
Объектно-ориентированное
программирование

UTM, FCIM, POO 21.6, Brânzan Leon © 2023

VI. Жизнь и смерть объектов

Object-oriented programming

Resource Acquisition Is Initialization

Правила конструирования объектов

Object-oriented programming

http://howardhinnant.github.io/classdecl.html

http://howardhinnant.github.io/classdecl.html

Категории значений* (l-values/r-values)
void f(int&);
void g(int&&);
void h(const int&);

int i = 0;
f(i);
g(i); // an rvalue reference
cannot be bound to an lvalue
h(i);

f(42); // initial value of
reference to non-const must
be an lvalue
g(42);
h(42);

Object-oriented programming

Первое правило (С.21)

“If you define or =delete any copy, move, or destructor
function, define or =delete them all.”

B. Stroustrup
“CppCoreGuidelines”

Object-oriented programming

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rc-five

VI. RAII

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rc-five

Вопрос на засыпку

class vector {
public:
 template <class …Args> vector(Args&& …args);
private:
 int *p{nullptr};
 int *n{nullptr};
 int *cap{nullptr};
};

Object-oriented programming

Variadic template constructor

class vector {
public:
 template <class …Args> vector(Args&& …args);
 vector() = delete;
private:
 int *p{nullptr};
 int *n{nullptr};
 int *cap{nullptr};
};

Object-oriented programming

Правило “трех” (rule of three)
Object-oriented programming

class vector {
public:
 vector() = default;
 vector(size_t len) :
 p(new int[len]), n(p + len), cap(n) {}
private:
 int *p{nullptr};
 int *n{nullptr};
 int *cap{nullptr};
};

Правило “трех”
Object-oriented programming

try {
 vector a;
 vector b(4); // memory leak
 vector c = a; // double free
 c = b; // memory leak
} catch (const std::exception& e) {
 std::cerr << e.what() << '\n';
}

Правило “трех”
Object-oriented programming

class vector {
public:
 // …
 ~vector() { delete[] p; }
 vector(const vector &other) :
 p(new int[other.n - other.p]),
 n(p + (other.n - other.p)),
 cap(n)
 {
 std::copy(other.p, other.n, p);
 }

 vector& operator=(
 const vector &other)
 {
 if(&other != this) {
 delete[] p;
 p = new int[
 other.n - other.p];
 n = p + (other.n - other.p);
 cap = n;
 std::copy(
 other.p, other.n, p);
 }
 return *this;
 }
 // …
};

“Умные” указатели (smart pointers)
Object-oriented programming

try {
 vector *d = new vector;
 // throw here
 delete d; // memory leak
} catch(const std::exception& e) {
 std::cerr << e.what() << '\n';
}

https://en.cppreference.com/w/cpp/memory

https://en.cppreference.com/w/cpp/memory

“Умные” указатели
Object-oriented programming

class unique_ptr {
public:
 ~unique_ptr() { delete[] p; }
 unique_ptr(int *ptr) : p(ptr) {}
 unique_ptr() = delete;
 unique_ptr(const unique_ptr&) = delete;
 unique_ptr& operator=(
 const unique_ptr&) = delete;
private:
 int *p{nullptr};
};

“Умные” указатели
Object-oriented programming

try {
 unique_ptr p = new int[4];
 // throw here
} catch(const std::exception& e) {
 std::cerr << e.what() << '\n';
}

Правило “нуля” (rule of zero)
Object-oriented programming

“Code that is not written cannot be wrong.”

P. Sommerlad
“Introducing the rule of DesDeMovA”, 2019

https://safecpp.com/2019/07/01/initial.html

https://safecpp.com/2019/07/01/initial.html

Правило “нуля”
Object-oriented programming

class queue {
public:
 ~queue() = default;
 queue() = default;
 queue(const queue&) = default;
 queue& operator=(const queue&) = default;
 void push(int v) {
 data.push_back(v);
 }
private:
 std::vector<int> data;
};

Правило “нуля”
Object-oriented programming

try {
 queue p;
 p.push(1);
 // throw here
} catch(const std::exception& e) {
 std::cerr << e.what() << '\n';
}

“Telling a programmer there's already a
library to do "X" is like telling a songwriter
there's already a song about love.”

P. Cordell

Object-oriented programming

Категории значений при перегрузке функций

void f(const vector&); // #1
void f(vector&&); // #2

int main(int argc, char const *argv[])
{
 vector a = {1, 2, 3, 4};
 f(a);
 f({1, 2, 3, 4});
 f(std::move(a));
}

Object-oriented programming

Категории значений при перегрузке функций

void f(const vector&); // #1
void f(vector&&); // #2

int main(int argc, char const *argv[])
{
 vector a = {1, 2, 3, 4};
 f(a); // #1
 f({1, 2, 3, 4}); // #2
 f(std::move(a)); // #2
}

Object-oriented programming

std::move (и синтезированный конструктор переноса)

template <typename _Tp>
constexpr typename std::remove_reference<_Tp>::type&&
move(_Tp&& __t) noexcept {
 return
 static_cast<typename std::remove_reference<_Tp>::type&&>(__t);
}
/* Convert a value to an rvalue.
 Parameters:
 __t – A thing of arbitrary type.
 Returns:
 The parameter cast to an rvalue-reference to allow moving it. */

Object-oriented programming

Правило “пяти” (rule of five)
class vector {
public:
 // …
 vector& operator=(
 const vector &other)
 {
 if(&other != this) {
 // copy-and-swap:
 vector tmp(other);
 tmp.swap(*this);
 }
 return *this;
 }

 vector(
 vector &&other) noexcept :
 p(std::exchange(other.p, nullptr)),
 n(std::exchange(other.n, nullptr)),
 cap(std::exchange(
 other.cap, nullptr)) {}
 vector& operator=(
 vector &&other) noexcept
 {
 vector tmp(std::move(other));
 tmp.swap(*this);
 return *this;
 }
 // …
};

Object-oriented programming

Правило “четырех с половиной”
class vector {
 unique_ptr<int[]> p;
public:
 ~vector() = default;
 vector() = default;
 vector(const vector &other) :
 p(make_unique<int[]>(
 other.n - other.p.get())),
 n(p.get() + (
 other.n - other.p.get())),
 cap(n)
 {
 std::copy(
 other.p.get(),
 other.n,
 p.get());
 }

 vector(vector &&other)
 noexcept = default;
 void swap(vector &other) noexcept {
 std::swap(p, other.p);
 std::swap(n, other.n);
 std::swap(cap, other.cap);
 }
 vector& operator=(vector other) {
 other.swap(*this);
 return *this;
 }
 friend void swap(
 vector &left, vector &right)
 noexcept
 {
 left.swap(right);
 }
};

Object-oriented programming

https://www.youtube.com/watch?v=7Qgd9B1KuMQ

Object-oriented programming

http://www.youtube.com/watch?v=7Qgd9B1KuMQ&t=197
https://www.youtube.com/watch?v=7Qgd9B1KuMQ

