте

статических типов
● Единого универсального базового класса быть не может без удара по

производительности
● Виртуальные вызовы должны быть эффективными
● Модель наследования С++ имеет сильное теоретическое обоснование1

“Object-oriented programming is programming using inheritance. Data
abstraction is programming using user-defined types. With few exceptions,
object-oriented programming can and ought to be a superset of data
abstraction.”

B. Stroustrup

Association of Simula Users Conference, 1986

VII. InheritanceObject-oriented programming

Что такое OOP?

VII. InheritanceObject-oriented programming

class A {
 char c{0}; // 1 байт
};

class B : A {
 char c{0}; // 1 байт
};

Наследование в С++
Class A
 size=1 align=1
 base size=1 base align=1
A (0x0x3b26480) 0

Class B
 size=2 align=1
 base size=2 base align=1
B (0x0x2971340) 0
 A (0x0x3b264e0) 0

VII. InheritanceObject-oriented programming

class A {
 char c{0};
};

class B {
 char c{0};
};

class C : A, B {
 char c{0};
};

Множественное наследование в С++
Class A
 size=1 align=1
 base size=1 base align=1
A (0x0x3916480) 0

Class B
 size=1 align=1
 base size=1 base align=1
B (0x0x39164e0) 0

Class C
 size=3 align=1
 base size=3 base align=1
C (0x0x3929000) 0
 A (0x0x3916540) 0
 B (0x0x39165a0) 1

VII. InheritanceObject-oriented programming

class I {
 char c{0};
};

class A : I {
 char c{0};
};

class B : I {
 char c{0};
};

class C : A, B {
 char c{0};
};

Ромбовидная иерархия наследования в С++
Class I
 size=1 align=1
 base size=1 base align=1
I (0x0x3906480) 0

Class A
 size=2 align=1
 base size=2 base align=1
A (0x0x2971340) 0
 I (0x0x39064e0) 0

Class B
 size=2 align=1
 base size=2 base align=1
B (0x0x29713a8) 0
 I (0x0x3906540) 0

Class C
 size=5 align=1
 base size=5 base align=1
C (0x0x391a000) 0
 A (0x0x2971410) 0
 I (0x0x39065a0) 0
 B (0x0x2971478) 2
 I (0x0x3906600) 2

Наследуемые функции против виртуальных функций
class Base {
protected:
 int x;
public:
 void fbase() { x = 0; }
};

class Derived : public Base {
public:
 void fderived() {
 fbase();
 }
};

void f(Base& b) {
 b.fbase();
}

void g(Derived d) {
 d.fbase();
}

Наследуемые функции против виртуальных функций
class Base {
protected:
 int x;
public:
 void fbase() { x = 0; }
};

class Derived : public Base {
public:
 void fbase() {
 Base::x = 1;
 }
};

void f(Base& b) {
 b.fbase();
}

void g(Derived d) {
 d.fbase();
}

 Base x;
 f(x);

 Derived y;
 f(y);

Какая функция из блока слева будет вызвана?

Наследуемые функции против виртуальных функций
class Base {
protected:
 int x;
public:
 void fbase() { x = 0; }
};

class Derived : public Base {
public:
 void fbase() {
 Base::x = 1;
 }
};

void f(Base& b) {
 b.fbase();
}

void g(Derived d) {
 d.fbase();
}

 Base x;
 f(x);

 Derived y;
 f(y);

Наследуемые функции против виртуальных функций
class Base {
protected:
 int x;
public:
 virtual void fbase() {
 x = 0;
 }
};

class Derived : public Base {
public:
 void fbase() {
 Base::x = 1;
 }
};

void f(Base& b) {
 b.fbase();
}

void g(Derived d) {
 d.fbase();
}

 Base x;
 f(x);

 Derived y;
 f(y);

VII. InheritanceObject-oriented programming

class A {
 char c{0};
virtual void f();
};

class B : A {
 char c{0};
};

Наследование в С++ с виртуальными функциями
Vtable for A
A::_ZTV1A: 3 entries
0 (int (*)(...))0
8 (int (*)(...))(& _ZTI1A)
16 (int (*)(...))A::f

Class A
 size=16 align=8
 base size=9 base align=8
A (0x0x3a0e480) 0
 vptr=((& A::_ZTV1A) + 16)

Vtable for B
B::_ZTV1B: 3 entries
0 (int (*)(...))0
8 (int (*)(...))(& _ZTI1B)
16 (int (*)(...))A::f

Class B
 size=16 align=8
 base size=10 base align=8
B (0x0x3801340) 0
 vptr=((& B::_ZTV1B) + 16)
 A (0x0x3a0e4e0) 0
 primary-for B
(0x0x3801340)

Высокая производительность

“What you don’t use, you don’t pay for. What you do use, you
couldn’t hand code any better.”

B. Stroustrup

VII. InheritanceObject-oriented programming

VII.c. Высокая производительность в С++
Zero-cost abstractions

Object-oriented programming

“Zero-cost” abstractions

https://www.youtube.com/watch?v=EPI7dW5CUfchttps://www.youtube.com/watch?v=rHIkrotSwcc

VII. InheritanceObject-oriented programming

leon.brinzan@iis.utm.md

https://www.youtube.com/watch?v=EPI7dW5CUfc
https://www.youtube.com/watch?v=rHIkrotSwcc

https://www.godbolt.org/z/dWxhGhrMd

https://www.godbolt.org/z/dWxhGhrMd

#include <vector>

Object-oriented programming

https://www.godbolt.org/z/dWxhGhrMd

https://www.godbolt.org/z/dWxhGhrMd

https://www.youtube.com/watch?v=B2BFbs0DJzw

VII. InheritanceObject-oriented programming

http://www.youtube.com/watch?v=B2BFbs0DJzw&t=98
https://www.youtube.com/watch?v=B2BFbs0DJzw

VII. InheritanceObject-oriented programming

Наследование в С++
struct S {
 int a, b;
};

struct S o = { .a = 5, .b = 7 }; // WORKS

struct T : public struct S {
 int c;
};

struct T p = { .a = 5, .b = 7, .c = 3 };

p.a = 5; p.b = 7; p.c = 3; // WORKS
struct T p = { 5, 7, 3 }; // WORKS

https://x.com/SebAaltonen/status/1973276342218268881

https://x.com/SebAaltonen/status/1973276342218268881

VII. InheritanceObject-oriented programming

Наследование в С++

VII. InheritanceObject-oriented programming

Наследование в С++

People deriving real-world concepts instead of functionality causing messy diamond
inheritance issues (you want to derive from “flying” instead of “bird”).

Base classes not being concrete objects. Need to use pointers instead of concrete data
members. Leads to single object allocation pattern, which results in lots of locks
(allocate, free) -> MT contention, fragmentation and cache thrashing (pointer walks).

Heavy use of virtual functions trashes instruction caches and prevents compiler inlining.
Also makes code hard to refactor and multithread, since you never know what data is
modified by who (knowing your data writes are the key in multithreading).

Composition is more flexible than inheritance and you can also do external composition
to have full flexibility of your data layout. For example split data by system, which is a
significant improvement for code base maintainability and performance.

VII. InheritanceObject-oriented programming

Наследование в С++

People deriving real-world concepts instead of functionality causing messy diamond
inheritance issues (you want to derive from “flying” instead of “bird”).

Base classes not being concrete objects. Need to use pointers instead of concrete data
members. Leads to single object allocation pattern, which results in lots of locks
(allocate, free) -> MT contention, fragmentation and cache thrashing (pointer walks).

Heavy use of virtual functions trashes instruction caches and prevents compiler inlining.
Also makes code hard to refactor and multithread, since you never know what data is
modified by who (knowing your data writes are the key in multithreading).

Composition is more flexible than inheritance and you can also do external composition
to have full flexibility of your data layout. For example split data by system, which is a
significant improvement for code base maintainability and performance.

VII. InheritanceObject-oriented programming

Наследование в С++

People deriving real-world concepts instead of functionality causing messy diamond
inheritance issues (you want to derive from “flying” instead of “bird”).

Base classes not being concrete objects. Need to use pointers instead of concrete data
members. Leads to single object allocation pattern, which results in lots of locks
(allocate, free) -> MT contention, fragmentation and cache thrashing (pointer walks).

Heavy use of virtual functions thrashes instruction caches and prevents compiler
inlining. Also makes code hard to refactor and multithread, since you never know what
data is modified by who (knowing your data writes is the key in multithreading).

Composition is more flexible than inheritance and you can also do external composition
to have full flexibility of your data layout. For example split data by system, which is a
significant improvement for code base maintainability and performance.

VII. InheritanceObject-oriented programming

Наследование в С++

People deriving real-world concepts instead of functionality causing messy diamond
inheritance issues (you want to derive from “flying” instead of “bird”).

Base classes not being concrete objects. Need to use pointers instead of concrete data
members. Leads to single object allocation pattern, which results in lots of locks
(allocate, free) -> MT contention, fragmentation and cache thrashing (pointer walks).

Heavy use of virtual functions thrashes instruction caches and prevents compiler inlining.
Also makes code hard to refactor and multithread, since you never know what data is
modified by who (knowing your data writes is the key in multithreading).

Composition is more flexible than inheritance and you can also do external
composition to have full flexibility of your data layout. For example, split data by system,
which is a significant improvement for code base maintainability and performance.

VII. InheritanceObject-oriented programming

Наследование в С++

Наследование против композиции

class stack {
 int *first;
 int *last;
 int *total;
public:
 // здесь работа с ресурсами

 void push();
 void pop();
};

class deque : public queue {
public:
 // здесь работа с ресурсами

 void push_back() { stack::push(); }
 void pop_back() { stack::pop(); }
 void pop_front() { queue::pop(); }
 void push_front();
};

class queue : public stack {
public:
 // здесь работа с ресурсами

 void push() { stack::push(); }
 void pop();
};

VII. InheritanceObject-oriented programming

Наследование против композиции

class deque {
 int *first;
 int *last;
 int *total;
public:
 // здесь работа с ресурсами

 void push_front();
 void push_back();
 void pop_front();
 void pop_back();
};

class stack {
 deque data;
public:
 void push() { data.push_back(); }
 void pop() { data.pop_back(); }
};

class queue {
 deque data;
public:
 void push() { data.push_back(); }
 void pop() { data.pop_front(); }
};

VII. InheritanceObject-oriented programming

https://github.com/cplusplus/LEWG/blob/archive/library-design-guidelines.md

Как наследование используется в библиотеках

https://github.com/cplusplus/LEWG/blob/archive/library-design-guidelines.md

https://icarus.cs.weber.edu/~dab/cs1410/textbook/14.Streams/introduction.html

VII. InheritanceObject-oriented programming

https://icarus.cs.weber.edu/~dab/cs1410/textbook/14.Streams/introduction.html

Особенности наследования

● Implementation inheritance vs. interface inheritance
○ private vs. public

● Множественное наследование
○ Комбинирование классов в один таким образом, чтобы дочерний класс описывал

объекты, которые могут себя вести как любой из своих базовых классов
● Абстрактные базовые классы

○ Позволяют изменять реализацию без компилирования всей иерархии
○ Позволяют явно выделить интерфейс в отдельный класс

● Inheritance vs. containment
○ Явное включение базового класса в большинстве* случаев эквивалентно

VII. InheritanceObject-oriented programming

Inheritance is the base class of evil
https://www.youtube.com/watch?v=bIhUE5uUFOA

http://www.youtube.com/watch?v=bIhUE5uUFOA
https://www.youtube.com/watch?v=bIhUE5uUFOA

https://youtu.be/q4nUK0EBzmI?si=gctz7CzkZxtcdU4l&t=12079

VII. InheritanceObject-oriented programming

https://youtu.be/q4nUK0EBzmI?si=gctz7CzkZxtcdU4l&t=12079
http://www.youtube.com/watch?v=q4nUK0EBzmI&t=12027

● инкапсуляция (абстракция состояния и избавление от манипуляции
состоянием в коде)

● наследование? (иерархическая система типов согласно классификации)

● полиморфизм
● делегация? (делегирование сообщений другим объектам, forwarding)

● динамическое связывание? (late binding, dynamic dispatch)

Object-oriented programming

leon.brinzan@iis.utm.md

Что такое OOP?

● инкапсуляция (абстракция состояния и избавление от манипуляции
состоянием в коде, public и private)

● наследование
● полиморфизм
● делегация? (forwarding, move semantics)

● динамическое связывание (виртуальные функции)

● абстракция (скрытая реализация, открытый интерфейс)

● подмена типов? (subtyping)

VI. ObjectsObject-oriented programming

Что такое OOP?

