OOBbEKTHO-OPUEHTUPOBAHHOE
nporpamMMmpoBaHmne

VIl. HacnepgosaHue

Object-oriented programming VII. Inheritance

“Inheritance programming shows the power of differential
description. A generic ‘object’ is displayed as a cloud. One can make
a rectangle from the undifferentiated object by saying, in effect, ‘1 want
something just like that except...””

A. C. Kay
“Computer Software (1984)”

Object-oriented programming VII. Inheritance

Object
A portion of the class hierarchy showing *
subclasses of valueModei, including Mo del
ValueHolder,AspectAdaptor and
PluggableAdaptor.
ValueModel
ProtocolAdaptor vValueHolder PluggableAdaptor

¥ N\ v

IndexedAdaptor AspectAdaptor Buf feredvValueHolder

Y

SlotAdaptor RangeAdaptor Computedvalue

TypeConverter

BlockValue

https://rmod-files.lille.inria.fr/FreeBooks/Art/artAdded174186187Final.pdf

https://rmod-files.lille.inria.fr/FreeBooks/Art/artAdded174186187Final.pdf

Object-oriented programming

VII. Inheritance

HacnenosaHune B Smalltalk-76

Class new title: 'Window';
fields="frame';
asFollows!
Scheduling
startup
[frame contains: stylus =>
self enter.
repeat:
[frame contains: stylus loc =>
[keybard active => [self keyboard]
stylus down => [self pendown]]
self outside => []
stylus down => [“*self leave]]]
~alse]
Default Event Responses
enter [self show]

leave

outside [~false]

pendown

keyboard [keyboard next. frame flash]
Image

show

Class new title= 'DocWindow';
subclassof: Window;
flelds="document scrollbar edit Menu';
asFollows!
Event Responses
enter [self show.editMenu show.scrollbar show]
leave [document hideselection.editMenu
hide.scrollbar hide]
outside
[editMenu startup => []
scrollbar startup => [self showDoc]
~false]
pendown [document pendown]
keyboard [document keyboard]
Image
show [super show.self showDoc]
showDoc [doucument showin: frame at: scrollbar
position]
title [~document title]

Object-oriented programming VII. Inheritance

“We needed a better theory about inheritance entirely (and still do). For
example, inheritance and instancing (which 1s a kind of inheritance)
muddles both pragmatics (such as factoring code to save space) and
semantics (used for way too many tasks such as: specialization,
generalization, speciation, and so forth).”

A. C. Kay
“Early History of Smalltalk (1993)”

“A number of inheritance ideas were tried out in Smalltalk-72, none
of which I liked all that much. My favorite were the "slot inheritance"
experiments that were done by Larry Tesler. Slot inheritance was
invented for Al and other reasoning systems — and also for providing
protection of polymorphic meanings. For many objects, the contents
of the instance variables can be thought of as "parts". Thus, one could
imagine a lookup strategy that would search down through the instance
variables for ideas and info about the object.”

A. C. Kay

"One problem with almost all inheritance mechanisms is that they compromise
data abstraction to an extent. In languages with inheritance, a data abstraction
implementation (i.e., a class) has two kinds of users. There are the “outsiders”
who simply use the objects by calling the operations. But in addition there are the
“‘insiders.” These are the subclasses, which are typically permitted to violate
encapsulation. There are three ways that encapsulation can be violated: the
subclass might access an instance variable of its superclass, call a private
operation of its superclass, or refer directly to superclasses of its superclass."

B. Liskov (1987)
“Data Abstraction and Hierarchy”

https://www.cs.tufts.edu/~nr/cs257/archive/barbara-liskov/data-abstraction-and-hie
rarchy.pdf

https://www.cs.tufts.edu/~nr/cs257/archive/barbara-liskov/data-abstraction-and-hierarchy.pdf
https://www.cs.tufts.edu/~nr/cs257/archive/barbara-liskov/data-abstraction-and-hierarchy.pdf

Object-oriented programming VII. Inheritance

“ISmalltalk] encourages people to see inheritance as the sole or at least
primary way of organizing programs and to organize classes into
single-rooted hierarchies. In C++, classes are types and inheritance is by no

means the only means of organizing programs.”

B. Stroustrup

Object-oriented programming

Vil.a. A3bik C++

Object-oriented programming VI. Objects

Onatb Simula

“Such partial similarity fairly often applied to processes in different simulation
models, indicating that programming effort could be saved by somehow
preprogramming the common properties”

K. Nygaard
(1978)

Nepapxun knaccoB B Simula

link class car (license number, weight);

integer license number; real weight; ...

car class truck (load);
ref (list) load; ...
car class bus (capacity);
integer capacity;
begin ref (person) array passenger
[1 : capacity] ...
end;

list class bridge;
begin real load; ...
end;

Object-oriented programming VII. Inheritance

BnnaHmne Simula Ha C++

o Knacchbl BeayT cebs Kak conporpamMMebl (nerko nucats CUMyMSILAN MHOTONOTOYHOCTM)
o KOHCTpYKTOpLI, ONnepaTtop new

e CraTnuyeckas cucrema TMnos' AAHHbIX (koMnNunAaTop BbISBMASET OWKMOKM nporpaMmmucTa
ewle 40 3anycka nporpamMmmbl)

e [lporpammbl Nerko opraHNM30BLIBAKOTCA B NEPAPXUIO I'IO,EI,I'IpOFpaMM2

e CaM 4a3blk ocTaBnsAn xenatb nyduwero (linking time, csasbiBaHMe KnNaccos 3aHMMmarno

O4YeHb MHOMo BpemeHu®, Gorbluve nporpammbl nucaTtb 6bINO TaXerno; run-time type checking;
garbage collection etc.)

o Knaccbl no3BONAOT MbICIUTb O CYLLHOCTSAX B NporpaMmmMmax Hanpsimyo

https://dl.acm.org/doi/pdf/10.1145/234286.1057836

https://dl.acm.org/doi/pdf/10.1145/234286.1057836

https://www.voutube.com/watch?v=ZXc z1sNbfA

http://www.youtube.com/watch?v=ZXc_z1sNbfA&t=310
https://www.youtube.com/watch?v=ZXc_z1sNbfA

Knaccbl N03BONSAKT MbICIIUTb O CYLLHOCTSAX B MporpamMmmax
HanNpPsAMYto

“A compile-time* hierarchy' that matches the domain

model.”

M. “Mahk” LeBlanc

*He xBaTaeT YyTOMHEHUS!, YTO OHa MHKaMNCynMpoBaHa

C++ Object-oriented hierarchy of encapsulation

https://www.youtube.com/watch?v=04ksL1hf p8

http://www.youtube.com/watch?v=04ksL1hf_p8&t=34
https://www.youtube.com/watch?v=04ksL1hf_p8

Yto Takoe OOP?

1. OObekT — 9TO onucaHMe npouecca, npeacrtaBnsalWEro cobou
WHKaNCynMpoBaHHYID CUCTEMY, BCe OTHOLUEeHUS KOTOpou C Apyrumu
cuctemMamMum ycTaHaBIlMBaAlOTCA MOCPEOCTBOM KAKOro-To MpoToKona WU
onpenensoT KOMMMEKCHble CUCTEMbl B KaKOM-TO npegmMeTHou obnactu
(domain).

a. OOQI1 - aTo nporpammMMpoBaHue LenoyYek coobLLeHnn OT OAHMX OOBEKTOB K APYrMM COrnacHO
obLwnm npasunam.

2. OOBeKT — 9T0 MoAerb CYLHOCTU U3 npeaMeTHoM obnacTtn (domain), KoTopas
OonucbiBaeT BCE OTHOLUEHUSI 3TOWM MOAENUN C APYrMMUA MOAENAMU U3 TOW Xe

obnacTw.

a. OOIl - ato nporpammMmmnpoBaHne nepapxmm o6bEKTOB ANS UX NOCNeayLEero NCnonb3oBaHns B
BMOE OCHOBHbIX KOMMOHEHTOB, KOTOPbLIE B3aUMOAENCTBYIOT C NPOrpaMmMOn.

“The most treacherous metaphors are the ones that seem to work
for a time — because they can keep more powerful insights from
bubbling up. As a result, progress 1s slow.”

J. Raskin (1994?)

Object-oriented programming

VIl.b. MexaHnam HacnenoBsaHuga B C++

Object-oriented programming VII. Inheritance

Tpu OCHOBHbIX 3nemMeHTa gn3anHa C++

o OpraHunsaumoHHas CTpPyKTypa nporpamMmmsbl Kak B Simula (vepapxum knaccos,
MHOIornoTo4HOCTb, CTaTU4eCKad cuctema TI/II'IOB)

“Support for program organization--that is, classes, some form of class
hierarchies, some form of support for concurrency, and strong (that 1s, static)
checking of a type system based on classes. This I saw as support for the
process of inventing programs”

B. Stroustrup

Object-oriented programming VII. Inheritance

Tpu OCHOBHbIX 3nemMeHTa gn3anHa C++

o OpraHunsaumoHHas CTpPyKTypa nporpamMmmsbl Kak B Simula (vepapxum knaccos,
MHOIornoTo4HOCTb, CTaTU4eCKad cuctema TI/II'IOB)

e Bblicokas I'IpOI/ISBO,EI,I/ITeJ'IbHOCTb1 (kak npu cbopke Nporpamm, Tak n B paboTe)

“Produce programs that ran as fast as BCPL programs and shared BCPL's
ability to easily combine separately compiled units into a program”

B. Stroustrup

Object-oriented programming VII. Inheritance

Tpu OCHOBHbIX 3nemMeHTa gn3anHa C++

o OpraHunsaumoHHas CTpPyKTypa nporpamMmmsbl Kak B Simula (vepapxum knaccos,
MHOIornoTo4HOCTb, CTaTU4eCKad cuctema TI/II'IOB)

e Bblicokas NPOnN3BOANTENTbHOCTb (kak npw cbopke nporpamm, Tak 1 B pabore)
° I_IOpTaTI/IBHOCTb (“kenes3o”, onepaunoHHbIE CUCTEMBI)

“The "good" implementation I needed would typically not be available until
"next year" and only on a machine I couldn't afford. This implied that a tool
must have multiple sources of implementations.”

B. Stroustrup

Object-oriented programming VII. Inheritance

OpraHu3auuoHHas CTpyKTypa nporpamMmmbi

Knaccebl

[logknacchl

KoHTponb goctyna

KOHCTPYKTOpPbLI U OEeCTPYKTOpPSLI
PyHKUNM-06epTKN

[pyxecTBeHHble Knacchl

CTtaTnyeckass cucrtema TUNOB W NpUBEOEHWE TUNOB An4
apryMmeHToB (pyHKLUN

“UHnarHnHI" dyHKUMR'

AprymeHTbl N0 YMOM4YaHUIo

10. [lleperpyska onepaTtopa npuceamBaHuUs

NOoOOGROWN =

© ®

Object-oriented programming VII. Inheritance

OCHOBHbI€ MHCTPYMEHTbI C++

ok Wb~

BuptyanbHble dyHKLmKn'.
[leperpy3ka dpyHKLNM U OnepaTopoB.
CcbINoYHbIE NMEPEMEHHbIE.
KoHCTaHTHble NnepeMeHHble - const.
Knacchl kKak UHTepdgeucsi.

Object-oriented programming VII. Inheritance

ABCTpaKkTHbIE TUMbI JaHHbIX NPOTUB KI1acCoB

struct
struct
extern
extern
extern
extern

class date {

date
date
void
void
void
void

{ int day, month, year; };
today;

set _date();

next date();

print _date();
next_today();

int day, month, year;
friend void set date(date*, int, int, int),

s

next date(date*),
print_date(date*), next_today();

Object-oriented programming VII. Inheritance

3aueM HyXXHbl BUPTYarnbHble' dyHKLMK

enum kind { circle, triangle, square };

class shape {
point center;
color col;

public:
// peanusauusa OTKPbITbIX METOL4OB 34eCb
void draw() {
switch(k) {
case circle: // noruka, KoTopas puUCYyeT Kpyr

break;

case triangle: // noruka, koTtopas pucyeTr TpeyrorbHUK
break;

case square: // noruvka, KoTopas pucyeT keagpar

}
}s

kind k; // HeobxooMmo AOOMNOMHUTENbLHOE None ANA KOHKpeTusaumm Buaa urypsl

Object-oriented programming VII. Inheritance

BupTyanbHble dyHKumn B C++

class shape {

point center;

color col;

// DOOMOJSIHUTENbHOE MOJSie HEe HYXXHO
public:

virtual void draw();

// peanusauusa OTKPbITbIX METOO4OB 34eCb

}s

class circle : public shape {
int radius;
public:
void draw () { /* noruka, koTtopasa pwucyet kpyr */ }

}s

void draw_all(shape** v, int size) {
for (size_t i = 0; i < size; ++i) v[i].draw();

}

Mognepxka OOl B C++

1. HacneposaHue (1979)
2. BwupTtyanbHble doyHkuum (1983)

3. Wukancynauma (1983)
4. ADOCTpaKTHble Knaccbl U MHOXXECTBEHHOE HacriegoBaHue (1987)

BonbLIMHCTBO KNaccoB He NpeaHa3Ha4vYeHbl A5t BKNIYEHNS B UepapXum
e DbOnbLKMHCTBO nepapxmin He HyXXgaeTcst BO MHOXECTBEHHOM HacregoBaHUM
MHOXXecTBEHHOE HacnegoBaHne MHTepdencoB HEOOBXOAMMO B KOHTEKCTE
cTaTU4YeCKnx TUNnoB
e EanHoro yHmBepcanbHoro 6a3oBoro knacca obiTb HE MOXET 6e3 yaapa no
NPOM3BOAUTENBHOCTH

BupTyanbHble BbI30Bbl A0MMKHbI ObITb 9PdEKTUBHBIMA
e Mogenb HacnegosaHusa C++ MeeT cunbHoe TeopeTnyeckoe oGocHoBaHme'

Object-oriented programming VII. Inheritance

Yto Takoe OOP?

“Object-oriented programming i1s programming using inheritance. Data
abstraction 1s programming using user-defined types. With few exceptions,
object-oriented programming can and ought to be a superset of data
abstraction.”

B. Stroustrup

Association of Simula Users Conference, 1986

Object-oriented programming VII. Inheritance

HacnenosaHune B C++

class A { Class A
char c{0}; // 1 Gant size=1 align=1
}s base size=1 base align=1

A (0x0x3b26480) O

class B : A {
char c{0}; // 1 Gawnt Class B
}s size=2 align=1
base size=2 base align=1
B (0x0x2971340) ©
A (0x0x3b264e0) ©

Object-oriented programming VII. Inheritance

MHoO)XecTBeHHoe HacregosaHue B C++

class A { Class A
char c{0}; size=1 align=1
}s base size=1 base align=1
A (0x0x3916480) ©
class B {
char c{0}; Class B
}s size=1 align=1
base size=1 base align=1
class C : A, B { B (0x0x39164e0) ©
char c{0};
}s Class C

size=3 align=1
base size=3 base align=1
C (©x0x3929000) ©
A (0x0x3916540) ©
B (0x0x39165a0) 1

Object-oriented programming VII. Inheritance

PomboBuaHas nepapxms HacrnegosaHmsa B C++

class I { Class I Class C
char c{0}; size=1 align=1 size=5 align=1
}s base size=1 base align=1 base size=5 base align=1
I (0x0x3906480) © C (Ox0x391a000) ©
class A : I { A (0x0x2971410) ©
char c{0}; Class A I (Ox0x39065a0) ©
}s size=2 align=1 B (0x0x2971478) 2
base size=2 base align=1 I (Ox0x3906600) 2
class B : I { A (0x0x2971340) ©
char c{0}; I (Ox0x39064€0) ©
}s
Class B
class C : A, B { size=2 align=1
char c{0}; base size=2 base align=1
}; B (©x0x29713a8) ©

I (0x0x3906540) ©

Hacneoyemble oyHKUUN NPOTUB BUPTYanbHbIX QPYHKLUA

class Base { void f(Base& b) {
protected: b.fbase();

int x; }
public:

void fbase() { x = 0; } void g(Derived d) {
}; d.fbase();

}

class Derived : public Base {
public:

void fderived() {

fbase();

}
}s

Hacneoyemble oyHKUUN NPOTUB BUPTYanbHbIX QPYHKLUA

class Base { void f(Base& b) {
protected: b.fbase();
int x; }
public:
void fbase() { x = 0; } void g(Derived d) {
}s d.fbase();
}

class Derived : public Base {
public:

void fbase() { .
Base::x = 1; Base Xx;

} f(x);
}s
Derived y;
f(y);

Kakas cdoyHKkuust n3 6noka cnesa 6yaet Bbi3aBaHa?

Hacneoyemble oyHKUUN NPOTUB BUPTYanbHbIX QPYHKLUA

class Base { void f(Base& b) {
protected: b.fbase();
int x; }
public:
void fbase() { x = 0; } void g(Derived d) {
}s d.fbase();
}

class Derived : public Base {
public:

void fbase() { .
Base::x = 1; Base Xx;

} f(x);
}s
Derived y;
f(y);

Hacneoyemble oyHKUUN NPOTUB BUPTYanbHbIX QPYHKLUA

class Base { void f(Base& b) {
protected: b.fbase();

int x; }
public:

virtual void fbase() { void g(Derived d) {

X = 0; d.fbase();

} }
}s
class Derived : public Base { .
public: Base X;

void fbase() { f(x);

Base::x = 1;
}. } \Der‘iVEd Y,
’ f(y);

Object-oriented programming VII. Inheritance

HacneposaHne B C++ ¢ BUpTYyanbHbIMU QOYHKLUSMU

class A { Vtable for A
char c{0}; A:: ZTV1A: 3 entries
virtual void f(); 0 (int (*)(...))0
}s 8 (int (*)(...))(& _ZTI1A)

16 (int (*)(...))A::f

class B : A {
char c{0}; Class A
}s size=16 align=8
base size=9 base align=8
A (Ox0x3a0e480) ©
vptr=((& A::_ZTV1A) + 16)

Vtable for B

B:: ZTV1B: 3 entries

0 (int (*)(...))0

8 (int (*)(...))(& _ZTI1B)
16 (int (*)(...))A::f

Class B
size=16 align=8
base size=10 base align=8
B (©0x0x3801340) ©
vptr=((& B::_ZTV1B) + 16)
A (Ox0x3a0eded) ©
primary-for B
(0x0x3801340)

Object-oriented programming VII. Inheritance

Bbicokas Nnpon3BoANTEIIbHOCTb

“What you don’t use, you don’t pay for. What you do use, you
couldn’t hand code any better.”

B. Stroustrup

Object-oriented programming

Vll.c. Bbicokas npounsBognTenbHOCTb B C++

Object-oriented programming VII. Inheritance

“Zero-cost” abstractions

https://www.youtube.com/watch?v=rHIkrotSwcc https://www.youtube.com/watch?v=EP|17dW5CUfc
@ Cppcon | 2019

LLVM IR: contral flow

Adrien Guinet

When zero-cost

There Are No e abstraction fails: How-to
Zero-Cost Abstractions fix your compiler

dao Sgonsorstip Provided Ly
ansatz

leon.brinzan@iis.utm.md

https://www.youtube.com/watch?v=EPI7dW5CUfc
https://www.youtube.com/watch?v=rHIkrotSwcc

@ Dennis Gustafsson o Kingsley Hopking ©
@’ @voxagonlabs | often use the STL when writing ofﬂme tools & prototyping a
. g feature i.e when memory fragmentation & breakneck perf is less
Game developers, are you using STL containers (std::vector, .
std::unordered map, etc)? If no, what's the main reason (runtime perf or

debug perf/compile times/error messages/etc)? In engine code | mainly use C / custom types along with custom

allocators as | know the lifetime & perf requirements of the code
I'm writing

Yes

No, because runtime perf Steve Verreault

No, be everything ¢ lse _ =¥ |do, usually wrapped in other mterfaces but C++ deserved a

£ better standard library. They feel academic, as though designed
Sometimes / some of them by someone divorced from any real day to day practice, but with
a theoretical understanding. Also they're not OO friendly in an
00 language.

Anders Lindqvist

‘%, On my 13 year old home computer | mostly avoid them due to
‘ﬁ : A5 DEBUG performance. | often start out using them and then
stdlib containers are not fit for any purpose, including teaching removing them over time. I'm waiting for a new computer, maybe
because their implementation is what i can only leniently call my feelings will change :)

fucking stupid Stefano Cristiano @

Q kinjal kishor @kinjalki - Sep 13 “ee - Terrible compile time and debug performance
std::pmr containers are quite good though - Bad runtime performance in some cases
- No custom inline-storage buffers (SmallVector<T,N> acting as

“'\\ Andre Weissflog @FlohOf\Woe - 27 o Vector<T>)
*’@' IMHO the most convincing argument is this though: - Exceptions instead of return values for failures

https://www.qgodbolt.orqg/z/dWxhGhrMd

https://www.godbolt.org/z/dWxhGhrMd

Object-oriented programming x86-64 clang 18.1.0 v & | @ | -E-std=c++23 D
A~ QOutput..~ YFilter..~ BLibraries /Overrides -+ Add new..~

¢’ Add tool... ~
24207 const auto __end = _ ucont.end();
24208 auto _ removed = std::__remove_if(__ucont.begin(), _ end,
24209 _ops::_ pred_iter(std::ref(__pred)));
24210 if (__removed != _ end)
24211 {
24212 __cont.erase(__niter_wrap(__cont.begin(), _ removed),
24213 __cont.end());
24214 return __osz - _ cont.size();
24215 }
24216
. 24217 return 6;
#include <vector> 24218 y ’
24219
24220 template<typename _Tp, typename _Alloc, typename _Up>
24221 constexpr
24222 inline typename vector<_Tp, _Alloc>::size_type
24223 erase(vector<_Tp, _Alloc>& _ cont, const _Up& _ value)
24224 {
24225 using namespace _ gnu_cxx;
24226 std::vector<_Tp, _Alloc>& _ ucont = _ cont;
24227 const auto _ osz = _ cont.size();
24228 const auto __end = __ucont.end();
24229 auto __removed = std::__remove_if(__ucont.begin(), _ end,
24230 __ops::__iter_equals_val(_ value));
24231 if (__removed != _ end)
24232 {
24233 __cont.erase(__niter_wrap(__cont.begin(), _ removed),
24234 __cont.end());
24235 return __osz - _ cont.size();
24236 }
24237
24238 return 8;
24230 }

24240

https://www.godbolt.org/z/dWxhGhrMd = e

24242 # 1 "/app/example.cpp" 2

https://www.godbolt.org/z/dWxhGhrMd

Object-oriented programming VII. Inheritance

https://www.youtube.com/watch?v=B2BFbs0DJzw

http://www.youtube.com/watch?v=B2BFbs0DJzw&t=98
https://www.youtube.com/watch?v=B2BFbs0DJzw

Object-oriented programming

HacnenosaHune B C++

9 Sebastian Aaltonen &

struct S {
inta, b;

|5
So={.a=5,.b=7};// WORKS
struct T : public S {

intc;

}

Tp={.a=5,.b=7.c=3}; // COMPILER ERROR!

p.a=5; p.b =7; p.c=3; // WORKS
Tp=1{5,7,3}; // WORKS

VII. Inheritance

struct S {
int a,

s
struct S o

struct T :
int c;

¥
struct T p

p.a = 5; p.
struct T p

WTF?! The best way doesn't work. Inferior ways do. Why C++?

38.2K

https://x.com/SebAaltonen/status/1973276342218268881

.a=5, .b=71%}; // WORKS

public struct S {

(o

// WORKS
// WORKS

https://x.com/SebAaltonen/status/1973276342218268881

Object-oriented programming

HacnenosaHune B C++

6 NeoMallchad

*slares™.
I thought you guys didn't like inheritance

29.2K

VII. Inheritance

Object-oriented programming VII. Inheritance

HacnenosaHune B C++

NeoMalichad . 9 Sebastian Aaltonen %

slares. The biggest problem with inheritance are:

I thought you guys didn't like inheritance 1. People deriving real-world concepts instead of functionality causing
messy diamond inheritance issues. (you want to derive from flying

292K instead of bird)

2. Base classes not being concrete objects. Need to use pointers instead
of concrete data members. Leads to single object allocation pattern,
which results in lots of locks (allocate, free) -> MT contention,
fragmentation and cache trashing (pointer walks).
3. Heavy use of virtual functions trashes instruction caches and
prevents compiler inlining. Also makes code hard to refactor and
multithread, since you never know what data is modified by who
(knowing your data writes are the key in multithreading).
4. Composition is more flexible than inheritance and you can also do
external composition to have full flexibility of your data layout. For
example split data by system, which is a significant improvement for
code base maintainability and performance.

POD struct inheriting another POD struct is completely fine. It doesn't
have any of these issues.

Object-oriented programming VII. Inheritance

HacnenosaHune B C++

People deriving real-world concepts instead of functionality causing messy diamond
inheritance issues (you want to derive from “flying” instead of “bird”).

Object-oriented programming VII. Inheritance

HacnenosaHune B C++

Base classes not being concrete objects. Need to use pointers instead of concrete data
members. Leads to single object allocation pattern, which results in lots of locks
(allocate, free) -> MT contention, fragmentation and cache thrashing (pointer walks).

Object-oriented programming VII. Inheritance

HacnenosaHune B C++

Heavy use of virtual functions thrashes instruction caches and prevents compiler
inlining. Also makes code hard to refactor and multithread, since you never know what
data is modified by who (knowing your data writes is the key in multithreading).

Object-oriented programming VII. Inheritance

HacnenoBaHue B C++

People deriving real-world concepts instead of functionality causing messy diamond
inheritance issues (you want to derive from “flying” instead of “bird”).

Base classes not being concrete objects. Need to use pointers instead of concrete data
members. Leads to single object allocation pattern, which results in lots of locks
(allocate, free) -> MT contention, fragmentation and cache thrashing (pointer walks).

Heavy use of virtual functions thrashes instruction caches and prevents compiler inlining.
Also makes code hard to refactor and multithread, since you never know what data is
modified by who (knowing your data writes is the key in multithreading).

Composition is more flexible than inheritance and you can also do external
composition to have full flexibility of your data layout. For example, split data by system,
which is a significant improvement for code base maintainability and performance.

Object-oriented programming VII. Inheritance

HacnenoBaHue NPOTUB KOMMNO3ULINA

class queue : public stack {
public:

3gecb paborta c pecypcamu
class stack { /7 3 P pecyp

%nt *first; void push() { stack::push(); }
]..nt *laS‘t; void pop();
int *total; };

public:
// 3pecb paboTa c pecypcamu
void push(); class deque : public queue {
void pop(); public:

}; // 30ecb paboTta c pecypcamu

void push_back() { stack::push(); }
void pop_back() { stack::pop(); }
void pop_front() { queue::pop(); }
void push_front();

}s

Object-oriented programming

VII. Inheritance

HacnenoBaHue NPOTUB KOMMNO3ULINA

class deque {
int *first;
int *last;
int *total;
public:
// 3pecb paboTta Cc pecypcamu

void push_front();

void push_back();

void pop_front();

void pop_back();
}s

class stack {

deque data;

public:

}s

void push() { data.push_back(); }
void pop() { data.pop_back(); }

class queue {

deque data;

public:

}s

void push() { data.push_back(); }
void pop() { data.pop_front(); }

H O O K K K K K K K K K K K K K K

Kak HacnegoBaHue ucnonb3yetcda B bnbnmortekax

Don't be clever.

Don't be stupid.

Naming matters.

Generic components should be aware of move-only types.

We are thread-compatible "[res.on.data.races] .

Exceptions are used for error conditions (there are some exceptions).

Do not gratuitously overload operators.

Classes allocating memory get an allocator (inconsistently applied).

Containers get allocators unless they don't allocate.

Containers use allocator through allocator traits.

Allocators are part of type unless there is already type-erasure for other reasons.
“const’ -correctness is observed and is used as a proxy for thread-safety in the standard library.
Class signatures want to be near minimal (the obvious counter-example is std::basic_string).
Destructors shall not throw.

Things should be “constexpr where reasonable.

Avoid inheritance and virtual functions where possible.

Prefer function objects (i.e., deduced templates) to function pointers.

https://qithub.com/cplusplus/LEWG/blob/archive/library-design-quidelines.md

https://github.com/cplusplus/LEWG/blob/archive/library-design-guidelines.md

Object-oriented programming VII. Inheritance

ios streambuf
#include <iostream> <

ostream cout;

https://icarus.cs.weber.edu/~dab/cs1410/textbook/14.Streams/introduction.html

https://icarus.cs.weber.edu/~dab/cs1410/textbook/14.Streams/introduction.html

Object-oriented programming VII. Inheritance

OcobeHHOCTM HacneaoBaHUS

o Implementation inheritance vs. interface inheritance
o private vs. public
o MHOXecTBEHHOE HacnegoBaHMe
o KombBuHupoBaHMe KnaccoB B 0AWH TakuM 0bpa3om, YToObl 4OYEPHUI Knacc onuckiBan
06 BbEeKTbI, KOTOPblE MOTYT cebsl BeCTU Kak JIlo6oMn N3 cBonx 6a3oBbIX KfaccoB
e AGcTpakTHble 6a30BbIE Kacchbl
o [lo3BonsAT N3MEHATb peanusaumio 6e3 KOMNUNMPOBaHNSA BCEN nepapxmm
o [losBonalT sIBHO BbIAENUTb MHTEPdENC B OTAENbHbIN Knacc
e Inheritance vs. containment
o £BHOe BKIoYeHMe 6a3oBoOro knacca B 60NbLINHCTBE® CryvYaeB 3KBMBANEHTHO

Inheritance is the base class of evil
https://www.youtube.com/watch?v= bIhUE5uUFOA

http://www.youtube.com/watch?v=bIhUE5uUFOA
https://www.youtube.com/watch?v=bIhUE5uUFOA

Object-oriented programming VII. Inheritance

hitps://youtu.be/g4nUKOEBzmIl?si=gctz7/ CzkZxtcdU41&t=12079

https://youtu.be/q4nUK0EBzmI?si=gctz7CzkZxtcdU4l&t=12079
http://www.youtube.com/watch?v=q4nUK0EBzmI&t=12027

Object-oriented programming

Yto Takoe OOP?

e MHKaMNCynauua (abcrpakumsa cCoCToAHUSA U n3basreHne oT MaHunynAumum
COCTOSIHUEM B Koze)
e HacrenoBaHME? (nepapxuyeckas cucteMa TUMOB COrMacHo KnaccudukaLmm)

o FAOFAMOPEHIM
e Jenerauns? (nenernposaHnve cooblueHni apyrum obbektam, forwarding)
e JMHaMM4YecKoe cBA3bIBaHUE? (late binding, dynamic dispatch)

leon.brinzan@jiis.utm.md

Object-oriented programming VI. Objects

Yto Takoe OOP?

e MHKaMNCynauua (abcrpakumsa cCoCToAHUSA U n3basreHne oT MaHunynAumum
cocTosiHueMm B Koae, public n private)

o HacReAOBaHHME

o FAOFAMOPEHIM

e Jeneraumnsa? (forwarding, move semantics)

e [dMHaAMUYECKOE CBA3bIBaAHNE (BupTyanbHbie (PyHKLNN)
o a6CTpaKLl,l/IFI (CKpbITaga peanusaumsa, oTKpbITbI UHTepdenc)
e NOAMEHAa TUNOB? (subtyping)

