[bookmark: _5yvscasoctgu]UTM Network Programming course for FAF-23
(Autumn 2025)
[bookmark: _lhpgv8u5u4i]Books
I recommend reading “Computer Networking: a Top Down Approach”, skipping chapter 1. In chapter 2 you will learn everything you need for lab 1. You can find a copy in this folder.
[bookmark: _wpgqtm6of7qq]Calendar
	
	Started
	Deadline
	Duration

	Lab 1
	Sep 30, 2025
	Oct 14, 2025
	2 weeks

	Lab 2
	Oct 14, 2025
	Oct 21, 2025
	1 weeks

	Mid 1
	Oct 27, 2025
	
	

	Lab 3
	Oct 28, 2025
	Nov 11, 2025
	2 weeks

	Lab 4
	Nov 11, 2025
	Nov 25, 2025
	2 weeks

[bookmark: _vjdnrwbfwy7o]Labs
The PR labs will be interesting because you will write programs to network with your colleagues (e.g. query your friend’s HTTP server using your own client, host an online game server and play with your friends, etc.)
Rules:
· You must use Docker Compose
· You must use Python
[bookmark: _dlde5weqtvpg]How to present
Upload your project to GitHub and send me the URL in an email with the subject “PR lab 1” (artiom.balan@isa.utm.md). If you will be presenting later than the deadline, include the last commit hash so I can verify the time of the commit.
Include a short report in the repository (markdown or a link to a Google doc). The report will be like a demo but with screenshots, so just include screenshots of everything you would need to show in the demo, each described with a short sentence: the commands you run, the outputs you see (browser, terminal). The report should prove that you satisfied all the requirements of the lab.
You will present to me during seminars, defend your code, and answer a few theoretical questions. The answers to the questions are either true/false or a few words. You need to be able to explain your answer.
Lab grading formula:
1. Working program - 7 points
2. Answered 2 questions (out of 3) - 2 points
3. Code understanding - 1 point
[bookmark: _t9sj9zg4gkrp]Docker
You must use Docker Compose for all your laboratory works so that I can run them on my computer.
The official Docker 101 tutorial is a good resource.
[bookmark: _7lp0xzfafawr]Lab 1: HTTP file server with TCP sockets
The questions will be based on these resources:
· Chapter 2 from “Computer Networking 8th edition” (you can skip 2.3-2.6)
· This Python HOWTO article
· (Optional) MIT class reading on Sockets & Networking
You can practice on the questions from the end of the chapter.
You will develop a simple HTTP file server like Python’s http.server. You will use it to build a website that lets your friends browse your collection of PDFs, like this one:
[image:]
It will handle one HTTP request at a time. The server program should take the directory to be served as a command-line argument.
Your web server should accept and parse the HTTP request, read the requested file from the directory, create an HTTP response message consisting of the requested file preceded by header lines, and then send the response directly to the client. If the requested file is not present in the server (or has an unknown extension), the server should send an HTTP “404 Not Found” message back to the client. Update: your server should handle HTML, PNG and PDF file types.
Prepare a directory with content to be served. At the very least, it should contain an HTML file, a PNG image and a few PDF files. Reference the image in the HTML file (using).
To get a 10, you need to do the following tasks as well:
1. Implement an HTTP client for your server - 2 points
Update: It will be a python script that takes as command-line arguments a URL and a directory to save files in, and acts depending on the file type:
· HTML (page, directory listing): print the body of the response as-is
· PNG, PDF: save the file in the specified directory
	Use the following format for the command arguments:
	client.py server_host server_port url_path directory
2. Make the server work with nested directories - 2 points:
If a directory path is requested, respond with a directory listing (a generated HTML page that displays the contents of the directory, with hyperlinks).
Create a subdirectory in your content directory with a few PDF/PNG files inside it.
3. Browse the books on your friend’s server (local network), have fun - 1 point
You can use your client to download a book from your friend’s server right into your own website directory.
What the directory listing can look like (python’s http.server response shown here):
[image:]
Report contents:
· The contents of your source directory
· The docker compose file (and Dockerfile if you use one)
· show how you start the container
· Command that runs the server inside the container, with a directory as an argument
· The contents of the served directory
· Requests of 4 files in the browser: inexistent file (404), HTML file with image, PDF file, PNG file
· (If you made the client) How you run the client, show output and saved files
· (If you made directory listing) The directory listing generated page, subdirectory
· (If you browsed your friend’s server) Describe your network setup, how you found their IP, screenshots of the contents of their server, screenshots of requests to their server (using your own client if you implemented it)
[bookmark: _hef1yfbbvy8j]Lab 2: Concurrent HTTP server
The questions will be based on:
· A good introduction to concurrency: https://web.mit.edu/6.102/www/sp25/classes/14-concurrency/
· Section 4.3 from this article
· The definitions from this glossary
· (Optional) The Art of Multiprocessor Programming (you can find a copy in the Drive)
[bookmark: _cu9erw40ss7o]A bit of theory
When learning about concurrency, beware that there are many conflicting definitions, examples and analogies floating around, some of which are misleading and might cause you unnecessary suffering. I recommend starting with the resources linked above.
Note that high-level programmers define concurrency differently from low-level programmers. Therefore, there are two “correct” definitions of concurrency:
· In the OS (low-level) tradition:
· Concurrency = tasks overlap in time (including by interleaving)
· Parallelism = tasks run simultaneously (on multiple processors)
· Parallel implies Concurrent
· All parallel tasks are also concurrent
· Not all concurrent tasks are parallel
· In the PLT (high-level) tradition:
· Concurrency is a language concept: constructing a program as independent parts
· Parallelism is a hardware concept: executing computations on multiple processors simultaneously
· Parallelism and Concurrency are orthogonal
· A concurrent program may or may not execute in parallel
· A parallel computation may or may not have the notion of concurrency in its structure.
As a consequence, the answer to “does parallel imply concurrent?” depends on the school of thought. As you will see, all the linked resources abide by the second school of thought. In general, the high-level view of concurrency is becoming more predominant, so it is important that you are aware of it and prove your understanding when answering the questions.
To make it clear, if your answer is along the lines of “concurrency is a more general form of parallelism” or “concurrency is when tasks seemingly execute at the same time”, I will consider your answer wrong. You must at least mention the second definition.
[bookmark: _tqfqin10u1ah]The task
In this lab, you will make your HTTP server multithreaded, so that it can handle multiple connections concurrently. You can either create a thread per request, or use a thread pool.
To test it, write a script that makes multiple concurrent requests to your server. Add a delay to the request handler to simulate work (~1s), make 10 concurrent requests and measure the amount of time in which they are handled. Do the same with the single-threaded server from the previous lab. Compare the two.
[bookmark: _txn7gccpurb0]Counter: 2 points
Add a counter feature. Record the number of requests made to each file and show it in the directory listing. For example:
[image:]First, implement it in a naive way and show that there is a race condition (you can rewrite the code and add delays to force interlacing of threads). Then, use a synchronization mechanism (e.g. a lock) and show that the race condition is gone.
[bookmark: _uq10tm3umkjv]Rate limiting: 2 points
Implement rate limiting by client IP (~5 requests/second) in a thread-safe way. Have one friend spam you with requests and another send requests just below the rate limit. Compare the throughput for both (successful requests/second).
[bookmark: _b5cy7eahlmfx]Lab 3
Work in progress
[bookmark: _4rl2nv8w93ve]Lab 4: Multiplayer Game
Work in progress
You will implement the MIT 6.102 (2025) Memory Scramble lab.
A multiplayer game is a great lab for a PR course because it teaches important concepts in a fun way:
· Concurrency
· Implementing a Web API
[bookmark: _6frekybh0vsn]Curriculum
Here is the list of topics that will be covered in this course:
1. Concurrency
a. A better definition of concurrency
b. Threading
c. Locks
2. Network programming
a. Sockets, TCP, UDP
b. Protocols, HTTP
3. Web APIs
4. Git
5. Docker
[bookmark: _xv7cu45wvlc8]Sources
It’s better to make use of material made by professional educators than to come up with your own.
· “Computer Networking: a Top Down Approach” (Pearson,)
· Has labs in python and slides for teaching.
· Interactive animations
· Sockets, web servers, protocols, proxies, etc.
· Doesn’t explain concurrency.
· Lab 1: HTTP server with TCP sockets
· Additional 1: make it multithreaded
· Additional 2: write HTTP client
· Lab 2: UDP client + server, timeouts
· Lab 3: implement basic SMTP protocol
· Lab 4: implement Ping using raw sockets (ICMP)
· Lab 4.2: implement traceroute using ICMP
· Lab 5: HTTP proxy server
· Lab 6: video streaming, implement RTSP with sockets
· University Course MIT 6.102 “Software Construction” (2025)
· Concurrency (high-level):
· 15: Promises
· 16: Mutual Exclusion
· Message passing
· Low-level concurrency in older course: MIT 6.005 “Software Construction” (2016):
· Thread safety
· Locks & synchronization
· The definitive Glossary of concurrency concepts by slikts
· A terse and elegant overview of concurrency (independence) and concurrency paradigms without observable nondeterminism: Programming Paradigms for Dummies: What Every Programmer Should Know by Peter Van Roy
· A comprehensive book on the concepts of concurrency: “The Art of Multiprocessor Programming” (2008) (multiprocessor = multi-core):
· Theoretical (Mutual Exclusion)
· Practical (Locks, Monitors)

image2.png
QO B beta.the-eye.eu/public/Books/Bibliotheca Alexandrina/ 133% ¢ Yy @ A U o2 B
HOME FILES COLLECTIONS WOCTV COMMUNITY DONATE
FAQ
Search files...
Index oF /public/Books/Bibliotheca Alexandrina/
Name Last Modified Size
Parent Directory
B 0. Info/ 2022-02-28 15:21:21 11 B
I 1. Prehistory/ 2022-02-28 15:21:20 4 B
I 2. Ancient e Classical/ 2022-02-28 15:23:09 21 B
I 3. Middle Ages/ 2022-02-28 15:29:57 20 B
I 4. Early Modern/ 2022-02-28 15:21:20 4 B
I 5. Ancient & Classical Civilizations Series/ 2022-02-28 16:16:24 222 B
I 6. Middle Ages Series/ 2022-02-28 15:56:37 215 B
I 7. Early Modern Series/ 2022-02-28 15:21:20 15 B

image3.png
Directory listing for /

docker-compose.yml

Dockerfile

labl_WebServer programming lab_only.pdf
skeleton.py

src/

image1.png
Directory listing for /

File / Directory Hits
.DS_Store 1
computer-networking-a-top-down-approach-8th-edition.pdf (132
computer_networks toc.pdf 86
computer_networks .pdf 174
Pearson/ 59
Theartofmulticore.pdf 201

