OOBbEKTHO-OPUEHTUPOBAHHOE
nporpamMMmpoBaHmne

X. O600OLEeHHOE nporpaMmmmpoBaHme

Fundamentals of Generic Programming

James C. Dehnert and Alexander Stepanov

Silicon Graphics, Inc.
dehnertj@acm.org, stepanov@attlabs.att.com

Keywords: Generic programming, operator semantics, concept, regular type.

Abstract. Generic programming depends on the
decomposition of programs into components which may be
developed separately and combined arbitrarily, subject only
to well-defined interfaces. Among the interfaces of interest,
indeed the most pervasively and unconsciously used, are
the fundamental operators common to all C++ built-in types,
as extended to user-defined types, e.g. copy constructors,
assignment, and equality. We investigate the relations which
must hold among these operators to preserve consistency
with their semantics for the built-in types and with the
expectations of programmers. We can produce an
axiomatization of these operators which yields the required
consistency with built-in types, matches the intuitive
expectations of programmers, and also reflects our
underlying mathematical expectations.

AdeKomMno3numna nporpamMmm Ha
KOMIOHEHTHI, pa3pa6aTb|BaeMble
HEe3aBNCNMO, KOTOpble MOXXHO

KOMOMHMpPOBATb B NPOWN3BOSIbHOM
nopsake Onarogaps 4eTko-3afaHHbIM

nHTEpdencam;

camble 4acTo Ncnosib3yemMble
NHTepdencbl — basoBble onepaTtopb! 4SS
BCTPOEHHbIX TUMOB: KOMUpPOBaHMUe,

npucBaMBaHue, cCpaBHEeHUe,;

HeoOxoauMa akcmomMatmsaumss Takux
onepaTtopoB, 4Tobbl caenatb paboTy C
NoNb3oBaTENbCKUMMU TMNnamm
aHanornyHom paboTte CO BCTPOEHHbLIMU
(MHTYUTUBHO MOHATHOM W OTpakaroLlen
MaTemaTuyeckne cBOMCTBA.)

Kak Bbirnagen mmp Ao o6o0ueHHOro nporpamMmmmpoBaHng

Bubnuotekn aABnAOTCA NPUMEPOM YCMELWHO BHeAPEeHHbIX MHTepdrencos (Unix,
rpacuyeckme bmnbnmoTekn, matematTndeckne 6ubnmotekn n 1.4.)

Bubnnotekn npoLwnioro UCMosnb3ykT MOMHOCTbIO OrnpeaeneHHble (KOHKPETHbIE)
NHTEpdencol, nogaepxmnearoLline 3apaHee 3agaHHble (KOHKPETHbLIE) TUMbI AaHHbIX

[ntoc BnbnuoTek B TOM, YTO €Cfl UMM NOoNb30BaTbCS MO ornpeageneHHbiM ana HMX
npasusiaMm, I'IpaBI/IJ'IbeII7I pes3ysibrat rapaHTnpoBaH

MI/IHyC OnbnuoTek B TOM, YTO MOMb30BaTbCS UMU HE MO 3apaHee orpegerieHHblIM
npasusiam (Harlpvlmep, a5 HOBOIo Tuna ,EI,aHHbIX) HEJ1b34

Kak aTo orpaHnyeHmne obonTtu

OtaeneHne TMNOB AaHHbIX OT CTPYKTYP AAHHbLIX U OT afirOPUTMOB MO3BOSNUT
KOMOUHMpOBaTL MoObIe TUMNLI C NOBLIMU CTPYKTYpaMmn U3 ogHon 6ubnunotekn un
anroputTMamu n3 apyrom 6ubnmoteku

[1ns 3Toro 6onbLUOEe KONMMYECTBO KOMMOHEHTOB AOMKHO UMETL 00NN nHTEpdenc,
YTOObI ObITb B3aMMO3aMeHsAeMbIMU

Hy>XHO OTOMTM OT CTapon MOAenu U nepenmTu K HOBOW, rae 4YeTKo 3ajaHHble
NHTEPJENCHI 3aMEHSAITCA Ha MUHUMarbHLIN Habop TpeboBaHUN K MHTepdencam,
4YTOObI pa3Hble UHTEPdENCHI MOXHO BbINO NCNOMb30BaTb B 0AHOW CUTyauun

Acrnonb3oBaHMe MOXOXUX, HO pas3HblX UHTepdencoB TpebyeT BbIABNEHUS W
00600LWWeHna WabnoHHbLIX NPMEMOB MPOrpaMMMpPOBaHUS, a Takke pa3paboTku
TEXHUK 4N nepefadn gaHHbIX Mexay pasHbiMy nHTepdencamm

Concept

“The set of axioms satisfied by a data type and a set
of operations on it.”

® LENOYMCNEHHBIN TN U BCe oOrnepauun, YOOBIIETBOPANOLLME BCEM
apupmMmeTnyecknm CBONCTBaM,;

® CMNUCOK AJaHHbIX, B KOTOPOM E€CTb NEPBLIN INIEMEHT, UTEpaTop AA npoxoaa no
CAKNCKY, cnocod NpoBepuUTb KOHEL, CNCKa;

JTlobon KOMMOHEHT, KOTOPLIA MNfIaHMPYeTCAa UCNOoMb30oBaTb B OyayulemM, OOMMKEH
ObITb paspaboTaH ¢ MUHUMASbHBIM HAOOPOM TakMX KOHLEMNUUN, caMn KOHUENL MK
OOIMKHbI NOAX0AUTb Hanbonee WUPOKOMY pa3HOObpa3nio CTPYKTYP B NporpamMme.

icTopu4iecknn npouecc

O6obuweHne mawmHHon apxutektypbl (IBM 360) — BCA namsaTb YycCTpoucTBa
npeacraBnsieTcsl Kak nocregoBaTesnibHOCTb 6anTtoB, 0603HaYaroWMXCA OAHOPOAHbLIMM
agpecamu (ykasaTensimu), He 3aBUCALLMMW OT TUNa AaHHbIX.

O600LLeHMe s3blka KOHKPETHOW nraTtgopMbl (BbICOKOYPOBHEBLIE $A3blkM Tuna C) —
NPenoCTaBnsAlTCS COCTaBHblE TUMbl AaHHbIX Ha ©asze 00606WEHHON MaLUUHHOW
apXUTEKTYpbl, KOTOpble MOAENUPYT OObEKTbl B NaMATW, MUCNONb3ysd ykasaTtenu Ans
onepauun, He 3aBUCALLMX OT TUMOB AaHHbIX.

O600LLEeHME BCTPOEHHLIX B BbICOKOYPOBHEBbLIE S3blKM onepaunn (neperpyska yHKUNN r
ornepatopoB B C++) — MOXHO OnNpenensaTb BCe onepauun Ornsi CBOUX TUMOB C NOMOLLbIO
KNaccoB 1 LWabrioHOB.

N3 9TuX Tpex ITanoB €CTEeCTBEHHbIM 0Opa3om BblpactaeTr 0600LeHHOe
nporpamMmmMmmupoBaHme

Cytb Ol

“If we hope to reuse code containing references to the standard C++
operators, and apply it to both built-in and user types, we must
extend the semantics as well as the syntax of the standard operators
to user types. That is, the standard operators must be understood to
implement well-defined concepts with uniform axioms rather than
arbitrary functions.”

Kntoy kK 3TOMy — B WCMOMb30BaHUM CEMaHTUKM yKasatenem Ansi CO34aHus
KOHLLEMLIMIN, KOTOPble NOBTOPSAOT CEMAHTUKY BCTPOEHHbIX TUMOB U ONepaTopoB.

Regular types

Default constructor T a;
Copy constructor T a.=b;
Destructor ~T (a) ;
Assignment a = b;
Equality a ==D>b
Inequality al=Db
Ordering, e.g. ac<hb

A regular type matches the built-in type
user-defined types behave like built-in types as well

semantics, thereby making our

(DyH,El,aMeHTaJ'IbeIe onepaunn

Copy, Assignment, and Equality
1. T a = b; assert(a == b);
2. Ta; a=b; T a = b;

3. T a

c; Tb=c; a=d; assert(b == c);

4, T a

c; Tb=c; zap(a); assert(b == c & a != b);

OTHOLLEHNS paBEHCTBA
PaBeHCTBO pedriekCMBHO, CAMMETPUYHO N TPAH3UTUBHO, HO...

bool operator==(const T& x, const T& y) const {
return true;

}
Torga,

X == y ¢ V predicate P, P(x) == P(y)

OTHOLLEHNS paBEHCTBA
PaBeHCTBO pedriekCMBHO, CAMMETPUYHO N TPAH3UTUBHO, HO...

bool operator==(const T& x, const T& y) const {
return true;

}
Torga,

X == y ¢ V predicate P, P(x) == P(y)
Ho,

V predicate P, P(x) == P(y) = x ==y

[lobutoBOE cpaBHEHWE He Bcerga agekBaTHO

CTpYyKTYypbl OaHHbIX 4YacTO COCTOAT M3 ykasaTeneu (‘ypaneHHbIX” 4acTen) Ha
Opyrve CTPYKTypbl — CpaBHMBATb HafO He yKasaTenu, a CTPYKTYpbl, HA KOTOpbIe
OHW yKa3blBaloT

CTpyKTYypbl OaHHbLIX 4YaCTO coAdepXaT 4YacTWu, KOTOpble HEe MMEKT OTHOLUEHUS K
CYLLUHOCTM Tuna [OaHHbIX, KOTOpbIM MOOENUPYETCA — CpaBHUBATb Takue
HeCyLLEeCTBEHHbIE YacTu He Hago (npumep: shared pointer)

BblpaXXeHMss 4acTo COCTOAT M3 HECKONbKUX CTPYKTYP, U HYXHO WMETb
BO3MOXHOCTb ONpefennTb rae 3akaHyMBaeTcd ofHa CTPyKTypa M HavyuHaeTcs
apyrasi — HeKOTOpble YaCTu CTPYKTYpPbl ONpeaenstoT OTHOLLIEHWE CBOEN CTPYKTYpbI
K KAKOW-TO OpYron CTPYKType, NX cpaBHMBaTb HE HaO0

PaBeHCTBO ABYyX OObLEKTOB

Two objects are equal if their corresponding parts are equal (applied recursively),
including remote parts (but not comparing their addresses), excluding inessential
components, and excluding components which identify related objects.

X ==y = V “reasonable” function foo, foo(x) ==

foo(y)
Hanpumep, ans aAByx padmnoHanbHbiX Ycest:

rl
(1, 2)

r2 = rl.p
(2, 4) = 1

Kakne doyHKUMM MOXHO cumnTaTth ‘reasonable”?

“For optimization purposes, there are several classes of functions we would like to
capture.

First are the standard operators on built-in types that do not have side effects,
for example a+b, c-d, or p%q.

Second are the visible member accesses, e.g. s.first or c->imaginary.
A third class is the well-known pure functions, e.g. abs(x), sqrt(y), and cos(z).

The ultimate solution, then, must be to identify the important attributes, and
allow programmers to specify them explicitly.”

Object-oriented programming

https://youtu.be/aXOChLn5Z2dQ

100 seconos or

http://www.youtube.com/watch?v=aXOChLn5ZdQ&t=70
https://youtu.be/aXOChLn5ZdQ

YTO CTOUT NMETH BBNAY

1. HecTporoe cpaBHeHME

2. ACCUMMNTOTUYHOCTb

3. WHTynumio, CBA3aHHYK C peanusaunmen BCTPOEHHLIX ornepauun, KOTOPYH
nporpaMmMnCTbIl BblpabaTtbiBanu rogamm

4. O6wme/knodeBble CBOWCTBA B pPasnMYHbIX NoAxodax K pelleHuio 3adad
OLHOro BMAa, KoTopble pacrnpocTpaHeHbl B UHOYCTPUU

5. Kak Bce 9TO MOXHO BblpasuTb B BWOE aKCMOM, KOTopble OyayT
COOTBETCTBOBATb MHTYUTUBHbLIM MNogxo4am U MmateMmaTtuyecKknum CcBoMCTBaMm

Object-oriented programming

Vlll.a. OTHoweHune nopsaka B C++

https://www.youtube.com/watch?v=zI0DOKN6zr0

Rethmk Polymorphlsm
in C++

Nicolai Josuttis

http://www.youtube.com/watch?v=zI0DOKN6zr0&t=361
https://www.youtube.com/watch?v=zI0DOKN6zr0

Object-oriented programming VIll. Polymorphism

“While 1t 1s possible to define object types in any way,
there 1s a set of natural laws that govern the behavior of
most types. These laws define the meaning of fundamental
operations on objects: construction, destruction,
assignment, swap, equality and total ordering.”

A. Stepanov

Object-oriented programming VIll. Polymorphism

[TpnHUMNBI cpaBHEHMS 0O0bekToB B C++20

<compare>

1. std::strong_ordering (1uHeiiHO YIIOPSI0YEHHOE)
2. std::partial ordering (1uHeHO yIOPsI0YEHHOE)
3. std::weak ordering (uacTuuHO yIIOpSIJOUYCHHOE)
4. operator & (concept three way comparable)

Object-oriented programming VIll. Polymorphism

[Mpnmepsl

1. CpaBHeHHe pauMOHAJBHBIX YK ceJ (strong order)
2. CpaBHeHHe M ceJ ¢ IU1aBaromen 3anarou (partial order)
3. CpaBHeHHe TOYEK B JeKAPTOBOM cucreMe KoopauHar (weak order)

https://en.wikipedia.orag/wiki/\Weak ordering

https://en.wikipedia.org/wiki/Weak_ordering

CpaBHeHMe ToYEeK B JeKapTOBOW cUCTEME KoopauHaT

In order of increasing strength, i.e., decreasing sets of pairs, three of the possible
partial orders on the Cartesian product of two partially ordered sets are:

1. the lexicographical order:
(a,b)<(c,d)ifa<cor(a=candb<d),
2. the product order:
(a,b)<(c,d)ifas<scandb=d;
3. the reflexive closure of the direct product of the corresponding strict orders:

(a,b)<(c,d)if(a<candb<d)or(a=candb=d).

Object-oriented programming VIll. Polymorphism

YacTWU4HO N NMHENHOo ynopagovyeHHOEe MHOXECTBO

YYM (partial order): JIYM (total order):

Jlnsa Bcex a, b, ¢ B P: Jlns Bcex a, b, ¢ BUYM T

1. a<=a l.a<=a

2. ifa<=band b <=a then a== 2. ifa<=b b<=a q==
3.ifa<=bandb<=cthena<=¢ 3. ifa<=b b<=c¢ q <= ¢

4. a<=borb<=a

Object-oriented programming VIll. Polymorphism

CpaBHeHMe pauuoHanbHbIX YMUCES

J{ist b, d HE paBHBIX O:

a/b<c/dESa*d<c*b

Tornma:
assert(rational(2, 3) < rational(-3, -4)); //?
assert(rational(1, 2) <=rational(2, 4)); // ?

https://qgithub.com/boostora/rational/blob/develop/include/boost/rational.hpp#L 785

https://github.com/boostorg/rational/blob/develop/include/boost/rational.hpp#L785

[Touemy B OOIll BaXHO TO, Kakas
YNOPAOOYEHHOCTb Y KOHKPETHOIO TMNa?

Object-oriented programming VIll. Polymorphism

[Tpn yem TYT anredpa?

“My math background made me realize that each object could have
several algebras associated with it, and there could be families of
these, and that these would be very very useful. The term
"polymorphism" was imposed much later (I think by Peter Wegner) and
it isn't quite valid, since it really comes from the nomenclature of
functions, and I wanted quite a bit more than functions. I made up a term
"genericity" for dealing with generic behaviors in a quasi-algebraic
form.”

A. C. Kay

https://userpage.fu-berlin.de/~ram/pub/pub f47ht81Ht/doc kay oop en

https://userpage.fu-berlin.de/~ram/pub/pub_jf47ht81Ht/doc_kay_oop_en

Object-oriented programming VIll. Polymorphism

LLlabnoHHoe MeTa-nporpamMmMmmpoBaHmne

BBeneHue
p Playall
B WAaOGNOHDbI

7

MeTanporpaMmMMpoBaHH
e (4 xypc, oceHb 2023)...

&y by NexTopuii ONMK

https://www.youtube.com/plavlist?list=PL4 hYwCvhAvYOO01i2gR-prnu4Stvxuf7u

https://www.youtube.com/playlist?list=PL4_hYwCyhAvYO01i2gR-prnu4Stvxuf7u

