
Network Programming Lab. 1
Warning

Any academic misconduct is not tolerated.

I highly recommend to avoid plagiarism, as it would be reported and will have serios consequence for you.

Restaurant Simulation

Let's get to the meat of the problem

(get it? because it's a problem about a restaurant)

The purpose of this task is for you to write a somewhat realistic simulation of how a restaurant works.

The general idea is that you have Dining hall and Kitchen .
The Dining hall generates orders and gives these orders to the Kitchen which prepares them and returns prepared
orders back to the Dining hall .

Let's break problem into components

For ease of use and how clear is the json format, I used it to explain the design of each of the data structures you will need in
your system.

Dining hall

The Dining hall has a finite amount of tables that "clients" can occupy. For simplicity's sake, at any given time a table
can have only one order, thus if a restaurant has 6 tables occupied from total number of 10 tables , it can at most have 6
orders.

Main work unit of the Dining hall are waiters (which are a bit counter intuitively named) that take orders from the
 tables (clients).
The purpose of waiters is to "find" orders . Restaurant has limited number of waiters and is less than number of tables .
For example at restaurant with 10 tables we can have 4-5 waiters.

Restaurant Menu

 Tables (clients) generates orders based on restaurant menu. Menu consist of foods .
 Foods used in our simulation are given in the list bellow:

Foods

pizza, id=1

{
 "id": 1,
 "name": "pizza",
 "preparation-time": 20 ,
 "complexity": 2 ,
 "cooking-apparatus": "oven"
}

salad, id=2

{
 "id": 2,
 "name": "salad",
 "preparation-time": 10 ,
 "complexity": 1 ,
 "cooking-apparatus": null
}

zeama, id=3

{
 "id": 3,
 "name": "zeama",
 "preparation-time": 7 ,
 "complexity": 1 ,
 "cooking-apparatus": "stove"
}

Scallop Sashimi with Meyer Lemon Confit, id=4

{
 "id": 4,
 "name": "Scallop Sashimi with Meyer Lemon Confit",
 "preparation-time": 32 ,
 "complexity": 3 ,
 "cooking-apparatus": null
}

Island Duck with Mulberry Mustard, id=5

{
 "id": 5,
 "name": "Island Duck with Mulberry Mustard",
 "preparation-time": 35 ,
 "complexity": 3 ,
 "cooking-apparatus": "oven"
}

Waffles, id=6

{
 "id": 6,
 "name": "Waffles",
 "preparation-time": 10 ,
 "complexity": 1 ,
 "cooking-apparatus": "stove"
}

Aubergine, id=7

{
 "id": 7,
 "name": "Aubergine",
 "preparation-time": 20 ,
 "complexity": 2 ,
 "cooking-apparatus": "oven"
}

Lasagna, id=8

{
 "id": 8,
 "name": "Lasagna",
 "preparation-time": 30 ,
 "complexity": 2 ,
 "cooking-apparatus": "oven"
}

Burger, id=9

{
 "id": 9,
 "name": "Burger",
 "preparation-time": 15 ,
 "complexity": 1 ,
 "cooking-apparatus": "stove"
}

Gyros, id=10

{
 "id": 10,
 "name": "Gyros",
 "preparation-time": 15 ,
 "complexity": 1 ,
 "cooking-apparatus": null
}

Kebab, id=11

{
 "id": 11,
 "name": "Kebab",
 "preparation-time": 15 ,
 "complexity": 1 ,
 "cooking-apparatus": null
}

Unagi Maki, id=12

{
 "id": 12,
 "name": "Unagi Maki",
 "preparation-time": 20 ,
 "complexity": 2 ,
 "cooking-apparatus": null
}

Tobacco Chicken, id=13

{
 "id": 13,

 "name": "Tobacco Chicken",
 "preparation-time": 30 ,
 "complexity": 2 ,
 "cooking-apparatus": "oven"
}

Order

 Tables (clients) generates orders . An order should contain the following information:

unique order id
one or more menu items where the items indicate the ids of the menu items.
the priority of the order (where it ranges from 1 to 5 , 1 being the smallest priority, and 5 - with the highest one)
maximum wait time that a client is willing to wait for its order and it should be calculated by taking the item with the highest
preparation-time from the order and multiply it by 1.3.

An example of an order:

{
 "id": 1,
 "items": [3, 4, 4, 2],
 "priority": 3 ,
 "max_wait": 45
}

The timer of an order starts from the moment it's created.

 Order has to be picked up by a waiter. The time it takes for a waiter varies, and I would say that a time between 2 and 4
should be realistic enough.

Kitchen

The Kitchen has a finite order list . This order list is shared across all kitchen instances. All orders which kitchen
receives have to be added to a single instance of order-list .

Main work unit of the Kitchen are cooks . Their job is to take the order and "prepare" the menu item(s) from it, and return
the orders as soon and with as little idle time as possible. Kitchen can prepare foods from different orders and it is not
mandatory that one cook have to prepare entire order. Order is considered to be prepared when all foods from order list are
prepared.

Each cook has the following characteristics:

rank , which defines the complexity of the food that they can prepare (one caveat is that a cook can only take orders which
his current rank or one rank lower that his current one):

Line Cook (rank = 1)
Saucier (rank = 2)
Executive Chef (Chef de Cuisine) (rank = 3)

proficiency : it indicates on how may dishes he can work at once. It varies between 1 and 4 (and to follow a bit of logic, the
higher the rank of a cook the higher is the probability that he can work on more dishes at the same time).
name
catch phrase

So a cook could have the following definition:

{
 "rank": 3,
 "proficiency": 3,

 "name": "Gordon Ramsay",
 "catch-phrase": "Hey, panini head, are you listening to me?"
}

Get creative on where and when to use this precious information about the cooks.

Another requirement not for the faint of heart is to implement the cooking apparatus rule. It comprises of the fact that a
kitchen has limited space, thus a finite number of ovens, stoves and the likes.

Your kitchen configuration have to include a limited number of cooking apparatus . For example at kitchen with 3-4
cooks, we can have no more than 2 stoves and only one oven.

As you've noticed some menu items require one of these appliance and it's up to you to define what happens when a cook runs
into the problem of no available machinery.

You will have to define the mechanism that will decide which cook takes which order.

System Design and Requirements

Time

I hope you noticed that I haven't indicated the time units, the numbers given are a "general" unit of measurement. In your
system you should have the ability to easily modify the time units that you're using.

Example (this is more of a pseudo code):

#define TIME_UNIT 250
take_order(random(2, 4) * TIME_UNIT);

This is so you could experiment and check whether your system will behave differently depending on the time frames you
chose.

System components

First of all you have to break down your system into components. The main 2 components are:

 Dinning Hall

 Kitchen

Each component, the Dinning Hall and the Kitchen in our case will represent a dedicated web server. The Dinning Hall
and the Kitchen have to communicate with each other over the network using HTTP protocol.

Technical Requirements

Each server should be developed as individual component, meaning that it should be developed in separate repository.
Each server should run inside docker container.
It is not mandatory to have Dinning Hall and Kitchen developed in the same programming language
You can use any programming language except JavaScript(JS), but I encourage you to use such languages as Rust, Elixir,
Erlang, Golang, Scala, Kotlin and any other language which has advanced concurrent model. Java, C#, Python are also
allowed.

Let's analyze each component individually.

Dinning Hall

The Dinning Hall consists of tables and waiters . You have to design a mechanism which will simulate tables occupation.
At start of simulation, tables should not be totally occupied and you have to take into a count that it takes time for a table to be
occupied after it was vacated.

In the Dinning Hall you should have a collection(array) of tables .
 Tables should be a dedicated objects. Each table should have a state of:

being free
waiting to make a order
waiting for a order to be served

 Waiters should be an object instances which run their logic of serving tables on separate threads , one thread per waiter .
 Waiters should look for tables which was not served, meaning that order was not picked up yet. For Waiters which are
running on separate threads , tables are shared resource. Waiters are looking in the collection of tables for such table
which is ready to make a order. When waiter is picking up the order from a table , it(table) should generate a random order
with random foods and random number of foods, random priority and unique order ID.

Number of tables and waiters should be configurable.

After picking up an order , don't forget that this operation takes some amount of time. Waiter have to send order to
kitchen by performing HTTP (POST) request, with order details.

When order will be ready, kitchen will send a HTTP (POST) request back to Dinning Hall . Your Dinning Hall server has
to handle that request and to notify waiter that order is ready to be served to the table which requested this order.
Your task here is to design a mechanism for serving prepared orders to tables . The order should be served to the table
by the waiter which picked up that specific order. When order is served table should check that served order is the
same order what was requested.

Reputation system

Based on your implementation, the restaurant simulation will get a reputation, based on all orders prepared during the
simulation. It indicates the success of your implementation.

After serving prepared order, you have to stop order timer and calculate order total preparing time.

Order_total_preparing_time = order_pick_up_timestamp - order_serving_timestamp

It is based on the 0 to 5 ⭐ system, 0 being the worst rating, and 5 - the highest. How you get the assigned the stars, you
might ask? Well, since we can't really give it a taste test, what will define the number of stars given to each order would be the
time-frame it took to complete.

Time frame > ⭐

< max_wait 5

max_wait * 1.1 4

max_wait * 1.2 3

max_wait * 1.3 2

max_wait * 1.4 1

max_wait * 1.4 | 0

After calculating order total preparation time you have to calculate order mark according specified logic. All orders mark are
recorded and average restaurant reputation is calculated after each order was served.

Kitchen

The Kitchen consists of order list , cooks and cooking apparatus . The order list should be a single instance which
holds all orders received from Dinning Hall .

The Kitchen should handle HTTP (POST) requests of receiving orders from the Dinning Hall and add received order to
 order list . For all received orders kitchen have to register time it was received and time is was totally prepared. Cooking
time should be added to order before sending it back to Dinning Hall .

 Cooks should be an object instances which run their logic of preparing foods on separate threads , one thread per cook .
Your task is to design a mechanism which will prepare orders by using cooks as work unit. It is up to you to decide how orders
will be managed and how foods will be assigned to cooks in order to be prepared. Your main goal is to reduce preparation
time of each order.

The kitchen has a limited number of cooking apparatus and in our case we will use only stoves and ovens. Cooking
apparatus should be object instances which work independently and in parallel. Cooking apparatus are sharable resources
across all cooks and you have to carefully use them.

Number and types of cooks and cooking apparatus should be configurable.

When order is prepared, meaning that all foods from order are prepared. Kitchen should perform HTTP (POST) request with
prepared order details to Dinning Hall in that way returning prepared order to be served to the table .

Communication and messages format (Communication protocol)

Your Dinning Hall and Kitchen API and requests payload should strictly follow defined format and configuration

 Kitchen

Endpoint: /order
Method: POST
Payload:
{
 "order_id": 1,
 "table_id": 1,
 "waiter_id": 1,
 "items": [3, 4, 4, 2],
 "priority": 3,
 "max_wait": 45,
 "pick_up_time": 1631453140 // UNIX timestamp
}

 Dinning Hall

Endpoint: /distribution
Method: POST
Payload:
{
 "order_id": 1,
 "table_id": 1,
 "waiter_id": 1,
 "items": [3, 4, 4, 2],
 "priority": 3,
 "max_wait": 45,
 "pick_up_time": 1631453140 // UNIX timestamp
 "cooking_time": 65
 "cooking_details": [
 {

 "food_id": 3,
 "cook_id": 1,
 },
 {
 "food_id": 4,
 "cook_id": 1,
 },
 {
 "food_id": 4,
 "cook_id": 2,
 },
 {
 "food_id": 2,
 "cook_id": 3,
 },
]
}

System Architecture

Work process requirements

1. Your repositories should contain README.md files with project build and run instructions.
2. All development should be performed in dedicated feature branches. Direct commits and pushes to main repository branch

are not allowed and you will be punished for such misbehavior
3. For all feature branches you should have dedicated PR (Pull Request) for merging it in main repository branch
4. Each pull request should have a description, background or some context and bullet points of what work have been done

in this PR.

Suggested Order of Working on This task

1. Create 2 empty repositories and initialize 2 web servers in selected programming language(s).
2. Setup docker environment and run initialized servers inside docker containers.
3. Setup communication between your servers. Ensure you can make HTTP calls from Dinning Hall to Kitchen and

viceversa.
4. At Dinning Hall implement basic logic of random orders generation without taking into a count tables and waiters

logic and send generated orders to the Kitchen .
5. At Kitchen implement basic logic of cooking orders foods by at least 2 cooks, without taking into a count cooking

apparatus rule.

6. Implement additional logic at Dinning Hall and Kitchen to follow all mentioned rules and ensure right communication
between 2 components.

Test configuration

Your simulation will be tested using specifed configuration. Based on this configuration your simulation will be marked.

Dinning Hall

In dinning hall you have to have:

10 Tables
4 Waiters

Kitchen

4 Cooks:

1. Rank = 3 Proeficiency = 4
2. Rank = 2 Proeficiency = 3
3. Rank = 2 Proeficiency = 2
4. Rank = 1 Proeficiency = 2

Cooking aparatus:

2 Ovens
1 Stove

Submission and Grading Policy

In order to present laboratory work you have to pass mandatory checkpoints. Each checkpoint could be passed only in one
day. It is not possible to pass all checkpoints together. The idea of checkpoints is to present your work progress in time.

Without passing checkpoints is not possible to get the final grade

Checkpoints Submission

1. 40% Checkpoint -> 1 week

i. Two repositories with initialized projects. Don’t forget about Readme and all other configurations
ii. Your programs, which are actually web-servers, should run in docker containers.
iii. Communication between containers should be configures. You have to prove that containers perform some https

communication. Some logs in std output will be enough.
iv. Initial logic of generating random orders and sending that orders to kitchen have to be implemented. Without taking

into a count any synchronization logic. Just having some multiple threads which send some random order to kitchen.
v. Initial logic of preparing foods at kitchen should be implemented. Just logic of having multiple threads picking up

orders, preparing them all and returning them. Without any additional logic regarding to priority, cooking apparatus or
sharing order foods between different cooks. Just simple logic of picking up order and preparing it all and returning it
back to dinning hall.

2. 70% Checkpoint -> 1 week

i. Implementation of dinning hall logic. Logic of having multiple waiters picking up orders from tables and serving that
orders back.

ii. Implementation of kitchen logic. It should include logic of preparing orders according orders priority and cooking of
foods according foods complexity and cooks proficiency. Logic with cooking apparatus is not required.

iii. Implementation of logging of components communication and logs of components work process

3. 100% Checkpoint -> 1 week

Implementation of all task requirements, at this stage you have to focus on cooking apparatus rules, sharing of order food
cooking between cooks and calculation of order rating and restaurant simulation average rating. Don't forget about
optimization of your food cooking, your goal is to minimize cooking time and to have your simulation rating as bing as
possible

Grading

Your laboratory work grade will be calculated based on your checkpoints grades and your simulation average rating. It will be
calculated according the formula.

Grade = 0.5 * (0.4 * 40% check grade + 0.3 * 70% check grade + 0.3 * 100% check grade) + simulation average rating

For each week being late you will be punished with -1 point.

Minimum acceptance criteria

In order to get the minimum acceptable mark, which is 5, you have to present a project which includes:

1. Two web servers which communicates over HTTP protocol between them.
2. First web server is producer which produces some data on multiple threads (more than 5) and it sends these data from

multiple threds to the second web server.
3. Second server is consumer, which receives and consumes data from first server and populates shared resources, a queue

or stack with received data.
4. Second server also has multiple threads which extracts one element from shered resource and is sending that extracted

data element from second server to the first.

Example implementation.

You have to create / reproduce your own and to not copy example.

https://github.com/encodedemotions/CustomTask

