
Объектно-ориентированное
программирование

UTM, FCIM, POO 21.6, Brânzan Leon © 2025

XIV. Полиморфные типы данных

Object-oriented programming

Discriminated unions

● инкапсуляция (абстракция состояния и избавление от манипуляции
состоянием в коде, public и private)

● наследование
● полиморфизм
● делегация? (forwarding, move semantics)

● динамическое связывание
● абстракция (скрытая реализация, открытый интерфейс)

● подмена типов
● обобщенное поведение (generics)

Object-oriented programming

Что такое OOP?

https://youtu.be/c0lutJECNUA

Что такое OOP? (2020)

https://youtu.be/c0lutJECNUA

Object-oriented programming

“I strongly felt then, as I still do, that there is no one right way of
writing every program, and a language designer has no business trying
to force programmers to use a particular style. The language designer
does, on the other hand, have an obligation to encourage and support
a variety of styles and practices that have proven effective and to
provide language features and tools to help programmers avoid the
well-known traps and pitfalls.”

B. Stroustrup

“A History of C++: 1979-1991”

A variety of styles
// “structured” (basic loop)
 int c = 0;
 for (std::size_t i = 0; i < 3; ++i) c += a[i] * b[i];

// “object-oriented” (iterator pattern)
 int c = std::inner_product(a.begin(), a.end(), b.begin(), 0);

// “functional” (pipes-and-filters pattern)
 int c = std::ranges::fold_left_first(
 std::views::zip(a, b) | std::views::transform(
 [](auto t) { return std::get<0>(t) * std::get<1>(t); }),
 std::plus<>());

https://godbolt.org/z/GEh9sTMGn

https://godbolt.org/z/GEh9sTMGn

“Any sufficiently complicated C or Fortran program contains an ad hoc,
informally-specified, bug-ridden, slow implementation of half of Common Lisp.”

Philip Greenspun (1993)

“Building new semantics on top of a language that lacks them is often called
greenspunning after this rule[...]. Let’s take JavaScript as an example. It looks
kind-of OO if you tilt your head sideways. But, are you really doing
“messaging” if you don’t have something like a method_missing handler that lets
an object decide extremely late whether and how it responds to a message?”

Reginald Braithwaite (2013)

https://braythwayt.com/2013/12/22/wrong.html

Является ли С++ ОО-языком?

https://braythwayt.com/2013/12/22/wrong.html

XIV.a. Гетерогенные типы данных в С++
std::variant

std::variant

https://en.cppreference.com/w/cpp/utility/variant.html

https://en.cppreference.com/w/cpp/utility/variant.html

std::variant
#include <variant>

int main() {
 std::variant<int, long, std::string> var;
 var.index(); // 0
 std::get<0>(var); // 0
 std::get<int>(var); // 0
 var = “hello”;
 var.index(); // 2
 std::get<2>(var); // “hello”
 std::get<std::string>(var); // “hello”
 var = 42; // var.index() == 0
 var = 77L; // var.index() == 1
}

Полиморфизм в ML

fun factorial n =
 if n <= 1 then 1
 else factorial (n-1) * n

val factorial = fn : int -> int

Object-oriented programming

https://en.wikipedia.org/wiki/Hindley%E2%80%93Milner_type_system

https://en.wikipedia.org/wiki/Hindley%E2%80%93Milner_type_system

Полиморфизм в ML
fun filter pred [] = []
 | filter pred (a::rest) =
 if pred a
 then a::(filter pred rest)
 else (filter pred rest)

filter (fn x => x <> "text") ["text", "notext"]

val filter = fn : ('a -> bool) -> 'a list -> 'a list

Object-oriented programming

Полиморфизм в ML

fun map (f, xs) =
 case xs of
 [] => []
 | x::xs' => (f x)::(map(f, xs'))

map (fn x => x + 1) [4, 8, 12, 16]

val map = fn : ('a -> 'b) * 'a list -> 'b list

Object-oriented programming

“The programmer will usually at some stage wish to determine to which
of the possible subclasses the record currently referenced by that variable
actually belongs. This can be achieved by a construction known as a
record class discriminator.”

C. A. R. “Tony” Hoare

“Record Handling” (1966)

Discriminated unions

Возникновение понятия “класс”?
record class expression (
 subclasses
 constant (real value);
 variable (string printname);
 pair ...
);

consider e when constant then ...
 when variable then ...
 when pair then ...

XIV.b. Что такое ООП?
The map of object-oriented programming

Карта объектно-ориентированного программирования
“Doug” Ross

“Tony” Hoare
Ivan Sutherland

Kristen Nygaard

Bjarne Stroustrup

Alan Kay

Carl Hewitt

“Joe” Armstrong

Robert Kowalski

Seymour Papert
John McCarthy

Marvin Minsky

MIT Whirlwind I (Plex)

Algol
Sketchpad

Simula

C++

Smalltalk

Planner

Erlang

Prolog

Logo
Lisp

MIT AI Lab

Карта объектно-ориентированного программирования

Круг замкнулся
MIT Whirlwind I (Plex)

Algol
Sketchpad

Simula

C++

Smalltalk

Planner

Erlang

Prolog

Logo
Lisp

MIT AI Lab

Code block

Круг замкнулся
MIT Whirlwind I (Plex)

Algol
Sketchpad

Simula

C++

Smalltalk

Planner

Erlang

Prolog

Logo
Lisp

MIT AI Lab Record

Discriminated record

Subclass

ADT
Closure

Object
ABC

Parameterized type

Constraints
Constraints

Parameterized discriminated union

Карта объектно-ориентированного программирования

enum tag { Circle, Line, ... };

union types {
 Circle circle;
 Line line;
 ...
};

struct GeoObj {
 tag tag_;
 types type_;
};

void draw(const GeoObj& var) {
 switch(var.tag_) {
 case Circle:
 var.type_.circle.draw();
 break;
 case Line:
 var.type_.line.draw();
 break;
 case ...:
 ...
 }
}

Object-oriented programming

Tagged union

ABC

struct GeoObj {
 virtual void draw() const = 0;
};

class Circle : public GeoObj {
public:
 virtual void draw() const override;
};

class Line : public GeoObj {
public:
 virtual void draw() const override;
};

https://github.com/AbsoluteVirtue/fcim_poo_21.6/blob/master/pr08.cpp

void draw(const GeoObj& var) {
 var.draw();
}

https://github.com/AbsoluteVirtue/fcim_poo_21.6/blob/master/pr08.cpp

Template

template <class GeoObj>
void draw(const GeoObj& var) {
 var.draw();
}

std::variant

void draw(const GeoObj& var) {
 switch(var.index()) {
 case 0:
 std::get<0>(var).draw();
 break;
 case 1:
 std::get<1>(var).draw();
 break;
 case ...:
 ...
 }
}

#include <variant>

using GeoObj =
 std::variant<Circle, Line, …>;

“Visitor” pattern

#include <variant>

using GeoObj =
 std::variant<Circle, Line, …>;

struct Visitor {
 void operator()(const Circle& c)
 const {
 c.draw();
 }
 void operator()(const Line& l)
 const {
 l.draw();
 }
};

void draw(const GeoObj& var) {
 std::visit(Visitor(), var);
}

std::variant w/ “visitor” pattern

#include <variant>

using GeoObj =
 std::variant<Circle, Line, …>;

void draw(const GeoObj& var) {
 std::visit(
 [](const auto& x){ x.draw(); };
 , var);
}

Tagged union - ABC - Template - std::variant
Virtual functions (dynamic polymorphism w/ inheritance)

● open heterogeneous collections
● tight coupling
● run-time performance-heavy
● all types have to provide the entire interface

Templates (static polymorphism w/ meta-programming/function overloading)

● homogeneous collections
● compile-time performance-heavy
● all types only have to provide what’s being used

Tagged unions (dynamic polymorphism w/o inheritance)

● closed heterogeneous collections
● memory-heavy
● copy-by-value performance-heavy

Объединения или наследование?
https://youtu.be/wo84LFzx5nI

https://youtu.be/wo84LFzx5nI
http://www.youtube.com/watch?v=wo84LFzx5nI&t=2843

https://youtu.be/zI0DOKN6zr0

https://godbolt.org/z/qYdz8jbes

Что лучше?

http://www.youtube.com/watch?v=zI0DOKN6zr0&t=4323
https://youtu.be/zI0DOKN6zr0
https://godbolt.org/z/qYdz8jbes

Что лучше?

https://www.youtube.com/watch?v=fwXaRH5ffJM

https://www.youtube.com/watch?v=fwXaRH5ffJM

Type erasure - runtime polymorphism w/o inheritance
https://www.youtube.com/watch?v=p-qaf6OS_f4

https://quuxplusone.github.io/blog/2019/03/18/what-is-type-erasure/

http://www.youtube.com/watch?v=p-qaf6OS_f4&t=537
https://www.youtube.com/watch?v=p-qaf6OS_f4
https://quuxplusone.github.io/blog/2019/03/18/what-is-type-erasure/

Полиморфизм подтипов
https://www.youtube.com/watch?v=uM72qP5Wh18

https://www.youtube.com/watch?v=uM72qP5Wh18

Team Fat Struct

https://youtu.be/wo84LFzx5nI

https://hero.handmade.network/forums/code-discussion/t/7896-why_don%2527t_
use_discriminated_union_rather_than_sparse_system_for_entity_system#24627

https://youtu.be/wo84LFzx5nI
http://www.youtube.com/watch?v=wo84LFzx5nI&t=3777
https://hero.handmade.network/forums/code-discussion/t/7896-why_don%2527t_use_discriminated_union_rather_than_sparse_system_for_entity_system#24627
https://hero.handmade.network/forums/code-discussion/t/7896-why_don%2527t_use_discriminated_union_rather_than_sparse_system_for_entity_system#24627

Да эти скуфы просто не хотят учиться новым вещам!

https://youtu.be/wo84LFzx5nI

https://youtu.be/wo84LFzx5nI
http://www.youtube.com/watch?v=wo84LFzx5nI&t=5114

● инкапсуляция (абстракция состояния и избавление от манипуляции
состоянием в коде, public и private)

● динамическое связывание (дискриминированные объединения)

● абстракция (скрытая реализация, открытый интерфейс)

● обобщенное поведение (generics)

Object-oriented programming

Что такое OOP?

UTM, FCIM, POO 21.6, Brânzan Leon © 2025 leon.brinzan@iis.utm.md

“OOP to me means only messaging, local retention and protection and
hiding of state-process, and extreme late-binding of all things.”

Object-oriented programming

Что такое OOP?

“The core of what I now have to call "real OOP" – namely encapsulated
modules all the way down with pure messaging – still hangs in there
strongly because it is nothing more than an abstract view of complex
systems.”

A. C. Kay

Инкапсуляция на практике
https://youtu.be/wo84LFzx5nI

https://youtu.be/wo84LFzx5nI
http://www.youtube.com/watch?v=wo84LFzx5nI&t=300

Инкапсуляция на практике
https://youtu.be/aBYqGD41E9g

http://www.youtube.com/watch?v=aBYqGD41E9g&t=621
https://youtu.be/aBYqGD41E9g

https://youtu.be/wo84LFzx5nI

https://youtu.be/wo84LFzx5nI
http://www.youtube.com/watch?v=wo84LFzx5nI&t=5959

Что такое OOP?

ООП – это идея Lisp, знающими людьми доведенная до
абсолюта, позже подобранная посторонними людьми и
доведенная до абсурда.

Я (2025)

https://www.youtube.com/watch?v=GKYCA3UsmrU
Что теперь делать?

http://www.youtube.com/watch?v=GKYCA3UsmrU&t=73
https://www.youtube.com/watch?v=GKYCA3UsmrU

