OBOBbEKTHO-OPUEHTUPOBAHHOE
nporpamMMmpoBaHmne

V1. Xn3Hb n cmeptb 06bEKTOB

Object-oriented programming

[TpaBunna KOHCTpymnpoBaHnsi O0bLEKTOB
compiler implicitly declares

default | move
destructor
constructor

Nothing defaulted defaulted | defaulted | defaulted

Any not
declared defaulted | defaulted | defaulted | defaulted | defaulted

default user
defaulted | defaulted | defaulted | defaulted | defaulted

user not not
defaulted | declared defaulted | defaulted | declared | declared |
copy not user not not
declared | defaulted | declared defaulted | yeciared | declared
copy user not not
defaulted | defaulted | defaulted B cclared | declared

move not user not
declared defaulted. sl slebelis declared | declared

move not user
i defaulted | defaulted deleted deleted declared declared

http://howardhinnant.qgithub.io/classdecl.html

%)
O
—
«
O
o}
©
)
n
=,

http://howardhinnant.github.io/classdecl.html

Object-oriented programming

Kateropumn 3HadeHnn™ (I-values/r-values)

void f(int&);
void g(int&&);
void h(const int&);

>

int i = 0;

f(i);

Eﬂﬂl; // an rvalue reference
cannot be bound to an lvalue

h(i);

HE¥; // initial value of
reference to non-const must
be an lvalue

g(42);
h(42);

Object-oriented programming VI. RAII

[lepBoe npasuno (C.21)

“If you define or =delete any copy, move, or destructor
function, define or =delete them all.”

B. Stroustrup
“CppCoreGuidelines”

https://qithub.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rc-five

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rc-five

Object-oriented programming

Bonpoc Ha 3acbinky

class vector {
public:
template <class ...Args> vector(Args&& ...args);
private:
int *p{nullptr};
int *n{nullptr};
int *cap{nullptr};
}s

Object-oriented programming

Variadic template constructor

class vector {
public:
template <class ...Args> vector(Args&& ...args);
vector() = delete;
private:
int *p{nullptr};
int *n{nullptr};
int *cap{nullptr};
¥

Object-oriented programming

[TpaBuno “tpex” (rule of three)

class vector {
public:

vector() = default;

vector(size_t len) :

p(new int[len]), n(p + len), cap(n) {}

private:

int *p{nullptr};

int *n{nullptr};

int *cap{nullptr};
}s

Object-oriented programming

[TpaBuno “tpex”

try {
vector a;

vector b(4); // memory leak
vector c = a; // double free
c = b; // memory leak

} catch (const std::exception& e) {
std::cerr << e.what() << '\n’;

¥

Object-oriented programming

[TpaBuno “tpex”

class vector {

public:

/] .

~vector() { delete[] p; }
vector(const vector &other) :

p(new int[other.n - other.p]),
n(p + (other.n - other.p)),

cap(n)

std: :copy(other.p, other.n, p);

s

vector& operator=(
const vector &other)

{
if(&other != this) {
delete[] p;
p = new int[
other.n - other.p];
n=p + (other.n - other.p);
cap = n;
std: :copy(
other.p, other.n, p);
}
return *this;
}
/] ..

Object-oriented programming

“YMHbIe” yKasartenu (smart pointers)

try {
vector *d = new vector;

// throw here

delete d;

}

// memory leak

} catch(const std::exception& e) {
std::cerr << e.what() << '\n’;

https://en.cppreference.com/w/cpp/memory

https://en.cppreference.com/w/cpp/memory

Object-oriented programming
“YMHble” yKasarenu

class unique_ptr {
public:
~unique ptr() { delete[] p; }
unique_ptr(int *ptr) : p(ptr) {}
unique _ptr() = delete;
unique_ptr(const unique ptr&) = delete;
unique_ptr& operator=(
const unique_ptr&) = delete;
private:
int *p{nullptr};
}s5

Object-oriented programming

“YMHble” yKasarenu

try {
unique_ptr p = new int[4];

} catch(const std::exception& e) {
std::cerr << e.what() << '\n’;

¥

Object-oriented programming

[1paBuno “Hynsa” (rule of zero)

“Code that 1s not written cannot be wrong.”

P. Sommerlad

“Introducing the rule of DesDeMovA”, 2019

https://safecpp.com/2019/07/01/initial.html

https://safecpp.com/2019/07/01/initial.html

Object-oriented programming
[MpaBuno “Hyna”

class queue {
public:
~queue() = default;
queue() = default;
queue(const queue&) = default;
queue& operator=(const queue&) = default;
void push(int v) {
data.push_back(v);
}
private:
std: :vector<int> data;

s

Object-oriented programming

[TpaBuno “Hynsa”

try {
queue p;
p.push(1);
} catch(const std::exception& e) {
std::cerr << e.what() << '\n’;

¥

Object-oriented programming

“Telling a programmer there's already a

library to do "X" 1s like telling a songwriter

29

there's already a song about love.

P. Cordell

Object-oriented programming

KaTteropuun sHa4yeHuUn npu neperpyske yHKUNM

void f(const vector&); // #1
void f(vectord&); /] #2

int main(int argc, char const *argv[])

{
vector a = {1, 2, 3, 4};
f(a);
f({1, 2, 3, 4});
f(std: :move(a));

Object-oriented programming

KaTteropuun sHa4yeHuUn npu neperpyske yHKUNM

void f(const vector&); // #1
void f(vectord&); /] #2

int main(int argc, char const *argv[])
{
vector a = {1, 2, 3, 4};
f(a); // #1
f({1, 2, 3, 4}); // #2
f(std::move(a)); // #2

Object-oriented programming

std::move (1N cnHTe3npoBaHHbLIN KOHCTPYKTOP NepeHoca)

template <typename Tp>
constexpr typename std::remove reference< Tp>::type&&
move(Tp&& t) noexcept {
return
static_cast<typename std::remove reference< Tp>::type&>(t);

}

/* Convert a value to an rvalue.
Parameters:
__t - A thing of arbitrary type.
Returns:

The parameter cast to an rvalue-reference to allow moving it. */

Object-oriented programming

[TpaBuno “natn” (rule of five)

class vector {
public:
/] ...
vector& operator=(
const vector &other)

if (&other !=_this)H
// copy-and-swap:
vector tmp(other);
tmp.swap(*this);

{

}

return *this;

}s

vector(
vector &Rother) noexcept :
p(std::exchange(other.p, nullptr)),
n(std: :exchange(other.n, nullptr)),
cap(std: :exchange(
other.cap, nullptr)) {}
vector& operator=(
vector &Rother) noexcept

{
vector tmp(std::move(other));
tmp.swap(*this);
return *this;

}

/] .

Object-oriented programming

[TpaBnNoO “4yeTblpex ¢ NOSTIOBUHOWN”

class vector {
unique_ptr<int[]> p;
public:
~vector() = default;
vector() = default;
vector(const vector &other) :
p(make_unique<int[]>(
other.n - other.p.get())),
n(p.get() + (
other.n - other.p.get())),

cap(n)
{
std: : copy(
other.p.get(),
other.n,
} p.get());

s

vector(vector &&other)
noexcept = default;

void swap(vector &other) noexcept {
std: :swap(p, other.p);
std::swap(n, other.n);
std::swap(cap, other.cap);

}

vector& operator=(vector other) {
other.swap(*this);
return *this;

}

friend void swap(
vector &left, vector &right)
noexcept

left.swap(right);

Object-oriented programming

https://www.youtube.com/watch?v=7Qqd9B1KuMQ

@ Cppcon | 2019

Ncn-self—copy example

Salvwsacuard saly a1 ST S L Aaisvvectord o) |
Zelete pAr_;
ptr_

we rxl
« réa.vize_:

ralie 3

sire -
std:iieopyrm gty "he.otr_ & aipe_, our.);

Back 0o Bancs: RAJ
and the Rule of Zero

dNsats

http://www.youtube.com/watch?v=7Qgd9B1KuMQ&t=197
https://www.youtube.com/watch?v=7Qgd9B1KuMQ

