OOBbEKTHO-OPUEHTUPOBAHHOE
nporpamMMmpoBaHmne

XIV. INonumop@HbIe TUMNbI AaHHbIX

UTM, FCIM, POO 21.6, Branzan Leon © 2025

Object-oriented programming

Yto Takoe OOP?

e UHKaNCynAuna (abcrpakuma coctosaHUA 1 n3dasneHne oT MaHUnynauuu
cocTosiHueMm B Koae, public n private)

o HacAeAoBaHMe

o FROFMOPEPH3M

e Jeneraymsa? (forwarding, move semantics)

e AHnHaMHHEeEKOC-E€BA3LIBatHAC

® a6CTpaKLl,l/IFI (CKpbITaga peanusaumsa, oTKpbITbI UHTepdenc)
o AOAMEHETHAOB

e 00600LleHHOE noBegeHne (generics)

Uto Takoe OOP? (2020)

https://youtu.be/cOlutJECNUA

Object-Oriented

Program:
Best Practices

» definition of Object-Oriented Programming

Jon Kalb

https://youtu.be/c0lutJECNUA

Object-oriented programming

“I strongly felt then, as I still do, that there is no one right way of
writing every program, and a language designer has no business trying
to force programmers to use a particular style. The language designer
does, on the other hand, have an obligation to encourage and support
a variety of styles and practices that have proven effective and to
provide language features and tools to help programmers avoid the
well-known traps and pitfalls.”

B. Stroustrup
“A History of C++: 1979-1991"”

A variety of styles

//

“structured” (basic loop)
int c = 9;
for (std::size_t i = 0; i < 3; ++i) c += a[i] * b[i];

//

“object-oriented” (iterator pattern)
int ¢ = std::inner_product(a.begin(), a.end(), b.begin(), 0);

//

“functional” (pipes-and-filters pattern)
int ¢ = std::ranges::fold_left_first(
std::views::zip(a, b) | std::views::transform(
[J(auto t) { return std::get<oO>(t) * std::get<1>(t); }),
std::plus<>());

https://godbolt.org/z/GEh9sTMGn

https://godbolt.org/z/GEh9sTMGn

Aesngetca nn C++ OO-a3bIKOM?

“‘Any sufficiently complicated C or Fortran program contains an ad hoc,
informally-specified, bug-ridden, slow implementation of half of Common Lisp.”

Philip Greenspun (1993)

“Building new semantics on top of a language that lacks them is often called
greenspunning after this rule[...]. Let’'s take JavaScript as an example. It looks
kind-of OO if you tilt your head sideways. But, are you really doing
“‘messaging’ if you don’t have something like a method_missing handler that lets
an object decide extremely late whether and how it responds to a message?”

Reginald Braithwaite (2013)

https://braythwayt.com/2013/12/22/wrong.html

https://braythwayt.com/2013/12/22/wrong.html

XlV.a. ['eTeporeHHble TUNbI 4aHHbIX B C++

std::variant

Defined in header <variant>

template< class... Types >

{since C++17)
class variant;

The class template std: :variant represents a type-safe union.

An instance of variant at any given time either holds a value of one of its alternative types, or in the case of error - no
value (this state is hard to achieve, see valueless by exception).

As with unions, if a variant holds a value of some object type T, the T object is nested within the variant object.
A variant is not permitted to hold references, arrays, or the type void.

A variant is permitted to hold the same type more than once, and to hold differently cv-qualified versions of the same

type.

Consistent with the behavior of unions during aggregate initialization, a default-constructed variant holds a value of its
first alternative, unless that alternative is not default-constructible (in which case the variant is not default-constructible
either). The helper class std: :monostate can be used to make such variants default-constructible.

https://en.cppreference.com/w/cpp/utility/variant.html

https://en.cppreference.com/w/cpp/utility/variant.html

std::variant

##tinclude <variant>

int main() {
std::variant<int, long, std::string> var;
var.index();
std::get<0>(var);
std::get<int>(var);
var = “hello”;
var.index();
std::get<2>(var);
std::get<std::string>(var);
var = 42;
var = 77L;

Object-oriented programming

[Monumopdonam B ML

fun factorial n =
if n <= 1 then 1
else factorial (n-1) * n

\ 4

val factorial = fn : int -> int

https://en.wikipedia.org/wiki/Hindley%E2%80%93Milner type system

https://en.wikipedia.org/wiki/Hindley%E2%80%93Milner_type_system

Object-oriented programming

[Tonumopdunam B ML

fun filter pred []
| filter pred (a::rest)
if pred a
then a::(filter pred rest)
else (filter pred rest)

[]

filter (fn x => x <> "text") ["text", "notext"]

¥

val filter = fn : ('a -> bool) -> 'a list -> 'a list

Object-oriented programming

[Tonumopdunam B ML

fun map (f, xs) =
case xs of

[] => []
| x::xs' => (f x)::(map(f, xs'))

map (fn x => x + 1) [4, 8, 12, 16]

¥

val map = fn : ('a -> 'b) * 'a list -> 'b list

Discriminated unions

“The programmer will usually at some stage wish to determine to which
of the possible subclasses the record currently referenced by that variable
actually belongs. This can be achieved by a construction known as a

record class discriminator.”

C. A. R. “Tony” Hoare
“Record Handling” (1966)

Bo3HMKHOBEeHMEe noHATNAa “knacc’?

record class expression (
subclasses
constant (real value);
variable (string printname);
pair ...

)5

consider e when constant then ...
when variable then ...
when pair then ...

XIV.b. Yto takoe OOI?

KapTa 06bekTHO-OpPUEHTUPOBAHHOIO NPOrpaMMmMPOBaHUS

Marvin Minsky “Doug” Ross

Seymourpapert/[\/“\'rorw” Hoare

John McCarthy Ivan Sutherland l

Carl Hewitt Kristen Nygaard

Robert Kowalski Alan Kay

|

“‘Joe” Armstrong

Bjarne Stroustrup

KapTa 06bekTHO-OpPUEHTUPOBAHHOIO NPOrpaMMmMPOBaHUS
MIT Al Lab MIT Whirlwind | (Plex)

Logo /\Ngol

Lisp Sketchpad
Planner éiiijjjii;///////////fﬁguna

Prolog SmaIItaIk

‘ C++
Erlang

Kpyr 3aMKHyncs

MIT Al Lab MIT Whidwind | (Plex)
LO@/MQO'
Lisp Sketchpad l
Planner Simula
Prolog Smalltalk /
|
\\\\\\\\\\\\\\\\\\\\\J C++

Erlang

Kpyr 3aMKHyncs

Discriminated record

Closure _ Code| block
Constraints

Subclass

Constraints

ABC

Parameterized type

Parameterized discriminated union

KapTa 06beKkTHO-OPUEHTUPOBAHHOIO NPOrpaMMmMPOBaHUS

- —

Object-oriented programming

Tagged union

enum tag { Circle, Line, ... }; void draw(const GeoObj& var) {
switch(var.tag_) {
union types { case Circle:

Circle circle;

var.type_.circle.draw();
Line line;

break;
. case Line:
& var.type_.line.draw();
struct GeoObj { break ;
tag tag_; case ...:
types type_; N
}s }

ABC

struct GeoObj { void draw(const GeoObj& var) {
virtual void draw() const = 0; var.draw();

}s }

class Circle : public GeoObj {
public:
virtual void draw() const override;

s

class Line : public GeoObj {
public:
virtual void draw() const override;

s

https://qithub.com/AbsoluteVirtue/fcim poo 21.6/blob/master/pr08.cpp

https://github.com/AbsoluteVirtue/fcim_poo_21.6/blob/master/pr08.cpp

Template

template <class GeoObj>
void draw(const GeoObj& var) {
var.draw();

}

std::variant

#include <variant> void draw(const GeoObj& var) {

switch(var.index()) {
using GeoObj = case 0O:

std: :variant<Circle, Line, ...>; std::get<0>(var).draw();
break;
case 1:
std::get<1>(var).draw();
break;
case ...:

“Visitor” pattern

#include <variant> void draw(const GeoObj& var) {
std::visit(visitor(), var);
using GeoObj = }
std: :variant<Circle, Line, ...>;

struct Visitor {
void operator()(const Circle& c)
const {
c.draw();
}
void operator()(const Line& 1)
const {
l.draw();

}
}s

std::variant w/ “visitor” pattern

#include <variant> void draw(const GeoObj& var) {
std::visit(
using GeoObj = [J(const auto& x){ x.draw(); };
std: :variant<Circle, Line, ...>; , var);

Tagged union - ABC - Template - std::variant

Virtual functions (dynamic polymorphism w/ inheritance)

open heterogeneous collections

tight coupling

run-time performance-heavy

all types have to provide the entire interface

Templates (static polymorphism w/ meta-programming/function overloading)

e homogeneous collections
e compile-time performance-heavy
e all types only have to provide what’s being used

Tagged unions (dynamic polymorphism w/e-rheritanee)

e closed heterogeneous collections
e memory-heavy
e copy-by-value performance-heavy

ObbeanHeHuna nnu HacnegosaHue?

https://voutu.be/wo84LFzx5nl

The Big OOPs =

" -

Anatomy of a
Thirty-five-year Mistake

https://youtu.be/wo84LFzx5nI
http://www.youtube.com/watch?v=wo84LFzx5nI&t=2843

Uto nyywe?
https://youtu.be/zIODOKNGzr0

“Rethink Polymorphlsm
’% ~in C++

-——
s
o

Nicolai Josuttis

https://godbolt.org/z/gYdz8ijbes

http://www.youtube.com/watch?v=zI0DOKN6zr0&t=4323
https://youtu.be/zI0DOKN6zr0
https://godbolt.org/z/qYdz8jbes

Uto nyJwe?

https://www.youtube.com/watch?v=fwXaRH5ffJM

https://www.youtube.com/watch?v=fwXaRH5ffJM

Type erasure - runtime polymorphism w/o inheritance

https://www.youtube.com/watch?v=p-qaf6OS 4

Type-erased nonstd::function

Function call uses the static function method:
using executor_t = Res(+)(Args..., Function+);
executor_t executor_;
template<typename Callable>

static Res executor{Args... args, Function* this_function)

t
return (*revinterpret_cast<Callables>(/m

this_function=>space_))

(std: : forwmard<Args> (args) ...) -

70 Type Erasure

https://quuxplusone.qithub.io/bloa/2019/03/18/what-is-type-erasure/

http://www.youtube.com/watch?v=p-qaf6OS_f4&t=537
https://www.youtube.com/watch?v=p-qaf6OS_f4
https://quuxplusone.github.io/blog/2019/03/18/what-is-type-erasure/

[Tonnmopdmnam noaTnnos

https://www.youtube.com/watch?v=uM72gP5Wh18

The tragedy is that subtyping-

as-subclassing is the worst
way for doing subtyping

https://www.youtube.com/watch?v=uM72qP5Wh18

Team Fat Struct

https://youtu.be/wo84LFzx5nl

The Big 00Ps &

'

-

Anatomy of a

Thirty-five-year Mistake

https://hero.handmade.network/forums/code-discussion/t/7896-why don%2527t

use discriminated union rather than sparse system for entity system#24627

https://youtu.be/wo84LFzx5nI
http://www.youtube.com/watch?v=wo84LFzx5nI&t=3777
https://hero.handmade.network/forums/code-discussion/t/7896-why_don%2527t_use_discriminated_union_rather_than_sparse_system_for_entity_system#24627
https://hero.handmade.network/forums/code-discussion/t/7896-why_don%2527t_use_discriminated_union_rather_than_sparse_system_for_entity_system#24627

[1a 3T cKy@bl MPOCTO HE XOTAT Y4UTLCA HOBbIM BeLlam!

https://voutu.be/wo84LFzx5nl

The Big OOPs =

" -

Anatomy of a
Thirty-five-year Mistake

https://youtu.be/wo84LFzx5nI
http://www.youtube.com/watch?v=wo84LFzx5nI&t=5114

Object-oriented programming

Yto Takoe OOP?

e MWHKanNncynsauusa (abcrpakumsa cCoCToAHNS U n3basrneHne oT MaHunynauum

COCTOSIHUEM B Kope, pubhei+private)
e AOUHaMU4YeCKoe CBsA3biBaHUE (anckpMMmHUpoOBaHHbIe 00bLeaNHEHNS)

° aﬁchaKLWIFI (CKpbITas peanusaunsi, OTKpPbITbI UHTEPMgEUC)
e 0000LUeHHOoe noseaeHne (generics)

UTM, FCIM, POO 21.6, Branzan Leon © 2025 leon.brinzan@jiis.utm.md

Object-oriented programming

Yto Takoe OOP?

“O0P to me means only messaging, local retention and protection and
hiding of state-process, and extreme late-binding of all things.”

“The core of what I now have to call "real OOP" — namely encapsulated
modules all the way down with pure messaging — still hangs in there
strongly because it is nothing more than an abstract view of complex
systems.”

A. C. Kay

MHKaI'ICyJ'IFI LA HA MNMPaKTUKe

https://voutu.be/wo84LFzx5nl

The Big 0OPs &

-

Anatomy of a
Thirty-five-year Mistake

https://youtu.be/wo84LFzx5nI
http://www.youtube.com/watch?v=wo84LFzx5nI&t=300

MHKaﬂCyﬂFILI,I/IFI Ha NMpPakKTukKe

https://voutu.be/aBYqGD41E9qg

Asio

http://www.youtube.com/watch?v=aBYqGD41E9g&t=621
https://youtu.be/aBYqGD41E9g

https://youtu.be/wo84LFzx5nl

The Big 00Ps &

'

-

Anatomy of a

Thirty-five-year Mistake

https://youtu.be/wo84LFzx5nI
http://www.youtube.com/watch?v=wo84LFzx5nI&t=5959

Uto Takoe OOP?

OOIl - 3to upes Lisp, 3HawWuMM noaObMU OOBEAEHHAA A0
abcontota, no3xe nogobpaHHaa MOCTOPOHHUMM nNOAbBMU U
goseneHHas oo abecypaa.

5 (2025)

UTo Tenepb genatb?
https://www.youtube.com/watch?v=GKYCA3UsmrU

— —

http://www.youtube.com/watch?v=GKYCA3UsmrU&t=73
https://www.youtube.com/watch?v=GKYCA3UsmrU

