
7810D-AVR-01/15

Features

● High performance, low power AVR® 8-bit microcontroller

● Advanced RISC architecture

● 131 powerful instructions – most single clock cycle execution
● 32  8 general purpose working registers
● Fully static operation
● Up to 16MIPS throughput at 16MHz
● On-chip 2-cycle multiplier

● High endurance non-volatile memory segments

● 32K bytes of in-system self-programmable flash program memory
● 1Kbytes EEPROM
● 2Kbytes internal SRAM
● Write/erase cycles: 10,000 flash/100,000 EEPROM
● Optional boot code section with independent lock bits

● In-system programming by on-chip boot program
● True read-while-write operation

● Programming lock for software security

● Peripheral features

● Two 8-bit Timer/Counters with separate prescaler and compare mode
● One 16-bit Timer/Counter with separate prescaler, compare mode, and capture

mode
● Real time counter with separate oscillator
● Six PWM channels
● 8-channel 10-bit ADC in TQFP and QFN/MLF package

● Temperature measurement
● Programmable serial USART
● Master/slave SPI serial interface
● Byte-oriented 2-wire serial interface (Phillips I2C compatible)
● Programmable watchdog timer with separate on-chip oscillator
● On-chip analog comparator
● Interrupt and wake-up on pin change

● Special microcontroller features

● Power-on reset and programmable brown-out detection
● Internal calibrated oscillator
● External and internal interrupt sources
● Six sleep modes: Idle, ADC noise reduction, power-save, power-down, standby,

and extended standby

ATmega328P

8-bit AVR Microcontroller with 32K Bytes In-System
Programmable Flash

DATASHEET

ATmega328P [DATASHEET]
7810D–AVR–01/15

2

● I/O and packages

● 23 programmable I/O lines
● 32-lead TQFP, and 32-pad QFN/MLF

● Operating voltage:

● 2.7V to 5.5V for ATmega328P

● Temperature range:

● Automotive temperature range: –40°C to +125°C

● Speed grade:

● 0 to 8MHz at 2.7 to 5.5V (automotive temperature range: –40°C to +125°C)
● 0 to 16MHz at 4.5 to 5.5V (automotive temperature range: –40°C to +125°C)

● Low power consumption

● Active mode: 1.5mA at 3V - 4MHz
● Power-down mode: 1µA at 3V

3ATmega328P [DATASHEET]
7810D–AVR–01/15

1. Pin Configurations

Figure 1-1. Pinout

(PCINT19/OC2B/INT1) PD3

(PCINT20/XCK/T0) PD4

(PCINT6/XTAL1/TOSC1) PB6

(PCINT7/XTAL2/TOSC2) PB7

GND

VCC

GND

VCC 6

7

8

5

4

3

2

1

32 31 30 29 28 27 26 25

9 10 11 12 13 14 15 16

19

18

17

20

21

22

23

24 PC1 (ADC1/PCINT9)

(P
C

IN
T2

1/
O

C
0B

/T
1)

 P
D

5

(P
C

IN
T0

/C
LK

O
/IC

P
1)

 P
B

0

(P
C

IN
T2

3/
A

IN
1)

 P
D

7

(P
C

IN
T1

/O
C

1A
) P

B
1

(P
C

IN
T2

/S
S

/O
C

1B
) P

B
2

(P
C

IN
T3

/O
C

2A
/M

O
S

I)
P

B
3

(P
C

IN
T4

/M
IS

O
) P

B
4

(P
C

IN
T2

2/
O

C
0A

/A
IN

0)
 P

D
6

PC0 (ADC0/PCINT8)

AVCC

PB5 (SCK/PCINT5)

ADC7

GND

AREF

ADC6

P
D

2
(IN

T0
/P

C
IN

T1
8)

P
D

1
(T

X
D

/P
C

IN
T1

7)

P
D

0
(R

X
D

/P
C

IN
T1

6)

P
C

6
(R

E
S

E
T/

P
C

IN
T1

4)

P
C

5
(A

D
C

5/
S

C
L/

P
C

IN
T1

3)

P
C

4
(A

D
C

4/
S

D
A

/P
C

IN
T1

2)

P
C

3
(A

D
C

3/
P

C
IN

T1
1)

P
C

2
(A

D
C

2/
P

C
IN

T1
0)

(PCINT19/OC2B/INT1) PD3

(PCINT20/XCK/T0) PD4

(PCINT6/XTAL1/TOSC1) PB6

(PCINT7/XTAL2/TOSC2) PB7

GND

VCC

GND

VCC

NOTE: Bottom pad should be soldered to ground.

6

7

8

5

4

3

2

1

32 31 30 29

32 MLF Top View

28 27 26 25

9 10 11 12 13 14 15 16

19

18

17

20

21

22

23

24 PC1 (ADC1/PCINT9)

(P
C

IN
T2

1/
O

C
0B

/T
1)

 P
D

5

(P
C

IN
T0

/C
LK

O
/IC

P
1)

 P
B

0

(P
C

IN
T2

3/
A

IN
1)

 P
D

7

(P
C

IN
T1

/O
C

1A
) P

B
1

(P
C

IN
T2

/S
S

/O
C

1B
) P

B
2

(P
C

IN
T3

/O
C

2A
/M

O
S

I)
P

B
3

(P
C

IN
T4

/M
IS

O
) P

B
4

(P
C

IN
T2

2/
O

C
0A

/A
IN

0)
 P

D
6

PC0 (ADC0/PCINT8)

AVCC

PB5 (SCK/PCINT5)

ADC7

GND

AREF

ADC6

P
D

2
(IN

T0
/P

C
IN

T1
8)

P
D

1
(T

X
D

/P
C

IN
T1

7)

P
D

0
(R

X
D

/P
C

IN
T1

6)

P
C

6
(R

E
S

E
T/

P
C

IN
T1

4)

P
C

5
(A

D
C

5/
S

C
L/

P
C

IN
T1

3)

P
C

4
(A

D
C

4/
S

D
A

/P
C

IN
T1

2)

P
C

3
(A

D
C

3/
P

C
IN

T1
1)

P
C

2
(A

D
C

2/
P

C
IN

T1
0)

TQFP Top View

ATmega328P [DATASHEET]
7810D–AVR–01/15

4

1.1 Pin Descriptions

1.1.1 VCC

Digital supply voltage.

1.1.2 GND

Ground.

1.1.3 Port B (PB7:0) XTAL1/XTAL2/TOSC1/TOSC2

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have
symmetrical drive characteristics with both high sink and source capability. As inputs, port B pins that are externally pulled
low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes
active, even if the clock is not running.

Depending on the clock selection fuse settings, PB6 can be used as input to the inverting oscillator amplifier and input to the
internal clock operating circuit.

Depending on the clock selection fuse settings, PB7 can be used as output from the inverting oscillator amplifier.

If the internal calibrated RC oscillator is used as chip clock source, PB7..6 is used as TOSC2..1 input for the asynchronous
Timer/Counter2 if the AS2 bit in ASSR is set.

The various special features of port B are elaborated in Section 13.3.1 “Alternate Functions of Port B” on page 65 and
Section 8. “System Clock and Clock Options” on page 24.

1.1.4 Port C (PC5:0)

Port C is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The PC5..0 output buffers have
symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled
low will source current if the pull-up resistors are activated. The port C pins are tri-stated when a reset condition becomes
active, even if the clock is not running.

1.1.5 PC6/RESET

If the RSTDISBL fuse is programmed, PC6 is used as an input pin. If the RSTDISBL fuse is unprogrammed, PC6 is used as
a reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not
running. The minimum pulse length is given in Table 28-4 on page 261. Shorter pulses are not guaranteed to generate a
reset.

The various special features of port C are elaborated in Section 13.3.2 “Alternate Functions of Port C” on page 68.

1.1.6 Port D (PD7:0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The port D output buffers have
symmetrical drive characteristics with both high sink and source capability. As inputs, port D pins that are externally pulled
low will source current if the pull-up resistors are activated. The port D pins are tri-stated when a reset condition becomes
active, even if the clock is not running.

The various special features of port D are elaborated in Section 13.3.3 “Alternate Functions of Port D” on page 70.

1.1.7 AVCC

AVCC is the supply voltage pin for the A/D converter, PC3:0, and ADC7:6. It should be externally connected to VCC, even if
the ADC is not used. If the ADC is used, it should be connected to VCC through a low-pass filter. Note that PC6..4 use digital
supply voltage, VCC.

1.1.8 AREF

AREF is the analog reference pin for the A/D converter.

5ATmega328P [DATASHEET]
7810D–AVR–01/15

1.1.9 ADC7:6 (TQFP and QFN/MLF Package Only)

In the TQFP and QFN/MLF package, ADC7:6 serve as analog inputs to the A/D converter. These pins are powered from the
analog supply and serve as 10-bit ADC channels.

1.2 Disclaimer

Typical values contained in this datasheet are based on simulations and characterization of actual ATmega328P AVR®
microcontrollers manufactured on the typical process technology. automotive min and max values are based on
characterization of actual ATmega328P AVR microcontrollers manufactured on the whole process excursion (corner run).

1.3 Automotive Quality Grade

The ATmega328P have been developed and manufactured according to the most stringent requirements of the international
standard ISO-TS-16949. This data sheet contains limit values extracted from the results of extensive characterization
(temperature and voltage). The quality and reliability of the ATmega328P have been verified during regular product
qualification as per AEC-Q100 grade 1. As indicated in the ordering information paragraph, the products are available in only
one temperature.

Table 1-1. Temperature Grade Identification for Automotive Products

Temperature Temperature Identifier Comments

–40°C; +125°C Z Full automotive temperature range

ATmega328P [DATASHEET]
7810D–AVR–01/15

6

2. Overview

The Atmel® ATmega328P is a low-power CMOS 8-bit microcontroller based on the AVR® enhanced RISC architecture. By
executing powerful instructions in a single clock cycle, the ATmega328P achieves throughputs approaching 1MIPS per MHz
allowing the system designer to optimize power consumption versus processing speed.

2.1 Block Diagram

Figure 2-1. Block Diagram

Power
Supervision
POR/ BOD

and
RESET

Oscillator
Circuits/

Clock
Generation

Watchdog
Timer

Watchdog
Oscillator

Program
Logic

debugWIRE

AVR CPU

EEPROM

D
AT

A
B

U
S

Flash

GND VCC

A/D Conv.16-bit T/C 18-bit T/C 0

Internal
Bandgap

Analog
Comp.8-bit T/C 2

USART 0 SPI TWI

2

6

PORT D (8) PORT B (8) PORT C (7)

SRAM

AVCC

AREF

GND

RESET

XTAL[1..2]

PD[0..7] PB[0..7] PC[0..6] ADC[6..7]

7ATmega328P [DATASHEET]
7810D–AVR–01/15

The AVR® core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly
connected to the arithmetic logic unit (ALU), allowing two independent registers to be accessed in one single instruction
executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times
faster than conventional CISC microcontrollers.

The Atmel® ATmega328P provides the following features: 32K bytes of in-system programmable flash with read-while-write
capabilities, 1K bytes EEPROM, 2K bytes SRAM, 23 general purpose I/O lines, 32 general purpose working registers, three
flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, a byte-
oriented 2-wire serial interface, an SPI serial port, a 6-channel 10-bit ADC (8 channels in TQFP and QFN/MLF packages), a
programmable watchdog timer with internal oscillator, and five software selectable power saving modes. The idle mode
stops the CPU while allowing the SRAM, Timer/Counters, USART, 2-wire serial interface, SPI port, and interrupt system to
continue functioning. The power-down mode saves the register contents but freezes the oscillator, disabling all other chip
functions until the next interrupt or hardware reset. In power-save mode, the asynchronous timer continues to run, allowing
the user to maintain a timer base while the rest of the device is sleeping. The ADC noise reduction mode stops the CPU and
all I/O modules except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In standby
mode, the crystal/resonator oscillator is running while the rest of the device is sleeping. This allows very fast start-up
combined with low power consumption.

The device is manufactured using Atmel high density non-volatile memory technology. The on-chip ISP flash allows the
program memory to be reprogrammed in-system through an SPI serial interface, by a conventional non-volatile memory
programmer, or by an on-chip boot program running on the AVR core. The boot program can use any interface to download
the application program in the application flash memory. Software in the boot flash section will continue to run while the
application flash section is updated, providing true read-while-write operation. By combining an 8-bit RISC CPU with
in-system self-programmable flash on a monolithic chip, the Atmel ATmega328P is a powerful microcontroller that provides
a highly flexible and cost effective solution to many embedded control applications.

The ATmega328P AVR is supported with a full suite of program and system development tools including: C compilers,
macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.

ATmega328P [DATASHEET]
7810D–AVR–01/15

8

3. Resources

A comprehensive set of development tools, application notes and datasheets are available for download on
http://www.atmel.com/avr.

4. Data Retention

Reliability qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at
85°C or 100 years at 25°C.

5. About Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. These code
examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors
include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C
compiler documentation for more details.

For I/O registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must be replaced
with instructions that allow access to extended I/O. Typically “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and
“CBR”.

9ATmega328P [DATASHEET]
7810D–AVR–01/15

6. AVR CPU Core

6.1 Overview

This section discusses the AVR® core architecture in general. The main function of the CPU core is to ensure correct
program execution. The CPU must therefore be able to access memories, perform calculations, control peripherals, and
handle interrupts.

Figure 6-1. Block Diagram of the AVR Architecture

In order to maximize performance and parallelism, the AVR uses a harvard architecture – with separate memories and
buses for program and data. Instructions in the program memory are executed with a single level pipelining. While one
instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions
to be executed in every clock cycle. The program memory is in-system reprogrammable flash memory.

Status and
Control

Interrupt
Unit32 x 8

General
Purpose
Registers

ALU

Data Bus 8-bit

Data
SRAM

SPI
Unit

Instruction
Register

Instruction
Decoder Watchdog

Timer

Analog
Comparator

EEPROM

I/O Lines

I/O Module n

Control Lines

D
ire

ct
 A

dd
re

ss
in

g

In
di

re
ct

 A
dd

re
ss

in
g

I/O Module 2

I/O Module 1

Program
Counter

Flash
Program
Memory

ATmega328P [DATASHEET]
7810D–AVR–01/15

10

The fast-access register file contains 32  8-bit general purpose working registers with a single clock cycle access time. This
allows single-cycle arithmetic logic unit (ALU) operation. In a typical ALU operation, two operands are output from the
register file, the operation is executed, and the result is stored back in the register file – in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for data space addressing – enabling
efficient address calculations. One of the these address pointers can also be used as an address pointer for look up tables in
flash program memory. These added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single register
operations can also be executed in the ALU. After an arithmetic operation, the status register is updated to reflect
information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to directly address the whole
address space. Most AVR® instructions have a single 16-bit word format. Every program memory address contains a 16- or
32-bit instruction.

Program flash memory space is divided in two sections, the boot program section and the application program section. Both
sections have dedicated lock bits for write and read/write protection. The SPM instruction that writes into the application flash
memory section must reside in the boot program section.

During interrupts and subroutine calls, the return address program counter (PC) is stored on the stack. The stack is
effectively allocated in the general data SRAM, and consequently the stack size is only limited by the total SRAM size and
the usage of the SRAM. All user programs must initialize the SP in the reset routine (before subroutines or interrupts are
executed). The stack pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed through
the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional global interrupt enable bit in the status
register. All interrupts have a separate interrupt vector in the interrupt vector table. The interrupts have priority in accordance
with their interrupt vector position. The lower the interrupt vector address, the higher the priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as control registers, SPI, and other I/O functions.
The I/O memory can be accessed directly, or as the data space locations following those of the register file, 0x20 - 0x5F. In
addition, the ATmega328P has extended I/O space from 0x60 - 0xFF in SRAM where only the ST/STS/STD and
LD/LDS/LDD instructions can be used.

6.2 ALU – Arithmetic Logic Unit

The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers. Within a
single clock cycle, arithmetic operations between general purpose registers or between a register and an immediate are
executed. The ALU operations are divided into three main categories – arithmetic, logical, and bit-functions. Some
implementations of the architecture also provide a powerful multiplier supporting both signed/unsigned multiplication and
fractional format. See Section “” on page 281 for a detailed description.

6.3 Status Register

The status register contains information about the result of the most recently executed arithmetic instruction. This
information can be used for altering program flow in order to perform conditional operations. Note that the status register is
updated after all ALU operations, as specified in the instruction set reference. This will in many cases remove the need for
using the dedicated compare instructions, resulting in faster and more compact code.

The status register is not automatically stored when entering an interrupt routine and restored when returning from an
interrupt. This must be handled by software.

11ATmega328P [DATASHEET]
7810D–AVR–01/15

6.3.1 SREG – AVR Status Register

The AVR status register – SREG – is defined as:

• Bit 7 – I: Global Interrupt Enable

The global interrupt enable bit must be set for the interrupts to be enabled. The individual interrupt enable control is then
performed in separate control registers. If the global interrupt enable register is cleared, none of the interrupts are enabled
independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is
set by the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by the application with the
SEI and CLI instructions, as described in the instruction set reference.

• Bit 6 – T: Bit Copy Storage

The bit copy instructions BLD (bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the operated bit. A bit
from a register in the register file can be copied into T by the BST instruction, and a bit in T can be copied into a bit in a
register in the register file by the BLD instruction.

• Bit 5 – H: Half Carry Flag

The half carry flag H indicates a half carry in some arithmetic operations. Half carry Is useful in BCD arithmetic. See Section
“” on page 281 for detailed information.

• Bit 4 – S: Sign Bit, S = N V

The S-bit is always an exclusive or between the negative flag N and the two’s complement overflow flag V. See Section “”
on page 281 for detailed information.

• Bit 3 – V: Two’s Complement Overflow Flag

The two’s complement overflow flag V supports two’s complement arithmetics. See Section “” on page 281 for detailed
information.

• Bit 2 – N: Negative Flag

The negative flag N indicates a negative result in an arithmetic or logic operation. See Section “” on page 281 for detailed
information.

• Bit 1 – Z: Zero Flag

The zero flag Z indicates a zero result in an arithmetic or logic operation. See Section “” on page 281 for detailed
information.

• Bit 0 – C: Carry Flag

The carry flag C indicates a carry in an arithmetic or logic operation. See Section “” on page 281 for detailed information.

Bit 7 6 5 4 3 2 1 0

0x3F (0x5F) I T H S V N Z C SREG

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

ATmega328P [DATASHEET]
7810D–AVR–01/15

12

6.4 General Purpose Register File

The register file is optimized for the AVR® enhanced RISC instruction set. In order to achieve the required performance and
flexibility, the following input/output schemes are supported by the register file:

● One 8-bit output operand and one 8-bit result input

● Two 8-bit output operands and one 8-bit result input

● Two 8-bit output operands and one 16-bit result input

● One 16-bit output operand and one 16-bit result input

Figure 6-2 shows the structure of the 32 general purpose working registers in the CPU.

Figure 6-2. AVR CPU General Purpose Working Registers

Most of the instructions operating on the register file have direct access to all registers, and most of them are single cycle
instructions.

As shown in Figure 6-2, each register is also assigned a data memory address, mapping them directly into the first 32
locations of the user data space. Although not being physically implemented as SRAM locations, this memory organization
provides great flexibility in access of the registers, as the X-, Y- and Z-pointer registers can be set to index any register in the
file.

7 0 Addr.

R0 0x00

R1 0x01

R2 0x02

…

R13 0x0D

General R14 0x0E

Purpose R15 0x0F

Working R16 0x10

Registers R17 0x11

…

R26 0x1A X-register Low Byte

R27 0x1B X-register High Byte

R28 0x1C Y-register Low Byte

R29 0x1D Y-register High Byte

R30 0x1E Z-register Low Byte

R31 0x1F Z-register High Byte

13ATmega328P [DATASHEET]
7810D–AVR–01/15

6.4.1 The X-register, Y-register, and Z-register

The registers R26..R31 have some added functions to their general purpose usage. These registers are 16-bit address
pointers for indirect addressing of the data space. The three indirect address registers X, Y, and Z are defined as described
in Figure 6-3.

Figure 6-3. The X-, Y-, and Z-registers

In the different addressing modes these address registers have functions as fixed displacement, automatic increment, and
automatic decrement (see the instruction set reference for details).

6.5 Stack Pointer

The stack is mainly used for storing temporary data, for storing local variables and for storing return addresses after
interrupts and subroutine calls. Note that the stack is implemented as growing from higher to lower memory locations. The
stack pointer register always points to the top of the stack. The stack pointer points to the data SRAM stack area where the
subroutine and interrupt stacks are located. A stack PUSH command will decrease the stack pointer.

The stack in the data SRAM must be defined by the program before any subroutine calls are executed or interrupts are
enabled. initial stack pointer value equals the last address of the internal SRAM and the stack pointer must be set to point
above start of the SRAM, see Figure 7-2 on page 18.

See Table 6-1 for stack pointer details.

The AVR stack pointer is implemented as two 8-bit registers in the I/O space. The number of bits actually used is
implementation dependent. Note that the data space in some implementations of the AVR® architecture is so small that only
SPL is needed. In this case, the SPH register will not be present.

15 XH XL 0

X-register 7 0 7 0

R27 (0x1B) R26 (0x1A)

15 YH YL 0

Y-register 7 0 7 0

R29 (0x1D) R28 (0x1C)

15 ZH ZL 0

Z-register 7 0 7 0

R31 (0x1F) R30 (0x1E)

Table 6-1. Stack Pointer instructions

Instruction Stack pointer Description

PUSH Decremented by 1 Data is pushed onto the stack

CALL
ICALL
RCALL

Decremented by 2 Return address is pushed onto the stack with a subroutine call or interrupt

POP Incremented by 1 Data is popped from the stack

RET
RETI

Incremented by 2
Return address is popped from the stack with return from subroutine or return
from interrupt

ATmega328P [DATASHEET]
7810D–AVR–01/15

14

6.5.1 SPH and SPL – Stack Pointer High and Stack Pointer Low Register

6.6 Instruction Execution Timing

This section describes the general access timing concepts for instruction execution. The AVR® CPU is driven by the CPU
clock clkCPU, directly generated from the selected clock source for the chip. No internal clock division is used.

Figure 6-4 shows the parallel instruction fetches and instruction executions enabled by the harvard architecture and the
fast-access register file concept. This is the basic pipelining concept to obtain up to 1MIPS per MHz with the corresponding
unique results for functions per cost, functions per clocks, and functions per power-unit.

Figure 6-4. The Parallel Instruction Fetches and Instruction Executions

Figure 6-5 shows the internal timing concept for the register file. In a single clock cycle an ALU operation using two register
operands is executed, and the result is stored back to the destination register.

Figure 6-5. Single Cycle ALU Operation

Bit 15 14 13 12 11 10 9 8

0x3E (0x5E) SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH

0x3D (0x5D) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL

7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND

RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND

clkCPU

1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch

T1 T2 T3 T4

2nd Instruction Execute
3rd Instruction Fetch

3rd Instruction Execute
4th Instruction Fetch

clkCPU

T1

Register Operands Fetch

Result Write Back

ALU Operation Execute

Total Execution Time

T2 T3 T4

15ATmega328P [DATASHEET]
7810D–AVR–01/15

6.7 Reset and Interrupt Handling

The AVR® provides several different interrupt sources. These interrupts and the separate reset vector each have a separate
program vector in the program memory space. All interrupts are assigned individual enable bits which must be written logic
one together with the global interrupt enable bit in the status register in order to enable the interrupt. Depending on the
program counter value, interrupts may be automatically disabled when boot lock bits BLB02 or BLB12 are programmed. This
feature improves software security. See the Section 27. “Memory Programming” on page 241 for details.

The lowest addresses in the program memory space are by default defined as the reset and interrupt vectors. The complete
list of vectors is shown in Section 11. “Interrupts” on page 49. The list also determines the priority levels of the different
interrupts. The lower the address the higher is the priority level. RESET has the highest priority, and next is INT0 – the
external interrupt request 0. The interrupt vectors can be moved to the start of the boot flash section by setting the IVSEL bit
in the MCU control register (MCUCR). Refer to Section 11. “Interrupts” on page 49 for more information. The reset vector can
also be moved to the start of the boot flash section by programming the BOOTRST fuse, see Section 26. “Boot Loader
Support – Read-While-Write Self-Programming” on page 229.

When an interrupt occurs, the global interrupt enable I-bit is cleared and all interrupts are disabled. The user software can
write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then interrupt the current interrupt routine.
The I-bit is automatically set when a return from interrupt instruction – RETI – is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the interrupt flag. For these
interrupts, the program counter is vectored to the actual interrupt vector in order to execute the interrupt handling routine,
and hardware clears the corresponding interrupt flag. Interrupt flags can also be cleared by writing a logic one to the flag bit
position(s) to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is cleared, the interrupt
flag will be set and remembered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or more
interrupt conditions occur while the global interrupt enable bit is cleared, the corresponding interrupt flag(s) will be set and
remembered until the global interrupt enable bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not necessarily
have interrupt flags. If the interrupt condition disappears before the interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction before any
pending interrupt is served.

Note that the status register is not automatically stored when entering an interrupt routine, nor restored when returning from
an interrupt routine. This must be handled by software.

ATmega328P [DATASHEET]
7810D–AVR–01/15

16

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will be executed
after the CLI instruction, even if it occurs simultaneously with the CLI instruction. The following example shows how this can
be used to avoid interrupts during the timed EEPROM write sequence.

When using the SEI instruction to enable interrupts, the instruction following SEI will be executed before any pending
interrupts, as shown in this example.

6.7.1 Interrupt Response Time

The interrupt execution response for all the enabled AVR® interrupts is four clock cycles minimum. After four clock cycles the
program vector address for the actual interrupt handling routine is executed. During this four clock cycle period, the program
counter is pushed onto the stack. The vector is normally a jump to the interrupt routine, and this jump takes three clock
cycles. If an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed before the interrupt is
served. If an interrupt occurs when the MCU is in sleep mode, the interrupt execution response time is increased by four
clock cycles. This increase comes in addition to the start-up time from the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four clock cycles, the program counter (two
bytes) is popped back from the stack, the stack pointer is incremented by two, and the I-bit in SREG is set.

Assembly Code Example

in r16, SREG ; store SREG value
cli ; disable interrupts during timed sequence
sbi EECR, EEMPE ; start EEPROM write
sbi EECR, EEPE
out SREG, r16 ; restore SREG value (I-bit)

C Code Example

char cSREG;
cSREG = SREG; /* store SREG value */
/* disable interrupts during timed sequence */
_CLI();
EECR |= (1<<EEMPE); /* start EEPROM write */
EECR |= (1<<EEPE);
SREG = cSREG; /* restore SREG value (I-bit) */

Assembly Code Example

sei ; set Global Interrupt Enable
sleep ; enter sleep, waiting for interrupt
; note: will enter sleep before any pending interrupt(s)

C Code Example

__enable_interrupt(); /* set Global Interrupt Enable */
__sleep(); /* enter sleep, waiting for interrupt */
/* note: will enter sleep before any pending interrupt(s) */

17ATmega328P [DATASHEET]
7810D–AVR–01/15

7. AVR Memories

7.1 Overview

This section describes the different memories in the ATmega328P. The AVR® architecture has two main memory spaces,
the data memory and the program memory space. In addition, the ATmega328P features an EEPROM memory for data
storage. All three memory spaces are linear and regular.

7.2 In-System Reprogrammable Flash Program Memory

The ATmega328P contains 32Kbytes on-chip in-system reprogrammable flash memory for program storage. Since all AVR
instructions are 16 or 32 bits wide, the flash is organized as 16K 16. For software security, the flash program memory space
is divided into two sections, boot loader section and application program section in ATmega328P. See SELFPRGEN
description in Section 25.3.1 “SPMCSR – Store Program Memory Control and Status Register” on page 228 and Section
26.9.1 “SPMCSR – Store Program Memory Control and Status Register” on page 239 for more details.

The flash memory has an endurance of at least 10,000 write/erase cycles. The ATmega328P program counter (PC) is 14
bits wide, thus addressing the 16K program memory locations. The operation of boot program section and associated boot
lock bits for software protection are described in detail in Section 25. “Self-Programming the Flash, ATmega328P” on page
223 and Section 26. “Boot Loader Support – Read-While-Write Self-Programming” on page 229. Section 27. “Memory
Programming” on page 241 contains a detailed description on flash programming in SPI- or parallel programming mode.

Constant tables can be allocated within the entire program memory address space (see the LPM – load program memory
instruction description).

Timing diagrams for instruction fetch and execution are presented in Section 6.6 “Instruction Execution Timing” on page 14.

Figure 7-1. Program Memory Map ATmega328P

0x0000

0x3FFF
Boot Flash Section

Program Memory

Application Flash Section

ATmega328P [DATASHEET]
7810D–AVR–01/15

18

7.3 SRAM Data Memory

Figure 7-2 shows how the ATmega328P SRAM memory is organized.

The ATmega328P is a complex microcontroller with more peripheral units than can be supported within the 64 locations
reserved in the opcode for the IN and OUT instructions. For the extended I/O space from 0x60 - 0xFF in SRAM, only the
ST/STS/STD and LD/LDS/LDD instructions can be used.

The lower 2303 data memory locations address both the register file, the I/O memory, extended I/O memory, and the
internal data SRAM. The first 32 locations address the register file, the next 64 location the standard I/O memory, then 160
locations of extended I/O memory, and the next 2048 locations address the internal data SRAM.

The five different addressing modes for the data memory cover: Direct, indirect with displacement, indirect, indirect with
pre-decrement, and indirect with post-increment. In the register file, registers R26 to R31 feature the indirect addressing
pointer registers.

The direct addressing reaches the entire data space.

The indirect with displacement mode reaches 63 address locations from the base address given by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-increment, the address registers X,
Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 I/O registers, 160 extended I/O registers, and the 2048 bytes of internal data
SRAM in the ATmega328P are all accessible through all these addressing modes. The register file is described in
Section 6.4 “General Purpose Register File” on page 12.

Figure 7-2. Data Memory Map

7.3.1 Data Memory Access Times

This section describes the general access timing concepts for internal memory access. The internal data SRAM access is
performed in two clkCPU cycles as described in Figure 7-3.

Figure 7-3. On-chip Data SRAM Access Cycles

32 Registers

Data Memory

0x0000 - 0x001F
0x0020 - 0x005F
0x0060 - 0x00FF
0x0100

0x08FF

64 I/O Registers
160 Ext I/O Registers

Internal SRAM
(1048 x 8)

clkCPU

T1

Data

Data

RD

WR

Address validCompute Address

Next Instruction

Write

Read

Memory Access Instruction

Address

T2 T3

19ATmega328P [DATASHEET]
7810D–AVR–01/15

7.4 EEPROM Data Memory

The Atmel® ATmega328P contains 1Kbyte of data EEPROM memory. It is organized as a separate data space, in which
single bytes can be read and written. The EEPROM has an endurance of at least 100,000 write/erase cycles. The access
between the EEPROM and the CPU is described in the following, specifying the EEPROM address registers, the EEPROM
data register, and the EEPROM control register.

Section 27. “Memory Programming” on page 241 contains a detailed description on EEPROM programming in SPI or
parallel programming mode.

7.4.1 EEPROM Read/Write Access

The EEPROM access registers are accessible in the I/O space.

The write access time for the EEPROM is given in Table 7-2 on page 22. A self-timing function, however, lets the user
software detect when the next byte can be written. If the user code contains instructions that write the EEPROM, some
precautions must be taken. In heavily filtered power supplies, VCC is likely to rise or fall slowly on power-up/down. This
causes the device for some period of time to run at a voltage lower than specified as minimum for the clock frequency used.
See Section 7.4.2 “Preventing EEPROM Corruption” on page 19 for details on how to avoid problems in these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed. Refer to the description of the
EEPROM control register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is executed. When the
EEPROM is written, the CPU is halted for two clock cycles before the next instruction is executed.

7.4.2 Preventing EEPROM Corruption

During periods of low VCC, the EEPROM data can be corrupted because the supply voltage is too low for the CPU and the
EEPROM to operate properly. These issues are the same as for board level systems using EEPROM, and the same design
solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First, a regular write sequence to
the EEPROM requires a minimum voltage to operate correctly. Secondly, the CPU itself can execute instructions incorrectly,
if the supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can be done by enabling the
internal brown-out detector (BOD). If the detection level of the internal BOD does not match the needed detection level, an
external low VCC reset protection circuit can be used. If a reset occurs while a write operation is in progress, the write
operation will be completed provided that the power supply voltage is sufficient.

7.5 I/O Memory

The I/O space definition of the ATmega328P is shown in Section “” on page 275.

All ATmega328P I/Os and peripherals are placed in the I/O space. All I/O locations may be accessed by the LD/LDS/LDD
and ST/STS/STD instructions, transferring data between the 32 general purpose working registers and the I/O space. I/O
registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the instruction set
section for more details. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used.
When addressing I/O registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The
ATmega328P is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved
in opcode for the IN and OUT instructions. For the extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and
LD/LDS/LDD instructions can be used.

For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.

Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVR®, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags. The
CBI and SBI instructions work with registers 0x00 to 0x1F only.

The I/O and peripherals control registers are explained in later sections.

ATmega328P [DATASHEET]
7810D–AVR–01/15

20

7.5.1 General Purpose I/O Registers

The Atmel® ATmega328P contains three general purpose I/O registers. These registers can be used for storing any
information, and they are particularly useful for storing global variables and status flags. General purpose I/O registers within
the address range 0x00 - 0x1F are directly bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.

7.6 Register Description

7.6.1 EEARH and EEARL – The EEPROM Address Register

• Bits 15..9 – Res: Reserved Bits

These bits are reserved bits in the Atmel ATmega328P and will always read as zero.

• Bits 8..0 – EEAR8..0: EEPROM Address

The EEPROM address registers – EEARH and EEARL specify the EEPROM address in the 256/512/512/1K bytes
EEPROM space. The EEPROM data bytes are addressed linearly between 0 and 255/511/511/1023. The initial value of
EEAR is undefined. A proper value must be written before the EEPROM may be accessed.

EEAR8 is an unused bit in ATmega328P and must always be written to zero.

7.6.2 EEDR – The EEPROM Data Register

• Bits 7..0 – EEDR7.0: EEPROM Data

For the EEPROM write operation, the EEDR register contains the data to be written to the EEPROM in the address given by
the EEAR register. For the EEPROM read operation, the EEDR contains the data read out from the EEPROM at the address
given by EEAR.

7.6.3 EECR – The EEPROM Control Register

• Bits 7..6 – Res: Reserved Bits

These bits are reserved bits in the Atmel ATmega328P and will always read as zero.

• Bits 5, 4 – EEPM1 and EEPM0: EEPROM Programming Mode Bits

The EEPROM programming mode bit setting defines which programming action that will be triggered when writing EEPE. It
is possible to program data in one atomic operation (erase the old value and program the new value) or to split the erase and
write operations in two different operations. The programming times for the different modes are shown in Table 7-1. While
EEPE is set, any write to EEPMn will be ignored. During reset, the EEPMn bits will be reset to 0b00 unless the EEPROM is
busy programming.

Bit 15 14 13 12 11 10 9 8

0x22 (0x42) – – – – – – – EEAR8 EEARH

0x21 (0x41) EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEARL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 X

X X X X X X X X

Bit 7 6 5 4 3 2 1 0

0x20 (0x40) MSB LSB EEDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1F (0x3F) – – EEPM1 EEPM0 EERIE EEMPE EEPE EERE EECR

Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 X X 0 0 X 0

21ATmega328P [DATASHEET]
7810D–AVR–01/15

• Bit 3 – EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM ready interrupt if the I bit in SREG is set. Writing EERIE to zero disables the
interrupt. The EEPROM ready interrupt generates a constant interrupt when EEPE is cleared. The interrupt will not be
generated during EEPROM write or SPM.

• Bit 2 – EEMPE: EEPROM Master Write Enable

The EEMPE bit determines whether setting EEPE to one causes the EEPROM to be written. When EEMPE is set, setting
EEPE within four clock cycles will write data to the EEPROM at the selected address If EEMPE is zero, setting EEPE will
have no effect. When EEMPE has been written to one by software, hardware clears the bit to zero after four clock cycles.
See the description of the EEPE bit for an EEPROM write procedure.

• Bit 1 – EEPE: EEPROM Write Enable

The EEPROM Write enable signal EEPE is the write strobe to the EEPROM. When address and data are correctly set up,
the EEPE bit must be written to one to write the value into the EEPROM. The EEMPE bit must be written to one before a
logical one is written to EEPE, otherwise no EEPROM write takes place. The following procedure should be followed when
writing the EEPROM (the order of steps 3 and 4 is not essential):

1. Wait until EEPE becomes zero.

2. Wait until SELFPRGEN in SPMCSR becomes zero.

3. Write new EEPROM address to EEAR (optional).

4. Write new EEPROM data to EEDR (optional).

5. Write a logical one to the EEMPE bit while writing a zero to EEPE in EECR.

6. Within four clock cycles after setting EEMPE, write a logical one to EEPE.

The EEPROM can not be programmed during a CPU write to the flash memory. The software must check that the flash
programming is completed before initiating a new EEPROM write. Step 2 is only relevant if the software contains a boot
loader allowing the CPU to program the flash. If the flash is never being updated by the CPU, step 2 can be omitted. See
Section 26. “Boot Loader Support – Read-While-Write Self-Programming” on page 229 for details about boot programming.

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the EEPROM master write enable
will time-out. If an interrupt routine accessing the EEPROM is interrupting another EEPROM access, the EEAR
or EEDR register will be modified, causing the interrupted EEPROM access to fail. It is recommended to have
the global interrupt flag cleared during all the steps to avoid these problems.

When the write access time has elapsed, the EEPE bit is cleared by hardware. The user software can poll this bit and wait
for a zero before writing the next byte. When EEPE has been set, the CPU is halted for two cycles before the next instruction
is executed.

• Bit 0 – EERE: EEPROM Read Enable

The EEPROM read enable signal EERE is the read strobe to the EEPROM. When the correct address is set up in the EEAR
register, the EERE bit must be written to a logic one to trigger the EEPROM read. The EEPROM read access takes one
instruction, and the requested data is available immediately. When the EEPROM is read, the CPU is halted for four cycles
before the next instruction is executed.

The user should poll the EEPE bit before starting the read operation. If a write operation is in progress, it is neither possible
to read the EEPROM, nor to change the EEAR register.

Table 7-1. EEPROM Mode Bits

EEPM1 EEPM0 Programming Time Operation

0 0 3.4ms Erase and write in one operation (atomic operation)

0 1 1.8ms Erase only

1 0 1.8ms Write only

1 1 – Reserved for future use

ATmega328P [DATASHEET]
7810D–AVR–01/15

22

The calibrated oscillator is used to time the EEPROM accesses. Table 7-2 lists the typical programming time for EEPROM
access from the CPU.

The following code examples show one assembly and one C function for writing to the EEPROM. The examples assume
that interrupts are controlled (e.g. by disabling interrupts globally) so that no interrupts will occur during execution of these
functions. The examples also assume that no flash boot loader is present in the software. If such code is present, the
EEPROM write function must also wait for any ongoing SPM command to finish.

Table 7-2. EEPROM Programming Time

Symbol Number of Calibrated RC Oscillator Cycles Typical Programming Time

EEPROM write (from
CPU)

26,368 3.3ms

Assembly Code Example

EEPROM_write:
; Wait for completion of previous write
sbic EECR,EEPE
rjmp EEPROM_write
; Set up address (r18:r17) in address register
out EEARH, r18
out EEARL, r17
; Write data (r16) to Data Register
out EEDR,r16
; Write logical one to EEMPE
sbi EECR,EEMPE
; Start eeprom write by setting EEPE
sbi EECR,EEPE
ret

C Code Example

void EEPROM_write(unsigned int uiAddress, unsigned char ucData)
{

/* Wait for completion of previous write */
while(EECR & (1<<EEPE))
;
/* Set up address and Data Registers */
EEAR = uiAddress;
EEDR = ucData;
/* Write logical one to EEMPE */
EECR |= (1<<EEMPE);
/* Start eeprom write by setting EEPE */
EECR |= (1<<EEPE);

}

23ATmega328P [DATASHEET]
7810D–AVR–01/15

The next code examples show assembly and C functions for reading the EEPROM. The examples assume that interrupts
are controlled so that no interrupts will occur during execution of these functions.

7.6.4 GPIOR2 – General Purpose I/O Register 2

7.6.5 GPIOR1 – General Purpose I/O Register 1

7.6.6 GPIOR0 – General Purpose I/O Register 0

Assembly Code Example

EEPROM_read:
; Wait for completion of previous write
sbic EECR,EEPE
rjmp EEPROM_read
; Set up address (r18:r17) in address register
out EEARH, r18
out EEARL, r17
; Start eeprom read by writing EERE
sbi EECR,EERE
; Read data from Data Register
in r16,EEDR
ret

C Code Example

unsigned char EEPROM_read(unsigned int uiAddress)
{

/* Wait for completion of previous write */
while(EECR & (1<<EEPE))
;
/* Set up address register */
EEAR = uiAddress;
/* Start eeprom read by writing EERE */
EECR |= (1<<EERE);
/* Return data from Data Register */
return EEDR;

}

Bit 7 6 5 4 3 2 1 0

0x2B (0x4B) MSB LSB GPIOR2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x2A (0x4A) MSB LSB GPIOR1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1E (0x3E) MSB LSB GPIOR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

ATmega328P [DATASHEET]
7810D–AVR–01/15

24

8. System Clock and Clock Options

8.1 Clock Systems and their Distribution

Figure 8-1 presents the principal clock systems in the AVR® and their distribution. All of the clocks need not be active at a
given time. In order to reduce power consumption, the clocks to modules not being used can be halted by using different
sleep modes, as described in Section 9. “Power Management and Sleep Modes” on page 34. The clock systems are detailed
below.

Figure 8-1. Clock Distribution

8.1.1 CPU Clock – clkCPU

The CPU clock is routed to parts of the system concerned with operation of the AVR core. Examples of such modules are
the general purpose register file, the status register and the data memory holding the stack pointer. Halting the CPU clock
inhibits the core from performing general operations and calculations.

8.1.2 I/O Clock – clkI/O

The I/O clock is used by the majority of the I/O modules, like Timer/Counters, SPI, and USART. The I/O clock is also used by
the external interrupt module, but note that some external interrupts are detected by asynchronous logic, allowing such
interrupts to be detected even if the I/O clock is halted. Also note that start condition detection in the USI module is carried
out asynchronously when clkI/O is halted, TWI address recognition in all sleep modes.

8.1.3 Flash Clock – clkFLASH

The flash clock controls operation of the flash interface. The flash clock is usually active simultaneously with the CPU clock.

Asynchronous
Timer/Counter

Flash and
EEPROM

Timer/Counter
Oscillator

Calibrated RC
Oscillator

Low-frequency
Crystal Oscillator

Crystal
Oscillator

Watchdog
Oscillator

System Clock
Prescaler

General I/O
Modules

AVR Clock
Control Unit

ADC

External Clock

CPU Core

Source clock Watchdog clock

RAM

Reset Logic Watchdog Timer

clkI/O

clkASY

clkCPU

clkADC

clkFLASH

Clock
Multiplexer

25ATmega328P [DATASHEET]
7810D–AVR–01/15

8.1.4 Asynchronous Timer Clock – clkASY

The asynchronous timer clock allows the asynchronous Timer/Counter to be clocked directly from an external clock or an
external 32kHz clock crystal. The dedicated clock domain allows using this Timer/Counter as a real-time counter even when
the device is in sleep mode.

8.1.5 ADC Clock – clkADC

The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O clocks in order to reduce noise
generated by digital circuitry. This gives more accurate ADC conversion results.

8.2 Clock Sources

The device has the following clock source options, selectable by flash fuse bits as shown below. The clock from the selected
source is input to the AVR® clock generator, and routed to the appropriate modules.

8.2.1 Default Clock Source

The device is shipped with internal RC oscillator at 8.0MHz and with the fuse CKDIV8 programmed, resulting in 1.0MHz
system clock. The startup time is set to maximum and time-out period enabled. (CKSEL = “0010”, SUT = “10”,
CKDIV8 = “0”). The default setting ensures that all users can make their desired clock source setting using any available
programming interface.

8.2.2 Clock Startup Sequence

Any clock source needs a sufficient VCC to start oscillating and a minimum number of oscillating cycles before it can be
considered stable.

To ensure sufficient VCC, the device issues an internal reset with a time-out delay (tTOUT) after the device reset is released by
all other reset sources. Section 10. “System Control and Reset” on page 40 describes the start conditions for the internal
reset. The delay (tTOUT) is timed from the watchdog oscillator and the number of cycles in the delay is set by the SUTx and
CKSELx fuse bits. The selectable delays are shown in Table 8-2. The frequency of the watchdog oscillator is voltage
dependent as shown in Section 29. “Typical Characteristics” on page 268.

Main purpose of the delay is to keep the AVR in reset until it is supplied with minimum VCC. The delay will not monitor the
actual voltage and it will be required to select a delay longer than the VCC rise time. If this is not possible, an internal or
external brown-out detection circuit should be used. A BOD circuit will ensure sufficient VCC before it releases the reset, and
the time-out delay can be disabled. Disabling the time-out delay without utilizing a brown-out detection circuit is not
recommended.

Table 8-1. Device Clocking Options Select(1)

Device Clocking Option CKSEL3..0

Low power crystal oscillator 1111 - 1000

Full swing crystal oscillator 0111 - 0110

Low frequency crystal oscillator 0101 - 0100

Internal 128kHz RC oscillator 0011

Calibrated internal RC oscillator 0010

External clock 0000

Reserved 0001

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.

Table 8-2. Number of Watchdog Oscillator Cycles

Typ Time-out (VCC = 5.0V) Typ Time-out (VCC = 3.0V) Number of Cycles

0ms 0ms 0

4.1ms 4.3ms 512

65ms 69ms 8K (8,192)

ATmega328P [DATASHEET]
7810D–AVR–01/15

26

The oscillator is required to oscillate for a minimum number of cycles before the clock is considered stable. An internal ripple
counter monitors the oscillator output clock, and keeps the internal reset active for a given number of clock cycles. The reset
is then released and the device will start to execute. The recommended oscillator start-up time is dependent on the clock
type, and varies from 6 cycles for an externally applied clock to 32K cycles for a low frequency crystal.

The start-up sequence for the clock includes both the time-out delay and the start-up time when the device starts up from
reset. When starting up from power-save or power-down mode, VCC is assumed to be at a sufficient level and only the
start-up time is included.

8.3 Low Power Crystal Oscillator

Pins XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be configured for use as an
on-chip oscillator, as shown in Figure 8-2. Either a quartz crystal or a ceramic resonator may be used.

This crystal oscillator is a low power oscillator, with reduced voltage swing on the XTAL2 output. It gives the lowest power
consumption, but is not capable of driving other clock inputs, and may be more susceptible to noise in noisy environments. In
these cases, refer to the Section 8.4 “Full Swing Crystal Oscillator” on page 27.

C1 and C2 should always be equal for both crystals and resonators. The optimal value of the capacitors depends on the
crystal or resonator in use, the amount of stray capacitance, and the electromagnetic noise of the environment. Some initial
guidelines for choosing capacitors for use with crystals are given in Table 8-3. For ceramic resonators, the capacitor values
given by the manufacturer should be used.

Figure 8-2. Crystal Oscillator Connections

The low power oscillator can operate in three different modes, each optimized for a specific frequency range. The operating
mode is selected by the fuses CKSEL3..1 as shown in Table 8-3.

Table 8-3. Low Power Crystal Oscillator Operating Modes(2)

 Frequency Range
(MHz)

Recommended Range for
Capacitors C1 and C2 (pF) CKSEL3..1

0.4 to 0.9 – 100(1)

0.9 to 3.0 12 to 22 101

3.0 to 8.0 12 to 22 110

8.0 to 16.0 12 to 22 111

Notes: 1. .This option should not be used with crystals, only with ceramic resonators.

2. If 8MHz frequency exceeds the specification of the device (depends on VCC), the CKDIV8 fuse can be
programmed in order to divide the internal frequency by 8. It must be ensured that the resulting divided clock
meets the frequency specification of the device.

C2

XTAL2 (TOSC2)

XTAL1 (TOSC1)

GND

C1

27ATmega328P [DATASHEET]
7810D–AVR–01/15

The CKSEL0 fuse together with the SUT1..0 fuses select the start-up times as shown in Table 8-4.

8.4 Full Swing Crystal Oscillator

Pins XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be configured for use as an
on-chip oscillator, as shown in Figure 8-2 on page 26. Either a quartz crystal or a ceramic resonator may be used.

This crystal oscillator is a full swing oscillator, with rail-to-rail swing on the XTAL2 output. This is useful for driving other clock
inputs and in noisy environments. The current consumption is higher than the Section 8.3 “Low Power Crystal Oscillator” on
page 26. Note that the full swing crystal oscillator will only operate for VCC = 2.7 to 5.5V.

C1 and C2 should always be equal for both crystals and resonators. The optimal value of the capacitors depends on the
crystal or resonator in use, the amount of stray capacitance, and the electromagnetic noise of the environment. Some initial
guidelines for choosing capacitors for use with crystals are given in Table 8-6 on page 28. For ceramic resonators, the
capacitor values given by the manufacturer should be used.

The operating mode is selected by the fuses CKSEL3..1 as shown in Table 8-5.

Table 8-4. Start-up Times for the Low Power Crystal Oscillator Clock Selection

Oscillator Source / Power
Conditions

Start-up Time from Power-
down and Power-save

Additional Delay from
Reset (VCC = 5.0V) CKSEL0 SUT1..0

Ceramic resonator, fast rising
power

258CK 14CK + 4.1ms(1) 0 00

Ceramic resonator, slowly rising
power

258CK 14CK + 65ms(1) 0 01

Ceramic resonator, BOD
enabled

1KCK 14CK(2) 0 10

Ceramic resonator, fast rising
power

1KCK 14CK + 4.1ms(2) 0 11

Ceramic resonator, slowly rising
power

1KCK 14CK + 65ms(2) 1 00

Crystal oscillator, BOD enabled 16KCK 14CK 1 01

Crystal oscillator, fast rising
power

16KCK 14CK + 4.1ms 1 10

Crystal oscillator, slowly rising
power

16KCK 14CK + 65ms 1 11

Notes: 1. These options should only be used when not operating close to the maximum frequency of the device, and
only if frequency stability at start-up is not important for the application. These options are not suitable for
crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency stability at start-up.
They can also be used with crystals when not operating close to the maximum frequency of the device, and if
frequency stability at start-up is not important for the application.

Table 8-5. Full Swing Crystal Oscillator operating modes(2)

Frequency Range(1) (MHz)
Recommended Range for
Capacitors C1 and C2 (pF) CKSEL3..1

0.4 - 16 12 - 22 011

Notes: 1. The frequency ranges are preliminary values. Actual values are TBD.

2. If 8MHz frequency exceeds the specification of the device (depends on VCC), the CKDIV8 fuse can be
programmed in order to divide the internal frequency by 8. It must be ensured that the resulting divided clock
meets the frequency specification of the device.

ATmega328P [DATASHEET]
7810D–AVR–01/15

28

Figure 8-3. Crystal Oscillator Connections

Table 8-6. Start-up Times for the Full Swing Crystal Oscillator Clock Selection

Oscillator Source /
Power Conditions

Start-up Time from Power-
down and Power-save

Additional Delay from
Reset (VCC = 5.0V) CKSEL0 SUT1..0

Ceramic resonator, fast rising
power

258CK 14CK + 4.1ms(1) 0 00

Ceramic resonator, slowly rising
power

258CK 14CK + 65ms(1) 0 01

Ceramic resonator, BOD
enabled

1KCK 14CK(2) 0 10

Ceramic resonator, fast rising
power

1KCK 14CK + 4.1ms(2) 0 11

Ceramic resonator, slowly rising
power

1KCK 14CK + 65ms(2) 1 00

Crystal oscillator, BOD enabled 16KCK 14CK 1 01

Crystal oscillator, fast rising
power

16KCK 14CK + 4.1ms 1 10

Crystal oscillator, slowly rising
power

16KCK 14CK + 65ms 1 11

Notes: 1. These options should only be used when not operating close to the maximum frequency of the device, and
only if frequency stability at start-up is not important for the application. These options are not suitable for
crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency stability at start-up.
They can also be used with crystals when not operating close to the maximum frequency of the device, and if
frequency stability at start-up is not important for the application.

C2

XTAL2 (TOSC2)

XTAL1 (TOSC1)

GND

C1

29ATmega328P [DATASHEET]
7810D–AVR–01/15

8.5 Low Frequency Crystal Oscillator

The low-frequency crystal oscillator is optimized for use with a 32.768kHz watch crystal. When selecting crystals, load
capacitance and crystal’s equivalent series resistance, ESR must be taken into consideration. Both values are specified by
the crystal vendor. ATmega328P oscillator is optimized for very low power consumption, and thus when selecting crystals,
see Table 8-7 for maximum ESR recommendations on 6.5pF, 9.0pF and 12.5pF crystals

The low-frequency crystal oscillator provides an internal load capacitance of typical 6pF at each TOSC pin. The external
capacitance (C) needed at each TOSC pin can be calculated by using:

where CL is the load capacitance for a 32.768kHz crystal specified by the crystal vendor and CS is the total stray
capacitance for one TOSC pin.

Crystals specifying load capacitance (CL) higher than 6pF, require external capacitors applied as described in
Figure 8-2 on page 26.

The low-frequency crystal oscillator must be selected by setting the CKSEL fuses to “0110” or “0111”, as shown in Table 8-9.
Start-up times are determined by the SUT fuses as shown in Table 8-8.

8.6 Calibrated Internal RC Oscillator

By default, the internal RC oscillator provides an approximate 8.0MHz clock. Though voltage and temperature dependent,
this clock can be very accurately calibrated by the user. See Table 28-1 on page 260 for more details. The device is shipped
with the CKDIV8 fuse programmed. See Section 8.11 “System Clock Prescaler” on page 32 for more details.

This clock may be selected as the system clock by programming the CKSEL fuses as shown in Table 8-10 on page 30. If
selected, it will operate with no external components. During reset, hardware loads the pre-programmed calibration value
into the OSCCAL register and thereby automatically calibrates the RC oscillator. The accuracy of this calibration is shown as
factory calibration in Table 28-1 on page 260.

Table 8-7. Maximum ESR Recommendation for 32.768 kHz Crystal

Crystal CL (pF) Max ESR [k](1)

6.5 75

9.0 65

12.5 30

Note: 1. Maximum ESR is typical value based on characterization

Table 8-8. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection

SUT1..0 Additional Delay from Reset (VCC = 5.0V) Recommended Usage

00 4CK Fast rising power or BOD enabled

01 4CK + 4.1ms Slowly rising power

10 4CK + 65ms Stable frequency at start-up

11 Reserved

Table 8-9. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection

CKSEL3..0
Start-up Time from

Power-down and Power-save Recommended Usage

0100(1) 1KCK

0101 32KCK Stable frequency at start-up
Note: 1. This option should only be used if frequency stability at start-up is not important for the application

C 2 CL CS–=

ATmega328P [DATASHEET]
7810D–AVR–01/15

30

By changing the OSCCAL register from SW, see Section 8.12.1 “OSCCAL – Oscillator Calibration Register” on page 32, it is
possible to get a higher calibration accuracy than by using the factory calibration. The accuracy of this calibration is shown
as User calibration in Table 28-1 on page 260.

When this oscillator is used as the chip clock, the watchdog oscillator will still be used for the watchdog timer and for the
reset time-out. For more information on the pre-programmed calibration value, see Section 27.4 “Calibration Byte” on page
244.

When this oscillator is selected, start-up times are determined by the SUT fuses as shown in Table 8-11.

8.7 128 kHz Internal Oscillator

The 128kHz internal oscillator is a low power oscillator providing a clock of 128kHz. The frequency is nominal at 3V and
25°C. This clock may be select as the system clock by programming the CKSEL fuses to “11” as shown in Table 8-12.

.

When this clock source is selected, start-up times are determined by the SUT fuses as shown in Table 8-13.

Table 8-10. Internal Calibrated RC Oscillator Operating Modes(1)(2)

Nominal Frequency (MHz) CKSEL3..0

8 0010

Notes: 1. The device is shipped with this option selected.

2. If 8MHz frequency exceeds the specification of the device (depends on VCC), the CKDIV8 fuse can be
programmed in order to divide the internal frequency by 8.

Table 8-11. Start-up Times for the Internal calibrated RC Oscillator Clock Selection

Power Conditions
Start-up Time from Power-down and

Power-save
Additional Delay from Reset

(VCC = 5.0V) SUT1..0

BOD enabled 6CK 14CK(1) 00

Fast rising power 6CK 14CK + 4.1ms 01

Slowly rising power 6CK 14CK + 65ms(2) 10

Reserved 11

Notes: 1. If the RSTDISBL fuse is programmed, this start-up time will be increased to
14CK + 4.1ms to ensure programming mode can be entered.

2. The device is shipped with this option selected.

Table 8-12. 128kHz Internal Oscillator Operating Modes

Nominal Frequency CKSEL3..0

128kHz 0011

Table 8-13. Start-up Times for the 128 kHz Internal Oscillator

Power Conditions
Start-up Time from Power-down and

Power-save Additional Delay from Reset SUT1..0

BOD enabled 6CK 14CK(1) 00

Fast rising power 6CK 14CK + 4ms 01

Slowly rising power 6CK 14CK + 64ms 10

Reserved 11

Note: 1. If the RSTDISBL fuse is programmed, this start-up time will be increased to
14CK + 4.1ms to ensure programming mode can be entered.

31ATmega328P [DATASHEET]
7810D–AVR–01/15

8.8 External Clock

To drive the device from an external clock source, XTAL1 should be driven as shown in Figure 8-4. To run the device on an
external clock, the CKSEL fuses must be programmed to “0000” (see Table 8-14).

Figure 8-4. External Clock Drive Configuration

When this clock source is selected, start-up times are determined by the SUT fuses as shown in Table 8-15.

When applying an external clock, it is required to avoid sudden changes in the applied clock frequency to ensure stable
operation of the MCU. A variation in frequency of more than 2% from one clock cycle to the next can lead to unpredictable
behavior. If changes of more than 2% is required, ensure that the MCU is kept in reset during the changes.

Note that the system clock prescaler can be used to implement run-time changes of the internal clock frequency while still
ensuring stable operation. Refer to Section 8.11 “System Clock Prescaler” on page 32 for details.

8.9 Clock Output Buffer

The device can output the system clock on the CLKO pin. To enable the output, the CKOUT fuse has to be programmed.
This mode is suitable when the chip clock is used to drive other circuits on the system. The clock also will be output during
reset, and the normal operation of I/O pin will be overridden when the fuse is programmed. Any clock source, including the
internal RC oscillator, can be selected when the clock is output on CLKO. If the system clock prescaler is used, it is the
divided system clock that is output.

Table 8-14. Crystal Oscillator Clock Frequency

Frequency CKSEL3..0

0 to 16MHz 0000

Table 8-15. Start-up Times for the External Clock Selection

Power Conditions
Start-up Time from Power-down and

Power-save
Additional Delay from Reset

(VCC = 5.0V) SUT1..0

BOD enabled 6CK 14CK 00

Fast rising power 6CK 14CK + 4.1ms 01

Slowly rising power 6CK 14CK + 65ms 10

Reserved 11

XTAL2

XTAL1

GND

NC

EXTERNAL
CLOCK
SIGNAL

ATmega328P [DATASHEET]
7810D–AVR–01/15

32

8.10 Timer/Counter Oscillator

Atmel® ATmega328P uses the same crystal oscillator for low-frequency oscillator and Timer/Counter oscillator. See Section
8.5 “Low Frequency Crystal Oscillator” on page 29 for details on the oscillator and crystal requirements.

Atmel ATmega328P share the Timer/Counter oscillator pins (TOSC1 and TOSC2) with XTAL1 and XTAL2. When using the
Timer/Counter oscillator, the system clock needs to be four times the oscillator frequency. Due to this and the pin sharing,
the Timer/Counter oscillator can only be used when the calibrated internal RC oscillator is selected as system clock source.

Applying an external clock source to TOSC1 can be done if EXTCLK in the ASSR register is written to logic one. See Section
17.9 “Asynchronous Operation of Timer/Counter2” on page 126 for further description on selecting external clock as input
instead of a 32.768kHz watch crystal.

8.11 System Clock Prescaler

The Atmel ATmega328P has a system clock prescaler, and the system clock can be divided by setting the Section 8.12.2
“CLKPR – Clock Prescale Register” on page 33. This feature can be used to decrease the system clock frequency and the
power consumption when the requirement for processing power is low. This can be used with all clock source options, and it
will affect the clock frequency of the CPU and all synchronous peripherals. clkI/O, clkADC, clkCPU, and clkFLASH are divided by
a factor as shown in Table 28-4 on page 261.

When switching between prescaler settings, the system clock prescaler ensures that no glitches occurs in the clock system.
It also ensures that no intermediate frequency is higher than neither the clock frequency corresponding to the previous
setting, nor the clock frequency corresponding to the new setting. The ripple counter that implements the prescaler runs at
the frequency of the undivided clock, which may be faster than the CPU's clock frequency. Hence, it is not possible to
determine the state of the prescaler - even if it were readable, and the exact time it takes to switch from one clock division to
the other cannot be exactly predicted. From the time the CLKPS values are written, it takes between T1 + T2 and
T1 + 2  T2 before the new clock frequency is active. In this interval, 2 active clock edges are produced. Here, T1 is the
previous clock period, and T2 is the period corresponding to the new prescaler setting.

To avoid unintentional changes of clock frequency, a special write procedure must be followed to change the CLKPS bits:

1. Write the clock prescaler change enable (CLKPCE) bit to one and all other bits in CLKPR to zero.

2. Within four cycles, write the desired value to CLKPS while writing a zero to CLKPCE.

Interrupts must be disabled when changing prescaler setting to make sure the write procedure is not interrupted.

8.12 Register Description

8.12.1 OSCCAL – Oscillator Calibration Register

• Bits 7..0 – CAL7..0: Oscillator Calibration Value

The oscillator calibration register is used to trim the calibrated internal RC oscillator to remove process variations from the
oscillator frequency. A pre-programmed calibration value is automatically written to this register during chip reset, giving the
factory calibrated frequency as specified in Table 28-1 on page 260. The application software can write this register to
change the oscillator frequency. The oscillator can be calibrated to frequencies as specified in Table 28-1 on page 260.
Calibration outside that range is not guaranteed.

Note that this oscillator is used to time EEPROM and flash write accesses, and these write times will be affected accordingly.
If the EEPROM or flash are written, do not calibrate to more than 8.8MHz. Otherwise, the EEPROM or flash write may fail.

The CAL7 bit determines the range of operation for the oscillator. Setting this bit to 0 gives the lowest frequency range,
setting this bit to 1 gives the highest frequency range. The two frequency ranges are overlapping, in other words a setting of
OSCCAL = 0x7F gives a higher frequency than OSCCAL = 0x80.

The CAL6..0 bits are used to tune the frequency within the selected range. A setting of 0x00 gives the lowest frequency in
that range, and a setting of 0x7F gives the highest frequency in the range.

Bit 7 6 5 4 3 2 1 0

(0x66) CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 OSCCAL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value Device Specific Calibration Value

33ATmega328P [DATASHEET]
7810D–AVR–01/15

8.12.2 CLKPR – Clock Prescale Register

• Bit 7 – CLKPCE: Clock Prescaler Change Enable

The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The CLKPCE bit is only updated when the
other bits in CLKPR are simultaneously written to zero. CLKPCE is cleared by hardware four cycles after it is written or when
CLKPS bits are written. Rewriting the CLKPCE bit within this time-out period does neither extend the time-out period, nor
clear the CLKPCE bit.

• Bits 3..0 – CLKPS3..0: Clock Prescaler Select Bits 3 - 0

These bits define the division factor between the selected clock source and the internal system clock. These bits can be
written run-time to vary the clock frequency to suit the application requirements. As the divider divides the master clock input
to the MCU, the speed of all synchronous peripherals is reduced when a division factor is used. The division factors are
given in Table 8-16.

The CKDIV8 fuse determines the initial value of the CLKPS bits. If CKDIV8 is unprogrammed, the CLKPS bits will be reset to
“0000”. If CKDIV8 is programmed, CLKPS bits are reset to “0011”, giving a division factor of 8 at start up. This feature should
be used if the selected clock source has a higher frequency than the maximum frequency of the device at the present
operating conditions. Note that any value can be written to the CLKPS bits regardless of the CKDIV8 fuse setting. The
application software must ensure that a sufficient division factor is chosen if the selected clock source has a higher
frequency than the maximum frequency of the device at the present operating conditions. The device is shipped with the
CKDIV8 fuse programmed.

Bit 7 6 5 4 3 2 1 0

(0x61) CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 CLKPR

Read/Write R/W R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 See Bit Description

Table 8-16. Clock Prescaler Select

CLKPS3 CLKPS2 CLKPS1 CLKPS0 Clock Division Factor

0 0 0 0 1

0 0 0 1 2

0 0 1 0 4

0 0 1 1 8

0 1 0 0 16

0 1 0 1 32

0 1 1 0 64

0 1 1 1 128

1 0 0 0 256

1 0 0 1 Reserved

1 0 1 0 Reserved

1 0 1 1 Reserved

1 1 0 0 Reserved

1 1 0 1 Reserved

1 1 1 0 Reserved

1 1 1 1 Reserved

ATmega328P [DATASHEET]
7810D–AVR–01/15

34

9. Power Management and Sleep Modes

Sleep modes enable the application to shut down unused modules in the MCU, thereby saving power. The AVR® provides
various sleep modes allowing the user to tailor the power consumption to the application’s requirements.

When enabled, the brown-out detector (BOD) actively monitors the power supply voltage during the sleep periods. To further
save power, it is possible to disable the BOD in some sleep modes. See Section 9.2 “BOD Disable” on page 35 for more
details.

9.1 Sleep Modes

Figure 8-1 on page 24 presents the different clock systems in the Atmel® ATmega328P, and their distribution. The figure is
helpful in selecting an appropriate sleep mode. Table 9-1 shows the different sleep modes, their wake up sources BOD
disable ability.

To enter any of the six sleep modes, the SE bit in SMCR must be written to logic one and a SLEEP instruction must be
executed. The SM2, SM1, and SM0 bits in the SMCR register select which sleep mode (idle, ADC noise reduction, power-
down, power-save, standby, or extended standby) will be activated by the SLEEP instruction. See Table 9-2 on page 38 for a
summary.

If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU is then halted for four cycles
in addition to the start-up time, executes the interrupt routine, and resumes execution from the instruction following SLEEP.
The contents of the register file and SRAM are unaltered when the device wakes up from sleep. If a reset occurs during
sleep mode, the MCU wakes up and executes from the reset vector.

Table 9-1. Active Clock Domains and Wake-up Sources in the Different Sleep Modes.

Sleep Mode

Active Clock Domains Oscillators Wake-up Sources

S
o

ft
w

ar
e

B
O

D
 D

is
ab

le

cl
k C

P
U

cl
k F

L
A

S
H

cl
k I

O

cl
k A

D
C

cl
k A

S
Y

M
ai

n
 C

lo
ck

S

o
u

rc
e

E
n

ab
le

d

Ti
m

er
 O

sc
ill

at
o

r
E

n
ab

le
d

IN
T

1,
 IN

T
0

an
d

P

in
 C

h
an

g
e

T
W

I A
d

d
re

ss

M
at

ch

Ti
m

er
2

S
P

M
/E

E
P

R
O

M
R

ea
d

y

A
D

C

W
D

T

O
th

er
/O

Idle X X X X X(2) X X X X X X X

ADC noise
Reduction

X X X X(2) X(3) X X(2) X X X

Power-down X(3) X X X

Power-save X X(2) X(3) X X X X

Standby(1) X X(3) X X X

Extended
Standby

X(2) X X(2) X(3) X X X X

Notes: 1. Only recommended with external crystal or resonator selected as clock source.

2. If Timer/Counter2 is running in asynchronous mode.

3. For INT1 and INT0, only level interrupt.

35ATmega328P [DATASHEET]
7810D–AVR–01/15

9.2 BOD Disable

When the brown-out detector (BOD) is enabled by BODLEVEL fuses, Table 27-7 on page 244, the BOD is actively
monitoring the power supply voltage during a sleep period. To save power, it is possible to disable the BOD by software for
some of the sleep modes, see Table 9-1 on page 34. The sleep mode power consumption will then be at the same level as
when BOD is globally disabled by fuses. If BOD is disabled in software, the BOD function is turned off immediately after
entering the sleep mode. Upon wake-up from sleep, BOD is automatically enabled again. This ensures safe operation in
case the VCC level has dropped during the sleep period.

When the BOD has been disabled, the wake-up time from sleep mode will be approximately 60µs to ensure that the BOD is
working correctly before the MCU continues executing code.

BOD disable is controlled by bit 6, BODS (BOD Sleep) in the control register MCUCR, see Section 9.11.2 “MCUCR – MCU
Control Register” on page 38. Writing this bit to one turns off the BOD in relevant sleep modes, while a zero in this bit keeps
BOD active. Default setting keeps BOD active, i.e. BODS set to zero.

Writing to the BODS bit is controlled by a timed sequence and an enable bit, see Section 9.11.2 “MCUCR – MCU Control
Register” on page 38.

9.3 Idle Mode

When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter idle mode, stopping the CPU but
allowing the SPI, USART, analog comparator, ADC, 2-wire serial interface, Timer/Counters, watchdog, and the interrupt
system to continue operating. This sleep mode basically halts clkCPU and clkFLASH, while allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal ones like the timer overflow and
USART transmit complete interrupts. If wake-up from the analog comparator interrupt is not required, the analog comparator
can be powered down by setting the ACD bit in the analog comparator control and status register – ACSR. This will reduce
power consumption in idle mode. If the ADC is enabled, a conversion starts automatically when this mode is entered.

9.4 ADC Noise Reduction Mode

When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC noise reduction mode, stopping
the CPU but allowing the ADC, the external interrupts, the 2-wire serial interface address watch, Timer/Counter2(1), and the
watchdog to continue operating (if enabled). This sleep mode basically halts clkI/O, clkCPU, and clkFLASH, while allowing the
other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If the ADC is enabled, a
conversion starts automatically when this mode is entered. Apart from the ADC conversion complete interrupt, only an
external reset, a watchdog system reset, a watchdog interrupt, a brown-out reset, a 2-wire serial interface address match, a
Timer/Counter2 interrupt, an SPM/EEPROM ready interrupt, an external level interrupt on INT0 or INT1 or a pin change
interrupt can wake up the MCU from ADC noise reduction mode.

Note: 1. Timer/Counter2 will only keep running in asynchronous mode, see Section 17. “8-bit Timer/Counter2 with
PWM and Asynchronous Operation” on page 116 for details.

9.5 Power-down Mode

When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter power-down mode. In this mode, the
external oscillator is stopped, while the external interrupts, the 2-wire serial interface address watch, and the watchdog
continue operating (if enabled). Only an external reset, a watchdog system reset, a watchdog interrupt, a brown-out reset, a
2-wire serial interface address match, an external level interrupt on INT0 or INT1, or a pin change interrupt can wake up the
MCU. This sleep mode basically halts all generated clocks, allowing operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from power-down mode, the changed level must be held for some
time to wake up the MCU. Refer to Section 12. “External Interrupts” on page 53 for details.

When waking up from power-down mode, there is a delay from the wake-up condition occurs until the wake-up becomes
effective. This allows the clock to restart and become stable after having been stopped. The wake-up period is defined by the
same CKSEL fuses that define the reset time-out period, as described in Section 8.2 “Clock Sources” on page 25.

ATmega328P [DATASHEET]
7810D–AVR–01/15

36

9.6 Power-save Mode

When the SM2..0 bits are written to 011, the SLEEP instruction makes the MCU enter power-save mode. This mode is
identical to power-down, with one exception:

If Timer/Counter2 is enabled, it will keep running during sleep. The device can wake up from either timer overflow or output
compare event from Timer/Counter2 if the corresponding Timer/Counter2 interrupt enable bits are set in TIMSK2, and the
global interrupt enable bit in SREG is set.

If Timer/Counter2 is not running, power-down mode is recommended instead of power-save mode.

The Timer/Counter2 can be clocked both synchronously and asynchronously in power-save mode. If Timer/Counter2 is not
using the asynchronous clock, the Timer/Counter oscillator is stopped during sleep. If Timer/Counter2 is not using the
synchronous clock, the clock source is stopped during sleep. Note that even if the synchronous clock is running in
power-save, this clock is only available for Timer/Counter2.

9.7 Standby Mode

When the SM2..0 bits are 110 and an external crystal/resonator clock option is selected, the SLEEP instruction makes the
MCU enter standby mode. This mode is identical to power-down with the exception that the oscillator is kept running. from
standby mode, the device wakes up in six clock cycles.

9.8 Extended Standby Mode

When the SM2..0 bits are 111 and an external crystal/resonator clock option is selected, the SLEEP instruction makes the
MCU enter extended standby mode. This mode is identical to power-save with the exception that the oscillator is kept
running. From extended standby mode, the device wakes up in six clock cycles.

9.9 Power Reduction Register

The power reduction register (PRR), see Section 9.11.3 “PRR – Power Reduction Register” on page 38, provides a method
to stop the clock to individual peripherals to reduce power consumption. The current state of the peripheral is frozen and the
I/O registers can not be read or written. Resources used by the peripheral when stopping the clock will remain occupied,
hence the peripheral should in most cases be disabled before stopping the clock. Waking up a module, which is done by
clearing the bit in PRR, puts the module in the same state as before shutdown.

Module shutdown can be used in Idle mode and active mode to significantly reduce the overall power consumption. In all
other sleep modes, the clock is already stopped.

9.10 Minimizing Power Consumption

There are several possibilities to consider when trying to minimize the power consumption in an AVR® controlled system. In
general, sleep modes should be used as much as possible, and the sleep mode should be selected so that as few as
possible of the device’s functions are operating. All functions not needed should be disabled. In particular, the following
modules may need special consideration when trying to achieve the lowest possible power consumption.

9.10.1 Analog to Digital Converter

If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be disabled before entering any
sleep mode. When the ADC is turned off and on again, the next conversion will be an extended conversion. Refer to Section
23. “Analog-to-Digital Converter” on page 205 for details on ADC operation.

9.10.2 Analog Comparator

When entering Idle mode, the analog comparator should be disabled if not used. When entering ADC noise reduction mode,
the analog comparator should be disabled. In other sleep modes, the analog comparator is automatically disabled. However,
if the analog comparator is set up to use the internal voltage reference as input, the analog comparator should be disabled in
all sleep modes. Otherwise, the internal voltage reference will be enabled, independent of sleep mode. Refer to Section 22.
“Analog Comparator” on page 202 for details on how to configure the analog comparator.

37ATmega328P [DATASHEET]
7810D–AVR–01/15

9.10.3 Brown-out Detector

If the brown-out detector is not needed by the application, this module should be turned off. If the brown-out detector is
enabled by the BODLEVEL fuses, it will be enabled in all sleep modes, and hence, always consume power. In the deeper
sleep modes, this will contribute significantly to the total current consumption. Refer to Section 10.5 “Brown-out Detection”
on page 42 for details on how to configure the brown-out detector.

9.10.4 Internal Voltage Reference

The internal voltage reference will be enabled when needed by the brown-out detection, the analog comparator or the ADC.
If these modules are disabled as described in the sections above, the internal voltage reference will be disabled and it will
not be consuming power. When turned on again, the user must allow the reference to start up before the output is used. If
the reference is kept on in sleep mode, the output can be used immediately. Refer to Section 10.7 “Internal Voltage
Reference” on page 43 for details on the start-up time.

9.10.5 Watchdog Timer

If the watchdog timer is not needed in the application, the module should be turned off. If the watchdog timer is enabled, it
will be enabled in all sleep modes and hence always consume power. In the deeper sleep modes, this will contribute
significantly to the total current consumption. Refer to Section 10.8 “Watchdog Timer” on page 43 for details on how to
configure the watchdog timer.

9.10.6 Port Pins

When entering a sleep mode, all port pins should be configured to use minimum power. The most important is then to ensure
that no pins drive resistive loads. In sleep modes where both the I/O clock (clkI/O) and the ADC clock (clkADC) are stopped,
the input buffers of the device will be disabled. This ensures that no power is consumed by the input logic when not needed.
In some cases, the input logic is needed for detecting wake-up conditions, and it will then be enabled. Refer to the Section
13.2.5 “Digital Input Enable and Sleep Modes” on page 62 for details on which pins are enabled. If the input buffer is enabled
and the input signal is left floating or have an analog signal level close to VCC/2, the input buffer will use excessive power.

For analog input pins, the digital input buffer should be disabled at all times. An analog signal level close to VCC/2 on an input
pin can cause significant current even in active mode. Digital input buffers can be disabled by writing to the digital input
disable registers (DIDR1 and DIDR0). Refer to Section 22.3.3 “DIDR1 – Digital Input Disable Register 1” on page 204 and
Section 23.9.5 “DIDR0 – Digital Input Disable Register 0” on page 220 for details.

9.10.7 On-chip Debug System

If the on-chip debug system is enabled by the DWEN fuse and the chip enters sleep mode, the main clock source is enabled
and hence always consumes power. In the deeper sleep modes, this will contribute significantly to the total current
consumption.

9.11 Register Description

9.11.1 SMCR – Sleep Mode Control Register

The sleep mode control register contains control bits for power management.

• Bits 7..4 Res: Reserved Bits

These bits are unused bits in the Atmel® ATmega328P, and will always read as zero.

Bit 7 6 5 4 3 2 1 0

0x33 (0x53) – – – – SM2 SM1 SM0 SE SMCR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

ATmega328P [DATASHEET]
7810D–AVR–01/15

38

• Bits 3..1 – SM2..0: Sleep Mode Select Bits 2, 1, and 0

These bits select between the five available sleep modes as shown in Table 9-2 on page 38.

• Bit 0 – SE: Sleep Enable

The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP instruction is executed. To
avoid the MCU entering the sleep mode unless it is the programmer’s purpose, it is recommended to write the sleep enable
(SE) bit to one just before the execution of the SLEEP instruction and to clear it immediately after waking up.

9.11.2 MCUCR – MCU Control Register

• Bit 6 – BODS: BOD Sleep

The BODS bit must be written to logic one in order to turn off BOD during sleep, see Table 9-1 on page 34. Writing to the
BODS bit is controlled by a timed sequence and an enable bit, BODSE in MCUCR. To disable BOD in relevant sleep modes,
both BODS and BODSE must first be set to one. Then, to set the BODS bit, BODS must be set to one and BODSE must be
set to zero within four clock cycles.

The BODS bit is active three clock cycles after it is set. A sleep instruction must be executed while BODS is active in order to
turn off the BOD for the actual sleep mode. The BODS bit is automatically cleared after three clock cycles.

• Bit 5 – BODSE: BOD Sleep Enable

BODSE enables setting of BODS control bit, as explained in BODS bit description. BOD disable is controlled by a timed
sequence.

9.11.3 PRR – Power Reduction Register

• Bit 7 - PRTWI: Power Reduction TWI

Writing a logic one to this bit shuts down the TWI by stopping the clock to the module. When waking up the TWI again, the
TWI should be re initialized to ensure proper operation.

Table 9-2. Sleep Mode Select

SM2 SM1 SM0 Sleep Mode

0 0 0 Idle

0 0 1 ADC noise reduction

0 1 0 Power-down

0 1 1 Power-save

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Standby(1)

1 1 1 External standby(1)

Note: 1. Standby mode is only recommended for use with external crystals or resonators.

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) – BODS BODSE PUD – – IVSEL IVCE MCUCR

Read/Write R R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x64) PRTWI PRTIM2 PRTIM0 – PRTIM1 PRSPI PRUSART0 PRADC PRR

Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

39ATmega328P [DATASHEET]
7810D–AVR–01/15

• Bit 6 - PRTIM2: Power Reduction Timer/Counter2

Writing a logic one to this bit shuts down the Timer/Counter2 module in synchronous mode (AS2 is 0). When the
Timer/Counter2 is enabled, operation will continue like before the shutdown.

• Bit 5 - PRTIM0: Power Reduction Timer/Counter0

Writing a logic one to this bit shuts down the Timer/Counter0 module. When the Timer/Counter0 is enabled, operation will
continue like before the shutdown.

• Bit 4 - Res: Reserved bit

This bit is reserved in Atmel® ATmega328P and will always read as zero.

• Bit 3 - PRTIM1: Power Reduction Timer/Counter1

Writing a logic one to this bit shuts down the Timer/Counter1 module. When the Timer/Counter1 is enabled, operation will
continue like before the shutdown.

• Bit 2 - PRSPI: Power Reduction Serial Peripheral Interface

If using debugWIRE on-chip debug system, this bit should not be written to one.

Writing a logic one to this bit shuts down the serial peripheral interface by stopping the clock to the module. When waking up
the SPI again, the SPI should be re initialized to ensure proper operation.

• Bit 1 - PRUSART0: Power Reduction USART0

Writing a logic one to this bit shuts down the USART by stopping the clock to the module. When waking up the USART
again, the USART should be re initialized to ensure proper operation.

• Bit 0 - PRADC: Power Reduction ADC

Writing a logic one to this bit shuts down the ADC. The ADC must be disabled before shut down. The analog comparator
cannot use the ADC input MUX when the ADC is shut down.

ATmega328P [DATASHEET]
7810D–AVR–01/15

40

10. System Control and Reset

10.1 Resetting the AVR

During reset, all I/O registers are set to their initial values, and the program starts execution from the reset vector. For the
Atmel® ATmega328P, the instruction placed at the reset vector must be an RJMP – relative jump – instruction to the reset
handling routine. If the program never enables an interrupt source, the interrupt vectors are not used, and regular program
code can be placed at these locations. This is also the case if the reset vector is in the application section while the interrupt
vectors are in the boot section. The circuit diagram in Figure 10-1 shows the reset logic. Table 28-4 on page 261 defines the
electrical parameters of the reset circuitry. The I/O ports of the AVR® are immediately reset to their initial state when a reset
source goes active. This does not require any clock source to be running. After all reset sources have gone inactive, a delay
counter is invoked, stretching the internal reset. This allows the power to reach a stable level before normal operation starts.
The time-out period of the delay counter is defined by the user through the SUT and CKSEL fuses. The different selections
for the delay period are presented in Section 8.2 “Clock Sources” on page 25.

10.2 Reset Sources

The Atmel ATmega328P has four sources of reset:

● Power-on reset. The MCU is reset when the supply voltage is below the power-on reset threshold (VPOT).

● External reset. The MCU is reset when a low level is present on the RESET pin for longer than the minimum pulse
length.

● Watchdog system reset. The MCU is reset when the watchdog timer period expires and the watchdog system reset
mode is enabled.

● Brown-out reset. The MCU is reset when the supply voltage VCC is below the brown-out reset threshold (VBOT) and the
brown-out detector is enabled.

Figure 10-1. Reset Logic

Power-on Reset
Circuit

Brown-out
Reset Circuit

MCU Status
Register (MCUSR)

Reset Circuit
Pull-up Resistor

BODLEVEL [2..0]

S
Q

R

DATA BUS

CK

SUT[1:0]

CKSEL[3:0]

RSTDISBL C
O

U
N

TE
R

 R
E

S
E

T IN
TE

R
N

A
L

R
E

S
E

T

TIMEOUT

SPIKE
FILTERRESET

VCC

Delay Counters

Watchdog
Timer

Watchdog
Oscillator

Clock
Generator

P
O

R
F

B
O

R
F

W
D

R
F

E
X

TR
F

41ATmega328P [DATASHEET]
7810D–AVR–01/15

10.3 Power-on Reset

A power-on reset (POR) pulse is generated by an on-chip detection circuit. The detection level is defined in Section 28.6
“System and Reset Characteristics” on page 261. The POR is activated whenever VCC is below the detection level. The POR
circuit can be used to trigger the start-up reset, as well as to detect a failure in supply voltage.

A power-on reset (POR) circuit ensures that the device is reset from power-on. Reaching the power-on reset threshold
voltage invokes the delay counter, which determines how long the device is kept in RESET after VCC rise. The RESET signal
is activated again, without any delay, when VCC decreases below the detection level.

Figure 10-2. MCU Start-up, RESET Tied to VCC

Figure 10-3. . MCU Start-up, RESET Extended Externally

Table 10-1. Power On Reset Specifications

Symbol Parameter Min Typ Max Units

VPOT

Power-on reset threshold voltage (rising) 1.4 V

Power-on reset threshold voltage (falling)(1) 1.0 1.3 1.6 V

VPORMAX
VCC Max. start voltage to ensure internal power-on reset
signal

0.4 V

VPORMIN
VCC Min. start voltage to ensure internal power-on reset
signal

-0.1 V

VCCRR VCC rise rate to ensure power-on reset 0.01 V/ms

Note: 1. Before rising, the supply has to be between VPORMIN and VPORMAX to ensure a reset

VPOT

VRST

VCC

RESET

Internal
Reset

Time-out

tTOUT

VCC

RESET

Internal
Reset

Time-out

VRST

tTOUT

VPOT

ATmega328P [DATASHEET]
7810D–AVR–01/15

42

10.4 External Reset

An external reset is generated by a low level on the RESET pin. Reset pulses longer than the minimum pulse width (see
Section 28.6 “System and Reset Characteristics” on page 261) will generate a reset, even if the clock is not running. Shorter
pulses are not guaranteed to generate a reset. When the applied signal reaches the reset threshold voltage – VRST – on its
positive edge, the delay counter starts the MCU after the time-out period – tTOUT – has expired. The external reset can be
disabled by the RSTDISBL fuse, see Table 27-7 on page 244.

Figure 10-4. External Reset During Operation

10.5 Brown-out Detection

Atmel® ATmega328P has an on-chip brown-out detection (BOD) circuit for monitoring the VCC level during operation by
comparing it to a fixed trigger level. The trigger level for the BOD can be selected by the BODLEVEL fuses. The trigger level
has a hysteresis to ensure spike free brown-out detection. The hysteresis on the detection level should be interpreted as
VBOT+ = VBOT + VHYST/2 and VBOT– = VBOT – VHYST/2.When the BOD is enabled, and VCC decreases to a value below the
trigger level (VBOT- in Figure 10-5), the brown-out reset is immediately activated. When VCC increases above the trigger level
(VBOT+ in Figure 10-5), the delay counter starts the MCU after the time-out period tTOUT has expired.

The BOD circuit will only detect a drop in VCC if the voltage stays below the trigger level for longer than tBOD given in Section
28.6 “System and Reset Characteristics” on page 261.

Figure 10-5. Brown-out Reset During Operation

tTOUT

RESET

VCC

INTERNAL
RESET

TIME-OUT

VRST

VBOT-

VBOT+

tTOUT

VCC

RESET

INTERNAL
RESET

TIME-OUT

43ATmega328P [DATASHEET]
7810D–AVR–01/15

10.6 Watchdog System Reset

When the watchdog times out, it will generate a short reset pulse of one CK cycle duration. On the falling edge of this pulse,
the delay timer starts counting the time-out period tTOUT. Refer to Section 10.8 “Watchdog Timer” on page 43 for details on
operation of the watchdog timer.

Figure 10-6. Watchdog System Reset During Operation

10.7 Internal Voltage Reference

Atmel® ATmega328P features an internal bandgap reference. This reference is used for brown-out detection, and it can be
used as an input to the analog comparator or the ADC.

10.7.1 Voltage Reference Enable Signals and Start-up Time

The voltage reference has a start-up time that may influence the way it should be used. The start-up time is given in Section
28.6 “System and Reset Characteristics” on page 261. To save power, the reference is not always turned on. The reference
is on during the following situations:

1. When the BOD is enabled (by programming the BODLEVEL [2:0] Fuses).

2. When the bandgap reference is connected to the analog comparator (by setting the ACBG bit in ACSR).

3. When the ADC is enabled.

Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user must always allow the
reference to start up before the output from the analog comparator or ADC is used. To reduce power consumption in
power-down mode, the user can avoid the three conditions above to ensure that the reference is turned off before entering
power-down mode.

10.8 Watchdog Timer

10.8.1 Features

● Clocked from separate on-chip oscillator

● 3 operating modes

● Interrupt

● System reset

● Interrupt and system reset

● Selectable time-out period from 16ms to 8s

● Possible hardware fuse watchdog always on (WDTON) for fail-safe mode

1 CK Cycle

VCC

RESET

INTERNAL
RESET

RESET
Time-OUT

WDT
TIME-OUT

tTOUT

ATmega328P [DATASHEET]
7810D–AVR–01/15

44

10.8.2 Overview

Atmel® ATmega328P has an enhanced watchdog timer (WDT). The WDT is a timer counting cycles of a separate on-chip
128kHz oscillator. The WDT gives an interrupt or a system reset when the counter reaches a given time-out value. In normal
operation mode, it is required that the system uses the WDR - watchdog timer reset - instruction to restart the counter before
the time-out value is reached. If the system doesn't restart the counter, an interrupt or system reset will be issued.

Figure 10-7. Watchdog Timer

In interrupt mode, the WDT gives an interrupt when the timer expires. This interrupt can be used to wake the device from
sleep-modes, and also as a general system timer. One example is to limit the maximum time allowed for certain operations,
giving an interrupt when the operation has run longer than expected. In system reset mode, the WDT gives a reset when the
timer expires. This is typically used to prevent system hang-up in case of runaway code. The third mode, Interrupt and
system reset mode, combines the other two modes by first giving an interrupt and then switch to system reset mode. This
mode will for instance allow a safe shutdown by saving critical parameters before a system reset.

The watchdog always on (WDTON) fuse, if programmed, will force the watchdog timer to system reset mode. With the fuse
programmed the system reset mode bit (WDE) and interrupt mode bit (WDIE) are locked to 1 and 0 respectively. To further
ensure program security, alterations to the watchdog set-up must follow timed sequences.

The sequence for clearing WDE and changing time-out configuration is as follows:

1. In the same operation, write a logic one to the watchdog change enable bit (WDCE) and WDE. A logic one must
be written to WDE regardless of the previous value of the WDE bit.

2. Within the next four clock cycles, write the WDE and watchdog prescaler bits (WDP) as desired, but with the
WDCE bit cleared. This must be done in one operation.

O
S

C
/6

4K

O
S

C
/1

6K

O
S

C
/2

K

O
S

C
/4

K

O
S

C
/8

K

O
S

C
/3

2K

O
S

C
/1

28
K

O
S

C
/2

56
K

O
S

C
/5

12
K

O
S

C
/1

02
4K

Watchdog
Prescaler

WDP0

WDE

WATCHDOG
RESET

WDIF

WDIE

WDP1
WDP2
WDP3

MCU RESET

INTERRUPT

128kHz
Oscillator

45ATmega328P [DATASHEET]
7810D–AVR–01/15

The following code example shows one assembly and one C function for turning off the watchdog timer. The example
assumes that interrupts are controlled (e.g. by disabling interrupts globally) so that no interrupts will occur during the
execution of these functions.

Note: 1. See Section 5. “About Code Examples” on page 8.

2. Note: If the watchdog is accidentally enabled, for example by a runaway pointer or brown-out condition, the
device will be reset and the watchdog timer will stay enabled. If the code is not set up to handle the watchdog,
this might lead to an eternal loop of time-out resets. To avoid this situation, the application software should
always clear the watchdog system reset flag (WDRF) and the WDE control bit in the initialization routine, even
if the watchdog is not in use.

Assembly Code Example(1)

WDT_off:
; Turn off global interrupt
cli
; Reset Watchdog Timer
wdr
; Clear WDRF in MCUSR
in r16, MCUSR
andi r16, (0xff & (0<<WDRF))
out MCUSR, r16
; Write logical one to WDCE and WDE
; Keep old prescaler setting to prevent unintentional time-out
lds r16, WDTCSR
ori r16, (1<<WDCE) | (1<<WDE)
sts WDTCSR, r16
; Turn off WDT
ldi r16, (0<<WDE)
sts WDTCSR, r16
; Turn on global interrupt
sei
ret

C Code Example(1)

void WDT_off(void)
{

__disable_interrupt();
__watchdog_reset();
/* Clear WDRF in MCUSR */
MCUSR &= ~(1<<WDRF);
/* Write logical one to WDCE and WDE */
/* Keep old prescaler setting to prevent unintentional time-out

*/
WDTCSR |= (1<<WDCE) | (1<<WDE);
/* Turn off WDT */
WDTCSR = 0x00;
__enable_interrupt();

}

ATmega328P [DATASHEET]
7810D–AVR–01/15

46

The following code example shows one assembly and one C function for changing the time-out value of the watchdog timer.

Note: 1. See Section 5. “About Code Examples” on page 8.

2. The watchdog timer should be reset before any change of the WDP bits, since a change in the WDP bits can
result in a time-out when switching to a shorter time-out period.

10.9 Register Description

10.9.1 MCUSR – MCU Status Register

The MCU status register provides information on which reset source caused an MCU reset.

• Bit 7..4: Res: Reserved Bits

These bits are unused bits in the Atmel® ATmega328P, and will always read as zero.

• Bit 3 – WDRF: Watchdog System Reset Flag

This bit is set if a watchdog system reset occurs. The bit is reset by a power-on reset, or by writing a logic zero to the flag.

• Bit 2 – BORF: Brown-out Reset Flag

This bit is set if a brown-out reset occurs. The bit is reset by a power-on reset, or by writing a logic zero to the flag.

Assembly Code Example(1)

WDT_Prescaler_Change:
; Turn off global interrupt
cli
; Reset Watchdog Timer
wdr
; Start timed sequence
lds r16, WDTCSR
ori r16, (1<<WDCE) | (1<<WDE)
sts WDTCSR, r16
; -- Got four cycles to set the new values from here -
; Set new prescaler(time-out) value = 64K cycles (~0.5 s)
ldi r16, (1<<WDE) | (1<<WDP2) | (1<<WDP0)
sts WDTCSR, r16
; -- Finished setting new values, used 2 cycles -
; Turn on global interrupt
sei
ret

C Code Example(1)

void WDT_Prescaler_Change(void)
{

__disable_interrupt();
__watchdog_reset();
/* Start timed equence */
WDTCSR |= (1<<WDCE) | (1<<WDE);
/* Set new prescaler(time-out) value = 64K cycles (~0.5 s) */
WDTCSR = (1<<WDE) | (1<<WDP2) | (1<<WDP0);
__enable_interrupt();

}

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) – – – – WDRF BORF EXTRF PORF MCUSR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 See Bit Description

47ATmega328P [DATASHEET]
7810D–AVR–01/15

• Bit 1 – EXTRF: External Reset Flag

This bit is set if an external reset occurs. The bit is reset by a power-on reset, or by writing a logic zero to the flag.

• Bit 0 – PORF: Power-on Reset Flag

This bit is set if a power-on reset occurs. The bit is reset only by writing a logic zero to the flag.

To make use of the reset flags to identify a reset condition, the user should read and then reset the MCUSR as early as
possible in the program. If the register is cleared before another reset occurs, the source of the reset can be found by
examining the reset flags.

10.9.2 WDTCSR – Watchdog Timer Control Register

• Bit 7 - WDIF: Watchdog Interrupt Flag

This bit is set when a time-out occurs in the watchdog timer and the watchdog timer is configured for interrupt. WDIF is
cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, WDIF is cleared by writing a
logic one to the flag. When the I-bit in SREG and WDIE are set, the watchdog time-out interrupt is executed.

• Bit 6 - WDIE: Watchdog Interrupt Enable

When this bit is written to one and the I-bit in the status register is set, the watchdog interrupt is enabled. If WDE is cleared in
combination with this setting, the watchdog timer is in interrupt mode, and the corresponding interrupt is executed if time-out
in the watchdog timer occurs. If WDE is set, the watchdog timer is in interrupt and system reset mode. The first time-out in
the watchdog timer will set WDIF.

Executing the corresponding interrupt vector will clear WDIE and WDIF automatically by hardware (the watchdog goes to
system reset mode). This is useful for keeping the watchdog timer security while using the interrupt. To stay in interrupt and
system reset mode, WDIE must be set after each interrupt. This should however not be done within the interrupt service
routine itself, as this might compromise the safety-function of the watchdog system reset mode. If the interrupt is not
executed before the next time-out, a system reset will be applied.

• Bit 4 - WDCE: Watchdog Change Enable

This bit is used in timed sequences for changing WDE and prescaler bits. To clear the WDE bit, and/or change the prescaler
bits, WDCE must be set.

Once written to one, hardware will clear WDCE after four clock cycles.

Bit 7 6 5 4 3 2 1 0

(0x60) WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 WDTCSR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 X 0 0 0

Table 10-2. Watchdog Timer Configuration

WDTON(1) WDE WDIE Mode Action on Time-out

1 0 0 Stopped None

1 0 1 Interrupt mode Interrupt

1 1 0 System reset mode Reset

1 1 1 Interrupt and system reset mode
Interrupt, then go to system reset
mode

0 x x System reset mode Reset
Note: 1. WDTON fuse set to “0” means programmed and “1” means unprogrammed.

ATmega328P [DATASHEET]
7810D–AVR–01/15

48

• Bit 3 - WDE: Watchdog System Reset Enable

WDE is overridden by WDRF in MCUSR. This means that WDE is always set when WDRF is set. To clear WDE, WDRF
must be cleared first. This feature ensures multiple resets during conditions causing failure, and a safe start-up after the
failure.

• Bit 5, 2..0 - WDP3..0: Watchdog Timer Prescaler 3, 2, 1 and 0

The WDP3..0 bits determine the watchdog timer prescaling when the watchdog timer is running. The different prescaling
values and their corresponding time-out periods are shown in Table 10-3.

Table 10-3. Watchdog Timer Prescale Select

WDP3 WDP2 WDP1 WDP0 Number of WDT Oscillator Cycles Typical Time-out at VCC = 5.0V

0 0 0 0 2K (2048) cycles 16ms

0 0 0 1 4K (4096) cycles 32ms

0 0 1 0 8K (8192) cycles 64ms

0 0 1 1 16K (16384) cycles 0.125s

0 1 0 0 32K (32768) cycles 0.25s

0 1 0 1 64K (65536) cycles 0.5s

0 1 1 0 128K (131072) cycles 1.0s

0 1 1 1 256K (262144) cycles 2.0s

1 0 0 0 512K (524288) cycles 4.0s

1 0 0 1 1024K (1048576) cycles 8.0s

1 0 1 0

Reserved

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

49ATmega328P [DATASHEET]
7810D–AVR–01/15

11. Interrupts

This section describes the specifics of the interrupt handling as performed in Atmel® ATmega328P. For a general
explanation of the AVR® interrupt handling, refer to Section 6.7 “Reset and Interrupt Handling” on page 15.

● Each interrupt vector occupies two instruction words in Atmel ATmega328P.

● In Atmel ATmega328P, the reset vector is affected by the BOOTRST fuse, and the interrupt vector start address is
affected by the IVSEL bit in MCUCR.

11.1 Interrupt Vectors in ATmega328P

Table 11-1. Reset and Interrupt Vectors in ATmega328P

Vector No. Program Address Source Interrupt Definition

1 0x0000 RESET
External pin, power-on reset, brown-out reset and watchdog
system reset

2 0x002 INT0 External interrupt request 0

3 0x0004 INT1 External interrupt request 1

4 0x0006 PCINT0 Pin change interrupt request 0

5 0x0008 PCINT1 Pin change interrupt request 1

6 0x000A PCINT2 Pin change interrupt request 2

7 0x000C WDT Watchdog time-out interrupt

8 0x000E TIMER2 COMPA Timer/Counter2 compare match A

9 0x0010 TIMER2 COMPB Timer/Counter2 compare match B

10 0x0012 TIMER2 OVF Timer/Counter2 overflow

11 0x0014 TIMER1 CAPT Timer/Counter1 capture event

12 0x0016 TIMER1 COMPA Timer/Counter1 compare match A

13 0x0018 TIMER1 COMPB Timer/Counter1 compare match B

14 0x001A TIMER1 OVF Timer/Counter1 overflow

15 0x001C TIMER0 COMPA Timer/Counter0 compare match A

16 0x001E TIMER0 COMPB Timer/Counter0 compare match B

17 0x0020 TIMER0 OVF Timer/Counter0 overflow

18 0x0022 SPI, STC SPI serial transfer complete

19 0x0024 USART, RX USART Rx complete

20 0x0026 USART, UDRE USART, data register empty

21 0x0028 USART, TX USART, Tx complete

22 0x002A ADC ADC conversion complete

23 0x002C EE READY EEPROM ready

24 0x002E ANALOG COMP Analog comparator

25 0x0030 TWI 2-wire serial interface

26 0x0032 SPM READY Store program memory ready

ATmega328P [DATASHEET]
7810D–AVR–01/15

50

Table 11-2 shows reset and interrupt vectors placement for the various combinations of BOOTRST and IVSEL settings. If the
program never enables an interrupt source, the interrupt vectors are not used, and regular program code can be placed at
these locations. This is also the case if the reset vector is in the application section while the interrupt vectors are in the boot
section or vice versa.

The most typical and general program setup for the reset and interrupt vector addresses in Atmel® ATmega328P is:
Address Labels Code Comments
0x0000 jmp RESET ; Reset Handler
0x0002 jmp EXT_INT0 ; IRQ0 Handler
0x0004 jmp EXT_INT1 ; IRQ1 Handler
0x0006 jmp PCINT0 ; PCINT0 Handler
0x0008 jmp PCINT1 ; PCINT1 Handler
0x000A jmp PCINT2 ; PCINT2 Handler
0x000C jmp WDT ; Watchdog Timer Handler
0x000E jmp TIM2_COMPA ; Timer2 Compare A Handler
0x0010 jmp TIM2_COMPB ; Timer2 Compare B Handler
0x0012 jmp TIM2_OVF ; Timer2 Overflow Handler
0x0014 jmp TIM1_CAPT ; Timer1 Capture Handler
0x0016 jmp TIM1_COMPA ; Timer1 Compare A Handler
0x0018 jmp TIM1_COMPB ; Timer1 Compare B Handler
0x001A jmp TIM1_OVF ; Timer1 Overflow Handler
0x001C jmp TIM0_COMPA ; Timer0 Compare A Handler
0x001E jmp TIM0_COMPB ; Timer0 Compare B Handler
0x0020 jmp TIM0_OVF ; Timer0 Overflow Handler
0x0022 jmp SPI_STC ; SPI Transfer Complete Handler
0x0024 jmp USART_RXC ; USART, RX Complete Handler
0x0026 jmp USART_UDRE ; USART, UDR Empty Handler
0x0028 jmp USART_TXC ; USART, TX Complete Handler
0x002A jmp ADC ; ADC Conversion Complete Handler
0x002C jmp EE_RDY ; EEPROM Ready Handler
0x002E jmp ANA_COMP ; Analog Comparator Handler
0x0030 jmp TWI ; 2-wire Serial Interface Handler
0x0032 jmp SPM_RDY ; Store Program Memory Ready Handler
;
0x0033 RESET: ldi r16, high(RAMEND); Main program start
0x0034 out SPH,r16 ; Set Stack Pointer to top of RAM
0x0035 ldi r16, low(RAMEND)
0x0036 out SPL,r16
0x0037 sei ; Enable interrupts
0x0038 <instr> xxx
...

Table 11-2. Reset and Interrupt Vectors Placement in ATmega328P(1)

BOOTRST IVSEL Reset Address Interrupt Vectors Start Address

1 0 0x000 0x002

1 1 0x000 Boot reset address + 0x0002

0 0 Boot reset address 0x002

0 1 Boot reset address Boot reset address + 0x0002

Note: 1. For the BOOTRST fuse “1” means unprogrammed while “0” means programmed.

51ATmega328P [DATASHEET]
7810D–AVR–01/15

When the BOOTRST fuse is unprogrammed, the boot section size set to 2Kbytes and the IVSEL bit in the MCUCR register
is set before any interrupts are enabled, the most typical and general program setup for the reset and interrupt vector
addresses in Atmel® ATmega328P is:

Address Labels Code Comments
0x0000 RESET: ldi r16,high(RAMEND); Main program start
0x0001 out SPH,r16 ; Set Stack Pointer to top of RAM
0x0002 ldi r16,low(RAMEND)
0x0003 out SPL,r16
0x0004 sei ; Enable interrupts
0x0005 <instr> xxx
;
.org 0x3C02
0x3C02 jmp EXT_INT0 ; IRQ0 Handler
0x3C04 jmp EXT_INT1 ; IRQ1 Handler
... ;
0x3C32 jmp SPM_RDY ; Store Program Memory Ready Handler

When the BOOTRST fuse is programmed and the boot section size set to 2Kbytes, the most typical and general program
setup for the reset and interrupt vector addresses in Atmel ATmega328P is:

Address Labels Code Comments
.org 0x0002
0x0002 jmp EXT_INT0 ; IRQ0 Handler
0x0004 jmp EXT_INT1 ; IRQ1 Handler
... ;
0x0032 jmp SPM_RDY ; Store Program Memory Ready Handler
;
.org 0x3C00
0x3C00 RESET: ldi r16,high(RAMEND); Main program start
0x3C01 out SPH,r16 ; Set Stack Pointer to top of RAM
0x3C02 ldi r16,low(RAMEND)
0x3C03 out SPL,r16
0x3C04 sei ; Enable interrupts
0x3C05 <instr> xxx

When the BOOTRST fuse is programmed, the boot section size set to 2Kbytes and the IVSEL bit in the MCUCR register is
set before any interrupts are enabled, the most typical and general program setup for the reset and interrupt vector
addresses in Atmel ATmega328P is:

Address Labels Code Comments
;
.org 0x3C00
0x3C00 jmp RESET ; Reset handler
0x3C02 jmp EXT_INT0 ; IRQ0 Handler
0x3C04 jmp EXT_INT1 ; IRQ1 Handler
... ;
0x3C32 jmp SPM_RDY ; Store Program Memory Ready Handler
;
0x3C33 RESET: ldi r16,high(RAMEND); Main program start
0x3C34 out SPH,r16 ; Set Stack Pointer to top of RAM
0x3C35 ldi r16,low(RAMEND)
0x3C36 out SPL,r16
0x3C37 sei ; Enable interrupts
0x3C38 <instr> xxx

ATmega328P [DATASHEET]
7810D–AVR–01/15

52

11.2 Register Description

11.2.1 Moving Interrupts Between Application and Boot Space

The MCU control register controls the placement of the interrupt vector table.

11.2.2 MCUCR – MCU Control Register

• Bit 1 – IVSEL: Interrupt Vector Select

When the IVSEL bit is cleared (zero), the interrupt vectors are placed at the start of the flash memory. When this bit is set
(one), the interrupt vectors are moved to the beginning of the boot loader section of the flash. The actual address of the start
of the boot flash section is determined by the BOOTSZ fuses. Refer to the Section 26. “Boot Loader Support – Read-While-
Write Self-Programming” on page 229 for details. To avoid unintentional changes of interrupt vector tables, a special write
procedure must be followed to change the IVSEL bit:

a. Write the interrupt vector change enable (IVCE) bit to one.

b. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled in the cycle IVCE is set, and
they remain disabled until after the instruction following the write to IVSEL. If IVSEL is not written, interrupts remain disabled
for four cycles. The I-bit in the status register is unaffected by the automatic disabling.

Note: If interrupt vectors are placed in the boot loader section and boot lock bit BLB02 is programmed, interrupts are
disabled while executing from the application section. If interrupt vectors are placed in the application section
and boot lock bit BLB12 is programed, interrupts are disabled while executing from the boot loader section.
Refer to the Section 26. “Boot Loader Support – Read-While-Write Self-Programming” on page 229 for details
on boot lock bits.

This bit is not available in Atmel® ATmega328P.

• Bit 0 – IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by hardware four cycles after it
is written or when IVSEL is written. Setting the IVCE bit will disable interrupts, as explained in the IVSEL description above.
See code example below.

This bit is not available in Atmel ATmega328P.

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) – BODS BODSE PUD – – IVSEL IVCE MCUCR

Read/Write R R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Assembly Code Example

Move_interrupts:
; Enable change of Interrupt Vectors
ldi r16, (1<<IVCE)
out MCUCR, r16
; Move interrupts to Boot Flash section
ldi r16, (1<<IVSEL)
out MCUCR, r16
ret

C Code Example

void Move_interrupts(void)
{

/* Enable change of Interrupt Vectors */
MCUCR = (1<<IVCE);
/* Move interrupts to Boot Flash section */
MCUCR = (1<<IVSEL);

}

53ATmega328P [DATASHEET]
7810D–AVR–01/15

12. External Interrupts

The external interrupts are triggered by the INT0 and INT1 pins or any of the PCINT23..0 pins. Observe that, if enabled, the
interrupts will trigger even if the INT0 and INT1 or PCINT23..0 pins are configured as outputs. This feature provides a way of
generating a software interrupt. The pin change interrupt PCI2 will trigger if any enabled PCINT23..16 pin toggles. The pin
change interrupt PCI1 will trigger if any enabled PCINT14..8 pin toggles. The pin change interrupt PCI0 will trigger if any
enabled PCINT7..0 pin toggles. The PCMSK2, PCMSK1 and PCMSK0 registers control which pins contribute to the pin
change interrupts. Pin change interrupts on PCINT23..0 are detected asynchronously. This implies that these interrupts can
be used for waking the part also from sleep modes other than Idle mode.

The INT0 and INT1 interrupts can be triggered by a falling or rising edge or a low level. This is set up as indicated in the
specification for the external interrupt control register A – EICRA. When the INT0 or INT1 interrupts are enabled and are
configured as level triggered, the interrupts will trigger as long as the pin is held low. Note that recognition of falling or rising
edge interrupts on INT0 or INT1 requires the presence of an I/O clock, described in Section 8.1 “Clock Systems and their
Distribution” on page 24. Low level interrupt on INT0 and INT1 is detected asynchronously. This implies that this interrupt
can be used for waking the part also from sleep modes other than idle mode. The I/O clock is halted in all sleep modes
except Idle mode.

Note that if a level triggered interrupt is used for wake-up from power-down, the required level must be held long enough for
the MCU to complete the wake-up to trigger the level interrupt. If the level disappears before the end of the start-up time, the
MCU will still wake up, but no interrupt will be generated. The start-up time is defined by the SUT and CKSEL fuses as
described in Section 8. “System Clock and Clock Options” on page 24.

12.1 Pin Change Interrupt Timing

An example of timing of a pin change interrupt is shown in Figure 12-1.

Figure 12-1. Timing of Pin Change Interrupts

clk

pin_lat

pin_sync

PCINT(0)

pcint_in_(0)

pcint_syn

pcint_setflag

PCIF

pin_lat pin_sync pcint_sync

x

0

clk

pcint_setflag

PCINT(0) in PCMSK(x)

clk

PCINT(0)
PCIF

pcint_in_(0)

LE

D Q

ATmega328P [DATASHEET]
7810D–AVR–01/15

54

12.2 Register Description

12.2.1 EICRA – External Interrupt Control Register A

The external interrupt control register A contains control bits for interrupt sense control.

• Bit 7..4 – Res: Reserved Bits

These bits are unused bits in the Atmel® ATmega328P, and will always read as zero.

• Bit 3, 2 – ISC11, ISC10: Interrupt Sense Control 1 Bit 1 and Bit 0

The external interrupt 1 is activated by the external pin INT1 if the SREG I-flag and the corresponding interrupt mask are set.
The level and edges on the external INT1 pin that activate the interrupt are defined in Table 12-1. The value on the INT1 pin
is sampled before detecting edges. If edge or toggle interrupt is selected, pulses that last longer than one clock period will
generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level interrupt is selected, the low
level must be held until the completion of the currently executing instruction to generate an interrupt.

• Bit 1, 0 – ISC01, ISC00: Interrupt Sense Control 0 Bit 1 and Bit 0

The external interrupt 0 is activated by the external pin INT0 if the SREG I-flag and the corresponding interrupt mask are set.
The level and edges on the external INT0 pin that activate the interrupt are defined in Table 12-2. The value on the INT0 pin
is sampled before detecting edges. If edge or toggle interrupt is selected, pulses that last longer than one clock period will
generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level interrupt is selected, the low
level must be held until the completion of the currently executing instruction to generate an interrupt.

Bit 7 6 5 4 3 2 1 0

(0x69) – – – – ISC11 ISC10 ISC01 ISC00 EICRA

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 12-1. Interrupt 1 Sense Control

ISC11 ISC10 Description

0 0 The low level of INT1 generates an interrupt request.

0 1 Any logical change on INT1 generates an interrupt request.

1 0 The falling edge of INT1 generates an interrupt request.

1 1 The rising edge of INT1 generates an interrupt request.

Table 12-2. Interrupt 0 Sense Control

ISC01 ISC00 Description

0 0 The low level of INT0 generates an interrupt request.

0 1 Any logical change on INT0 generates an interrupt request.

1 0 The falling edge of INT0 generates an interrupt request.

1 1 The rising edge of INT0 generates an interrupt request.

55ATmega328P [DATASHEET]
7810D–AVR–01/15

12.2.2 EIMSK – External Interrupt Mask Register

• Bit 7..2 – Res: Reserved Bits

These bits are unused bits in the Atmel® ATmega328P, and will always read as zero.

• Bit 1 – INT1: External Interrupt Request 1 Enable

When the INT1 bit is set (one) and the I-bit in the status register (SREG) is set (one), the external pin interrupt is enabled.
The interrupt sense control1 bits 1/0 (ISC11 and ISC10) in the external interrupt control register A (EICRA) define whether
the external interrupt is activated on rising and/or falling edge of the INT1 pin or level sensed. Activity on the pin will cause an
interrupt request even if INT1 is configured as an output. The corresponding interrupt of external interrupt request 1 is
executed from the INT1 interrupt vector.

• Bit 0 – INT0: External Interrupt Request 0 Enable

When the INT0 bit is set (one) and the I-bit in the status register (SREG) is set (one), the external pin interrupt is enabled.
The interrupt sense control0 bits 1/0 (ISC01 and ISC00) in the external interrupt control register A (EICRA) define whether
the external interrupt is activated on rising and/or falling edge of the INT0 pin or level sensed. Activity on the pin will cause an
interrupt request even if INT0 is configured as an output. The corresponding interrupt of external interrupt request 0 is
executed from the INT0 interrupt vector.

12.2.3 EIFR – External Interrupt Flag Register

• Bit 7..2 – Res: Reserved Bits

These bits are unused bits in the Atmel ATmega328P, and will always read as zero.

• Bit 1 – INTF1: External Interrupt Flag 1

When an edge or logic change on the INT1 pin triggers an interrupt request, INTF1 becomes set (one). If the I-bit in SREG
and the INT1 bit in EIMSK are set (one), the MCU will jump to the corresponding interrupt vector. The flag is cleared when
the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared
when INT1 is configured as a level interrupt.

• Bit 0 – INTF0: External Interrupt Flag 0

When an edge or logic change on the INT0 pin triggers an interrupt request, INTF0 becomes set (one). If the I-bit in SREG
and the INT0 bit in EIMSK are set (one), the MCU will jump to the corresponding interrupt vector. The flag is cleared when
the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared
when INT0 is configured as a level interrupt.

Bit 7 6 5 4 3 2 1 0

0x1D (0x3D) – – – – – – INT1 INT0 EIMSK

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1C (0x3C) – – – – – – INTF1 INTF0 EIFR

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

ATmega328P [DATASHEET]
7810D–AVR–01/15

56

12.2.4 PCICR – Pin Change Interrupt Control Register

• Bit 7..3 - Res: Reserved Bits

These bits are unused bits in the Atmel® ATmega328P, and will always read as zero.

• Bit 2 - PCIE2: Pin Change Interrupt Enable 2

When the PCIE2 bit is set (one) and the I-bit in the status register (SREG) is set (one), pin change interrupt 2 is enabled. Any
change on any enabled PCINT23..16 pin will cause an interrupt. The corresponding interrupt of pin change interrupt request
is executed from the PCI2 interrupt vector. PCINT23..16 pins are enabled individually by the PCMSK2 register.

• Bit 1 - PCIE1: Pin Change Interrupt Enable 1

When the PCIE1 bit is set (one) and the I-bit in the status register (SREG) is set (one), pin change interrupt 1 is enabled. Any
change on any enabled PCINT14..8 pin will cause an interrupt. The corresponding interrupt of pin change interrupt request is
executed from the PCI1 interrupt vector. PCINT14..8 pins are enabled individually by the PCMSK1 register.

• Bit 0 - PCIE0: Pin Change Interrupt Enable 0

When the PCIE0 bit is set (one) and the I-bit in the status register (SREG) is set (one), pin change interrupt 0 is enabled. Any
change on any enabled PCINT7..0 pin will cause an interrupt. The corresponding interrupt of pin change interrupt request is
executed from the PCI0 interrupt vector. PCINT7..0 pins are enabled individually by the PCMSK0 register.

12.2.5 PCIFR – Pin Change Interrupt Flag Register

• Bit 7..3 - Res: Reserved Bits

These bits are unused bits in the Atmel ATmega328P, and will always read as zero.

• Bit 2 - PCIF2: Pin Change Interrupt Flag 2

When a logic change on any PCINT23..16 pin triggers an interrupt request, PCIF2 becomes set (one). If the I-bit in SREG
and the PCIE2 bit in PCICR are set (one), the MCU will jump to the corresponding interrupt vector. The flag is cleared when
the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.

• Bit 1 - PCIF1: Pin Change Interrupt Flag 1

When a logic change on any PCINT14..8 pin triggers an interrupt request, PCIF1 becomes set (one). If the I-bit in SREG and
the PCIE1 bit in PCICR are set (one), the MCU will jump to the corresponding interrupt vector. The flag is cleared when the
interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.

• Bit 0 - PCIF0: Pin Change Interrupt Flag 0

When a logic change on any PCINT7..0 pin triggers an interrupt request, PCIF0 becomes set (one). If the I-bit in SREG and
the PCIE0 bit in PCICR are set (one), the MCU will jump to the corresponding interrupt vector. The flag is cleared when the
interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.

Bit 7 6 5 4 3 2 1 0

(0x68) – – – – – PCIE2 PCIE1 PCIE0 PCICR

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1B (0x3B) – – – – – PCIF2 PCIF1 PCIF0 PCIFR

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

57ATmega328P [DATASHEET]
7810D–AVR–01/15

12.2.6 PCMSK2 – Pin Change Mask Register 2

• Bit 7..0 – PCINT23..16: Pin Change Enable Mask 23..16

Each PCINT23..16-bit selects whether pin change interrupt is enabled on the corresponding I/O pin. If PCINT23..16 is set
and the PCIE2 bit in PCICR is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT23..16 is cleared,
pin change interrupt on the corresponding I/O pin is disabled.

12.2.7 PCMSK1 – Pin Change Mask Register 1

• Bit 7 – Res: Reserved Bit

This bit is an unused bit in the Atmel® ATmega328P, and will always read as zero.

• Bit 6..0 – PCINT14..8: Pin Change Enable Mask 14..8

Each PCINT14..8-bit selects whether pin change interrupt is enabled on the corresponding I/O pin. If PCINT14..8 is set and
the PCIE1 bit in PCICR is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT14..8 is cleared, pin
change interrupt on the corresponding I/O pin is disabled.

12.2.8 PCMSK0 – Pin Change Mask Register 0

• Bit 7..0 – PCINT7..0: Pin Change Enable Mask 7..0

Each PCINT7..0 bit selects whether pin change interrupt is enabled on the corresponding I/O pin. If PCINT7..0 is set and the
PCIE0 bit in PCICR is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT7..0 is cleared, pin change
interrupt on the corresponding I/O pin is disabled.

Bit 7 6 5 4 3 2 1 0

(0x6D) PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 PCMSK2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x6C) – PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 PCMSK1

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x6B) PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 PCMSK0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

ATmega328P [DATASHEET]
7810D–AVR–01/15

58

13. I/O-Ports

13.1 Overview

All AVR® ports have true read-modify-write functionality when used as general digital I/O ports. This means that the direction
of one port pin can be changed without unintentionally changing the direction of any other pin with the SBI and CBI
instructions. The same applies when changing drive value (if configured as output) or enabling/disabling of pull-up resistors
(if configured as input). Each output buffer has symmetrical drive characteristics with both high sink and source capability.
The pin driver is strong enough to drive LED displays directly. All port pins have individually selectable pull-up resistors with
a supply-voltage invariant resistance. All I/O pins have protection diodes to both VCC and Ground as indicated in
Figure 13-1. Refer to Section 28. “Electrical Characteristics” on page 258 for a complete list of parameters.

Figure 13-1. I/O Pin Equivalent Schematic

All registers and bit references in this section are written in general form. A lower case “x” represents the numbering letter for
the port, and a lower case “n” represents the bit number. However, when using the register or bit defines in a program, the
precise form must be used. For example, PORTB3 for bit no. 3 in port B, here documented generally as PORTxn. The
physical I/O registers and bit locations are listed in Section 13.4 “Register Description” on page 72.

Three I/O memory address locations are allocated for each port, one each for the data register – PORTx, data direction
register – DDRx, and the port input pins – PINx. The port input pins I/O location is read only, while the data register and the
data direction register are read/write. However, writing a logic one to a bit in the PINx register, will result in a toggle in the
corresponding bit in the data register. In addition, the pull-up disable – PUD bit in MCUCR disables the pull-up function for all
pins in all ports when set.

Using the I/O port as general digital I/O is described in Section 13.2 “Ports as General Digital I/O” on page 59. Most port pins
are multiplexed with alternate functions for the peripheral features on the device. How each alternate function interferes with
the port pin is described in Section 13.3 “Alternate Port Functions” on page 63. Refer to the individual module sections for a
full description of the alternate functions. Note that enabling the alternate function of some of the port pins does not affect the
use of the other pins in the port as general digital I/O.

Cpin

Rpu

Pxn
Logic

See Figure
”General Digital I/O”

for Details

59ATmega328P [DATASHEET]
7810D–AVR–01/15

13.2 Ports as General Digital I/O

The ports are bi-directional I/O ports with optional internal pull-ups. Figure 13-2 shows a functional description of one
I/O-port pin, here generically called Pxn.

Figure 13-2. General Digital I/O(1)

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O, SLEEP, and PUD
are common to all ports.

13.2.1 Configuring the Pin

Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in Section 13.4 “Register Description” on
page 72, the DDxn bits are accessed at the DDRx I/O address, the PORTxn bits at the PORTx I/O address, and the PINxn
bits at the PINx I/O address.

The DDxn bit in the DDRx register selects the direction of this pin. If DDxn is written logic one, Pxn is configured as an output
pin. If DDxn is written logic zero, Pxn is configured as an input pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is activated. To switch the
pull-up resistor off, PORTxn has to be written logic zero or the pin has to be configured as an output pin. The port pins are
tri-stated when reset condition becomes active, even if no clocks are running.

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven high (one). If PORTxn is
written logic zero when the pin is configured as an output pin, the port pin is driven low (zero).

D
0

1

Q

WRx
RRx

WPx

Pxn

CLR

RESET

Synchronizer

D
AT

A
B

U
S

PORTxn

Q

Q

L

D

Q

QD

Q

PINxn

RESET

RPx

WDx: WRITE DDRx

WRx:

WPx:
RPx:
RRx: READ PORTx REGISTER

READ PORTx PIN
WRITE PINx REGISTER

RDx:
WRITE PORTx
READ DDRx

PUD: PULLUP DISABLE

CLKI/O:
SLEEP:

I/O CLOCK
SLEEP CONTROL

RDx

CLKI/O

PUD

WDx

SLEEP

D

Q CLR

DDxn

Q

ATmega328P [DATASHEET]
7810D–AVR–01/15

60

13.2.2 Toggling the Pin

Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of DDRxn. Note that the SBI instruction
can be used to toggle one single bit in a port.

13.2.3 Switching Between Input and Output

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn} = 0b11), an intermediate
state with either pull-up enabled {DDxn, PORTxn} = 0b01) or output low ({DDxn, PORTxn} = 0b10) must occur. Normally, the
pull-up enabled state is fully acceptable, as a high-impedance environment will not notice the difference between a strong
high driver and a pull-up. If this is not the case, the PUD bit in the MCUCR register can be set to disable all pull-ups in all
ports.

Switching between input with pull-up and output low generates the same problem. The user must use either the tri-state
({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn} = 0b11) as an intermediate step.

Table 13-1 summarizes the control signals for the pin value.

13.2.4 Reading the Pin Value

Independent of the setting of data direction bit DDxn, the port pin can be read through the PINxn register bit. As shown in
Figure 13-2, the PINxn register bit and the preceding latch constitute a synchronizer. This is needed to avoid metastability if
the physical pin changes value near the edge of the internal clock, but it also introduces a delay. Figure 13-3 shows a timing
diagram of the synchronization when reading an externally applied pin value. The maximum and minimum propagation
delays are denoted tpd,max and tpd,min respectively.

Figure 13-3. Synchronization when Reading an Externally Applied Pin Value

Consider the clock period starting shortly after the first falling edge of the system clock. The latch is closed when the clock is
low, and goes transparent when the clock is high, as indicated by the shaded region of the “SYNC LATCH” signal. The signal
value is latched when the system clock goes low. It is clocked into the PINxn register at the succeeding positive clock edge.
As indicated by the two arrows tpd,max and tpd,min, a single signal transition on the pin will be delayed between ½ and 1½
system clock period depending upon the time of assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as indicated in Figure 13-4 on page 61.
The out instruction sets the “SYNC LATCH” signal at the positive edge of the clock. In this case, the delay tpd through the
synchronizer is 1 system clock period.

Table 13-1. Port Pin Configurations

DDxn PORTxn PUD (in MCUCR) I/O Pull-up Comment

0 0 X Input No Tri-state (Hi-Z)

0 1 0 Input Yes Pxn will source current if ext. pulled low.

0 1 1 Input No Tri-state (Hi-Z)

1 0 X Output No Output low (sink)

1 1 X Output No Output high (source)

SYSTEM CLK

INSTRUCTIONS

SYNC LATCH

PINxn

r17

XXX XXX

0x00 0xFF

in r17, PINx

tpd, max

tpd, min

61ATmega328P [DATASHEET]
7810D–AVR–01/15

Figure 13-4. Synchronization when Reading a Software Assigned Pin Value

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define the port pins from 4 to 7 as
input with pull-ups assigned to port pins 6 and 7. The resulting pin values are read back again, but as previously discussed,
a nop instruction is included to be able to read back the value recently assigned to some of the pins.

Note: 1. For the assembly program, two temporary registers are used to minimize the time from pull-ups are set on pins
0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and 3 as low and redefining bits 0 and 1 as
strong high drivers.

Assembly Code Example(1)

...
; Define pull-ups and set outputs high
; Define directions for port pins
ldi r16,(1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0)
ldi r17,(1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0)
out PORTB,r16
out DDRB,r17
; Insert nop for synchronization
nop
; Read port pins
in r16,PINB
...

C Code Example

unsigned char i;
...
/* Define pull-ups and set outputs high */
/* Define directions for port pins */
PORTB = (1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0);
DDRB = (1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0);
/* Insert nop for synchronization*/
__no_operation();
/* Read port pins */
i = PINB;
...

SYSTEM CLK

INSTRUCTIONS

SYNC LATCH

PINxn

r16

r17

out PORTx, r16 nop

0x00 0xFF

0xFF

in r17, PINx

tpd

ATmega328P [DATASHEET]
7810D–AVR–01/15

62

13.2.5 Digital Input Enable and Sleep Modes

As shown in Figure 13-2, the digital input signal can be clamped to ground at the input of the Schmitt trigger. The signal
denoted SLEEP in the figure, is set by the MCU sleep controller in power-down mode, power-save mode, and standby mode
to avoid high power consumption if some input signals are left floating, or have an analog signal level close to VCC/2.

SLEEP is overridden for port pins enabled as external interrupt pins. If the external interrupt request is not enabled, SLEEP
is active also for these pins. SLEEP is also overridden by various other alternate functions as described in Section 13.3
“Alternate Port Functions” on page 63.

If a logic high level (“one”) is present on an asynchronous external interrupt pin configured as “interrupt on rising edge, falling
edge, or any logic change on pin” while the external interrupt is not enabled, the corresponding external interrupt flag will be
set when resuming from the above mentioned sleep mode, as the clamping in these sleep mode produces the requested
logic change.

13.2.6 Unconnected Pins

If some pins are unused, it is recommended to ensure that these pins have a defined level. Even though most of the digital
inputs are disabled in the deep sleep modes as described above, floating inputs should be avoided to reduce current
consumption in all other modes where the digital inputs are enabled (reset, active mode and idle mode).

The simplest method to ensure a defined level of an unused pin, is to enable the internal pull-up. In this case, the pull-up will
be disabled during reset. If low power consumption during reset is important, it is recommended to use an external pull-up or
pull-down. Connecting unused pins directly to VCC or GND is not recommended, since this may cause excessive currents if
the pin is accidentally configured as an output.

63ATmega328P [DATASHEET]
7810D–AVR–01/15

13.3 Alternate Port Functions

Most port pins have alternate functions in addition to being general digital I/Os. Figure 13-5 shows how the port pin control
signals from the simplified Figure 13-2 on page 59 can be overridden by alternate functions. The overriding signals may not
be present in all port pins, but the figure serves as a generic description applicable to all port pins in the AVR®
microcontroller family.

Figure 13-5. Alternate Port Functions(1)

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O, SLEEP, and PUD
are common to all ports. All other signals are unique for each pin.

D
0

1

Q

WRx
RRx

WPx

PTOExn

Pxn

CLR

RESET

Synchronizer

D
AT

A
B

U
S

PORTxn

Q

0

1

Q

L

D SET

CLR CLRQ

QD

Q

PINxn

0

1

RESET

RPx

Pxn PULL-UP OVERRIDE ENABLE
Pxn PULL-UP OVERRIDE VALUE

PUD: PULL-UP DISABLEPUOExn:

Pxn PORT VALUE OVERRIDE VALUEPVOVxn:
Pxn PORT VALUE OVERRIDE ENABLEPVOExn:

Pxn DATA DIRECTION OVERRIDE ENABLE
Pxn DATA DIRECTION OVERRIDE VALUE

DDOExn:
DDOVxn:

SLEEP CONTROLSLEEP:
Pxn, PORT TOGGLE OVERRIDE ENABLEPTOExn:

Pxn DIGITAL INPUT ENABLE OVERRIDE VALUEDIEOVxn:
Pxn DIGITAL INPUT ENABLE OVERRIDE ENABLEDIEOExn:

I/O CLOCK

RDx:

RPx:
WRITE PINx

WRx:

ANALOG INPUT/OUTPUT PIN n ON PORTx
DIGITAL INPUT PIN n ON PORTx

RRx: READ PORTx REGISTER

WPx:

WRITE PORTx

AIOxn:
DIxn:

READ PORTx PIN

WDx:
READ DDRx
WRITE DDRxPUOVxn:

RDx

CLKI/O

DIxn
AIOxn

CLK:I/O

DIEOVxn

DIEOExn

PVOExn

DDOVxn

PVOVxn

0

1

PUOExn

PUOVxn

0

1

DDOExn

SLEEP

PUD

WDx

D

Q CLR

DDxn

Q

ATmega328P [DATASHEET]
7810D–AVR–01/15

64

Table 13-2 summarizes the function of the overriding signals. The pin and port indexes from Figure 13-5 on page 63 are not
shown in the succeeding tables. The overriding signals are generated internally in the modules having the alternate function.

The following subsections shortly describe the alternate functions for each port, and relate the overriding signals to the
alternate function. Refer to the alternate function description for further details.

Table 13-2. Generic Description of Overriding Signals for Alternate Functions

Signal Name Full Name Description

PUOE Pull-up override enable
If this signal is set, the pull-up enable is controlled by the PUOV signal. If
this signal is cleared, the pull-up is enabled when {DDxn, PORTxn,
PUD} = 0b010.

PUOV Pull-up override value
If PUOE is set, the pull-up is enabled/disabled when PUOV is set/cleared,
regardless of the setting of the DDxn, PORTxn, and PUD register bits.

DDOE
Data direction override
enable

If this signal is set, the output driver enable is controlled by the DDOV
signal. If this signal is cleared, the output driver is enabled by the DDxn
register bit.

DDOV
Data direction override
value

If DDOE is set, the output driver is enabled/disabled when DDOV is
set/cleared, regardless of the setting of the DDxn register bit.

PVOE
Port value override
enable

If this signal is set and the output driver is enabled, the port value is
controlled by the PVOV signal. If PVOE is cleared, and the output driver is
enabled, the port value is controlled by the PORTxn register bit.

PVOV Port value override value
If PVOE is set, the port value is set to PVOV, regardless of the setting of the
PORTxn register bit.

PTOE
Port toggle override
enable

If PTOE is set, the PORTxn register bit is inverted.

DIEOE
Digital input enable
override enable

If this bit is set, the digital input enable is controlled by the DIEOV signal. If
this signal is cleared, the digital input enable is determined by MCU state
(normal mode, sleep mode).

DIEOV
Digital input enable
override value

If DIEOE is set, the digital input is enabled/disabled when DIEOV is
set/cleared, regardless of the MCU state (normal mode, sleep mode).

DI Digital input

This is the digital input to alternate functions. In the figure, the signal is
connected to the output of the schmitt trigger but before the synchronizer.
Unless the digital input is used as a clock source, the module with the
alternate function will use its own synchronizer.

AIO Analog input/output
This is the analog input/output to/from alternate functions. The signal is
connected directly to the pad, and can be used bi-directionally.

65ATmega328P [DATASHEET]
7810D–AVR–01/15

13.3.1 Alternate Functions of Port B

The port B pins with alternate functions are shown in Table 13-3.

The alternate pin configuration is as follows:

• XTAL2/TOSC2/PCINT7 – Port B, Bit 7

XTAL2: Chip clock oscillator pin 2. Used as clock pin for crystal oscillator or low-frequency crystal oscillator. When used as a
clock pin, the pin can not be used as an I/O pin.

TOSC2: Timer oscillator pin 2. Used only if internal calibrated RC oscillator is selected as chip clock source, and the
asynchronous timer is enabled by the correct setting in ASSR. When the AS2 bit in ASSR is set (one) and the EXCLK bit is
cleared (zero) to enable asynchronous clocking of Timer/Counter2 using the crystal oscillator, pin PB7 is disconnected from
the port, and becomes the inverting output of the oscillator amplifier. In this mode, a crystal oscillator is connected to this pin,
and the pin cannot be used as an I/O pin.

PCINT7: Pin change interrupt source 7. The PB7 pin can serve as an external interrupt source.

If PB7 is used as a clock pin, DDB7, PORTB7 and PINB7 will all read 0.

• XTAL1/TOSC1/PCINT6 – Port B, Bit 6

XTAL1: Chip clock oscillator pin 1. Used for all chip clock sources except internal calibrated RC oscillator. When used as a
clock pin, the pin can not be used as an I/O pin.

TOSC1: Timer oscillator pin 1. Used only if internal calibrated RC oscillator is selected as chip clock source, and the
asynchronous timer is enabled by the correct setting in ASSR. When the AS2 bit in ASSR is set (one) to enable
asynchronous clocking of Timer/Counter2, pin PB6 is disconnected from the port, and becomes the input of the inverting
oscillator amplifier. In this mode, a crystal oscillator is connected to this pin, and the pin can not be used as an I/O pin.

PCINT6: Pin change interrupt source 6. The PB6 pin can serve as an external interrupt source.

If PB6 is used as a clock pin, DDB6, PORTB6 and PINB6 will all read 0.

Table 13-3. Port B Pins Alternate Functions

Port Pin Alternate Functions

PB7
XTAL2 (chip clock oscillator pin 2)
TOSC2 (timer oscillator pin 2)
PCINT7 (pin change interrupt 7)

PB6
XTAL1 (chip clock oscillator pin 1 or external clock input)
TOSC1 (timer oscillator pin 1)
PCINT6 (pin change interrupt 6)

PB5
SCK (SPI bus master clock input)
PCINT5 (pin change interrupt 5)

PB4
MISO (SPI bus master input/slave output)
PCINT4 (pin change interrupt 4)

PB3
MOSI (SPI bus master output/slave input)
OC2A (Timer/Counter2 output compare match A output)
PCINT3 (pin change interrupt 3)

PB2
SS (SPI bus master slave select)
OC1B (Timer/Counter1 output compare match B output)
PCINT2 (pin change interrupt 2)

PB1
OC1A (Timer/Counter1 output compare match A output)
PCINT1 (pin change interrupt 1)

PB0
ICP1 (Timer/Counter1 input capture input)
CLKO (divided system clock output)
PCINT0 (pin change interrupt 0)

ATmega328P [DATASHEET]
7810D–AVR–01/15

66

• SCK/PCINT5 – Port B, Bit 5

SCK: Master clock output, slave clock input pin for SPI channel. When the SPI is enabled as a slave, this pin is configured as
an input regardless of the setting of DDB5. When the SPI is enabled as a master, the data direction of this pin is controlled
by DDB5. When the pin is forced by the SPI to be an input, the pull-up can still be controlled by the PORTB5 bit.

PCINT5: Pin change interrupt source 5. The PB5 pin can serve as an external interrupt source.

• MISO/PCINT4 – Port B, Bit 4

MISO: Master data input, slave data output pin for SPI channel. When the SPI is enabled as a master, this pin is configured
as an input regardless of the setting of DDB4. When the SPI is enabled as a slave, the data direction of this pin is controlled
by DDB4. When the pin is forced by the SPI to be an input, the pull-up can still be controlled by the PORTB4 bit.

PCINT4: Pin change interrupt source 4. The PB4 pin can serve as an external interrupt source.

• MOSI/OC2/PCINT3 – Port B, Bit 3

MOSI: SPI master data output, slave data input for SPI channel. When the SPI is enabled as a slave, this pin is configured
as an input regardless of the setting of DDB3. When the SPI is enabled as a master, the data direction of this pin is
controlled by DDB3. When the pin is forced by the SPI to be an input, the pull-up can still be controlled by the PORTB3 bit.

OC2, output compare match output: The PB3 pin can serve as an external output for the Timer/Counter2 compare match.
The PB3 pin has to be configured as an output (DDB3 set (one)) to serve this function. The OC2 pin is also the output pin for
the PWM mode timer function.

PCINT3: Pin change interrupt source 3. The PB3 pin can serve as an external interrupt source.

• SS/OC1B/PCINT2 – Port B, Bit 2

SS: Slave select input. When the SPI is enabled as a slave, this pin is configured as an input regardless of the setting of
DDB2. As a slave, the SPI is activated when this pin is driven low. When the SPI is enabled as a master, the data direction
of this pin is controlled by DDB2. When the pin is forced by the SPI to be an input, the pull-up can still be controlled by the
PORTB2 bit.

OC1B, output compare match output: The PB2 pin can serve as an external output for the Timer/Counter1 compare match
B. The PB2 pin has to be configured as an output (DDB2 set (one)) to serve this function. The OC1B pin is also the output
pin for the PWM mode timer function.

PCINT2: Pin change interrupt source 2. The PB2 pin can serve as an external interrupt source.

• OC1A/PCINT1 – Port B, Bit 1

OC1A, output compare match output: The PB1 pin can serve as an external output for the Timer/Counter1 compare match
A. The PB1 pin has to be configured as an output (DDB1 set (one)) to serve this function. The OC1A pin is also the output
pin for the PWM mode timer function.

PCINT1: Pin change interrupt source 1. The PB1 pin can serve as an external interrupt source.

• ICP1/CLKO/PCINT0 – Port B, Bit 0

ICP1, input capture pin: The PB0 pin can act as an input capture pin for Timer/Counter1.

CLKO, divided system clock: The divided system clock can be output on the PB0 pin. The divided system clock will be output
if the CKOUT fuse is programmed, regardless of the PORTB0 and DDB0 settings. It will also be output during reset.

PCINT0: Pin change interrupt source 0. The PB0 pin can serve as an external interrupt source.

Table 13-4 on page 67 and Table 13-5 on page 67 relate the alternate functions of Port B to the overriding signals shown in
Figure 13-5 on page 63. SPI MSTR INPUT and SPI SLAVE OUTPUT constitute the MISO signal, while MOSI is divided into
SPI MSTR OUTPUT and SPI SLAVE INPUT.

67ATmega328P [DATASHEET]
7810D–AVR–01/15

Table 13-4. Overriding Signals for Alternate Functions in PB7..PB4

Signal
Name

PB7/XTAL2/
TOSC2/PCINT7(1)

PB6/XTAL1/
TOSC1/PCINT6(1)

PB5/SCK/
PCINT5

PB4/MISO/
PCINT4

PUOE INTRC  EXTCK + AS2 INTRC + AS2 SPE  MSTR SPE  MSTR

PUOV 0 0 PORTB5  PUD PORTB4  PUD

DDOE INTRC  EXTCK + AS2 INTRC + AS2 SPE  MSTR SPE  MSTR

DDOV 0 0 0 0

PVOE 0 0 SPE  MSTR SPE  MSTR

PVOV 0 0 SCK OUTPUT SPI SLAVE OUTPUT

DIEOE
INTRC  EXTCK + AS2 +
PCINT7  PCIE0

INTRC + AS2 + PCINT6 
PCIE0

PCINT5  PCIE0 PCINT4  PCIE0

DIEOV (INTRC + EXTCK)  AS2 INTRC  AS2 1 1

DI PCINT7 INPUT PCINT6 INPUT
PCINT5 INPUT SCK
INPUT

PCINT4 INPUT SPI
MSTR INPUT

AIO Oscillator output Oscillator/clock input – –

Note: 1. INTRC means that one of the internal RC oscillators are selected (by the CKSEL fuses), EXTCK means that
external clock is selected (by the CKSEL fuses)

Table 13-5. Overriding Signals for Alternate Functions in PB3..PB0

Signal
Name

PB3/MOSI/
OC2/PCINT3

PB2/SS/
OC1B/PCINT2

PB1/OC1A/
PCINT1

PB0/ICP1/
PCINT0

PUOE SPE  MSTR SPE  MSTR 0 0

PUOV PORTB3  PUD PORTB2  PUD 0 0

DDOE SPE  MSTR SPE  MSTR 0 0

DDOV 0 0 0 0

PVOE
SPE  MSTR +
OC2A ENABLE

OC1B ENABLE OC1A ENABLE 0

PVOV
SPI MSTR OUTPUT +
OC2A

OC1B OC1A 0

DIEOE PCINT3  PCIE0 PCINT2  PCIE0 PCINT1  PCIE0 PCINT0  PCIE0

DIEOV 1 1 1 1

DI
PCINT3 INPUT SPI
SLAVE INPUT

PCINT2 INPUT SPI SS PCINT1 INPUT
PCINT0 INPUT ICP1
INPUT

AIO – – – –

ATmega328P [DATASHEET]
7810D–AVR–01/15

68

13.3.2 Alternate Functions of Port C

The port C pins with alternate functions are shown in Table 13-6.

The alternate pin configuration is as follows:

• RESET/PCINT14 – Port C, Bit 6

RESET, Reset pin: When the RSTDISBL fuse is programmed, this pin functions as an input pin, and the part will have to rely
on power-on reset and brown-out reset as its reset sources. When the RSTDISBL fuse is unprogrammed, the reset circuitry
is connected to the pin, and the pin can not be used as an input pin.

If PC6 is used as a reset pin, DDC6, PORTC6 and PINC6 will all read 0.

PCINT14: Pin change interrupt source 14. The PC6 pin can serve as an external interrupt source.

• SCL/ADC5/PCINT13 – Port C, Bit 5

SCL, 2-wire serial interface clock: When the TWEN bit in TWCR is set (one) to enable the 2-wire serial interface, pin PC5 is
disconnected from the port and becomes the serial clock I/O pin for the 2-wire serial interface. In this mode, there is a spike
filter on the pin to suppress spikes shorter than 50ns on the input signal, and the pin is driven by an open drain driver with
slew-rate limitation.

PC5 can also be used as ADC input channel 5. Note that ADC input channel 5 uses digital power.

PCINT13: Pin change interrupt source 13. The PC5 pin can serve as an external interrupt source.

• SDA/ADC4/PCINT12 – Port C, Bit 4

SDA, 2-wire serial interface data: When the TWEN bit in TWCR is set (one) to enable the 2-wire serial interface, pin PC4 is
disconnected from the port and becomes the serial data I/O pin for the 2-wire serial interface. In this mode, there is a spike
filter on the pin to suppress spikes shorter than 50ns on the input signal, and the pin is driven by an open drain driver with
slew-rate limitation.

PC4 can also be used as ADC input Channel 4. Note that ADC input channel 4 uses digital power.

PCINT12: Pin change interrupt source 12. The PC4 pin can serve as an external interrupt source.

• ADC3/PCINT11 – Port C, Bit 3

PC3 can also be used as ADC input Channel 3. Note that ADC input channel 3 uses analog power.

PCINT11: Pin change interrupt source 11. The PC3 pin can serve as an external interrupt source.

Table 13-6. Port C Pins Alternate Functions

Port Pin Alternate Function

PC6
RESET (reset pin)
PCINT14 (pin change interrupt 14)

PC5
ADC5 (ADC input channel 5)
SCL (2-wire serial bus clock line)
PCINT13 (pin change interrupt 13)

PC4
ADC4 (ADC input channel 4)
SDA (2-wire serial bus data input/output line)
PCINT12 (pin change interrupt 12)

PC3
ADC3 (ADC input channel 3)
PCINT11 (pin change interrupt 11)

PC2
ADC2 (ADC input channel 2)
PCINT10 (pin change interrupt 10)

PC1
ADC1 (ADC input channel 1)
PCINT9 (pin change interrupt 9)

PC0
ADC0 (ADC input channel 0)
PCINT8 (pin change interrupt 8)

69ATmega328P [DATASHEET]
7810D–AVR–01/15

• ADC2/PCINT10 – Port C, Bit 2

PC2 can also be used as ADC input channel 2. Note that ADC input channel 2 uses analog power.

PCINT10: Pin change interrupt source 10. The PC2 pin can serve as an external interrupt source.

• ADC1/PCINT9 – Port C, Bit 1

PC1 can also be used as ADC input channel 1. Note that ADC input channel 1 uses analog power.

PCINT9: Pin change interrupt source 9. The PC1 pin can serve as an external interrupt source.

• ADC0/PCINT8 – Port C, Bit 0

PC0 can also be used as ADC input channel 0. Note that ADC input channel 0 uses analog power.

PCINT8: Pin change interrupt source 8. The PC0 pin can serve as an external interrupt source.

Table 13-7 and Table 13-8 relate the alternate functions of port C to the overriding signals shown in Figure 13-5 on page 63.

Table 13-7. Overriding Signals for Alternate Functions in PC6..PC4(1)

Signal Name PC6/RESET/PCINT14 PC5/SCL/ADC5/PCINT13 PC4/SDA/ADC4/PCINT12

PUOE RSTDISBL TWEN TWEN

PUOV 1 PORTC5  PUD PORTC4  PUD

DDOE RSTDISBL TWEN TWEN

DDOV 0 SCL_OUT SDA_OUT

PVOE 0 TWEN TWEN

PVOV 0 0 0

DIEOE RSTDISBL + PCINT14  PCIE1 PCINT13  PCIE1 + ADC5D PCINT12  PCIE1 + ADC4D

DIEOV RSTDISBL PCINT13  PCIE1 PCINT12  PCIE1

DI PCINT14 INPUT PCINT13 INPUT PCINT12 INPUT

AIO RESET INPUT ADC5 INPUT / SCL INPUT ADC4 INPUT / SDA INPUT

Note: 1. When enabled, the 2-wire serial interface enables slew-rate controls on the output pins PC4 and PC5. This is
not shown in the figure. In addition, spike filters are connected between the AIO outputs shown in the port
figure and the digital logic of the TWI module.

Table 13-8. Overriding Signals for Alternate Functions in PC3..PC0

Signal
Name

PC3/ADC3/
PCINT11

PC2/ADC2/
PCINT10

PC1/ADC1/
PCINT9

PC0/ADC0/
PCINT8

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

DIEOE
PCINT11  PCIE1 +
ADC3D

PCINT10  PCIE1 +
ADC2D

PCINT9  PCIE1 +
ADC1D

PCINT8  PCIE1 +
ADC0D

DIEOV PCINT11  PCIE1 PCINT10  PCIE1 PCINT9  PCIE1 PCINT8  PCIE1

DI PCINT11 INPUT PCINT10 INPUT PCINT9 INPUT PCINT8 INPUT

AIO ADC3 INPUT ADC2 INPUT ADC1 INPUT ADC0 INPUT

ATmega328P [DATASHEET]
7810D–AVR–01/15

70

13.3.3 Alternate Functions of Port D

The port D pins with alternate functions are shown in Table 13-9.

The alternate pin configuration is as follows:

• AIN1/OC2B/PCINT23 – Port D, Bit 7

AIN1, analog comparator negative input. Configure the port pin as input with the internal pull-up switched off to avoid the
digital port function from interfering with the function of the analog comparator.

PCINT23: Pin change interrupt source 23. The PD7 pin can serve as an external interrupt source.

• AIN0/OC0A/PCINT22 – Port D, Bit 6

AIN0, analog comparator positive input. Configure the port pin as input with the internal pull-up switched off to avoid the
digital port function from interfering with the function of the analog comparator.

OC0A, output compare match output: The PD6 pin can serve as an external output for the Timer/Counter0 compare match
A. The PD6 pin has to be configured as an output (DDD6 set (one)) to serve this function. The OC0A pin is also the output
pin for the PWM mode timer function.

PCINT22: Pin change interrupt source 22. The PD6 pin can serve as an external interrupt source.

• T1/OC0B/PCINT21 – Port D, Bit 5

T1, Timer/Counter1 counter source.

OC0B, output compare match output: The PD5 pin can serve as an external output for the Timer/Counter0 compare match
B. The PD5 pin has to be configured as an output (DDD5 set (one)) to serve this function. The OC0B pin is also the output
pin for the PWM mode timer function.

PCINT21: Pin change interrupt source 21. The PD5 pin can serve as an external interrupt source.

• XCK/T0/PCINT20 – Port D, Bit 4

XCK, USART external clock.

T0, Timer/Counter0 counter source.

PCINT20: Pin change interrupt source 20. The PD4 pin can serve as an external interrupt source.

Table 13-9. Port D Pins Alternate Functions

Port Pin Alternate Function

PD7
AIN1 (analog comparator negative input)
PCINT23 (Pin Change Interrupt 23)

PD6
AIN0 (analog comparator positive input)
OC0A (Timer/Counter0 output compare match A output)
PCINT22 (pin change interrupt 22)

PD5
T1 (Timer/Counter 1 external counter input)
OC0B (Timer/Counter0 output compare match B output)
PCINT21 (pin change interrupt 21)

PD4
XCK (USART external clock input/output)
T0 (Timer/Counter 0 external counter input)
PCINT20 (pin change interrupt 20)

PD3
INT1 (external interrupt 1 input)
OC2B (Timer/Counter2 output compare match B output)
PCINT19 (pin change interrupt 19)

PD2
INT0 (external interrupt 0 input)
PCINT18 (pin change interrupt 18)

PD1
TXD (USART output pin)
PCINT17 (pin change interrupt 17)

PD0
RXD (USART input pin)
PCINT16 (pin change interrupt 16)

71ATmega328P [DATASHEET]
7810D–AVR–01/15

• INT1/OC2B/PCINT19 – Port D, Bit 3

INT1, external interrupt source 1: The PD3 pin can serve as an external interrupt source.

OC2B, output compare match output: The PD3 pin can serve as an external output for the Timer/Counter0 compare match
B. The PD3 pin has to be configured as an output (DDD3 set (one)) to serve this function. The OC2B pin is also the output
pin for the PWM mode timer function.

PCINT19: Pin change interrupt source 19. The PD3 pin can serve as an external interrupt source.

• INT0/PCINT18 – Port D, Bit 2

INT0, external interrupt source 0: The PD2 pin can serve as an external interrupt source.

PCINT18: Pin change interrupt source 18. The PD2 pin can serve as an external interrupt source.

• TXD/PCINT17 – Port D, Bit 1

TXD, transmit Data (data output pin for the USART). When the USART transmitter is enabled, this pin is configured as an
output regardless of the value of DDD1.

PCINT17: Pin change interrupt source 17. The PD1 pin can serve as an external interrupt source.

• RXD/PCINT16 – Port D, Bit 0

RXD, Receive Data (data input pin for the USART). When the USART receiver is enabled this pin is configured as an input
regardless of the value of DDD0. When the USART forces this pin to be an input, the pull-up can still be controlled by the
PORTD0 bit.

PCINT16: Pin change interrupt source 16. The PD0 pin can serve as an external interrupt source.

Table 13-10 and Table 13-11 on page 72 relate the alternate functions of port D to the overriding signals shown in
Figure 13-5 on page 63.

Table 13-10. Overriding Signals for Alternate Functions PD7..PD4

Signal Name PD7/AIN1/PCINT23 PD6/AIN0/OC0A/PCINT22 PD5/T1/OC0B/PCINT21 PD4/XCK/T0/PCINT20

PUOE 0 0 0 0

PUO 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 OC0A ENABLE OC0B ENABLE UMSEL

PVOV 0 OC0A OC0B XCK OUTPUT

DIEOE PCINT23  PCIE2 PCINT22  PCIE2 PCINT21  PCIE2 PCINT20  PCIE2

DIEOV 1 1 1 1

DI PCINT23 INPUT PCINT22 INPUT
PCINT21 INPUT
T1 INPUT

PCINT20 INPUT XCK
INPUT T0 INPUT

AIO AIN1 INPUT AIN0 INPUT – –

ATmega328P [DATASHEET]
7810D–AVR–01/15

72

13.4 Register Description

13.4.1 MCUCR – MCU Control Register

• Bit 4 – PUD: Pull-up Disable

When this bit is written to one, the pull-ups in the I/O ports are disabled even if the DDxn and PORTxn registers are
configured to enable the pull-ups ({DDxn, PORTxn} = 0b01). See Section 13.2.1 “Configuring the Pin” on page 59 for more
details about this feature.

13.4.2 PORTB – The Port B Data Register

13.4.3 DDRB – The Port B Data Direction Register

13.4.4 PINB – The Port B Input Pins Address

Table 13-11. Overriding Signals for Alternate Functions in PD3..PD0

Signal
Name

PD3/OC2B/INT1/
PCINT19

PD2/INT0/
PCINT18

PD1/TXD/
PCINT17

PD0/RXD/
PCINT16

PUOE 0 0 TXEN RXEN

PUO 0 0 0 PORTD0  PUD

DDOE 0 0 TXEN RXEN

DDOV 0 0 1 0

PVOE OC2B ENABLE 0 TXEN 0

PVOV OC2B 0 TXD 0

DIEOE
INT1 ENABLE + PCINT19
 PCIE2

INT0 ENABLE + PCINT18
 PCIE1

PCINT17  PCIE2 PCINT16  PCIE2

DIEOV 1 1 1 1

DI
PCINT19 INPUT
INT1 INPUT

PCINT18 INPUT
INT0 INPUT

PCINT17 INPUT
PCINT16 INPUT
RXD

AIO – – – –

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) – BODS BODSE PUD – – IVSEL IVCE MCUCR

Read/Write R R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x05 (0x25) PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 PORTB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x04 (0x24) DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 DDRB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x03 (0x23) PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 PINB

Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

73ATmega328P [DATASHEET]
7810D–AVR–01/15

13.4.5 PORTC – The Port C Data Register

13.4.6 DDRC – The Port C Data Direction Register

13.4.7 PINC – The Port C Input Pins Address

13.4.8 PORTD – The Port D Data Register

13.4.9 DDRD – The Port D Data Direction Register

13.4.10 PIND – The Port D Input Pins Address

Bit 7 6 5 4 3 2 1 0

0x08 (0x28) – PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 PORTC

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x07 (0x27) – DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 DDRC

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x06 (0x26) – PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 PINC

Read/Write R R R R R R R R

Initial Value 0 N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

0x0B (0x2B) PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 PORTD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x0A (0x2A) DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 DDRD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x09 (0x29) PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 PIND

Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

ATmega328P [DATASHEET]
7810D–AVR–01/15

74

14. 8-bit Timer/Counter0 with PWM

14.1 Features
● Two independent output compare units

● Double buffered output compare registers

● Clear timer on compare match (auto reload)

● Glitch free, phase correct pulse width modulator (PWM)

● Variable PWM period

● Frequency generator

● Three independent interrupt sources (TOV0, OCF0A, and OCF0B)

14.2 Overview

Timer/Counter0 is a general purpose 8-bit Timer/Counter module, with two independent output compare units, and with
PWM support. It allows accurate program execution timing (event management) and wave generation.

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 14-1. For the actual placement of I/O pins, refer to
Section 1-1 “Pinout” on page 3. CPU accessible I/O registers, including I/O bits and I/O pins, are shown in bold.
The device-specific I/O register and bit locations are listed in the Section 14.9 “Register Description” on page 84.

The PRTIM0 bit in Section 9.10 “Minimizing Power Consumption” on page 36 must be written to zero to enable
Timer/Counter0 module.

Figure 14-1. 8-bit Timer/Counter Block Diagram

Control Logic

TCNTn

Timer/Counter

Count
Clear

Direction
clkTn

OCRnA

OCRnB

TCCRnA TCCRnB

=

Edge
Detector

(from Prescaler)

Clock Select

TOP BOTTOM

TOVn (Int. Req.)

OCnA (Int. Req.)

Tn

Waveform
Generation

Fixed
TOP
Value

D
AT

A
B

U
S

=

= = 0

OCnA

OCnB (Int. Req.)

Waveform
Generation OCnB

75ATmega328P [DATASHEET]
7810D–AVR–01/15

14.2.1 Definitions

Many register and bit references in this section are written in general form. A lower case “n” replaces the Timer/Counter
number, in this case 0. A lower case “x” replaces the output compare unit, in this case compare unit A or compare unit B.
However, when using the register or bit defines in a program, the precise form must be used, i.e., TCNT0 for accessing
Timer/Counter0 counter value and so on.

The definitions in Table 14-1 are also used extensively throughout the document.

14.2.2 Registers

The Timer/Counter (TCNT0) and output compare registers (OCR0A and OCR0B) are 8-bit registers. interrupt request
(abbreviated to Int.Req. in the figure) signals are all visible in the timer interrupt flag register (TIFR0). All interrupts are
individually masked with the timer interrupt mask register (TIMSK0). TIFR0 and TIMSK0 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on the T0 pin. The clock select
logic block controls which clock source and edge the Timer/Counter uses to increment (or decrement) its value. The
Timer/Counter is inactive when no clock source is selected. The output from the clock select logic is referred to as the timer
clock (clkT0).

The double buffered output compare registers (OCR0A and OCR0B) are compared with the Timer/Counter value at all
times. The result of the compare can be used by the waveform generator to generate a PWM or variable frequency output on
the output compare pins (OC0A and OC0B). See Section 15.7.3 “Using the Output Compare Unit” on page 99 for details.
The compare match event will also set the compare flag (OCF0A or OCF0B) which can be used to generate an output
compare interrupt request.

14.3 Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source is selected by the clock
select logic which is controlled by the clock select (CS02:0) bits located in the Timer/Counter control register (TCCR0B). For
details on clock sources and prescaler, see Section 16. “Timer/Counter0 and Timer/Counter1 Prescalers” on page 114.

14.4 Counter Unit

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure 14-2 shows a block diagram
of the counter and its surroundings.

Figure 14-2. Counter Unit Block Diagram

Table 14-1. Definitions

Parameter Definition

BOTTOM The counter reaches the BOTTOM when it becomes 0x00.

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP
The counter reaches the TOP when it becomes equal to the highest value in the count sequence. The
TOP value can be assigned to be the fixed value 0xFF (MAX) or the value stored in the OCR0A register.
The assignment is dependent on the mode of operation.

topbottom

TOVn
(Int. Req.)DATA BUS

Control LogicTCNTn
clkTnclear

count

direction

Edge
Detector

(from Prescaler)

Clock Select

Tn

ATmega328P [DATASHEET]
7810D–AVR–01/15

76

Signal description (internal signals):
count Increment or decrement TCNT0 by 1.

direction Select between increment and decrement.

clear Clear TCNT0 (set all bits to zero).

clkTn Timer/Counter clock, referred to as clkT0 in the following.

top Signalize that TCNT0 has reached maximum value.

bottom Signalize that TCNT0 has reached minimum value (zero).

Depending of the mode of operation used, the counter is cleared, incremented, or decremented at each timer clock (clkT0).
clkT0 can be generated from an external or internal clock source, selected by the clock select bits (CS02:0). When no clock
source is selected (CS02:0 = 0) the timer is stopped. However, the TCNT0 value can be accessed by the CPU, regardless of
whether clkT0 is present or not. A CPU write overrides (has priority over) all counter clear or count operations.

The counting sequence is determined by the setting of the WGM01 and WGM00 bits located in the Timer/Counter control
register (TCCR0A) and the WGM02 bit located in the Timer/Counter control register B (TCCR0B). There are close
connections between how the counter behaves (counts) and how waveforms are generated on the output compare outputs
OC0A and OC0B. For more details about advanced counting sequences and waveform generation, see Section 14.7
“Modes of Operation” on page 78.

The Timer/Counter overflow flag (TOV0) is set according to the mode of operation selected by the WGM02:0 bits. TOV0 can
be used for generating a CPU interrupt.

14.5 Output Compare Unit

The 8-bit comparator continuously compares TCNT0 with the output compare registers (OCR0A and OCR0B). Whenever
TCNT0 equals OCR0A or OCR0B, the comparator signals a match. A match will set the output compare flag (OCF0A or
OCF0B) at the next timer clock cycle. If the corresponding interrupt is enabled, the output compare flag generates an output
compare interrupt. The output compare flag is automatically cleared when the interrupt is executed. Alternatively, the flag
can be cleared by software by writing a logical one to its I/O bit location. The waveform generator uses the match signal to
generate an output according to operating mode set by the WGM02:0 bits and compare output mode (COM0x1:0) bits. The
max and bottom signals are used by the waveform generator for handling the special cases of the extreme values in some
modes of operation (Section 14.7 “Modes of Operation” on page 78).

Figure 14-3 shows a block diagram of the output compare unit.

Figure 14-3. Output Compare Unit, Block Diagram

OCFnx (Int. Req.)

= (8-bit Comparator)

OCRnx

Waveform Generator

TCNTn

OCnx

top

bottom

FOCn

WGMn1:0 COMnx1:0

DATA BUS

77ATmega328P [DATASHEET]
7810D–AVR–01/15

The OCR0x registers are double buffered when using any of the pulse width modulation (PWM) modes. For the normal and
clear timer on compare (CTC) modes of operation, the double buffering is disabled. The double buffering synchronizes the
update of the OCR0x compare registers to either top or bottom of the counting sequence. The synchronization prevents the
occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR0x register access may seem complex, but this is not case. When the double buffering is enabled, the CPU has
access to the OCR0x buffer register, and if double buffering is disabled the CPU will access the OCR0x directly.

14.5.1 Force Output Compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by writing a one to the force
output compare (FOC0x) bit. Forcing compare match will not set the OCF0x flag or reload/clear the timer, but the OC0x pin
will be updated as if a real compare match had occurred (the COM0x1:0 bits settings define whether the OC0x pin is set,
cleared or toggled).

14.5.2 Compare Match Blocking by TCNT0 Write

All CPU write operations to the TCNT0 register will block any compare match that occur in the next timer clock cycle, even
when the timer is stopped. This feature allows OCR0x to be initialized to the same value as TCNT0 without triggering an
interrupt when the Timer/Counter clock is enabled.

14.5.3 Using the Output Compare Unit

Since writing TCNT0 in any mode of operation will block all compare matches for one timer clock cycle, there are risks
involved when changing TCNT0 when using the output compare unit, independently of whether the Timer/Counter is running
or not. If the value written to TCNT0 equals the OCR0x value, the compare match will be missed, resulting in incorrect
waveform generation. Similarly, do not write the TCNT0 value equal to BOTTOM when the counter is down counting.

The setup of the OC0x should be performed before setting the data direction register for the port pin to output. The easiest
way of setting the OC0x value is to use the force output compare (FOC0x) strobe bits in normal mode. The OC0x registers
keep their values even when changing between waveform generation modes.

Be aware that the COM0x1:0 bits are not double buffered together with the compare value. Changing the COM0x1:0 bits will
take effect immediately.

14.6 Compare Match Output Unit

The compare output mode (COM0x1:0) bits have two functions. The waveform generator uses the COM0x1:0 bits for
defining the output compare (OC0x) state at the next compare match. Also, the COM0x1:0 bits control the OC0x pin output
source. Figure 14-4 on page 78 shows a simplified schematic of the logic affected by the COM0x1:0 bit setting. The I/O
registers, I/O bits, and I/O pins in the figure are shown in bold. Only the parts of the general I/O port control registers (DDR
and PORT) that are affected by the COM0x1:0 bits are shown. When referring to the OC0x state, the reference is for the
internal OC0x register, not the OC0x pin. If a system reset occur, the OC0x register is reset to “0”.

ATmega328P [DATASHEET]
7810D–AVR–01/15

78

Figure 14-4. Compare Match Output Unit, Schematic

The general I/O port function is overridden by the output compare (OC0x) from the waveform generator if either of the
COM0x1:0 bits are set. However, the OC0x pin direction (input or output) is still controlled by the data direction register
(DDR) for the port pin. The data direction register bit for the OC0x pin (DDR_OC0x) must be set as output before the OC0x
value is visible on the pin. The port override function is independent of the waveform generation mode.

The design of the output compare pin logic allows initialization of the OC0x state before the output is enabled. Note that
some COM0x1:0 bit settings are reserved for certain modes of operation. See Section 14.9 “Register Description” on page
84

14.6.1 Compare Output Mode and Waveform Generation

The waveform generator uses the COM0x1:0 bits differently in normal, CTC, and PWM modes. For all modes, setting the
COM0x1:0 = 0 tells the waveform generator that no action on the OC0x register is to be performed on the next compare
match. For compare output actions in the non-PWM modes refer to Table 14-2 on page 84. For fast PWM mode, refer to
Table 14-3 on page 84, and for phase correct PWM refer to Table 14-4 on page 84.

A change of the COM0x1:0 bits state will have effect at the first compare match after the bits are written. For non-PWM
modes, the action can be forced to have immediate effect by using the FOC0x strobe bits.

14.7 Modes of Operation

The mode of operation, i.e., the behavior of the Timer/Counter and the output compare pins, is defined by the combination of
the waveform generation mode (WGM02:0) and compare output mode (COM0x1:0) bits. The compare output mode bits do
not affect the counting sequence, while the waveform generation mode bits do. The COM0x1:0 bits control whether the
PWM output generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes the COM0x1:0 bits
control whether the output should be set, cleared, or toggled at a compare match (see Section 14.6 “Compare Match Output
Unit” on page 77).

For detailed timing information refer to Section 14.8 “Timer/Counter Timing Diagrams” on page 82.

D
AT

A
B

U
S

0

1

QD

COMnx1

COMnx0

FOCnx

OCnx

Waveform
Generator

QD

PORT

QD

DDR

OCnx
Pin

clkI/O

79ATmega328P [DATASHEET]
7810D–AVR–01/15

14.7.1 Normal Mode

The simplest mode of operation is the normal mode (WGM02:0 = 0). In this mode the counting direction is always up
(incrementing), and no counter clear is performed. The counter simply overruns when it passes its maximum 8-bit value
(TOP = 0xFF) and then restarts from the bottom (0x00). In normal operation the Timer/Counter overflow flag (TOV0) will be
set in the same timer clock cycle as the TCNT0 becomes zero. The TOV0 Flag in this case behaves like a ninth bit, except
that it is only set, not cleared. However, combined with the timer overflow interrupt that automatically clears the TOV0 flag,
the timer resolution can be increased by software. There are no special cases to consider in the normal mode, a new counter
value can be written anytime.

The output compare unit can be used to generate interrupts at some given time. Using the output compare to generate
waveforms in normal mode is not recommended, since this will occupy too much of the CPU time.

14.7.2 Clear Timer on Compare Match (CTC) Mode

In clear timer on compare or CTC mode (WGM02:0 = 2), the OCR0A register is used to manipulate the counter resolution. In
CTC mode the counter is cleared to zero when the counter value (TCNT0) matches the OCR0A. The OCR0A defines the top
value for the counter, hence also its resolution. This mode allows greater control of the compare match output frequency. It
also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 14-5. The counter value (TCNT0) increases until a compare match
occurs between TCNT0 and OCR0A, and then counter (TCNT0) is cleared.

Figure 14-5. CTC Mode, Timing Diagram

An interrupt can be generated each time the counter value reaches the TOP value by using the OCF0A flag. If the interrupt
is enabled, the interrupt handler routine can be used for updating the TOP value. However, changing TOP to a value close to
BOTTOM when the counter is running with none or a low prescaler value must be done with care since the CTC mode does
not have the double buffering feature. If the new value written to OCR0A is lower than the current value of TCNT0, the
counter will miss the compare match. The counter will then have to count to its maximum value (0xFF) and wrap around
starting at 0x00 before the compare match can occur.

For generating a waveform output in CTC mode, the OC0A output can be set to toggle its logical level on each compare
match by setting the compare output mode bits to toggle mode (COM0A1:0 = 1). The OC0A value will not be visible on the
port pin unless the data direction for the pin is set to output. The waveform generated will have a maximum frequency of
fOC0 = fclk_I/O/2 when OCR0A is set to zero (0x00). The waveform frequency is defined by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

As for the normal mode of operation, the TOV0 flag is set in the same timer clock cycle that the counter counts from MAX to
0x00.

1 2

TCNTn

(COMnA1:0 = 1)OCn
(Toggle)

Period
3

OCnx Interrupt Flag Set

4

fOCnx

fclk_I/O

2 N 1 OCRnx+ 
--=

ATmega328P [DATASHEET]
7810D–AVR–01/15

80

14.7.3 Fast PWM Mode

The fast pulse width modulation or fast PWM mode (WGM02:0 = 3 or 7) provides a high frequency PWM waveform
generation option. The fast PWM differs from the other PWM option by its single-slope operation. The counter counts from
BOTTOM to TOP then restarts from BOTTOM. TOP is defined as 0xFF when WGM2:0 = 3, and OCR0A when WGM2:0 = 7.
In non-inverting compare output mode, the output compare (OC0x) is cleared on the compare match between TCNT0 and
OCR0x, and set at BOTTOM. In inverting compare output mode, the output is set on compare match and cleared at
BOTTOM. Due to the single-slope operation, the operating frequency of the fast PWM mode can be twice as high as the
phase correct PWM mode that use dual-slope operation. This high frequency makes the fast PWM mode well suited for
power regulation, rectification, and DAC applications. High frequency allows physically small sized external components
(coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the TOP value. The counter is then cleared at
the following timer clock cycle. The timing diagram for the fast PWM mode is shown in Figure 14-6. The TCNT0 value is in
the timing diagram shown as a histogram for illustrating the single-slope operation. The diagram includes non-inverted and
inverted PWM outputs. The small horizontal line marks on the TCNT0 slopes represent compare matches between OCR0x
and TCNT0.

Figure 14-6. Fast PWM Mode, Timing Diagram

The Timer/Counter overflow flag (TOV0) is set each time the counter reaches TOP. If the interrupt is enabled, the interrupt
handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC0x pins. Setting the COM0x1:0 bits to
two will produce a non-inverted PWM and an inverted PWM output can be generated by setting the COM0x1:0 to three:
Setting the COM0A1:0 bits to one allows the OC0A pin to toggle on compare matches if the WGM02 bit is set. This option is
not available for the OC0B pin (see Table 14-6 on page 85). The actual OC0x value will only be visible on the port pin if the
data direction for the port pin is set as output. The PWM waveform is generated by setting (or clearing) the OC0x register at
the compare match between OCR0x and TCNT0, and clearing (or setting) the OC0x register at the timer clock cycle the
counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

1 2 3 4 5 6 7

TCNTn

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCnx

OCnx

Period

OCRnx Update and
TOVn Interrupt Flag Set

OCRnx Interrupt
Flag Set

fOCnxPWM

fclk_I/O

N 256
-------------------=

81ATmega328P [DATASHEET]
7810D–AVR–01/15

The extreme values for the OCR0A register represents special cases when generating a PWM waveform output in the fast
PWM mode. If the OCR0A is set equal to BOTTOM, the output will be a narrow spike for each MAX+1 timer clock cycle.
Setting the OCR0A equal to MAX will result in a constantly high or low output (depending on the polarity of the output set by
the COM0A1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OC0x to toggle its logical
level on each compare match (COM0x1:0 = 1). The waveform generated will have a maximum frequency of fOC0 = fclk_I/O/2
when OCR0A is set to zero. This feature is similar to the OC0A toggle in CTC mode, except the double buffer feature of the
output compare unit is enabled in the fast PWM mode.

14.7.4 Phase Correct PWM Mode

The phase correct PWM mode (WGM02:0 = 1 or 5) provides a high resolution phase correct PWM waveform generation
option. The phase correct PWM mode is based on a dual-slope operation. The counter counts repeatedly from BOTTOM to
TOP and then from TOP to BOTTOM. TOP is defined as 0xFF when WGM2:0 = 1, and OCR0A when WGM2:0 = 5.
In non-inverting compare output mode, the output compare (OC0x) is cleared on the compare match between TCNT0 and
OCR0x while upcounting, and set on the compare match while downcounting. In inverting output compare mode, the
operation is inverted. The dual-slope operation has lower maximum operation frequency than single slope operation.
However, due to the symmetric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

In phase correct PWM mode the counter is incremented until the counter value matches TOP. When the counter reaches
TOP, it changes the count direction. The TCNT0 value will be equal to TOP for one timer clock cycle. The timing diagram for
the phase correct PWM mode is shown on Figure 14-7. The TCNT0 value is in the timing diagram shown as a histogram for
illustrating the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal line
marks on the TCNT0 slopes represent compare matches between OCR0x and TCNT0.

Figure 14-7. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter overflow flag (TOV0) is set each time the counter reaches BOTTOM. The interrupt flag can be used to
generate an interrupt each time the counter reaches the BOTTOM value.

1 2 3

TCNTn

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCnx

OCnx

Period

TOVn Interrupt
Flag Set

OCRnx Update

OCnx Interrupt
Flag Set

ATmega328P [DATASHEET]
7810D–AVR–01/15

82

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the OC0x pins. Setting the
COM0x1:0 bits to two will produce a non-inverted PWM. An inverted PWM output can be generated by setting the
COM0x1:0 to three: Setting the COM0A0 bits to one allows the OC0A pin to toggle on compare matches if the WGM02 bit is
set. This option is not available for the OC0B pin (see Table 14-7 on page 85). The actual OC0x value will only be visible on
the port pin if the data direction for the port pin is set as output. The PWM waveform is generated by clearing (or setting) the
OC0x register at the compare match between OCR0x and TCNT0 when the counter increments, and setting (or clearing) the
OC0x register at compare match between OCR0x and TCNT0 when the counter decrements. The PWM frequency for the
output when using phase correct PWM can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR0A register represent special cases when generating a PWM waveform output in the phase
correct PWM mode. If the OCR0A is set equal to BOTTOM, the output will be continuously low and if set equal to MAX the
output will be continuously high for non-inverted PWM mode. For inverted PWM the output will have the opposite logic
values.

At the very start of period 2 in Figure 14-7 on page 81 OCnx has a transition from high to low even though there is no
compare match. The point of this transition is to guarantee symmetry around BOTTOM. There are two cases that give a
transition without compare match.

● OCRnx changes its value from MAX, like in Figure 14-7 on page 81. When the OCR0A value is MAX the OCn pin
value is the same as the result of a down-counting compare match. To ensure symmetry around BOTTOM the OCnx
value at MAX must correspond to the result of an up-counting compare match.

● The timer starts counting from a value higher than the one in OCRnx, and for that reason misses the compare match
and hence the OCnx change that would have happened on the way up.

14.8 Timer/Counter Timing Diagrams

The Timer/Counter is a synchronous design and the timer clock (clkT0) is therefore shown as a clock enable signal in the
following figures. The figures include information on when interrupt flags are set. Figure 14-8 contains timing data for basic
Timer/Counter operation. The figure shows the count sequence close to the MAX value in all modes other than phase
correct PWM mode.

Figure 14-8. Timer/Counter Timing Diagram, no Prescaling

fOCnxPCPWM

fclk_I/O

N 510
-------------------=

MAX - 1

clkI/O

(clkI/O/1)

TCNTn

TOVn

clkTn

MAX BOTTOM BOTTOM + 1

83ATmega328P [DATASHEET]
7810D–AVR–01/15

Figure 14-9 shows the same timing data, but with the prescaler enabled.

Figure 14-9. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

Figure 14-10 shows the setting of OCF0B in all modes and OCF0A in all modes except CTC mode and PWM mode, where
OCR0A is TOP.

Figure 14-10. Timer/Counter Timing Diagram, Setting of OCF0x, with Prescaler (fclk_I/O/8)

Figure 14-11 shows the setting of OCF0A and the clearing of TCNT0 in CTC mode and fast PWM mode where OCR0A is
TOP.

Figure 14-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Prescaler (fclk_I/O/8)

MAX - 1

clkI/O

(clkI/O/8)

TCNTn

TOVn

clkTn

MAX BOTTOM BOTTOM + 1

OCRnx - 1

clkI/O

(clkI/O/8)

TCNTn

OCRnx

OCFnx

clkTn

OCRnx OCRnx + 1

OCRnx Value

OCRnx + 2

TOP - 1

clkI/O

(clkI/O/8)

TCNTn
(CTC)

OCRnx

OCFnx

clkTn

TOP BOTTOM

TOP

BOTTOM + 1

ATmega328P [DATASHEET]
7810D–AVR–01/15

84

14.9 Register Description

14.9.1 TCCR0A – Timer/Counter Control Register A

• Bits 7:6 – COM0A1:0: Compare Match Output A Mode

These bits control the output compare pin (OC0A) behavior. If one or both of the COM0A1:0 bits are set, the OC0A output
overrides the normal port functionality of the I/O pin it is connected to. However, note that the data direction register (DDR)
bit corresponding to the OC0A pin must be set in order to enable the output driver.

When OC0A is connected to the pin, the function of the COM0A1:0 bits depends on the WGM02:0 bit setting. Table 14-2
shows the COM0A1:0 bit functionality when the WGM02:0 bits are set to a normal or CTC mode (non-PWM).

Table 14-3 shows the COM0A1:0 bit functionality when the WGM01:0 bits are set to fast PWM mode.

Table 14-4 shows the COM0A1:0 bit functionality when the WGM02:0 bits are set to phase correct PWM mode.

Bit 7 6 5 4 3 2 1 0

0x24 (0x44) COM0A1 COM0A0 COM0B1 COM0B0 – – WGM01 WGM00 TCCR0A

Read/Write R/W R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 14-2. Compare Output Mode, non-PWM Mode

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1 Toggle OC0A on compare match

1 0 Clear OC0A on compare match

1 1 Set OC0A on compare match

Table 14-3. Compare Output Mode, Fast PWM Mode(1)

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1
WGM02 = 0: Normal port operation, OC0A disconnected.
WGM02 = 1: Toggle OC0A on compare match.

1 0
Clear OC0A on compare match, set OC0A at BOTTOM,
(non-inverting mode).

1 1
Set OC0A on compare match, clear OC0A at BOTTOM,
(inverting mode).

Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the compare match is
ignored, but the set or clear is done at BOTTOM. See Section 14.7.3 “Fast PWM Mode” on page 80 for more
details.

Table 14-4. Compare Output Mode, Phase Correct PWM Mode(1)

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1
WGM02 = 0: Normal port operation, OC0A disconnected.
WGM02 = 1: Toggle OC0A on compare match.

1 0
Clear OC0A on compare match when up-counting. Set OC0A on compare match
when down-counting.

1 1
Set OC0A on compare match when up-counting. Clear OC0A on compare match
when down-counting.

Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the compare match is
ignored, but the set or clear is done at TOP. See Section 15.9.4 “Phase Correct PWM Mode” on page 103 for
more details.

85ATmega328P [DATASHEET]
7810D–AVR–01/15

• Bits 5:4 – COM0B1:0: Compare Match Output B Mode

These bits control the output compare pin (OC0B) behavior. If one or both of the COM0B1:0 bits are set, the OC0B output
overrides the normal port functionality of the I/O pin it is connected to. However, note that the data direction register (DDR)
bit corresponding to the OC0B pin must be set in order to enable the output driver.

When OC0B is connected to the pin, the function of the COM0B1:0 bits depends on the WGM02:0 bit setting. Table 14-5
shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to a normal or CTC mode (non-PWM).

Table 14-6 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to fast PWM mode.

Table 14-7 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to phase correct PWM mode.

• Bits 3, 2 – Res: Reserved Bits

These bits are reserved bits in the Atmel® ATmega328P and will always read as zero.

Table 14-5. Compare Output Mode, non-PWM Mode

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Toggle OC0B on compare match

1 0 Clear OC0B on compare match

1 1 Set OC0B on compare match

Table 14-6. Compare Output Mode, Fast PWM Mode(1)

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Reserved

1 0
Clear OC0B on compare match, set OC0B at BOTTOM,
(non-inverting mode)

1 1
Set OC0B on compare match, clear OC0B at BOTTOM,
(inverting mode).

Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the compare match is
ignored, but the set or clear is done at TOP. See Section 14.7.3 “Fast PWM Mode” on page 80 for more
details.

Table 14-7. Compare Output Mode, Phase Correct PWM Mode(1)

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Reserved

1 0
Clear OC0B on compare match when up-counting. Set OC0B on compare match when
down-counting.

1 1
Set OC0B on compare match when up-counting. Clear OC0B on compare match when
down-counting.

Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the compare match is
ignored, but the set or clear is done at TOP. See Section 14.7.4 “Phase Correct PWM Mode” on page 81 for
more details.

ATmega328P [DATASHEET]
7810D–AVR–01/15

86

• Bits 1:0 – WGM01:0: Waveform Generation Mode

Combined with the WGM02 bit found in the TCCR0B register, these bits control the counting sequence of the counter, the
source for maximum (TOP) counter value, and what type of waveform generation to be used, see Table 14-8. Modes of
operation supported by the Timer/Counter unit are: Normal mode (counter), clear timer on compare match (CTC) mode, and
two types of pulse width modulation (PWM) modes (see Section 14.7 “Modes of Operation” on page 78).

14.9.2 TCCR0B – Timer/Counter Control Register B

• Bit 7 – FOC0A: Force Output Compare A

The FOC0A bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when TCCR0B is written when operating
in PWM mode. When writing a logical one to the FOC0A bit, an immediate compare match is forced on the waveform
generation unit. The OC0A output is changed according to its COM0A1:0 bits setting. Note that the FOC0A bit is
implemented as a strobe. Therefore it is the value present in the COM0A1:0 bits that determines the effect of the forced
compare.

A FOC0A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCR0A as TOP.

The FOC0A bit is always read as zero.

• Bit 6 – FOC0B: Force Output Compare B

The FOC0B bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when TCCR0B is written when operating
in PWM mode. When writing a logical one to the FOC0B bit, an immediate compare match is forced on the waveform
generation unit. The OC0B output is changed according to its COM0B1:0 bits setting. Note that the FOC0B bit is
implemented as a strobe. Therefore it is the value present in the COM0B1:0 bits that determines the effect of the forced
compare.

A FOC0B strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCR0B as TOP.

The FOC0B bit is always read as zero.

• Bits 5:4 – Res: Reserved Bits

These bits are reserved bits in the ATmega328P and will always read as zero.

Table 14-8. Waveform Generation Mode Bit Description

Mode WGM02 WGM01 WGM00
Timer/Counter
Mode of Operation TOP

Update of
OCRx at

TOV Flag
Set on(1)(2)

0 0 0 0 Normal 0xFF Immediate MAX

1 0 0 1 PWM, phase correct 0xFF TOP BOTTOM

2 0 1 0 CTC OCRA Immediate MAX

3 0 1 1 Fast PWM 0xFF BOTTOM MAX

4 1 0 0 Reserved – – –

5 1 0 1 PWM, phase correct OCRA TOP BOTTOM

6 1 1 0 Reserved – – –

7 1 1 1 Fast PWM OCRA BOTTOM TOP

Notes: 1. MAX = 0xFF

2. BOTTOM = 0x00

Bit 7 6 5 4 3 2 1 0

0x25 (0x45) FOC0A FOC0B – – WGM02 CS02 CS01 CS00 TCCR0B

Read/Write W W R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

87ATmega328P [DATASHEET]
7810D–AVR–01/15

• Bit 3 – WGM02: Waveform Generation Mode

See the description in the Section 14.9.1 “TCCR0A – Timer/Counter Control Register A” on page 84.

• Bits 2:0 – CS02:0: Clock Select

The three clock select bits select the clock source to be used by the Timer/Counter.

If external pin modes are used for the Timer/Counter0, transitions on the T0 pin will clock the counter even if the pin is
configured as an output. This feature allows software control of the counting.

14.9.3 TCNT0 – Timer/Counter Register

The Timer/Counter register gives direct access, both for read and write operations, to the Timer/Counter unit 8-bit counter.
Writing to the TCNT0 register blocks (removes) the compare match on the following timer clock. Modifying the counter
(TCNT0) while the counter is running, introduces a risk of missing a compare match between TCNT0 and the OCR0x
registers.

14.9.4 OCR0A – Output Compare Register A

The output compare register A contains an 8-bit value that is continuously compared with the counter value (TCNT0). A
match can be used to generate an output compare interrupt, or to generate a waveform output on the OC0A pin.

14.9.5 OCR0B – Output Compare Register B

The output compare register B contains an 8-bit value that is continuously compared with the counter value (TCNT0). A
match can be used to generate an output compare interrupt, or to generate a waveform output on the OC0B pin.

Table 14-9. Clock Select Bit Description

CS02 CS01 CS00 Description

0 0 0 No clock source (Timer/Counter stopped)

0 0 1 clkI/O/(no prescaling)

0 1 0 clkI/O/8 (from prescaler)

0 1 1 clkI/O/64 (from prescaler)

1 0 0 clkI/O/256 (from prescaler)

1 0 1 clkI/O/1024 (from prescaler)

1 1 0 External clock source on T0 pin. Clock on falling edge.

1 1 1 External clock source on T0 pin. Clock on rising edge.

Bit 7 6 5 4 3 2 1 0

0x26 (0x46) TCNT0[7:0] TCNT0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x27 (0x47) OCR0A[7:0] OCR0A

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x28 (0x48) OCR0B[7:0] OCR0B

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

ATmega328P [DATASHEET]
7810D–AVR–01/15

88

14.9.6 TIMSK0 – Timer/Counter Interrupt Mask Register

• Bits 7..3 – Res: Reserved Bits

These bits are reserved bits in the Atmel® ATmega328P and will always read as zero.

• Bit 2 – OCIE0B: Timer/Counter Output Compare Match B Interrupt Enable

When the OCIE0B bit is written to one, and the I-bit in the status register is set, the Timer/Counter compare match B interrupt
is enabled. The corresponding interrupt is executed if a compare match in Timer/Counter occurs, i.e., when the OCF0B bit is
set in the Timer/Counter interrupt flag register – TIFR0.

• Bit 1 – OCIE0A: Timer/Counter0 Output Compare Match A Interrupt Enable

When the OCIE0A bit is written to one, and the I-bit in the status register is set, the Timer/Counter0 compare match A
interrupt is enabled. The corresponding interrupt is executed if a compare match in Timer/Counter0 occurs, i.e., when the
OCF0A bit is set in the Timer/Counter 0 interrupt flag register – TIFR0.

• Bit 0 – TOIE0: Timer/Counter0 Overflow Interrupt Enable

When the TOIE0 bit is written to one, and the I-bit in the status register is set, the Timer/Counter0 overflow interrupt is
enabled. The corresponding interrupt is executed if an overflow in Timer/Counter0 occurs, i.e., when the TOV0 bit is set in
the Timer/Counter 0 interrupt flag register – TIFR0.

14.9.7 TIFR0 – Timer/Counter 0 Interrupt Flag Register

• Bits 7..3 – Res: Reserved Bits

These bits are reserved bits in the Atmel ATmega328P and will always read as zero.

• Bit 2 – OCF0B: Timer/Counter 0 Output Compare B Match Flag

The OCF0B bit is set when a compare match occurs between the Timer/Counter and the data in OCR0B – output compare
register0 B. OCF0B is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively,
OCF0B is cleared by writing a logic one to the flag. When the I-bit in SREG, OCIE0B (Timer/Counter compare B match
interrupt enable), and OCF0B are set, the Timer/Counter compare match interrupt is executed.

• Bit 1 – OCF0A: Timer/Counter 0 Output Compare A Match Flag

The OCF0A bit is set when a compare match occurs between the Timer/Counter0 and the data in OCR0A – output compare
register0. OCF0A is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, OCF0A
is cleared by writing a logic one to the flag. When the I-bit in SREG, OCIE0A (Timer/Counter0 compare match interrupt
enable), and OCF0A are set, the Timer/Counter0 compare match interrupt is executed.

• Bit 0 – TOV0: Timer/Counter0 Overflow Flag

The bit TOV0 is set when an overflow occurs in Timer/Counter0. TOV0 is cleared by hardware when executing the
corresponding interrupt handling vector. Alternatively, TOV0 is cleared by writing a logic one to the flag. When the
SREG I-bit, TOIE0 (Timer/Counter0 overflow interrupt enable), and TOV0 are set, the Timer/Counter0 overflow interrupt is
executed.

The setting of this flag is dependent of the WGM02:0 bit setting. Refer to Table 14-8 on page 86, Section 14-8 “Waveform
Generation Mode Bit Description” on page 86.

Bit 7 6 5 4 3 2 1 0

(0x6E) – – – – – OCIE0B OCIE0A TOIE0 TIMSK0

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x15 (0x35) – – – – – OCF0B OCF0A TOV0 TIFR0

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

89ATmega328P [DATASHEET]
7810D–AVR–01/15

15. 16-bit Timer/Counter1 with PWM

15.1 Features
● True 16-bit design (i.e., allows 16-bit PWM)

● Two independent output compare units

● Double buffered output compare registers

● One input capture unit

● Input capture noise canceler

● Clear timer on compare match (auto reload)

● Glitch-free, phase correct pulse width modulator (PWM)

● Variable PWM period

● Frequency generator

● External event counter

● Four independent interrupt sources (TOV1, OCF1A, OCF1B, and ICF1)

15.2 Overview

The 16-bit Timer/Counter unit allows accurate program execution timing (event management), wave generation, and signal
timing measurement.

Most register and bit references in this section are written in general form. A lower case “n” replaces the Timer/Counter
number, and a lower case “x” replaces the output compare unit channel. However, when using the register or bit defines in a
program, the precise form must be used, i.e., TCNT1 for accessing Timer/Counter1 counter value and so on.

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 15-1 on page 90. For the actual placement of I/O
pins, refer to Section 1-1 “Pinout” on page 3. CPU accessible I/O registers, including I/O bits and I/O pins, are shown in bold.
The device-specific I/O register and bit locations are listed in the Section 15.11 “Register Description” on page 108.

The PRTIM1 bit in Section 9.11.3 “PRR – Power Reduction Register” on page 38 must be written to zero to enable
Timer/Counter1 module.

ATmega328P [DATASHEET]
7810D–AVR–01/15

90

Figure 15-1. 16-bit Timer/Counter Block Diagram(1)

Note: 1. Refer to Figure 1-1 on page 3, Table 13-3 on page 65 and Table 13-9 on page 70 for Timer/Counter1 pin
placement and description.

15.2.1 Registers

The Timer/Counter (TCNT1), output compare registers (OCR1A/B), and input capture register (ICR1) are all 16-bit registers.
Special procedures must be followed when accessing the 16-bit registers. These procedures are described in the Section
15.3 “Accessing 16-bit Registers” on page 91. The Timer/Counter control registers (TCCR1A/B) are 8-bit registers and have
no CPU access restrictions. Interrupt requests (abbreviated to Int.Req. in the figure) signals are all visible in the timer
interrupt flag register (TIFR1). All interrupts are individually masked with the timer interrupt mask register (TIMSK1). TIFR1
and TIMSK1 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on the T1 pin. The clock select
logic block controls which clock source and edge the Timer/Counter uses to increment (or decrement) its value. The
Timer/Counter is inactive when no clock source is selected. The output from the clock select logic is referred to as the timer
clock (clkT1).

Control Logic

TCNTn

Timer/Counter

Count
Clear

Direction
clkTn

OCRnA

OCRnB

ICRn

TCCRnA TCCRnB

=

Edge
Detector

(from Prescaler)

Clock Select

TOP BOTTOM

TOVn (Int. Req.)

OCnA (Int. Req.)

Tn

Waveform
Generation

Fixed
TOP

Values

D
AT

A
B

U
S

=

= = 0

OCnA

OCnB (Int. Req.)

Waveform
Generation

Noise
Canceler

OCnB

(From Analog
Comparator Output)

ICFn (Int. Req.)

Edge
Detector

ICPn

91ATmega328P [DATASHEET]
7810D–AVR–01/15

The double buffered output compare registers (OCR1A/B) are compared with the Timer/Counter value at all time. The result
of the compare can be used by the waveform generator to generate a PWM or variable frequency output on the output
compare pin (OC1A/B). See Section 15.7 “Output Compare Units” on page 97. The compare match event will also set the
compare match flag (OCF1A/B) which can be used to generate an output compare interrupt request.

The input capture register can capture the Timer/Counter value at a given external (edge triggered) event on either the input
capture pin (ICP1) or on the analog comparator pins (see Section 22. “Analog Comparator” on page 202). The input capture
unit includes a digital filtering unit (noise canceler) for reducing the chance of capturing noise spikes.

The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined by either the OCR1A
register, the ICR1 register, or by a set of fixed values. When using OCR1A as TOP value in a PWM mode, the OCR1A
register can not be used for generating a PWM output. However, the TOP value will in this case be double buffered allowing
the TOP value to be changed in run time. If a fixed TOP value is required, the ICR1 register can be used as an alternative,
freeing the OCR1A to be used as PWM output.

15.2.2 Definitions

The following definitions are used extensively throughout the section:

15.3 Accessing 16-bit Registers

The TCNT1, OCR1A/B, and ICR1 are 16-bit registers that can be accessed by the AVR® CPU via the 8-bit data bus.
The 16-bit register must be byte accessed using two read or write operations. Each 16-bit timer has a single 8-bit register for
temporary storing of the high byte of the 16-bit access. The same temporary register is shared between all 16-bit registers
within each 16-bit timer. Accessing the low byte triggers the 16-bit read or write operation. When the low byte of a 16-bit
register is written by the CPU, the high byte stored in the temporary register, and the low byte written are both copied into the
16-bit register in the same clock cycle. When the low byte of a 16-bit register is read by the CPU, the high byte of the 16-bit
register is copied into the temporary register in the same clock cycle as the low byte is read.

Not all 16-bit accesses uses the temporary register for the high byte. Reading the OCR1A/B 16-bit registers does not involve
using the temporary register.

To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low byte must be read before the
high byte.

Table 15-1. Definitions

Parameter Definition

BOTTOM The counter reaches the BOTTOM when it becomes 0x0000.

MAX The counter reaches its MAXimum when it becomes 0xFFFF (decimal 65535).

TOP
The counter reaches the TOP when it becomes equal to the highest value in the count sequence. The TOP
value can be assigned to be one of the fixed values: 0x00FF, 0x01FF, or 0x03FF, or to the value stored in
the OCR1A or ICR1 register. The assignment is dependent of the mode of operation.

ATmega328P [DATASHEET]
7810D–AVR–01/15

92

The following code examples show how to access the 16-bit timer registers assuming that no interrupts updates the
temporary register. The same principle can be used directly for accessing the OCR1A/B and ICR1 registers. Note that when
using “C”, the compiler handles the 16-bit access.

Note: 1. See Section 5. “About Code Examples” on page 8
For I/O registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must
be replaced with instructions that allow access to extended I/O. Typically “LDS” and “STS” combined with
“SBRS”, “SBRC”, “SBR”, and “CBR”.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt occurs between the two
instructions accessing the 16-bit register, and the interrupt code updates the temporary register by accessing the same or
any other of the 16-bit timer registers, then the result of the access outside the interrupt will be corrupted. Therefore, when
both the main code and the interrupt code update the temporary register, the main code must disable the interrupts during
the 16-bit access.

Assembly Code Examples(1)

...
; Set TCNT1 to 0x01FF
ldi r17,0x01
ldi r16,0xFF
out TCNT1H,r17
out TCNT1L,r16
; Read TCNT1 into r17:r16
in r16,TCNT1L
in r17,TCNT1H
...

C Code Examples(1)

unsigned int i;
...
/* Set TCNT1 to 0x01FF */
TCNT1 = 0x1FF;
/* Read TCNT1 into i */
i = TCNT1;
...

93ATmega328P [DATASHEET]
7810D–AVR–01/15

The following code examples show how to do an atomic read of the TCNT1 register contents. Reading any of the OCR1A/B
or ICR1 registers can be done by using the same principle.

Note: 1. See Section 5. “About Code Examples” on page 8.
For I/O registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must
be replaced with instructions that allow access to extended I/O. Typically “LDS” and “STS” combined with
“SBRS”, “SBRC”, “SBR”, and “CBR”.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

Assembly Code Example(1)

TIM16_ReadTCNT1:
; Save global interrupt flag
in r18,SREG
; Disable interrupts
cli
; Read TCNT1 into r17:r16
in r16,TCNT1L
in r17,TCNT1H
; Restore global interrupt flag
out SREG,r18
ret

C Code Example(1)

unsigned int TIM16_ReadTCNT1(void)
{

unsigned char sreg;
unsigned int i;
/* Save global interrupt flag */
sreg = SREG;
/* Disable interrupts */
_CLI();
/* Read TCNT1 into i */
i = TCNT1;
/* Restore global interrupt flag */
SREG = sreg;
return i;

}

ATmega328P [DATASHEET]
7810D–AVR–01/15

94

The following code examples show how to do an atomic write of the TCNT1 register contents. Writing any of the OCR1A/B
or ICR1 registers can be done by using the same principle.

Note: 1. See Section 5. “About Code Examples” on page 8.
For I/O registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must
be replaced with instructions that allow access to extended I/O. Typically “LDS” and “STS” combined with
“SBRS”, “SBRC”, “SBR”, and “CBR”.

The assembly code example requires that the r17:r16 register pair contains the value to be written to TCNT1.

15.3.1 Reusing the Temporary High Byte Register

If writing to more than one 16-bit register where the high byte is the same for all registers written, then the high byte only
needs to be written once. However, note that the same rule of atomic operation described previously also applies in this
case.

15.4 Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source is selected by the clock
select logic which is controlled by the clock select (CS12:0) bits located in the Timer/Counter control register B (TCCR1B).
For details on clock sources and prescaler, see Section 16. “Timer/Counter0 and Timer/Counter1 Prescalers” on page 114.

Assembly Code Example(1)

TIM16_WriteTCNT1:
; Save global interrupt flag
in r18,SREG
; Disable interrupts
cli
; Set TCNT1 to r17:r16
out TCNT1H,r17
out TCNT1L,r16
; Restore global interrupt flag
out SREG,r18
ret

C Code Example(1)

void TIM16_WriteTCNT1(unsigned int i)
{

unsigned char sreg;
unsigned int i;
/* Save global interrupt flag */
sreg = SREG;
/* Disable interrupts */
_CLI();
/* Set TCNT1 to i */
TCNT1 = i;
/* Restore global interrupt flag */
SREG = sreg;

}

95ATmega328P [DATASHEET]
7810D–AVR–01/15

15.5 Counter Unit

The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit. Figure 15-2 shows a block
diagram of the counter and its surroundings.

Figure 15-2. Counter Unit Block Diagram

Signal description (internal signals):
Count Increment or decrement TCNT1 by 1.

Direction Select between increment and decrement.

Clear Clear TCNT1 (set all bits to zero).

clkT1 Timer/Counter clock.

TOP Signalize that TCNT1 has reached maximum value.

BOTTOM Signalize that TCNT1 has reached minimum value (zero).

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter high (TCNT1H) containing the upper eight bits of
the counter, and counter low (TCNT1L) containing the lower eight bits. The TCNT1H register can only be indirectly accessed
by the CPU. When the CPU does an access to the TCNT1H I/O location, the CPU accesses the high byte temporary register
(TEMP). The temporary register is updated with the TCNT1H value when the TCNT1L is read, and TCNT1H is updated with
the temporary register value when TCNT1L is written. This allows the CPU to read or write the entire 16-bit counter value
within one clock cycle via the 8-bit data bus. It is important to notice that there are special cases of writing to the TCNT1
register when the counter is counting that will give unpredictable results. The special cases are described in the sections
where they are of importance.

Depending on the mode of operation used, the counter is cleared, incremented, or decremented at each timer clock (clkT1).
The clkT1 can be generated from an external or internal clock source, selected by the clock select bits (CS12:0). When no
clock source is selected (CS12:0 = 0) the timer is stopped. However, the TCNT1 value can be accessed by the CPU,
independent of whether clkT1 is present or not. A CPU write overrides (has priority over) all counter clear or count
operations.

The counting sequence is determined by the setting of the waveform generation mode bits (WGM13:0) located in the
Timer/Counter control registers A and B (TCCR1A and TCCR1B). There are close connections between how the counter
behaves (counts) and how waveforms are generated on the output compare outputs OC1x. For more details about
advanced counting sequences and waveform generation, see Section 15.9 “Modes of Operation” on page 100.

The Timer/Counter overflow flag (TOV1) is set according to the mode of operation selected by the WGM13:0 bits. TOV1 can
be used for generating a CPU interrupt.

15.6 Input Capture Unit

The Timer/Counter incorporates an input capture unit that can capture external events and give them a time-stamp
indicating time of occurrence. The external signal indicating an event, or multiple events, can be applied via the ICP1 pin or
alternatively, via the analog-comparator unit. The time-stamps can then be used to calculate frequency, duty-cycle, and
other features of the signal applied. Alternatively the time-stamps can be used for creating a log of the events.

The input capture unit is illustrated by the block diagram shown in Figure 15-3 on page 96. The elements of the block
diagram that are not directly a part of the input capture unit are gray shaded. The small “n” in register and bit names
indicates the Timer/Counter number.

BOTTOMTOP

TOVn
(Int. Req.)

DATA BUS (8-bit)

Control Logic
TCNTnH (8-bit)

TCNTnH (16-bit Counter)

TCNTnL (8-bit)

TEMP (8-bit)

clkTnClear

Count

Direction

Edge
Detector

(from Prescaler)

Clock Select

Tn

ATmega328P [DATASHEET]
7810D–AVR–01/15

96

Figure 15-3. Input Capture Unit Block Diagram

When a change of the logic level (an event) occurs on the input capture pin (ICP1), alternatively on the analog comparator
output (ACO), and this change confirms to the setting of the edge detector, a capture will be triggered. When a capture is
triggered, the 16-bit value of the counter (TCNT1) is written to the input capture register (ICR1). The input capture flag (ICF1)
is set at the same system clock as the TCNT1 value is copied into ICR1 register. If enabled (ICIE1 = 1), the input capture flag
generates an input capture interrupt. The ICF1 flag is automatically cleared when the interrupt is executed. Alternatively the
ICF1 flag can be cleared by software by writing a logical one to its I/O bit location.

Reading the 16-bit value in the input capture register (ICR1) is done by first reading the low byte (ICR1L) and then the high
byte (ICR1H). When the low byte is read the high byte is copied into the high byte temporary register (TEMP). When the
CPU reads the ICR1H I/O location it will access the TEMP register.

The ICR1 register can only be written when using a waveform generation mode that utilizes the ICR1 register for defining the
counter’s TOP value. In these cases the waveform generation mode (WGM13:0) bits must be set before the TOP value can
be written to the ICR1 register. When writing the ICR1 register the high byte must be written to the ICR1H I/O location before
the low byte is written to ICR1L.

For more information on how to access the 16-bit registers refer to Section 15.3 “Accessing 16-bit Registers” on page 91.

15.6.1 Input Capture Trigger Source

The main trigger source for the input capture unit is the input capture pin (ICP1). Timer/Counter1 can alternatively use the
analog comparator output as trigger source for the input capture unit. The analog comparator is selected as trigger source by
setting the analog comparator input capture (ACIC) bit in the analog comparator control and status register (ACSR). Be
aware that changing trigger source can trigger a capture. The input capture flag must therefore be cleared after the change.

Both the input capture pin (ICP1) and the analog comparator output (ACO) inputs are sampled using the same technique as
for the T1 pin (Figure 16-1 on page 114). The edge detector is also identical. However, when the noise canceler is enabled,
additional logic is inserted before the edge detector, which increases the delay by four system clock cycles. Note that the
input of the noise canceler and edge detector is always enabled unless the Timer/Counter is set in a waveform generation
mode that uses ICR1 to define TOP.

An input capture can be triggered by software by controlling the port of the ICP1 pin.

ICFn (Int. Req.)

ICRnL (8-bit)ICRnH (8-bit)

ICRn (16-bit Register)

TEMP (8-bit)

TCNTnL (8-bit)TCNTnH (8-bit)

TCNTn (16-bit Counter)

DATA BUS (8-bit)

Noise
Canceler

Analog
Comparator Edge

Detector

ICNCACIC*ACO*

WRITE

+

-

ICES

ICPn

97ATmega328P [DATASHEET]
7810D–AVR–01/15

15.6.2 Noise Canceler

The noise canceler improves noise immunity by using a simple digital filtering scheme. The noise canceler input is monitored
over four samples, and all four must be equal for changing the output that in turn is used by the edge detector.

The noise canceler is enabled by setting the input capture noise canceler (ICNC1) bit in Timer/Counter control register B
(TCCR1B). When enabled the noise canceler introduces additional four system clock cycles of delay from a change applied
to the input, to the update of the ICR1 register. The noise canceler uses the system clock and is therefore not affected by the
prescaler.

15.6.3 Using the Input Capture Unit

The main challenge when using the input capture unit is to assign enough processor capacity for handling the incoming
events. The time between two events is critical. If the processor has not read the captured value in the ICR1 register before
the next event occurs, the ICR1 will be overwritten with a new value. In this case the result of the capture will be incorrect.

When using the input capture interrupt, the ICR1 register should be read as early in the interrupt handler routine as possible.
Even though the input capture interrupt has relatively high priority, the maximum interrupt response time is dependent on the
maximum number of clock cycles it takes to handle any of the other interrupt requests.

Using the input capture unit in any mode of operation when the TOP value (resolution) is actively changed during operation,
is not recommended.

Measurement of an external signal’s duty cycle requires that the trigger edge is changed after each capture. Changing the
edge sensing must be done as early as possible after the ICR1 register has been read. After a change of the edge, the input
capture flag (ICF1) must be cleared by software (writing a logical one to the I/O bit location). For measuring frequency only,
the clearing of the ICF1 flag is not required (if an interrupt handler is used).

15.7 Output Compare Units

The 16-bit comparator continuously compares TCNT1 with the output compare register (OCR1x). If TCNT equals OCR1x
the comparator signals a match. A match will set the output compare flag (OCF1x) at the next timer clock cycle. If enabled
(OCIE1x = 1), the output compare flag generates an output compare interrupt. The OCF1x flag is automatically cleared
when the interrupt is executed. Alternatively the OCF1x flag can be cleared by software by writing a logical one to its I/O bit
location. The waveform generator uses the match signal to generate an output according to operating mode set by the
waveform generation mode (WGM13:0) bits and compare output mode (COM1x1:0) bits. The TOP and BOTTOM signals
are used by the waveform generator for handling the special cases of the extreme values in some modes of operation (see
Section 15.9 “Modes of Operation” on page 100).

A special feature of output compare unit A allows it to define the Timer/Counter TOP value (i.e., counter resolution). In
addition to the counter resolution, the TOP value defines the period time for waveforms generated by the waveform
generator.

Figure 15-4 on page 98 shows a block diagram of the output compare unit. The small “n” in the register and bit names
indicates the device number (n = 1 for Timer/Counter 1), and the “x” indicates output compare unit (A/B). The elements of the
block diagram that are not directly a part of the output compare unit are gray shaded.

ATmega328P [DATASHEET]
7810D–AVR–01/15

98

Figure 15-4. Output Compare Unit, Block Diagram

The OCR1x register is double buffered when using any of the twelve pulse width modulation (PWM) modes. For the normal
and clear timer on compare (CTC) modes of operation, the double buffering is disabled. The double buffering synchronizes
the update of the OCR1x compare register to either TOP or BOTTOM of the counting sequence. The synchronization
prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR1x register access may seem complex, but this is not case. When the double buffering is enabled, the CPU has
access to the OCR1x buffer register, and if double buffering is disabled the CPU will access the OCR1x directly. The content
of the OCR1x (buffer or compare) register is only changed by a write operation (the Timer/Counter does not update this
register automatically as the TCNT1 and ICR1 register). Therefore OCR1x is not read via the high byte temporary register
(TEMP). However, it is a good practice to read the low byte first as when accessing other 16-bit registers. Writing the OCR1x
registers must be done via the TEMP register since the compare of all 16 bits is done continuously. The high byte (OCR1xH)
has to be written first. When the high byte I/O location is written by the CPU, the TEMP register will be updated by the value
written. Then when the low byte (OCR1xL) is written to the lower eight bits, the high byte will be copied into the upper 8-bits
of either the OCR1x buffer or OCR1x compare register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to Section 15.3 “Accessing 16-bit Registers” on page 91.

15.7.1 Force Output Compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by writing a one to the force
output compare (FOC1x) bit. Forcing compare match will not set the OCF1x flag or reload/clear the timer, but the OC1x pin
will be updated as if a real compare match had occurred (the COM11:0 bits settings define whether the OC1x pin is set,
cleared or toggled).

15.7.2 Compare Match Blocking by TCNT1 Write

All CPU writes to the TCNT1 register will block any compare match that occurs in the next timer clock cycle, even when the
timer is stopped. This feature allows OCR1x to be initialized to the same value as TCNT1 without triggering an interrupt
when the Timer/Counter clock is enabled.

OCRnxL Buf. (8-bit)OCRnxH Buf. (8-bit)

OCRnx Buffer (16-bit Register)

TEMP (8-bit)

OCRnxL (8-bit)

OCFnx (Int. Req.)

OCRnxH (8-bit)

OCRnx (16-bit Register)

= (16-bitComparator)

WGMn3:0 COMnx1:0

Waveform Generator

TCNTnL (8-bit)TCNTnH (8-bit)

TCNTn (16-bit Counter)

DATA BUS (8-bit)

OCnx
TOP

BOTTOM

99ATmega328P [DATASHEET]
7810D–AVR–01/15

15.7.3 Using the Output Compare Unit

Since writing TCNT1 in any mode of operation will block all compare matches for one timer clock cycle, there are risks
involved when changing TCNT1 when using any of the output compare channels, independent of whether the Timer/Counter
is running or not. If the value written to TCNT1 equals the OCR1x value, the compare match will be missed, resulting in
incorrect waveform generation. Do not write the TCNT1 equal to TOP in PWM modes with variable TOP values. The
compare match for the TOP will be ignored and the counter will continue to 0xFFFF. Similarly, do not write the TCNT1 value
equal to BOTTOM when the counter is downcounting.

The setup of the OC1x should be performed before setting the data direction register for the port pin to output. The easiest
way of setting the OC1x value is to use the force output compare (FOC1x) strobe bits in normal mode. The OC1x register
keeps its value even when changing between waveform generation modes.

Be aware that the COM1x1:0 bits are not double buffered together with the compare value. Changing the COM1x1:0 bits will
take effect immediately.

15.8 Compare Match Output Unit

The compare output mode (COM1x1:0) bits have two functions. The waveform generator uses the COM1x1:0 bits for
defining the output compare (OC1x) state at the next compare match. Secondly the COM1x1:0 bits control the OC1x pin
output source. Figure 15-5 shows a simplified schematic of the logic affected by the COM1x1:0 bit setting. The I/O registers,
I/O bits, and I/O pins in the figure are shown in bold. Only the parts of the general I/O port control registers (DDR and PORT)
that are affected by the COM1x1:0 bits are shown. When referring to the OC1x state, the reference is for the internal OC1x
register, not the OC1x pin. If a system reset occur, the OC1x register is reset to “0”.

Figure 15-5. Compare Match Output Unit, Schematic

The general I/O port function is overridden by the output compare (OC1x) from the waveform generator if either of the
COM1x1:0 bits are set. However, the OC1x pin direction (input or output) is still controlled by the data direction register
(DDR) for the port pin. The data direction register bit for the OC1x pin (DDR_OC1x) must be set as output before the OC1x
value is visible on the pin. The port override function is generally independent of the waveform generation mode, but there
are some exceptions. Refer to Table 15-2 on page 108, Table 15-3 on page 108 and Table 15-4 on page 109 for details.

The design of the output compare pin logic allows initialization of the OC1x state before the output is enabled. Note that
some COM1x1:0 bit settings are reserved for certain modes of operation. See Section 15.11 “Register Description” on page
108. The COM1x1:0 bits have no effect on the input capture unit.

D
AT

A
B

U
S

0

1

QD

COMnx1

COMnx0

FOCn

OCnx

Waveform
Generator

QD

PORT

QD

DDR

OCnx
Pin

clkI/O

ATmega328P [DATASHEET]
7810D–AVR–01/15

100

15.8.1 Compare Output Mode and Waveform Generation

The waveform generator uses the COM1x1:0 bits differently in normal, CTC, and PWM modes. For all modes, setting the
COM1x1:0 = 0 tells the waveform generator that no action on the OC1x register is to be performed on the next compare
match. For compare output actions in the non-PWM modes refer to Table 15-2 on page 108. For fast PWM mode refer to
Table 15-3 on page 108, and for phase correct and phase and frequency correct PWM refer to Table 15-4 on page 109.

A change of the COM1x1:0 bits state will have effect at the first compare match after the bits are written. For non-PWM
modes, the action can be forced to have immediate effect by using the FOC1x strobe bits.

15.9 Modes of Operation

The mode of operation, i.e., the behavior of the Timer/Counter and the output compare pins, is defined by the combination of
the waveform generation mode (WGM13:0) and compare output mode (COM1x1:0) bits. The compare output mode bits do
not affect the counting sequence, while the waveform generation mode bits do. The COM1x1:0 bits control whether the
PWM output generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes the COM1x1:0 bits
control whether the output should be set, cleared or toggle at a compare match (see Section 15.8 “Compare Match Output
Unit” on page 99). For detailed timing information refer to Section 15.10 “Timer/Counter Timing Diagrams” on page 106.

15.9.1 Normal Mode

The simplest mode of operation is the normal mode (WGM13:0 = 0). In this mode the counting direction is always up
(incrementing), and no counter clear is performed. The counter simply overruns when it passes its maximum 16-bit value
(MAX = 0xFFFF) and then restarts from the BOTTOM (0x0000). In normal operation the Timer/Counter overflow flag (TOV1)
will be set in the same timer clock cycle as the TCNT1 becomes zero. The TOV1 flag in this case behaves like a 17th bit,
except that it is only set, not cleared. However, combined with the timer overflow interrupt that automatically clears the TOV1
flag, the timer resolution can be increased by software. There are no special cases to consider in the Normal mode, a new
counter value can be written anytime.

The input capture unit is easy to use in normal mode. However, observe that the maximum interval between the external
events must not exceed the resolution of the counter. If the interval between events are too long, the timer overflow interrupt
or the prescaler must be used to extend the resolution for the capture unit.

The output compare units can be used to generate interrupts at some given time. Using the output compare to generate
waveforms in normal mode is not recommended, since this will occupy too much of the CPU time.

15.9.2 Clear Timer on Compare Match (CTC) Mode

In clear timer on compare or CTC mode (WGM13:0 = 4 or 12), the OCR1A or ICR1 register are used to manipulate the
counter resolution. In CTC mode the counter is cleared to zero when the counter value (TCNT1) matches either the OCR1A
(WGM13:0 = 4) or the ICR1 (WGM13:0 = 12). The OCR1A or ICR1 define the top value for the counter, hence also its
resolution. This mode allows greater control of the compare match output frequency. It also simplifies the operation of
counting external events.

The timing diagram for the CTC mode is shown in Figure 15-6. The counter value (TCNT1) increases until a compare match
occurs with either OCR1A or ICR1, and then counter (TCNT1) is cleared.

Figure 15-6. CTC Mode, Timing Diagram

1 2

TCNTn

(COMnA1:0 = 1)OCnA
(Toggle)

Period
3

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set

(Interrupt on TOP)

4

101ATmega328P [DATASHEET]
7810D–AVR–01/15

An interrupt can be generated at each time the counter value reaches the TOP value by either using the OCF1A or ICF1 flag
according to the register used to define the TOP value. If the interrupt is enabled, the interrupt handler routine can be used
for updating the TOP value. However, changing the TOP to a value close to BOTTOM when the counter is running with none
or a low prescaler value must be done with care since the CTC mode does not have the double buffering feature. If the new
value written to OCR1A or ICR1 is lower than the current value of TCNT1, the counter will miss the compare match. The
counter will then have to count to its maximum value (0xFFFF) and wrap around starting at 0x0000 before the compare
match can occur. In many cases this feature is not desirable. An alternative will then be to use the fast PWM mode using
OCR1A for defining TOP (WGM13:0 = 15) since the OCR1A then will be double buffered.

For generating a waveform output in CTC mode, the OC1A output can be set to toggle its logical level on each compare
match by setting the compare output mode bits to toggle mode (COM1A1:0 = 1). The OC1A value will not be visible on the
port pin unless the data direction for the pin is set to output (DDR_OC1A = 1). The waveform generated will have a
maximum frequency of fOC1A = fclk_I/O/2 when OCR1A is set to zero (0x0000). The waveform frequency is defined by the
following equation:

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the normal mode of operation, the TOV1 flag is set in the same timer clock cycle that the counter counts from MAX to
0x0000.

15.9.3 Fast PWM Mode

The fast pulse width modulation or fast PWM mode (WGM13:0 = 5, 6, 7, 14, or 15) provides a high frequency PWM
waveform generation option. The fast PWM differs from the other PWM options by its single-slope operation. The counter
counts from BOTTOM to TOP then restarts from BOTTOM. In non-inverting compare output mode, the output compare
(OC1x) is cleared on the compare match between TCNT1 and OCR1x, and set at BOTTOM. In inverting compare output
mode output is set on compare match and cleared at BOTTOM. Due to the single-slope operation, the operating frequency
of the fast PWM mode can be twice as high as the phase correct and phase and frequency correct PWM modes that use
dual-slope operation. This high frequency makes the fast PWM mode well suited for power regulation, rectification, and DAC
applications. High frequency allows physically small sized external components (coils, capacitors), hence reduces total
system cost.

The PWM resolution for fast PWM can be fixed to 8-, 9-, or 10-bit, or defined by either ICR1 or OCR1A. The minimum
resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and the maximum resolution is 16-bit (ICR1 or OCR1A set to
MAX). The PWM resolution in bits can be calculated by using the following equation:

In fast PWM mode the counter is incremented until the counter value matches either one of the fixed values 0x00FF,
0x01FF, or 0x03FF (WGM13:0 = 5, 6, or 7), the value in ICR1 (WGM13:0 = 14), or the value in OCR1A (WGM13:0 = 15).
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast PWM mode is shown in
Figure 15-7 on page 102. The figure shows fast PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1 value
is in the timing diagram shown as a histogram for illustrating the single-slope operation. The diagram includes non-inverted
and inverted PWM outputs. The small horizontal line marks on the TCNT1 slopes represent compare matches between
OCR1x and TCNT1. The OC1x interrupt flag will be set when a compare match occurs.

fOCnA

fclk_I/O

2 N 1 OCRnA+ 
---=

RFPWM
log TOP 1+ 

log 2 
---------------------------------=

ATmega328P [DATASHEET]
7810D–AVR–01/15

102

Figure 15-7. Fast PWM Mode, Timing Diagram

The Timer/Counter overflow flag (TOV1) is set each time the counter reaches TOP. In addition the OC1A or ICF1 flag is set
at the same timer clock cycle as TOV1 is set when either OCR1A or ICR1 is used for defining the TOP value. If one of the
interrupts are enabled, the interrupt handler routine can be used for updating the TOP and compare values.

When changing the TOP value the program must ensure that the new TOP value is higher or equal to the value of all of the
compare registers. If the TOP value is lower than any of the compare registers, a compare match will never occur between
the TCNT1 and the OCR1x. Note that when using fixed TOP values the unused bits are masked to zero when any of the
OCR1x registers are written.

The procedure for updating ICR1 differs from updating OCR1A when used for defining the TOP value. The ICR1 register is
not double buffered. This means that if ICR1 is changed to a low value when the counter is running with none or a low
prescaler value, there is a risk that the new ICR1 value written is lower than the current value of TCNT1. The result will then
be that the counter will miss the compare match at the TOP value. The counter will then have to count to the MAX value
(0xFFFF) and wrap around starting at 0x0000 before the compare match can occur. The OCR1A register however, is double
buffered. This feature allows the OCR1A I/O location to be written anytime. When the OCR1A I/O location is written the
value written will be put into the OCR1A buffer register. The OCR1A compare register will then be updated with the value in
the buffer register at the next timer clock cycle the TCNT1 matches TOP. The update is done at the same timer clock cycle
as the TCNT1 is cleared and the TOV1 flag is set.

Using the ICR1 register for defining TOP works well when using fixed TOP values. By using ICR1, the OCR1A register is
free to be used for generating a PWM output on OC1A. However, if the base PWM frequency is actively changed (by
changing the TOP value), using the OCR1A as TOP is clearly a better choice due to its double buffer feature.

In fast PWM mode, the compare units allow generation of PWM waveforms on the OC1x pins. Setting the COM1x1:0 bits to
two will produce a inverted PWM and an non-inverted PWM output can be generated by setting the COM1x1:0 to three (see
Table on page 108). The actual OC1x value will only be visible on the port pin if the data direction for the port pin is set as
output (DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x register at the compare match
between OCR1x and TCNT1, and clearing (or setting) the OC1x register at the timer clock cycle the counter is cleared
(changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x register represents special cases when generating a PWM waveform output in the fast
PWM mode. If the OCR1x is set equal to BOTTOM (0x0000) the output will be a narrow spike for each TOP+1 timer clock
cycle. Setting the OCR1x equal to TOP will result in a constant high or low output (depending on the polarity of the output set
by the COM1x1:0 bits.)

1 2 3 4 5

TCNTn

(COMnx1:0 = 2)OCnx

OCnx

Period

OCRnx/ TOP Update and
TOVn Interrupt Flag Set and

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set

(Interrupt on TOP)

6 7 8

(COMnx1:0 = 3)

fOCnxPWM

fclk_I/O

N 1 TOP+ 
------------------------------------=

103ATmega328P [DATASHEET]
7810D–AVR–01/15

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OC1A to toggle its logical
level on each compare match (COM1A1:0 = 1). This applies only if OCR1A is used to define the TOP value
(WGM13:0 = 15). The waveform generated will have a maximum frequency of fOC1A = fclk_I/O/2 when OCR1A is set to zero
(0x0000). This feature is similar to the OC1A toggle in CTC mode, except the double buffer feature of the output compare
unit is enabled in the fast PWM mode.

15.9.4 Phase Correct PWM Mode

The phase correct pulse width modulation or phase correct PWM mode (WGM13:0 = 1, 2, 3, 10, or 11) provides a high
resolution phase correct PWM waveform generation option. The phase correct PWM mode is, like the phase and frequency
correct PWM mode, based on a dual-slope operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and
then from TOP to BOTTOM. In non-inverting compare output mode, the output compare (OC1x) is cleared on the compare
match between TCNT1 and OCR1x while upcounting, and set on the compare match while downcounting. In inverting output
compare mode, the operation is inverted. The dual-slope operation has lower maximum operation frequency than single
slope operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes are preferred for motor
control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-, 9-, or 10-bit, or defined by either ICR1 or OCR1A.
The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and the maximum resolution is 16-bit (ICR1 or
OCR1A set to MAX). The PWM resolution in bits can be calculated by using the following equation:

In phase correct PWM mode the counter is incremented until the counter value matches either one of the fixed values
0x00FF, 0x01FF, or 0x03FF (WGM13:0 = 1, 2, or 3), the value in ICR1 (WGM13:0 = 10), or the value in OCR1A
(WGM13:0 = 11). The counter has then reached the TOP and changes the count direction. The TCNT1 value will be equal to
TOP for one timer clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 15-8. The figure
shows phase correct PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1 value is in the timing diagram
shown as a histogram for illustrating the dual-slope operation. The diagram includes non-inverted and inverted PWM
outputs. The small horizontal line marks on the TCNT1 slopes represent compare matches between OCR1x and TCNT1.
The OC1x interrupt flag will be set when a compare match occurs.

Figure 15-8. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter overflow flag (TOV1) is set each time the counter reaches BOTTOM. When either OCR1A or ICR1 is
used for defining the TOP value, the OC1A or ICF1 flag is set accordingly at the same timer clock cycle as the OCR1x
registers are updated with the double buffer value (at TOP). The interrupt flags can be used to generate an interrupt each
time the counter reaches the TOP or BOTTOM value.

RPCPWM
log TOP 1+ 

log 2 
---------------------------------=

1 2 3 4

TCNTn

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCnx

OCnx

Period

TOVn Interrupt Flag Set
(Interrupt on Bottom)

OCRnx/ TOP Update and
OCnA Interrupt Flag Set

or ICFn Interrupt Flag Set
(Interrupt on TOP)

ATmega328P [DATASHEET]
7810D–AVR–01/15

104

When changing the TOP value the program must ensure that the new TOP value is higher or equal to the value of all of the
compare registers. If the TOP value is lower than any of the compare registers, a compare match will never occur between
the TCNT1 and the OCR1x. Note that when using fixed TOP values, the unused bits are masked to zero when any of the
OCR1x registers are written. As the third period shown in Figure 15-8 on page 103 illustrates, changing the TOP actively
while the Timer/Counter is running in the phase correct mode can result in an unsymmetrical output. The reason for this can
be found in the time of update of the OCR1x register. Since the OCR1x update occurs at TOP, the PWM period starts and
ends at TOP. This implies that the length of the falling slope is determined by the previous TOP value, while the length of the
rising slope is determined by the new TOP value. When these two values differ the two slopes of the period will differ in
length. The difference in length gives the unsymmetrical result on the output.

It is recommended to use the phase and frequency correct mode instead of the phase correct mode when changing the TOP
value while the Timer/Counter is running. When using a static TOP value there are practically no differences between the
two modes of operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on the OC1x pins. Setting the
COM1x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output can be generated by setting the
COM1x1:0 to three (See Table on page 109). The actual OC1x value will only be visible on the port pin if the data direction
for the port pin is set as output (DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x register at
the compare match between OCR1x and TCNT1 when the counter increments, and clearing (or setting) the OC1x register at
compare match between OCR1x and TCNT1 when the counter decrements. The PWM frequency for the output when using
phase correct PWM can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x register represent special cases when generating a PWM waveform output in the phase
correct PWM mode. If the OCR1x is set equal to BOTTOM the output will be continuously low and if set equal to TOP the
output will be continuously high for non-inverted PWM mode. For inverted PWM the output will have the opposite logic
values. If OCR1A is used to define the TOP value (WGM13:0 = 11) and COM1A1:0 = 1, the OC1A output will toggle with a
50% duty cycle.

15.9.5 Phase and Frequency Correct PWM Mode

The phase and frequency correct pulse width modulation, or phase and frequency correct PWM mode (WGM13:0 = 8 or 9)
provides a high resolution phase and frequency correct PWM waveform generation option. The phase and frequency correct
PWM mode is, like the phase correct PWM mode, based on a dual-slope operation. The counter counts repeatedly from
BOTTOM (0x0000) to TOP and then from TOP to BOTTOM. In non-inverting compare output mode, the output compare
(OC1x) is cleared on the compare match between TCNT1 and OCR1x while upcounting, and set on the compare match
while downcounting. In inverting compare output mode, the operation is inverted. The dual-slope operation gives a lower
maximum operation frequency compared to the single-slope operation. However, due to the symmetric feature of the
dual-slope PWM modes, these modes are preferred for motor control applications.

The main difference between the phase correct, and the phase and frequency correct PWM mode is the time the OCR1x
register is updated by the OCR1x buffer register, (see Figure 15-8 on page 103 and Figure 15-9 on page 105).

The PWM resolution for the phase and frequency correct PWM mode can be defined by either ICR1 or OCR1A. The
minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and the maximum resolution is 16-bit (ICR1 or OCR1A
set to MAX). The PWM resolution in bits can be calculated using the following equation:

In phase and frequency correct PWM mode the counter is incremented until the counter value matches either the value in
ICR1 (WGM13:0 = 8), or the value in OCR1A (WGM13:0 = 9). The counter has then reached the TOP and changes the
count direction. The TCNT1 value will be equal to TOP for one timer clock cycle. The timing diagram for the phase correct
and frequency correct PWM mode is shown on Figure 15-9 on page 105. The figure shows phase and frequency correct
PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1 value is in the timing diagram shown as a histogram
for illustrating the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal
line marks on the TCNT1 slopes represent compare matches between OCR1x and TCNT1. The OC1x interrupt flag will be
set when a compare match occurs.

fOCnxPCPWM

fclk_I/O

2 N TOP
-------------------------------=

RPFCPWM
log TOP 1+ 

log 2 
---------------------------------=

105ATmega328P [DATASHEET]
7810D–AVR–01/15

Figure 15-9. Phase and Frequency Correct PWM Mode, Timing Diagram

The Timer/Counter overflow flag (TOV1) is set at the same timer clock cycle as the OCR1x registers are updated with the
double buffer value (at BOTTOM). When either OCR1A or ICR1 is used for defining the TOP value, the OC1A or ICF1 flag
set when TCNT1 has reached TOP. The interrupt flags can then be used to generate an interrupt each time the counter
reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or equal to the value of all of the
compare registers. If the TOP value is lower than any of the compare registers, a compare match will never occur between
the TCNT1 and the OCR1x.

As Figure 15-9 shows the output generated is, in contrast to the phase correct mode, symmetrical in all periods. Since the
OCR1x registers are updated at BOTTOM, the length of the rising and the falling slopes will always be equal. This gives
symmetrical output pulses and is therefore frequency correct.

Using the ICR1 register for defining TOP works well when using fixed TOP values. By using ICR1, the OCR1A register is
free to be used for generating a PWM output on OC1A. However, if the base PWM frequency is actively changed by
changing the TOP value, using the OCR1A as TOP is clearly a better choice due to its double buffer feature.

In phase and frequency correct PWM mode, the compare units allow generation of PWM waveforms on the OC1x pins.
Setting the COM1x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output can be generated by setting
the COM1x1:0 to three (See Table on page 109). The actual OC1x value will only be visible on the port pin if the data
direction for the port pin is set as output (DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x
register at the compare match between OCR1x and TCNT1 when the counter increments, and clearing (or setting) the OC1x
register at compare match between OCR1x and TCNT1 when the counter decrements. The PWM frequency for the output
when using phase and frequency correct PWM can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x register represents special cases when generating a PWM waveform output in the phase
correct PWM mode. If the OCR1x is set equal to BOTTOM the output will be continuously low and if set equal to TOP the
output will be set to high for non-inverted PWM mode. For inverted PWM the output will have the opposite logic values. If
OCR1A is used to define the TOP value (WGM13:0 = 9) and COM1A1:0 = 1, the OC1A output will toggle with a 50% duty
cycle.

1 2 3 4

TCNTn

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCnx

OCnx

Period

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set

(Interrupt on TOP)

OCRnx/ TOP Update and
TOVn Interrupt Flag Set

(Interrupt on Bottom)

fOCnxPFCPWM

fclk_I/O

2 N TOP
-------------------------------=

ATmega328P [DATASHEET]
7810D–AVR–01/15

106

15.10 Timer/Counter Timing Diagrams

The Timer/Counter is a synchronous design and the timer clock (clkT1) is therefore shown as a clock enable signal in the
following figures. The figures include information on when interrupt flags are set, and when the OCR1x register is updated
with the OCR1x buffer value (only for modes utilizing double buffering). Figure 15-10 shows a timing diagram for the setting
of OCF1x.

Figure 15-10. Timer/Counter Timing Diagram, Setting of OCF1x, no Prescaling

Figure 15-11 shows the same timing data, but with the prescaler enabled.

Figure 15-11. Timer/Counter Timing Diagram, Setting of OCF1x, with Prescaler (fclk_I/O/8)

OCRnx - 1

clkI/O

(clkI/O/1)

TCNTn

OCRnx

OCFnx

clkTn

OCRnx

OCRnx Value

OCRnx + 1 OCRnx + 2

OCRnx - 1

clkI/O

(clkI/O/8)

TCNTn

OCRnx

OCFnx

clkTn

OCRnx OCRnx + 1

OCRnx Value

OCRnx + 2

107ATmega328P [DATASHEET]
7810D–AVR–01/15

Figure 15-12 shows the count sequence close to TOP in various modes. When using phase and frequency correct PWM
mode the OCR1x register is updated at BOTTOM. The timing diagrams will be the same, but TOP should be replaced by
BOTTOM, TOP-1 by BOTTOM+1 and so on. The same renaming applies for modes that set the TOV1 flag at BOTTOM.

Figure 15-12. Timer/Counter Timing Diagram, no Prescaling

Figure 15-13 shows the same timing data, but with the prescaler enabled.

Figure 15-13. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

TOP - 1

clkI/O

(clkI/O/1)

TCNTn
(CTC and FPWM)

OCRnx
(Update at TOP)

TCNTn
(PC and PFC PWM)

TOVn (FPWM)
and ICFn

(if used as TOP)

clkTn

TOP

Old OCRnx Value New OCRnx Value

BOTTOM BOTTOM + 1

TOP - 1 TOP TOP -1 TOP -2

TOP - 1 TOP BOTTOM BOTTOM + 1

TOP - 1 TOP TOP - 1 TOP - 2

clkI/O

(clkI/O/8)

TCNTn
(CTC and FPWM)

OCRnx
(Update at TOP)

TCNTn
(PC and PFC PWM)

TOVn (FPWM)
and ICFn

(if used as TOP)

clkTn

Old OCRnx Value New OCRnx Value

ATmega328P [DATASHEET]
7810D–AVR–01/15

108

15.11 Register Description

15.11.1 TCCR1A – Timer/Counter1 Control Register A

• Bit 7:6 – COM1A1:0: Compare Output Mode for Channel A

• Bit 5:4 – COM1B1:0: Compare Output Mode for Channel B

The COM1A1:0 and COM1B1:0 control the output compare pins (OC1A and OC1B respectively) behavior. If one or both of
the COM1A1:0 bits are written to one, the OC1A output overrides the normal port functionality of the I/O pin it is connected
to. If one or both of the COM1B1:0 bit are written to one, the OC1B output overrides the normal port functionality of the I/O
pin it is connected to. However, note that the data direction register (DDR) bit corresponding to the OC1A or OC1B pin must
be set in order to enable the output driver.

When the OC1A or OC1B is connected to the pin, the function of the COM1x1:0 bits is dependent of the WGM13:0 bits
setting. Table 15-2 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to a normal or a CTC mode
(non-PWM).

Table 15-3 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to the fast PWM mode.

Bit 7 6 5 4 3 2 1 0

(0x80) COM1A1 COM1A0 COM1B1 COM1B0 – – WGM11 WGM10 TCCR1A

Read/Write R/W R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 15-2. Compare Output Mode, non-PWM

COM1A1/COM1B1 COM1A0/COM1B0 Description

0 0 Normal port operation, OC1A/OC1B disconnected.

0 1 Toggle OC1A/OC1B on compare match.

1 0 Clear OC1A/OC1B on compare match (set output to low level).

1 1 Set OC1A/OC1B on compare match (set output to high level).

Table 15-3. Compare Output Mode, Fast PWM(1)

COM1A1/COM1B1 COM1A0/COM1B0 Description

0 0 Normal port operation, OC1A/OC1B disconnected.

0 1
WGM13:0 = 14 or 15: Toggle OC1A on compare match, OC1B
disconnected (normal port operation). For all other WGM1
settings, normal port operation, OC1A/OC1B disconnected.

1 0
Clear OC1A/OC1B on compare match, set OC1A/OC1B at
BOTTOM (non-inverting mode)

1 1
Set OC1A/OC1B on compare match, clear OC1A/OC1B at
BOTTOM (inverting mode)

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set. In this case the
compare match is ignored, but the set or clear is done at BOTTOM. See Section 15.9.3 “Fast PWM Mode” on
page 101 for more details.

109ATmega328P [DATASHEET]
7810D–AVR–01/15

Table 15-4 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to the phase correct or the phase and
frequency correct, PWM mode.

• Bit 1:0 – WGM11:0: Waveform Generation Mode

Combined with the WGM13:2 bits found in the TCCR1B register, these bits control the counting sequence of the counter, the
source for maximum (TOP) counter value, and what type of waveform generation to be used, see Table 15-5. Modes of
operation supported by the Timer/Counter unit are: Normal mode (counter), clear timer on compare match (CTC) mode, and
three types of pulse width modulation (PWM) modes. See (Section 15.9 “Modes of Operation” on page 100).

Table 15-4. Compare Output Mode, Phase Correct and Phase and Frequency Correct PWM(1)

COM1A1/COM1B1 COM1A0/COM1B0 Description

0 0 Normal port operation, OC1A/OC1B disconnected.

0 1
WGM13:0 = 9 or 11: Toggle OC1A on compare match, OC1B
disconnected (normal port operation). For all other WGM1
settings, normal port operation, OC1A/OC1B disconnected.

1 0
Clear OC1A/OC1B on compare match when up-counting. Set
OC1A/OC1B on compare match when down counting.

1 1
Set OC1A/OC1B on compare match when up-counting. Clear
OC1A/OC1B on compare match when down counting.

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set. See Section 15.9.4
“Phase Correct PWM Mode” on page 103 for more details.

Table 15-5. Waveform Generation Mode Bit Description(1)

Mode WGM13
WGM12
(CTC1)

WGM11
(PWM11)

WGM10
(PWM10)

Timer/Counter Mode of
Operation TOP

Update of
OCR1x at

TOV1 Flag
Set on

0 0 0 0 0 Normal 0xFFFF Immediate MAX

1 0 0 0 1 PWM, phase correct, 8-bit 0x00FF TOP BOTTOM

2 0 0 1 0 PWM, phase correct, 9-bit 0x01FF TOP BOTTOM

3 0 0 1 1 PWM, phase correct, 10-bit 0x03FF TOP BOTTOM

4 0 1 0 0 CTC OCR1A Immediate MAX

5 0 1 0 1 Fast PWM, 8-bit 0x00FF BOTTOM TOP

6 0 1 1 0 Fast PWM, 9-bit 0x01FF BOTTOM TOP

7 0 1 1 1 Fast PWM, 10-bit 0x03FF BOTTOM TOP

8 1 0 0 0
PWM, phase and frequency

correct
ICR1 BOTTOM BOTTOM

9 1 0 0 1
PWM, phase and frequency

correct
OCR1A BOTTOM BOTTOM

10 1 0 1 0 PWM, phase correct ICR1 TOP BOTTOM

11 1 0 1 1 PWM, phase correct OCR1A TOP BOTTOM

12 1 1 0 0 CTC ICR1 Immediate MAX

13 1 1 0 1 (Reserved) – – –

14 1 1 1 0 Fast PWM ICR1 BOTTOM TOP

15 1 1 1 1 Fast PWM OCR1A BOTTOM TOP
Note: 1. The CTC1 and PWM11:0 bit definition names are obsolete. Use the WGM12:0 definitions. However, the

functionality and location of these bits are compatible with previous versions of the timer.

ATmega328P [DATASHEET]
7810D–AVR–01/15

110

15.11.2 TCCR1B – Timer/Counter1 Control Register B

• Bit 7 – ICNC1: Input Capture Noise Canceler

Setting this bit (to one) activates the input capture noise canceler. When the noise canceler is activated, the input from the
input capture pin (ICP1) is filtered. The filter function requires four successive equal valued samples of the ICP1 pin for
changing its output. The input capture is therefore delayed by four oscillator cycles when the noise canceler is enabled.

• Bit 6 – ICES1: Input Capture Edge Select

This bit selects which edge on the input capture pin (ICP1) that is used to trigger a capture event. When the ICES1 bit is
written to zero, a falling (negative) edge is used as trigger, and when the ICES1 bit is written to one, a rising (positive) edge
will trigger the capture.

When a capture is triggered according to the ICES1 setting, the counter value is copied into the input capture register
(ICR1). The event will also set the input capture flag (ICF1), and this can be used to cause an input capture interrupt, if this
interrupt is enabled.

When the ICR1 is used as TOP value (see description of the WGM13:0 bits located in the TCCR1A and the TCCR1B
register), the ICP1 is disconnected and consequently the input capture function is disabled.

• Bit 5 – Reserved Bit

This bit is reserved for future use. For ensuring compatibility with future devices, this bit must be written to zero when
TCCR1B is written.

• Bit 4:3 – WGM13:2: Waveform Generation Mode

See TCCR1A register description.

• Bit 2:0 – CS12:0: Clock Select

The three clock select bits select the clock source to be used by the Timer/Counter, see Figure 15-10 on page 106 and
Figure 15-11 on page 106.

If external pin modes are used for the Timer/Counter1, transitions on the T1 pin will clock the counter even if the pin is
configured as an output. This feature allows software control of the counting.

Bit 7 6 5 4 3 2 1 0

(0x81) ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 TCCR1B

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 15-6. Clock Select Bit Description

CS12 CS11 CS10 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkI/O/1 (no prescaling)

0 1 0 clkI/O/8 (from prescaler)

0 1 1 clkI/O/64 (from prescaler)

1 0 0 clkI/O/256 (from prescaler)

1 0 1 clkI/O/1024 (from prescaler)

1 1 0 External clock source on T1 pin. Clock on falling edge.

1 1 1 External clock source on T1 pin. Clock on rising edge.

111ATmega328P [DATASHEET]
7810D–AVR–01/15

15.11.3 TCCR1C – Timer/Counter1 Control Register C

• Bit 7 – FOC1A: Force Output Compare for Channel A

• Bit 6 – FOC1B: Force Output Compare for Channel B

The FOC1A/FOC1B bits are only active when the WGM13:0 bits specifies a non-PWM mode. When writing a logical one to
the FOC1A/FOC1B bit, an immediate compare match is forced on the waveform generation unit. The OC1A/OC1B output is
changed according to its COM1x1:0 bits setting. Note that the FOC1A/FOC1B bits are implemented as strobes. Therefore it
is the value present in the COM1x1:0 bits that determine the effect of the forced compare.

A FOC1A/FOC1B strobe will not generate any interrupt nor will it clear the timer in clear timer on compare match (CTC)
mode using OCR1A as TOP. The FOC1A/FOC1B bits are always read as zero.

15.11.4 TCNT1H and TCNT1L – Timer/Counter1

The two Timer/Counter I/O locations (TCNT1H and TCNT1L, combined TCNT1) give direct access, both for read and for
write operations, to the Timer/Counter unit 16-bit counter. To ensure that both the high and low bytes are read and written
simultaneously when the CPU accesses these registers, the access is performed using an 8-bit temporary high byte register
(TEMP). This temporary register is shared by all the other 16-bit registers. See Section 15.3 “Accessing 16-bit Registers” on
page 91.

Modifying the counter (TCNT1) while the counter is running introduces a risk of missing a compare match between TCNT1
and one of the OCR1x registers.

Writing to the TCNT1 register blocks (removes) the compare match on the following timer clock for all compare units.

15.11.5 OCR1AH and OCR1AL – Output Compare Register 1 A

15.11.6 OCR1BH and OCR1BL – Output Compare Register 1 B

The output compare registers contain a 16-bit value that is continuously compared with the counter value (TCNT1). A match
can be used to generate an output compare interrupt, or to generate a waveform output on the OC1x pin.

The output compare registers are 16-bit in size. To ensure that both the high and low bytes are written simultaneously when
the CPU writes to these registers, the access is performed using an 8-bit temporary high byte register (TEMP). This
temporary register is shared by all the other 16-bit registers. See Section 15.3 “Accessing 16-bit Registers” on page 91.

Bit 7 6 5 4 3 2 1 0

(0x82) FOC1A FOC1B – – – – – – TCCR1C

Read/Write R/W R/W R R R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x85) TCNT1[15:8] TCNT1H

(0x84) TCNT1[7:0] TCNT1L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x89) OCR1A[15:8] OCR1AH

(0x88) OCR1A[7:0] OCR1AL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x8B) OCR1B[15:8] OCR1BH

(0x8A) OCR1B[7:0] OCR1BL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

ATmega328P [DATASHEET]
7810D–AVR–01/15

112

15.11.7 ICR1H and ICR1L – Input Capture Register 1

The input capture is updated with the counter (TCNT1) value each time an event occurs on the ICP1 pin (or optionally on the
analog comparator output for Timer/Counter1). The input capture can be used for defining the counter TOP value.

The input capture register is 16-bit in size. To ensure that both the high and low bytes are read simultaneously when the
CPU accesses these registers, the access is performed using an 8-bit temporary high byte register (TEMP). This temporary
register is shared by all the other 16-bit registers. See Section 15.3 “Accessing 16-bit Registers” on page 91.

15.11.8 TIMSK1 – Timer/Counter1 Interrupt Mask Register

• Bit 7, 6 – Res: Reserved Bits

These bits are unused bits in the Atmel® ATmega328P, and will always read as zero.

• Bit 5 – ICIE1: Timer/Counter1, Input Capture Interrupt Enable

When this bit is written to one, and the I-flag in the status register is set (interrupts globally enabled), the Timer/Counter1
input capture interrupt is enabled. The corresponding interrupt vector (see Section 11. “Interrupts” on page 49) is executed
when the ICF1 flag, located in TIFR1, is set.

• Bit 4, 3 – Res: Reserved Bits

These bits are unused bits in the Atmel ATmega328P, and will always read as zero.

• Bit 2 – OCIE1B: Timer/Counter1, Output Compare B Match Interrupt Enable

When this bit is written to one, and the I-flag in the status register is set (interrupts globally enabled), the Timer/Counter1
output compare B match interrupt is enabled. The corresponding interrupt vector (see Section 11. “Interrupts” on page 49) is
executed when the OCF1B flag, located in TIFR1, is set.

• Bit 1 – OCIE1A: Timer/Counter1, Output Compare A Match Interrupt Enable

When this bit is written to one, and the I-flag in the status register is set (interrupts globally enabled), the Timer/Counter1
output compare A match interrupt is enabled. The corresponding interrupt vector (see Section 11. “Interrupts” on page 49) is
executed when the OCF1A flag, located in TIFR1, is set.

• Bit 0 – TOIE1: Timer/Counter1, Overflow Interrupt Enable

When this bit is written to one, and the I-flag in the status register is set (interrupts globally enabled), the Timer/Counter1
overflow interrupt is enabled. The corresponding interrupt vector (see Section 11. “Interrupts” on page 49) is executed when
the TOV1 flag, located in TIFR1, is set.

Bit 7 6 5 4 3 2 1 0

(0x87) ICR1[15:8] ICR1H

(0x86) ICR1[7:0] ICR1L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x6F) – – ICIE1 – – OCIE1B OCIE1A TOIE1 TIMSK1

Read/Write R R R/W R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

113ATmega328P [DATASHEET]
7810D–AVR–01/15

15.11.9 TIFR1 – Timer/Counter1 Interrupt Flag Register

• Bit 7, 6 – Res: Reserved Bits

These bits are unused bits in the Atmel® ATmega328P, and will always read as zero.

• Bit 5 – ICF1: Timer/Counter1, Input Capture Flag

This flag is set when a capture event occurs on the ICP1 pin. When the input capture register (ICR1) is set by the WGM13:0
to be used as the TOP value, the ICF1 flag is set when the counter reaches the TOP value.

ICF1 is automatically cleared when the input capture interrupt vector is executed. Alternatively, ICF1 can be cleared by
writing a logic one to its bit location.

• Bit 4, 3 – Res: Reserved Bits

These bits are unused bits in the Atmel ATmega328P, and will always read as zero.

• Bit 2 – OCF1B: Timer/Counter1, Output Compare B Match Flag

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the output compare register B (OCR1B).

Note that a forced output compare (FOC1B) strobe will not set the OCF1B flag.

OCF1B is automatically cleared when the output compare match B interrupt vector is executed. Alternatively, OCF1B can be
cleared by writing a logic one to its bit location.

• Bit 1 – OCF1A: Timer/Counter1, Output Compare A Match Flag

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the output compare register A (OCR1A).

Note that a forced output compare (FOC1A) strobe will not set the OCF1A flag.

OCF1A is automatically cleared when the output compare match A interrupt vector is executed. Alternatively, OCF1A can be
cleared by writing a logic one to its bit location.

• Bit 0 – TOV1: Timer/Counter1, Overflow Flag

The setting of this flag is dependent of the WGM13:0 bits setting. In normal and CTC modes, the TOV1 flag is set when the
timer overflows. Refer to Table 15-5 on page 109 for the TOV1 flag behavior when using another WGM13:0 bit setting.

TOV1 is automatically cleared when the Timer/Counter1 overflow interrupt vector is executed. Alternatively, TOV1 can be
cleared by writing a logic one to its bit location.

Bit 7 6 5 4 3 2 1 0

0x16 (0x36) – – ICF1 – – OCF1B OCF1A TOV1 TIFR1

Read/Write R R R/W R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

ATmega328P [DATASHEET]
7810D–AVR–01/15

114

16. Timer/Counter0 and Timer/Counter1 Prescalers

Section 14. “8-bit Timer/Counter0 with PWM” on page 74 and Section 15. “16-bit Timer/Counter1 with PWM” on page 89
share the same prescaler module, but the Timer/Counters can have different prescaler settings. The description below
applies to both Timer/Counter1 and Timer/Counter0.

16.1 Internal Clock Source

The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 = 1). This provides the fastest
operation, with a maximum Timer/Counter clock frequency equal to system clock frequency (fCLK_I/O). Alternatively, one of
four taps from the prescaler can be used as a clock source. The prescaled clock has a frequency of either fCLK_I/O/8,
fCLK_I/O/64, fCLK_I/O/256, or fCLK_I/O/1024.

16.2 Prescaler Reset

The prescaler is free running, i.e., operates independently of the clock select logic of the Timer/Counter, and it is shared by
Timer/Counter1 and Timer/Counter0. Since the prescaler is not affected by the Timer/Counter’s clock select, the state of the
prescaler will have implications for situations where a prescaled clock is used. One example of prescaling artifacts occurs
when the timer is enabled and clocked by the prescaler (6 > CSn2:0 > 1). The number of system clock cycles from when the
timer is enabled to the first count occurs can be from 1 to N+1 system clock cycles, where N equals the prescaler divisor (8,
64, 256, or 1024).

It is possible to use the prescaler reset for synchronizing the Timer/Counter to program execution. However, care must be
taken if the other Timer/Counter that shares the same prescaler also uses prescaling. A prescaler reset will affect the
prescaler period for all Timer/Counters it is connected to.

16.3 External Clock Source

An external clock source applied to the T1/T0 pin can be used as Timer/Counter clock (clkT1/clkT0). The T1/T0 pin is sampled
once every system clock cycle by the pin synchronization logic. The synchronized (sampled) signal is then passed through
the edge detector. Figure 16-1 shows a functional equivalent block diagram of the T1/T0 synchronization and edge detector
logic. The registers are clocked at the positive edge of the internal system clock (clkI/O). The latch is transparent in the high
period of the internal system clock.

The edge detector generates one clkT1/clkT0 pulse for each positive (CSn2:0 = 7) or negative (CSn2:0 = 6) edge it detects.

Figure 16-1. T1/T0 Pin Sampling

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles from an edge has been
applied to the T1/T0 pin to the counter is updated.

Enabling and disabling of the clock input must be done when T1/T0 has been stable for at least one system clock cycle,
otherwise it is a risk that a false Timer/Counter clock pulse is generated.

Each half period of the external clock applied must be longer than one system clock cycle to ensure correct sampling. The
external clock must be guaranteed to have less than half the system clock frequency (fExtClk < fclk_I/O/2) given a 50/50% duty
cycle. Since the edge detector uses sampling, the maximum frequency of an external clock it can detect is half the sampling
frequency (nyquist sampling theorem). However, due to variation of the system clock frequency and duty cycle caused by
oscillator source (crystal, resonator, and capacitors) tolerances, it is recommended that maximum frequency of an external
clock source is less than fclk_I/O/2.5.

An external clock source can not be prescaled.

Tn

Synchronization Edge Detector

Tn_sync
(to Clock

Select Logic)

Q

LE

D QD QD

clkI/O

115ATmega328P [DATASHEET]
7810D–AVR–01/15

Figure 16-2. Prescaler for Timer/Counter0 and Timer/Counter1(1)

Note: 1. The synchronization logic on the input pins (T1/T0) is shown in Figure 16-1.

16.4 Register Description

16.4.1 GTCCR – General Timer/Counter Control Register

• Bit 7 – TSM: Timer/Counter Synchronization Mode

Writing the TSM bit to one activates the Timer/Counter synchronization mode. In this mode, the value that is written to the
PSRASY and PSRSYNC bits is kept, hence keeping the corresponding prescaler reset signals asserted. This ensures that
the corresponding Timer/Counters are halted and can be configured to the same value without the risk of one of them
advancing during configuration. When the TSM bit is written to zero, the PSRASY and PSRSYNC bits are cleared by
hardware, and the Timer/Counters start counting simultaneously.

• Bit 0 – PSRSYNC: Prescaler Reset

When this bit is one, Timer/Counter1 and Timer/Counter0 prescaler will be reset. This bit is normally cleared immediately by
hardware, except if the TSM bit is set. Note that Timer/Counter1 and Timer/Counter0 share the same prescaler and a reset
of this prescaler will affect both timers.

Timer/Counter 1Clock Source
clkT1

clkI/O

PSRSYNC

T0

10-bit T/C Prescaler

0

CS10

C
K

/8

C
K

/6
4

C
K

/2
56

C
K

/1
02

4

CS11
CS12

Synchronization

Clear

T1 Synchronization

Timer/Counter 0 Clock Source
clkT0

0

CS00
CS01
CS02

Bit 7 6 5 4 3 2 1 0

0x23 (0x43) TSM – – – – – PSRASY PSRSYNC GTCCR

Read/Write R/W R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

ATmega328P [DATASHEET]
7810D–AVR–01/15

116

17. 8-bit Timer/Counter2 with PWM and Asynchronous Operation

17.1 Features
● Single channel counter

● Clear timer on compare match (auto reload)

● Glitch-free, phase correct pulse width modulator (PWM)

● Frequency generator

● 10-bit Clock prescaler

● Overflow and compare match interrupt sources (TOV2, OCF2A and OCF2B)

● Allows clocking from external 32kHz watch crystal independent of the I/O clock

17.2 Overview

Timer/Counter2 is a general purpose, single channel, 8-bit Timer/Counter module. A simplified block diagram of the 8-bit
Timer/Counter is shown in Figure 17-1. For the actual placement of I/O pins, refer to Section 1-1 “Pinout” on page 3. CPU
accessible I/O registers, including I/O bits and I/O pins, are shown in bold. The device-specific I/O register and bit locations
are listed in the Section 17.11 “Register Description” on page 127.

The PRTIM2 bit in Section 9.10 “Minimizing Power Consumption” on page 36 must be written to zero to enable
Timer/Counter2 module.

Figure 17-1. 8-bit Timer/Counter Block Diagram

Control Logic

TCNTn

Timer/Counter

Count
Clear

Direction
clkTn

OCRnA

OCRnB

TCCRnA TCCRnB

=

Edge
Detector

(from Prescaler)

Clock Select

TOP BOTTOM

TOVn (Int. Req.)

OCnA (Int. Req.)

Tn

Waveform
Generation

Fixed
TOP
Value

D
AT

A
B

U
S

=

= = 0

OCnA

OCnB (Int. Req.)

Waveform
Generation OCnB

117ATmega328P [DATASHEET]
7810D–AVR–01/15

17.2.1 Registers

The Timer/Counter (TCNT2) and output compare register (OCR2A and OCR2B) are 8-bit registers. Interrupt request
(shorten as int.Req.) signals are all visible in the timer interrupt flag register (TIFR2). All interrupts are individually masked
with the timer interrupt mask register (TIMSK2). TIFR2 and TIMSK2 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or asynchronously clocked from the TOSC1/2 pins, as
detailed later in this section. The asynchronous operation is controlled by the asynchronous status register (ASSR). The
clock select logic block controls which clock source he Timer/Counter uses to increment (or decrement) its value. The
Timer/Counter is inactive when no clock source is selected. The output from the clock select logic is referred to as the timer
clock (clkT2).

The double buffered output compare register (OCR2A and OCR2B) are compared with the Timer/Counter value at all times.
The result of the compare can be used by the waveform generator to generate a PWM or variable frequency output on the
output compare pins (OC2A and OC2B). See Section 17.5 “Output Compare Unit” on page 118 for details. The compare
match event will also set the compare flag (OCF2A or OCF2B) which can be used to generate an output compare interrupt
request.

17.2.2 Definitions

Many register and bit references in this document are written in general form. A lower case “n” replaces the Timer/Counter
number, in this case 2. However, when using the register or bit defines in a program, the precise form must be used, i.e.,
TCNT2 for accessing Timer/Counter2 counter value and so on.

The definitions in Table 17-1 are also used extensively throughout the section.

17.3 Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal synchronous or an external asynchronous clock source. The clock source
clkT2 is by default equal to the MCU clock, clkI/O. When the AS2 bit in the ASSR register is written to logic one, the clock
source is taken from the Timer/Counter oscillator connected to TOSC1 and TOSC2. For details on asynchronous operation,
see Section 17.11.8 “ASSR – Asynchronous Status Register” on page 133. For details on clock sources and prescaler, see
Section 17.10 “Timer/Counter Prescaler” on page 127.

17.4 Counter Unit

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure 17-2 on page 117 shows a
block diagram of the counter and its surrounding environment.

Figure 17-2. Counter Unit Block Diagram

Table 17-1. Definitions

Parameter Definition

BOTTOM The counter reaches the BOTTOM when it becomes zero (0x00).

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP
The counter reaches the TOP when it becomes equal to the highest value in the count
sequence. The TOP value can be assigned to be the fixed value 0xFF (MAX) or the value
stored in the OCR2A register. The assignment is dependent on the mode of operation.

topbottom

TOVn
(Int. Req.)DATA BUS

Control LogicTCNTn
clkTnclear

count

direction

clkI/O

Prescaler

T/C
Oscillator

TOSC1

TOSC2

ATmega328P [DATASHEET]
7810D–AVR–01/15

118

Signal description (internal signals):
count Increment or decrement TCNT2 by 1.

direction Selects between increment and decrement.

clear Clear TCNT2 (set all bits to zero).

clTn Timer/Counter clock, referred to as clkT2 in the following.

top Signalizes that TCNT2 has reached maximum value.

bottom Signalizes that TCNT2 has reached minimum value (zero).

Depending on the mode of operation used, the counter is cleared, incremented, or decremented at each timer clock (clkT2).
clkT2 can be generated from an external or internal clock source, selected by the clock select bits (CS22:0). When no clock
source is selected (CS22:0 = 0) the timer is stopped. However, the TCNT2 value can be accessed by the CPU, regardless of
whether clkT2 is present or not. A CPU write overrides (has priority over) all counter clear or count operations.

The counting sequence is determined by the setting of the WGM21 and WGM20 bits located in the Timer/Counter control
register (TCCR2A) and the WGM22 located in the Timer/Counter control register B (TCCR2B). There are close connections
between how the counter behaves (counts) and how waveforms are generated on the output compare outputs OC2A and
OC2B. For more details about advanced counting sequences and waveform generation, see Section 17.7 “Modes of
Operation” on page 120.

The Timer/Counter overflow flag (TOV2) is set according to the mode of operation selected by the WGM22:0 bits. TOV2 can
be used for generating a CPU interrupt.

17.5 Output Compare Unit

The 8-bit comparator continuously compares TCNT2 with the output compare register (OCR2A and OCR2B). Whenever
TCNT2 equals OCR2A or OCR2B, the comparator signals a match. A match will set the output compare flag (OCF2A or
OCF2B) at the next timer clock cycle. If the corresponding interrupt is enabled, the output compare flag generates an output
compare interrupt. The output compare flag is automatically cleared when the interrupt is executed. Alternatively, the output
compare flag can be cleared by software by writing a logical one to its I/O bit location. The waveform generator uses the
match signal to generate an output according to operating mode set by the WGM22:0 bits and compare output mode
(COM2x1:0) bits. The max and bottom signals are used by the Waveform Generator for handling the special cases of the
extreme values in some modes of operation (Section 17.7 “Modes of Operation” on page 120).

Figure 17-3 shows a block diagram of the output compare unit.

Figure 17-3. Output Compare Unit, Block Diagram

OCFnx (Int. Req.)

= (8-bit Comparator)

OCRnx

Waveform Generator

TCNTn

OCnx

top

bottom

FOCn

WGMn1:0 COMnx1:0

DATA BUS

119ATmega328P [DATASHEET]
7810D–AVR–01/15

The OCR2x register is double buffered when using any of the pulse width modulation (PWM) modes. For the normal and
clear timer on compare (CTC) modes of operation, the double buffering is disabled. The double buffering synchronizes the
update of the OCR2x compare register to either top or bottom of the counting sequence. The synchronization prevents the
occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR2x register access may seem complex, but this is not case. When the double buffering is enabled, the CPU has
access to the OCR2x buffer register, and if double buffering is disabled the CPU will access the OCR2x directly.

17.5.1 Force Output Compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by writing a one to the force
output compare (FOC2x) bit. Forcing compare match will not set the OCF2x flag or reload/clear the timer, but the OC2x pin
will be updated as if a real compare match had occurred (the COM2x1:0 bits settings define whether the OC2x pin is set,
cleared or toggled).

17.5.2 Compare Match Blocking by TCNT2 Write

All CPU write operations to the TCNT2 register will block any compare match that occurs in the next timer clock cycle, even
when the timer is stopped. This feature allows OCR2x to be initialized to the same value as TCNT2 without triggering an
interrupt when the Timer/Counter clock is enabled.

17.5.3 Using the Output Compare Unit

Since writing TCNT2 in any mode of operation will block all compare matches for one timer clock cycle, there are risks
involved when changing TCNT2 when using the output compare channel, independently of whether the Timer/Counter is
running or not. If the value written to TCNT2 equals the OCR2x value, the compare match will be missed, resulting in
incorrect waveform generation. Similarly, do not write the TCNT2 value equal to BOTTOM when the counter is
downcounting.

The setup of the OC2x should be performed before setting the data direction register for the port pin to output. The easiest
way of setting the OC2x value is to use the force output compare (FOC2x) strobe bit in normal mode. The OC2x register
keeps its value even when changing between waveform generation modes.

Be aware that the COM2x1:0 bits are not double buffered together with the compare value. Changing the COM2x1:0 bits will
take effect immediately.

17.6 Compare Match Output Unit

The compare output mode (COM2x1:0) bits have two functions. The waveform generator uses the COM2x1:0 bits for
defining the output compare (OC2x) state at the next compare match. Also, the COM2x1:0 bits control the OC2x pin output
source. Figure 17-4 shows a simplified schematic of the logic affected by the COM2x1:0 bit setting. The I/O registers, I/O
bits, and I/O pins in the figure are shown in bold. Only the parts of the general I/O port control registers (DDR and PORT)
that are affected by the COM2x1:0 bits are shown. When referring to the OC2x state, the reference is for the internal OC2x
register, not the OC2x pin.

ATmega328P [DATASHEET]
7810D–AVR–01/15

120

Figure 17-4. Compare Match Output Unit, Schematic

The general I/O port function is overridden by the output compare (OC2x) from the waveform generator if either of the
COM2x1:0 bits are set. However, the OC2x pin direction (input or output) is still controlled by the data direction register
(DDR) for the port pin. The data direction register bit for the OC2x pin (DDR_OC2x) must be set as output before the OC2x
value is visible on the pin. The port override function is independent of the waveform generation mode.

The design of the output compare pin logic allows initialization of the OC2x state before the output is enabled. Note that
some COM2x1:0 bit settings are reserved for certain modes of operation. See Section 17.11 “Register Description” on page
127.

17.6.1 Compare Output Mode and Waveform Generation

The waveform generator uses the COM2x1:0 bits differently in normal, CTC, and PWM modes. For all modes, setting the
COM2x1:0 = 0 tells the waveform generator that no action on the OC2x register is to be performed on the next compare
match. For compare output actions in the non-PWM modes refer to Table 17-5 on page 129. For fast PWM mode, refer to
Table 17-6 on page 129, and for phase correct PWM refer to Table 17-7 on page 129.

A change of the COM2x1:0 bits state will have effect at the first compare match after the bits are written. For non-PWM
modes, the action can be forced to have immediate effect by using the FOC2x strobe bits.

17.7 Modes of Operation

The mode of operation, i.e., the behavior of the Timer/Counter and the output compare pins, is defined by the combination of
the waveform generation mode (WGM22:0) and compare output mode (COM2x1:0) bits. The compare output mode bits do
not affect the counting sequence, while the waveform generation mode bits do. The COM2x1:0 bits control whether the
PWM output generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes the COM2x1:0 bits
control whether the output should be set, cleared, or toggled at a compare match (see Section 17.6 “Compare Match Output
Unit” on page 119).

For detailed timing information refer to Section 17.8 “Timer/Counter Timing Diagrams” on page 124.

D
AT

A
B

U
S

0

1

QD

COMnx1

COMnx0

FOCnx

OCnx

Waveform
Generator

QD

PORT

QD

DDR

OCnx
Pin

clkI/O

121ATmega328P [DATASHEET]
7810D–AVR–01/15

17.7.1 Normal Mode

The simplest mode of operation is the normal mode (WGM22:0 = 0). In this mode the counting direction is always up
(incrementing), and no counter clear is performed. The counter simply overruns when it passes its maximum 8-bit value
(TOP = 0xFF) and then restarts from the bottom (0x00). In normal operation the Timer/Counter overflow flag (TOV2) will be
set in the same timer clock cycle as the TCNT2 becomes zero. The TOV2 flag in this case behaves like a ninth bit, except
that it is only set, not cleared. However, combined with the timer overflow interrupt that automatically clears the TOV2 flag,
the timer resolution can be increased by software. There are no special cases to consider in the normal mode, a new counter
value can be written anytime.

The output compare unit can be used to generate interrupts at some given time. Using the output compare to generate
waveforms in normal mode is not recommended, since this will occupy too much of the CPU time.

17.7.2 Clear Timer on Compare Match (CTC) Mode

In clear timer on compare or CTC mode (WGM22:0 = 2), the OCR2A register is used to manipulate the counter resolution. In
CTC mode the counter is cleared to zero when the counter value (TCNT2) matches the OCR2A. The OCR2A defines the top
value for the counter, hence also its resolution. This mode allows greater control of the compare match output frequency. It
also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 17-5. The counter value (TCNT2) increases until a compare match
occurs between TCNT2 and OCR2A, and then counter (TCNT2) is cleared.

Figure 17-5. CTC Mode, Timing Diagram

An interrupt can be generated each time the counter value reaches the TOP value by using the OCF2A flag. If the interrupt
is enabled, the interrupt handler routine can be used for updating the TOP value. However, changing TOP to a value close to
BOTTOM when the counter is running with none or a low prescaler value must be done with care since the CTC mode does
not have the double buffering feature. If the new value written to OCR2A is lower than the current value of TCNT2, the
counter will miss the compare match. The counter will then have to count to its maximum value (0xFF) and wrap around
starting at 0x00 before the compare match can occur.

For generating a waveform output in CTC mode, the OC2A output can be set to toggle its logical level on each compare
match by setting the compare output mode bits to toggle mode (COM2A1:0 = 1). The OC2A value will not be visible on the
port pin unless the data direction for the pin is set to output. The waveform generated will have a maximum frequency of
fOC2A = fclk_I/O/2 when OCR2A is set to zero (0x00). The waveform frequency is defined by the following equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

As for the normal mode of operation, the TOV2 flag is set in the same timer clock cycle that the counter counts from MAX to
0x00.

1 2

TCNTn

(COMnA1:0 = 1)OCnx
(Toggle)

Period
3

OCnx Interrupt Flag Set

4

fOCnx

fclk_I/O

2 N 1 OCRnx+ 
--=

ATmega328P [DATASHEET]
7810D–AVR–01/15

122

17.7.3 Fast PWM Mode

The fast pulse width modulation or fast PWM mode (WGM22:0 = 3 or 7) provides a high frequency PWM waveform
generation option. The fast PWM differs from the other PWM option by its single-slope operation. The counter counts from
BOTTOM to TOP then restarts from BOTTOM. TOP is defined as 0xFF when WGM2:0 = 3, and OCR2A when MGM2:0 = 7.
In non-inverting compare output mode, the output compare (OC2x) is cleared on the compare match between TCNT2 and
OCR2x, and set at BOTTOM. In inverting compare output mode, the output is set on compare match and cleared at
BOTTOM. Due to the single-slope operation, the operating frequency of the fast PWM mode can be twice as high as the
phase correct PWM mode that uses dual-slope operation. This high frequency makes the fast PWM mode well suited for
power regulation, rectification, and DAC applications. High frequency allows physically small sized external components
(coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the TOP value. The counter is then cleared at
the following timer clock cycle. The timing diagram for the fast PWM mode is shown in Figure 17-6. The TCNT2 value is in
the timing diagram shown as a histogram for illustrating the single-slope operation. The diagram includes non-inverted and
inverted PWM outputs. The small horizontal line marks on the TCNT2 slopes represent compare matches between OCR2x
and TCNT2.

Figure 17-6. Fast PWM Mode, Timing Diagram

The Timer/Counter overflow flag (TOV2) is set each time the counter reaches TOP. If the interrupt is enabled, the interrupt
handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC2x pin. Setting the COM2x1:0 bits to
two will produce a non-inverted PWM and an inverted PWM output can be generated by setting the COM2x1:0 to three. TOP
is defined as 0xFF when WGM2:0 = 3, and OCR2A when MGM2:0 = 7. (See Table 17-3 on page 128). The actual OC2x
value will only be visible on the port pin if the data direction for the port pin is set as output. The PWM waveform is generated
by setting (or clearing) the OC2x register at the compare match between OCR2x and TCNT2, and clearing (or setting) the
OC2x register at the timer clock cycle the counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A register represent special cases when generating a PWM waveform output in the fast
PWM mode. If the OCR2A is set equal to BOTTOM, the output will be a narrow spike for each MAX+1 timer clock cycle.
Setting the OCR2A equal to MAX will result in a constantly high or low output (depending on the polarity of the output set by
the COM2A1:0 bits.)

1 2 3 4 5 6 7

TCNTn

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCnx

OCnx

Period

OCRnx Update and
TOVn Interrupt Flag Set

OCRnx Interrupt
Flag Set

fOCnxPWM

fclk_I/O

N 256
-------------------=

123ATmega328P [DATASHEET]
7810D–AVR–01/15

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OC2x to toggle its logical
level on each compare match (COM2x1:0 = 1). The waveform generated will have a maximum frequency of foc2 = fclk_I/O/2
when OCR2A is set to zero. This feature is similar to the OC2A toggle in CTC mode, except the double buffer feature of the
output compare unit is enabled in the fast PWM mode.

17.7.4 Phase Correct PWM Mode

The phase correct PWM mode (WGM22:0 = 1 or 5) provides a high resolution phase correct PWM waveform generation
option. The phase correct PWM mode is based on a dual-slope operation. The counter counts repeatedly from BOTTOM to
TOP and then from TOP to BOTTOM. TOP is defined as 0xFF when WGM2:0 = 3, and OCR2A when MGM2:0 = 7.
In non-inverting compare output mode, the output compare (OC2x) is cleared on the compare match between TCNT2 and
OCR2x while upcounting, and set on the compare match while downcounting. In inverting output compare mode, the
operation is inverted. The dual-slope operation has lower maximum operation frequency than single slope operation.
However, due to the symmetric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

In phase correct PWM mode the counter is incremented until the counter value matches TOP. When the counter reaches
TOP, it changes the count direction. The TCNT2 value will be equal to TOP for one timer clock cycle. The timing diagram for
the phase correct PWM mode is shown on Figure 17-7. The TCNT2 value is in the timing diagram shown as a histogram for
illustrating the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal line
marks on the TCNT2 slopes represent compare matches between OCR2x and TCNT2.

Figure 17-7. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter overflow flag (TOV2) is set each time the counter reaches BOTTOM. The interrupt flag can be used to
generate an interrupt each time the counter reaches the BOTTOM value.

1 2 3

TCNTn

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCnx

OCnx

Period

TOVn Interrupt
Flag Set

OCRnx Update

OCnx Interrupt
Flag Set

ATmega328P [DATASHEET]
7810D–AVR–01/15

124

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the OC2x pin. Setting the
COM2x1:0 bits to two will produce a non-inverted PWM. An inverted PWM output can be generated by setting the
COM2x1:0 to three. TOP is defined as 0xFF when WGM2:0 = 3, and OCR2A when MGM2:0 = 7 (See Table 17-4 on page
128). The actual OC2x value will only be visible on the port pin if the data direction for the port pin is set as output. The PWM
waveform is generated by clearing (or setting) the OC2x register at the compare match between OCR2x and TCNT2 when
the counter increments, and setting (or clearing) the OC2x register at compare match between OCR2x and TCNT2 when the
counter decrements. The PWM frequency for the output when using phase correct PWM can be calculated by the following
equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A register represent special cases when generating a PWM waveform output in the phase
correct PWM mode. If the OCR2A is set equal to BOTTOM, the output will be continuously low and if set equal to MAX the
output will be continuously high for non-inverted PWM mode. For inverted PWM the output will have the opposite logic
values.

At the very start of period 2 in Figure 17-7 on page 123 OCnx has a transition from high to low even though there is no
compare match. The point of this transition is to guarantee symmetry around BOTTOM. There are two cases that give a
transition without compare match.

● OCR2A changes its value from MAX, like in Figure 17-7 on page 123. When the OCR2A value is MAX the OCn pin
value is the same as the result of a down-counting compare match. To ensure symmetry around BOTTOM the OCn
value at MAX must correspond to the result of an up-counting compare match.

● The timer starts counting from a value higher than the one in OCR2A, and for that reason misses the compare match
and hence the OCn change that would have happened on the way up.

17.8 Timer/Counter Timing Diagrams

The following figures show the Timer/Counter in synchronous mode, and the timer clock (clkT2) is therefore shown as a clock
enable signal. In asynchronous mode, clkI/O should be replaced by the Timer/Counter oscillator clock. The figures include
information on when interrupt flags are set. Figure 17-8 contains timing data for basic Timer/Counter operation. The figure
shows the count sequence close to the MAX value in all modes other than phase correct PWM mode.

Figure 17-8. Timer/Counter Timing Diagram, no Prescaling

fOCnxPCPWM

fclk_I/O

N 510
-------------------=

MAX - 1

clkI/O

(clkI/O/1)

TCNTn

TOVn

clkTn

MAX BOTTOM BOTTOM + 1

125ATmega328P [DATASHEET]
7810D–AVR–01/15

Figure 17-9 shows the same timing data, but with the prescaler enabled.

Figure 17-9. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

Figure 17-10 shows the setting of OCF2A in all modes except CTC mode.

Figure 17-10. Timer/Counter Timing Diagram, Setting of OCF2A, with Prescaler (fclk_I/O/8)

Figure 17-11 shows the setting of OCF2A and the clearing of TCNT2 in CTC mode.

Figure 17-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match Mode, with Prescaler (fclk_I/O/8)

MAX - 1

clkI/O

(clkI/O/8)

TCNTn

TOVn

clkTn

MAX BOTTOM BOTTOM + 1

OCRnx - 1

clkI/O

(clkI/O/8)

TCNTn

OCRnx

OCFnx

clkTn

OCRnx OCRnx + 1

OCRnx Value

OCRnx + 2

TOP - 1

clkI/O

(clkI/O/8)

TCNTn
(CTC)

OCRnx

OCFnx

clkTn

TOP BOTTOM

TOP

BOTTOM + 1

ATmega328P [DATASHEET]
7810D–AVR–01/15

126

17.9 Asynchronous Operation of Timer/Counter2

When Timer/Counter2 operates asynchronously, some considerations must be taken.

● Warning: When switching between asynchronous and synchronous clocking of Timer/Counter2, the Timer Registers
TCNT2, OCR2x, and TCCR2x might be corrupted. A safe procedure for switching clock source is:

a. Disable the Timer/Counter2 interrupts by clearing OCIE2x and TOIE2.

b. Select clock source by setting AS2 as appropriate.

c. Write new values to TCNT2, OCR2x, and TCCR2x.

d. To switch to asynchronous operation: Wait for TCN2xUB, OCR2xUB, and TCR2xUB.

e. Clear the Timer/Counter2 interrupt flags.

f. Enable interrupts, if needed.

● The CPU main clock frequency must be more than four times the oscillator frequency.

● When writing to one of the registers TCNT2, OCR2x, or TCCR2x, the value is transferred to a temporary register, and
latched after two positive edges on TOSC1. The user should not write a new value before the contents of the
temporary register have been transferred to its destination. Each of the five mentioned registers have their individual
temporary register, which means that e.g. writing to TCNT2 does not disturb an OCR2x write in progress. To detect
that a transfer to the destination register has taken place, the asynchronous status register – ASSR has been
implemented.

● When entering power-save or ADC noise reduction mode after having written to TCNT2, OCR2x, or TCCR2x, the
user must wait until the written register has been updated if Timer/Counter2 is used to wake up the device. Otherwise,
the MCU will enter sleep mode before the changes are effective. This is particularly important if any of the output
compare2 interrupt is used to wake up the device, since the output compare function is disabled during writing to
OCR2x or TCNT2. If the write cycle is not finished, and the MCU enters sleep mode before the corresponding
OCR2xUB bit returns to zero, the device will never receive a compare match interrupt, and the MCU will not wake up.

● If Timer/Counter2 is used to wake the device up from power-save or ADC noise reduction mode, precautions must be
taken if the user wants to re-enter one of these modes: If re-entering sleep mode within the TOSC1 cycle, the interrupt
will immediately occur and the device wake up again. The result is multiple interrupts and wake-ups within one
TOSC1 cycle from the first interrupt. If the user is in doubt whether the time before re-entering power-save or ADC
noise reduction mode is sufficient, the following algorithm can be used to ensure that one TOSC1 cycle has elapsed:

a. Write a value to TCCR2x, TCNT2, or OCR2x.

b. Wait until the corresponding update busy flag in ASSR returns to zero.

c. Enter power-save or ADC noise reduction mode.

● When the asynchronous operation is selected, the 32.768kHz oscillator for Timer/Counter2 is always running, except
in power-down and standby modes. After a power-up reset or wake-up from power-down or standby mode, the user
should be aware of the fact that this oscillator might take as long as one second to stabilize. The user is advised to
wait for at least one second before using Timer/Counter2 after power-up or wake-up from power-down or standby
mode. The contents of all Timer/Counter2 registers must be considered lost after a wake-up from power-down or
standby mode due to unstable clock signal upon start-up, no matter whether the oscillator is in use or a clock signal is
applied to the TOSC1 pin.

● Description of wake up from power-save or ADC noise reduction mode when the timer is clocked asynchronously:
When the interrupt condition is met, the wake up process is started on the following cycle of the timer clock, that is,
the timer is always advanced by at least one before the processor can read the counter value. After wake-up, the
MCU is halted for four cycles, it executes the interrupt routine, and resumes execution from the instruction following
SLEEP.

● Reading of the TCNT2 register shortly after wake-up from power-save may give an incorrect result. Since TCNT2 is
clocked on the asynchronous TOSC clock, reading TCNT2 must be done through a register synchronized to the
internal I/O clock domain. Synchronization takes place for every rising TOSC1 edge. When waking up from
power-save mode, and the I/O clock (clkI/O) again becomes active, TCNT2 will read as the previous value (before
entering sleep) until the next rising TOSC1 edge. The phase of the TOSC clock after waking up from power-save
mode is essentially unpredictable, as it depends on the wake-up time. The recommended procedure for reading
TCNT2 is thus as follows:

127ATmega328P [DATASHEET]
7810D–AVR–01/15

a. Write any value to either of the registers OCR2x or TCCR2x.

b. Wait for the corresponding update busy flag to be cleared.

c. Read TCNT2.

During asynchronous operation, the synchronization of the interrupt flags for the asynchronous timer takes 3 processor
cycles plus one timer cycle. The timer is therefore advanced by at least one before the processor can read the timer value
causing the setting of the interrupt flag. The output compare pin is changed on the timer clock and is not synchronized to the
processor clock.

17.10 Timer/Counter Prescaler

Figure 17-12.Prescaler for Timer/Counter2

The clock source for Timer/Counter2 is named clkT2S. clkT2S is by default connected to the main system I/O clock clkIO. By
setting the AS2 bit in ASSR, Timer/Counter2 is asynchronously clocked from the TOSC1 pin. This enables use of
Timer/Counter2 as a real time counter (RTC). When AS2 is set, pins TOSC1 and TOSC2 are disconnected from port C. A
crystal can then be connected between the TOSC1 and TOSC2 pins to serve as an independent clock source for
Timer/Counter2. The oscillator is optimized for use with a 32.768kHz crystal.

For Timer/Counter2, the possible prescaled selections are: clkT2S/8, clkT2S/32, clkT2S/64, clkT2S/128, clkT2S/256, and
clkT2S/1024. Additionally, clkT2S as well as 0 (stop) may be selected. Setting the PSRASY bit in GTCCR resets the prescaler.
This allows the user to operate with a predictable prescaler.

17.11 Register Description

17.11.1 TCCR2A – Timer/Counter Control Register A

• Bits 7:6 – COM2A1:0: Compare Match Output A Mode

These bits control the output compare pin (OC2A) behavior. If one or both of the COM2A1:0 bits are set, the OC2A output
overrides the normal port functionality of the I/O pin it is connected to. However, note that the data direction register (DDR)
bit corresponding to the OC2A pin must be set in order to enable the output driver.

Timer/Counter2 Clock Source
clkT2

cl
k T

2S
/8

cl
k T

2S
/3

2

cl
k T

2S
/6

4

cl
k T

2S
/1

28

cl
k T

2S
/2

56

cl
k T

2S
/1

02
4

clkI/O

TOSC1

AS2

PSRASY

clkT2S
10-bit T/C Prescaler

0

Clear

CS20
CS21
CS22

Bit 7 6 5 4 3 2 1 0

(0xB0) COM2A1 COM2A0 COM2B1 COM2B0 – – WGM21 WGM20 TCCR2A

Read/Write R/W R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

ATmega328P [DATASHEET]
7810D–AVR–01/15

128

When OC2A is connected to the pin, the function of the COM2A1:0 bits depends on the WGM22:0 bit setting. Table 17-2
shows the COM2A1:0 bit functionality when the WGM22:0 bits are set to a normal or CTC mode (non-PWM).

Table 17-3 shows the COM2A1:0 bit functionality when the WGM21:0 bits are set to fast PWM mode.

Table 17-4 shows the COM2A1:0 bit functionality when the WGM22:0 bits are set to phase correct PWM mode.

Bits 5:4 – COM2B1:0: Compare Match Output B Mode

These bits control the output compare pin (OC2B) behavior. If one or both of the COM2B1:0 bits are set, the OC2B output
overrides the normal port functionality of the I/O pin it is connected to. However, note that the data direction register (DDR)
bit corresponding to the OC2B pin must be set in order to enable the output driver.

Table 17-2. Compare Output Mode, non-PWM Mode

COM2A1 COM2A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1 Toggle OC2A on compare match

1 0 Clear OC2A on compare match

1 1 Set OC2A on compare match

Table 17-3. Compare Output Mode, Fast PWM Mode(1)

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected.

0 1
WGM22 = 0: Normal port operation, OC0A disconnected.
WGM22 = 1: Toggle OC2A on compare match.

1 0
Clear OC2A on compare match, set OC2A at BOTTOM,
(non-inverting mode).

1 1
Set OC2A on compare match, clear OC2A at BOTTOM,

(inverting mode).
Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the compare match is

ignored, but the set or clear is done at BOTTOM. See Section 17.7.3 “Fast PWM Mode” on page 122 for more
details.

Table 17-4. Compare Output Mode, Phase Correct PWM Mode(1)

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected.

0 1
WGM22 = 0: Normal port operation, OC2A disconnected.
WGM22 = 1: Toggle OC2A on compare match.

1 0
Clear OC2A on compare match when up-counting. Set OC2A on compare match
when down-counting.

1 1
Set OC2A on compare match when up-counting. Clear OC2A on compare match
when down-counting.

Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the compare match is
ignored, but the set or clear is done at TOP. See Section 17.7.4 “Phase Correct PWM Mode” on page 123 for
more details.

129ATmega328P [DATASHEET]
7810D–AVR–01/15

When OC2B is connected to the pin, the function of the COM2B1:0 bits depends on the WGM22:0 bit setting. Table 17-5
shows the COM2B1:0 bit functionality when the WGM22:0 bits are set to a normal or CTC mode (non-PWM).

Table 17-6 shows the COM2B1:0 bit functionality when the WGM22:0 bits are set to fast PWM mode.

Table 17-7 shows the COM2B1:0 bit functionality when the WGM22:0 bits are set to phase correct PWM mode.

• Bits 3, 2 – Res: Reserved Bits

These bits are reserved bits in the Atmel® ATmega328P and will always read as zero.

Table 17-5. Compare Output Mode, non-PWM Mode

COM2B1 COM2B0 Description

0 0 Normal port operation, OC2B disconnected.

0 1 Toggle OC2B on compare match

1 0 Clear OC2B on compare match

1 1 Set OC2B on compare match

Table 17-6. Compare Output Mode, Fast PWM Mode(1)

COM2B1 COM2B0 Description

0 0 Normal port operation, OC2B disconnected.

0 1 Reserved

1 0
Clear OC2B on compare match, set OC2B at BOTTOM,
(non-inverting mode).

1 1
Set OC2B on compare match, clear OC2B at BOTTOM,
(inverting mode).

Note: 1. A special case occurs when OCR2B equals TOP and COM2B1 is set. In this case, the compare match is
ignored, but the set or clear is done at BOTTOM. See Section 17.7.4 “Phase Correct PWM Mode” on page
123 for more details.

Table 17-7. Compare Output Mode, Phase Correct PWM Mode(1)

COM2B1 COM2B0 Description

0 0 Normal port operation, OC2B disconnected.

0 1 Reserved

1 0
Clear OC2B on compare match when up-counting. Set OC2B on compare match when
down-counting.

1 1
Set OC2B on compare match when up-counting. Clear OC2B on compare match when
down-counting.

Note: 1. A special case occurs when OCR2B equals TOP and COM2B1 is set. In this case, the compare match is
ignored, but the set or clear is done at TOP. See Section 17.7.4 “Phase Correct PWM Mode” on page 123 for
more details.

ATmega328P [DATASHEET]
7810D–AVR–01/15

130

• Bits 1:0 – WGM21:0: Waveform Generation Mode

Combined with the WGM22 bit found in the TCCR2B register, these bits control the counting sequence of the counter, the
source for maximum (TOP) counter value, and what type of waveform generation to be used, see Table 17-8. Modes of
operation supported by the Timer/Counter unit are: Normal mode (counter), Clear timer on compare match (CTC) mode, and
two types of pulse width modulation (PWM) modes (see Section 17.7 “Modes of Operation” on page 120).

17.11.2 TCCR2B – Timer/Counter Control Register B

• Bit 7 – FOC2A: Force Output Compare A

The FOC2A bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when TCCR2B is written when operating
in PWM mode. When writing a logical one to the FOC2A bit, an immediate compare match is forced on the waveform
generation unit. The OC2A output is changed according to its COM2A1:0 bits setting. Note that the FOC2A bit is
implemented as a strobe. Therefore it is the value present in the COM2A1:0 bits that determines the effect of the forced
compare.

A FOC2A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCR2A as TOP.

The FOC2A bit is always read as zero.

• Bit 6 – FOC2B: Force Output Compare B

The FOC2B bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when TCCR2B is written when operating
in PWM mode. When writing a logical one to the FOC2B bit, an immediate compare match is forced on the waveform
generation unit. The OC2B output is changed according to its COM2B1:0 bits setting. Note that the FOC2B bit is
implemented as a strobe. Therefore it is the value present in the COM2B1:0 bits that determines the effect of the forced
compare.

A FOC2B strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCR2B as TOP.

The FOC2B bit is always read as zero.

• Bits 5:4 – Res: Reserved Bits

These bits are reserved bits in the ATmega328P and will always read as zero.

Table 17-8. Waveform Generation Mode Bit Description

Mode WGM2 WGM1 WGM0
Timer/Counter Mode of
Operation TOP

Update of
OCRx at

TOV Flag
Set on(1)(2)

0 0 0 0 Normal 0xFF Immediate MAX

1 0 0 1 PWM, phase correct 0xFF TOP BOTTOM

2 0 1 0 CTC OCRA Immediate MAX

3 0 1 1 Fast PWM 0xFF BOTTOM MAX

4 1 0 0 Reserved – – –

5 1 0 1 PWM, phase correct OCRA TOP BOTTOM

6 1 1 0 Reserved – – –

7 1 1 1 Fast PWM OCRA BOTTOM TOP

Notes: 1. MAX = 0xFF

2. BOTTOM = 0x00

Bit 7 6 5 4 3 2 1 0

(0xB1) FOC2A FOC2B – – WGM22 CS22 CS21 CS20 TCCR2B

Read/Write W W R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

131ATmega328P [DATASHEET]
7810D–AVR–01/15

• Bit 3 – WGM22: Waveform Generation Mode

See the description in the Section 17.11.1 “TCCR2A – Timer/Counter Control Register A” on page 127.

• Bit 2:0 – CS22:0: Clock Select

The three clock select bits select the clock source to be used by the Timer/Counter, see Table 17-9.

If external pin modes are used for the Timer/Counter0, transitions on the T0 pin will clock the counter even if the pin is
configured as an output. This feature allows software control of the counting.

17.11.3 TCNT2 – Timer/Counter Register

The Timer/Counter register gives direct access, both for read and write operations, to the Timer/Counter unit 8-bit counter.
Writing to the TCNT2 register blocks (removes) the compare match on the following timer clock. Modifying the counter
(TCNT2) while the counter is running, introduces a risk of missing a compare match between TCNT2 and the OCR2x
registers.

17.11.4 OCR2A – Output Compare Register A

The output compare register A contains an 8-bit value that is continuously compared with the counter value (TCNT2). A
match can be used to generate an output compare interrupt, or to generate a waveform output on the OC2A pin.

17.11.5 OCR2B – Output Compare Register B

The output compare register B contains an 8-bit value that is continuously compared with the counter value (TCNT2). A
match can be used to generate an output compare interrupt, or to generate a waveform output on the OC2B pin.

Table 17-9. Clock Select Bit Description

CS22 CS21 CS20 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkT2S/(no prescaling)

0 1 0 clkT2S/8 (from prescaler)

0 1 1 clkT2S/32 (from prescaler)

1 0 0 clkT2S/64 (from prescaler)

1 0 1 clkT2S/128 (from prescaler)

1 1 0 clkT2S/256 (from prescaler)

1 1 1 clkT2S/1024 (from prescaler)

Bit 7 6 5 4 3 2 1 0

(0xB2) TCNT2[7:0] TCNT2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xB3) OCR2A[7:0] OCR2A

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xB4) OCR2B[7:0] OCR2B

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

ATmega328P [DATASHEET]
7810D–AVR–01/15

132

17.11.6 TIMSK2 – Timer/Counter2 Interrupt Mask Register

• Bit 2 – OCIE2B: Timer/Counter2 Output Compare Match B Interrupt Enable

When the OCIE2B bit is written to one and the I-bit in the status register is set (one), the Timer/Counter2 compare match B
interrupt is enabled. The corresponding interrupt is executed if a compare match in Timer/Counter2 occurs, i.e., when the
OCF2B bit is set in the Timer/Counter 2 interrupt flag register – TIFR2.

• Bit 1 – OCIE2A: Timer/Counter2 Output Compare Match A Interrupt Enable

When the OCIE2A bit is written to one and the I-bit in the status register is set (one), the Timer/Counter2 compare match A
interrupt is enabled. The corresponding interrupt is executed if a compare match in Timer/Counter2 occurs, i.e., when the
OCF2A bit is set in the Timer/Counter 2 interrupt flag register – TIFR2.

• Bit 0 – TOIE2: Timer/Counter2 Overflow Interrupt Enable

When the TOIE2 bit is written to one and the I-bit in the status register is set (one), the Timer/Counter2 overflow interrupt is
enabled. The corresponding interrupt is executed if an overflow in Timer/Counter2 occurs, i.e., when the TOV2 bit is set in
the Timer/Counter2 interrupt flag register – TIFR2.

17.11.7 TIFR2 – Timer/Counter2 Interrupt Flag Register

• Bit 2 – OCF2B: Output Compare Flag 2 B

The OCF2B bit is set (one) when a compare match occurs between the Timer/Counter2 and the data in OCR2B – output
compare register2. OCF2B is cleared by hardware when executing the corresponding interrupt handling vector.
Alternatively, OCF2B is cleared by writing a logic one to the flag. When the I-bit in SREG, OCIE2B (Timer/Counter2 compare
match interrupt enable), and OCF2B are set (one), the Timer/Counter2 compare match interrupt is executed.

• Bit 1 – OCF2A: Output Compare Flag 2 A

The OCF2A bit is set (one) when a compare match occurs between the Timer/Counter2 and the data in OCR2A – output
compare register2. OCF2A is cleared by hardware when executing the corresponding interrupt handling vector.
Alternatively, OCF2A is cleared by writing a logic one to the flag. When the I-bit in SREG, OCIE2A (Timer/Counter2 compare
match interrupt enable), and OCF2A are set (one), the Timer/Counter2 compare match interrupt is executed.

• Bit 0 – TOV2: Timer/Counter2 Overflow Flag

The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared by hardware when executing the
corresponding interrupt handling vector. Alternatively, TOV2 is cleared by writing a logic one to the flag. When the
SREG I-bit, TOIE2A (Timer/Counter2 overflow interrupt enable), and TOV2 are set (one), the Timer/Counter2 overflow
interrupt is executed. In PWM mode, this bit is set when Timer/Counter2 changes counting direction at 0x00.

Bit 7 6 5 4 3 2 1 0

(0x70) – – – – – OCIE2B OCIE2A TOIE2 TIMSK2

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x17 (0x37) – – – – – OCF2B OCF2A TOV2 TIFR2

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

133ATmega328P [DATASHEET]
7810D–AVR–01/15

17.11.8 ASSR – Asynchronous Status Register

• Bit 7 – RES: Reserved bit

This bit is reserved and will always read as zero.

• Bit 6 – EXCLK: Enable External Clock Input

When EXCLK is written to one, and asynchronous clock is selected, the external clock input buffer is enabled and an
external clock can be input on timer oscillator 1 (TOSC1) pin instead of a 32kHz crystal. Writing to EXCLK should be done
before asynchronous operation is selected. Note that the crystal oscillator will only run when this bit is zero.

• Bit 5 – AS2: Asynchronous Timer/Counter2

When AS2 is written to zero, Timer/Counter2 is clocked from the I/O clock, clkI/O. When AS2 is written to one,
Timer/Counter2 is clocked from a crystal oscillator connected to the timer oscillator 1 (TOSC1) pin. When the value of AS2 is
changed, the contents of TCNT2, OCR2A, OCR2B, TCCR2A and TCCR2B might be corrupted.

• Bit 4 – TCN2UB: Timer/Counter2 Update Busy

When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes set. When TCNT2 has been
updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates that TCNT2 is
ready to be updated with a new value.

• Bit 3 – OCR2AUB: Output Compare Register2 Update Busy

When Timer/Counter2 operates asynchronously and OCR2A is written, this bit becomes set. When OCR2A has been
updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates that OCR2A is
ready to be updated with a new value.

• Bit 2 – OCR2BUB: Output Compare Register2 Update Busy

When Timer/Counter2 operates asynchronously and OCR2B is written, this bit becomes set. When OCR2B has been
updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates that OCR2B is
ready to be updated with a new value.

• Bit 1 – TCR2AUB: Timer/Counter Control Register2 Update Busy

When Timer/Counter2 operates asynchronously and TCCR2A is written, this bit becomes set. When TCCR2A has been
updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates that TCCR2A
is ready to be updated with a new value.

Bit 7 6 5 4 3 2 1 0

(0xB6) – EXCLK AS2 TCN2UB OCR2AUB OCR2BUB TCR2AUB TCR2BUB ASSR

Read/Write R R/W R/W R R R R R

Initial Value 0 0 0 0 0 0 0 0

ATmega328P [DATASHEET]
7810D–AVR–01/15

134

• Bit 0 – TCR2BUB: Timer/Counter Control Register2 Update Busy

When Timer/Counter2 operates asynchronously and TCCR2B is written, this bit becomes set. When TCCR2B has been
updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates that TCCR2B
is ready to be updated with a new value.

If a write is performed to any of the five Timer/Counter2 registers while its update busy flag is set, the updated value might
get corrupted and cause an unintentional interrupt to occur.

The mechanisms for reading TCNT2, OCR2A, OCR2B, TCCR2A and TCCR2B are different. When reading TCNT2, the
actual timer value is read. When reading OCR2A, OCR2B, TCCR2A and TCCR2B the value in the temporary storage
register is read.

17.11.9 GTCCR – General Timer/Counter Control Register

• Bit 1 – PSRASY: Prescaler Reset Timer/Counter2

When this bit is one, the Timer/Counter2 prescaler will be reset. This bit is normally cleared immediately by hardware. If the
bit is written when Timer/Counter2 is operating in asynchronous mode, the bit will remain one until the prescaler has been
reset. The bit will not be cleared by hardware if the TSM bit is set. Refer to the description of “Bit 7 – TSM: Timer/Counter
Synchronization Mode” on page 115 for a description of the Timer/Counter synchronization mode.

Bit 7 6 5 4 3 2 1 0

0x23 (0x43) TSM – – – – – PSRASY PSRSYNC GTCCR

Read/Write R/W R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

135ATmega328P [DATASHEET]
7810D–AVR–01/15

18. SPI – Serial Peripheral Interface

18.1 Features
● Full-duplex, three-wire synchronous data transfer

● Master or slave operation

● LSB first or MSB first data transfer

● Seven programmable bit rates

● End of transmission interrupt flag

● Write collision flag protection

● Wake-up from idle mode

● Double speed (CK/2) master SPI mode

18.2 Overview

The serial peripheral interface (SPI) allows high-speed synchronous data transfer between the ATmega328P and peripheral
devices or between several AVR® devices.

The USART can also be used in master SPI mode, see Section 20. “USART in SPI Mode” on page 166. The PRSPI bit in
Section 9.10 “Minimizing Power Consumption” on page 36 must be written to zero to enable SPI module.

Figure 18-1. SPI Block Diagram(1)

Note: 1. Refer to Figure 1-1 on page 3, and Table 13-3 on page 65 for SPI pin placement.

8 Bit Shift Register
Read Data Buffer

SPI Control RegisterSPI Status Register

MSTR

SPI Clock (Master)

SPESPI Control

SPI Interrupt
Request

Select Clock
Logic

MISO

Clock

8

8 8

S

M

S

M

M

S

MSB LSB

S
P

IE

S
P

E

W
C

O
L

S
P

IF

S
P

I2
X

S
P

I2
X

S
P

R
1

M
S

TR

S
P

E

D
O

R
D

S
P

R
0

D
O

R
D

M
S

TR

C
P

O
L

C
P

H
A

S
P

R
1

S
P

R
0

MOSI

SCK

SS

Divider
/2/4/8/16/32/64/128

XTAL

Internal
Data Bus

Pin
Control
Logic

ATmega328P [DATASHEET]
7810D–AVR–01/15

136

The interconnection between master and slave CPUs with SPI is shown in Figure 18-2. The system consists of two shift
registers, and a master clock generator. The SPI master initiates the communication cycle when pulling low the slave select
SS pin of the desired slave. master and slave prepare the data to be sent in their respective shift registers, and the master
generates the required clock pulses on the SCK line to interchange data. Data is always shifted from master to slave on the
master out – slave In, MOSI, line, and from slave to master on the master In – slave out, MISO, line. After each data packet,
the master will synchronize the Slave by pulling high the slave select, SS, line.

When configured as a master, the SPI interface has no automatic control of the SS line. This must be handled by user
software before communication can start. When this is done, writing a byte to the SPI data register starts the SPI clock
generator, and the hardware shifts the eight bits into the Slave. After shifting one byte, the SPI clock generator stops, setting
the end of transmission flag (SPIF). If the SPI interrupt enable bit (SPIE) in the SPCR register is set, an interrupt is
requested. The master may continue to shift the next byte by writing it into SPDR, or signal the end of packet by pulling high
the slave select, SS line. The last incoming byte will be kept in the buffer register for later use.

When configured as a slave, the SPI interface will remain sleeping with MISO tri-stated as long as the SS pin is driven high.
In this state, software may update the contents of the SPI data register, SPDR, but the data will not be shifted out by
incoming clock pulses on the SCK pin until the SS pin is driven low. As one byte has been completely shifted, the end of
transmission flag, SPIF is set. If the SPI interrupt enable bit, SPIE, in the SPCR register is set, an interrupt is requested. The
slave may continue to place new data to be sent into SPDR before reading the incoming data. The last incoming byte will be
kept in the buffer register for later use.

Figure 18-2. SPI Master-slave Interconnection

The system is single buffered in the transmit direction and double buffered in the receive direction. This means that bytes to
be transmitted cannot be written to the SPI data register before the entire shift cycle is completed. When receiving data,
however, a received character must be read from the SPI data register before the next character has been completely
shifted in. Otherwise, the first byte is lost.

In SPI slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure correct sampling of the clock
signal, the minimum low and high periods should be:

Low periods: Longer than 2 CPU clock cycles.

High periods: Longer than 2 CPU clock cycles.

When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden according to Table 18-1. For
more details on automatic port overrides, refer to Section 13.3 “Alternate Port Functions” on page 63.

Table 18-1. SPI Pin Overrides(1)

Pin Direction, Master SPI Direction, Slave SPI

MOSI User defined Input

MISO Input User defined

SCK User defined Input

SS User defined Input

Note: 1. See Section 13.3.1 “Alternate Functions of Port B” on page 65 for a detailed description of how to define the
direction of the user defined SPI pins.

LSBSLAVEMSB
8 Bit Shift Register

LSB

Shift
Enable

MASTERMSB

SS

SCK

SS

SCK

MOSIMOSI

MISOMISO
8 Bit Shift Register

SPI
Clock Generator

137ATmega328P [DATASHEET]
7810D–AVR–01/15

The following code examples show how to initialize the SPI as a master and how to perform a simple transmission.
DDR_SPI in the examples must be replaced by the actual data direction register controlling the SPI pins. DD_MOSI,
DD_MISO and DD_SCK must be replaced by the actual data direction bits for these pins. E.g. if MOSI is placed on pin PB5,
replace DD_MOSI with DDB5 and DDR_SPI with DDRB.

Note: 1. See Section 5. “About Code Examples” on page 8.

Assembly Code Example(1)

SPI_MasterInit:
; Set MOSI and SCK output, all others input
ldi r17,(1<<DD_MOSI)|(1<<DD_SCK)
out DDR_SPI,r17
; Enable SPI, Master, set clock rate fck/16
ldi r17,(1<<SPE)|(1<<MSTR)|(1<<SPR0)
out SPCR,r17
ret

SPI_MasterTransmit:
; Start transmission of data (r16)
out SPDR,r16

Wait_Transmit:
; Wait for transmission complete
in r16, SPSR
sbrs r16, SPIF
rjmp Wait_Transmit
ret

C Code Example(1)

void SPI_MasterInit(void)
{

/* Set MOSI and SCK output, all others input */
DDR_SPI = (1<<DD_MOSI)|(1<<DD_SCK);
/* Enable SPI, Master, set clock rate fck/16 */
SPCR = (1<<SPE)|(1<<MSTR)|(1<<SPR0);

}

void SPI_MasterTransmit(char cData)
{

/* Start transmission */
SPDR = cData;
/* Wait for transmission complete */
while(!(SPSR & (1<<SPIF)))
;

}

ATmega328P [DATASHEET]
7810D–AVR–01/15

138

The following code examples show how to initialize the SPI as a Slave and how to perform a simple reception.

Note: 1. See Section 5. “About Code Examples” on page 8.

18.3 SS Pin Functionality

18.3.1 Slave Mode

When the SPI is configured as a slave, the slave select (SS) pin is always input. When SS is held low, the SPI is activated,
and MISO becomes an output if configured so by the user. All other pins are inputs. When SS is driven high, all pins are
inputs, and the SPI is passive, which means that it will not receive incoming data. Note that the SPI logic will be reset once
the SS pin is driven high.

The SS pin is useful for packet/byte synchronization to keep the slave bit counter synchronous with the master clock
generator. When the SS pin is driven high, the SPI slave will immediately reset the send and receive logic, and drop any
partially received data in the shift register.

Assembly Code Example(1)

SPI_SlaveInit:
; Set MISO output, all others input
ldi r17,(1<<DD_MISO)
out DDR_SPI,r17
; Enable SPI
ldi r17,(1<<SPE)
out SPCR,r17
ret

SPI_SlaveReceive:
; Wait for reception complete
sbis SPSR,SPIF
rjmp SPI_SlaveReceive
; Read received data and return
in r16,SPDR
ret

C Code Example(1)

void SPI_SlaveInit(void)
{

/* Set MISO output, all others input */
DDR_SPI = (1<<DD_MISO);
/* Enable SPI */
SPCR = (1<<SPE);

}

char SPI_SlaveReceive(void)
{

/* Wait for reception complete */
while(!(SPSR & (1<<SPIF)))
;
/* Return Data Register */
return SPDR;

}

139ATmega328P [DATASHEET]
7810D–AVR–01/15

18.3.2 Master Mode

When the SPI is configured as a master (MSTR in SPCR is set), the user can determine the direction of the SS pin.

If SS is configured as an output, the pin is a general output pin which does not affect the SPI system. Typically, the pin will be
driving the SS pin of the SPI slave.

If SS is configured as an input, it must be held high to ensure master SPI operation. If the SS pin is driven low by peripheral
circuitry when the SPI is configured as a master with the SS pin defined as an input, the SPI system interprets this as
another master selecting the SPI as a slave and starting to send data to it. To avoid bus contention, the SPI system takes the
following actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a slave. As a result of the SPI becoming a slave,
the MOSI and SCK pins become inputs.

2. The SPIF flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG is set, the interrupt routine
will be executed.

Thus, when interrupt-driven SPI transmission is used in master mode, and there exists a possibility that SS is driven low, the
interrupt should always check that the MSTR bit is still set. If the MSTR bit has been cleared by a slave select, it must be set
by the user to re-enable SPI master mode.

18.4 Data Modes

There are four combinations of SCK phase and polarity with respect to serial data, which are determined by control bits
CPHA and CPOL. The SPI data transfer formats are shown in Figure 18-3 and Figure 18-4 on page 140. Data bits are
shifted out and latched in on opposite edges of the SCK signal, ensuring sufficient time for data signals to stabilize. This is
clearly seen by summarizing Table 18-3 on page 140 and Table 18-4 on page 141, as done in Table 18-2.

Figure 18-3. SPI Transfer Format with CPHA=0

Table 18-2. SPI Modes

SPI Mode Conditions Leading Edge Trailing eDge

0 CPOL=0, CPHA=0 Sample (rising) Setup (falling)

1 CPOL=0, CPHA=1 Setup (rising) Sample (falling)

2 CPOL=1, CPHA=0 Sample (falling) Setup (rising)

3 CPOL=1, CPHA=1 Setup (falling) Sample (rising)

LSB
MSB

Bit 1
Bit 6

Bit 2
Bit 5

Bit 3
Bit 4

Bit 4
Bit 3

Bit 5
Bit 2

Bit 6
Bit 1

MSB
LSB

MSB first (DORD = 0)
LSB first (DORD =1)

SCK (CPOL = 0)
mode 0

SCK (CPOL = 1)
mode 2

SS

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

ATmega328P [DATASHEET]
7810D–AVR–01/15

140

Figure 18-4. SPI Transfer Format with CPHA=1

18.5 Register Description

18.5.1 SPCR – SPI Control Register

• Bit 7 – SPIE: SPI Interrupt Enable

This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR register is set and the if the global interrupt enable bit
in SREG is set.

• Bit 6 – SPE: SPI Enable

When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI operations.

• Bit 5 – DORD: Data Order

When the DORD bit is written to one, the LSB of the data word is transmitted first.

When the DORD bit is written to zero, the MSB of the data word is transmitted first.

• Bit 4 – MSTR: Master/Slave Select

This bit selects master SPI mode when written to one, and slave SPI mode when written logic zero. If SS is configured as an
input and is driven low while MSTR is set, MSTR will be cleared, and SPIF in SPSR will become set. The user will then have
to set MSTR to re-enable SPI master mode.

• Bit 3 – CPOL: Clock Polarity

When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low when idle. Refer to Figure
18-3 on page 139 and Figure 18-4 for an example. The CPOL functionality is summarized below.

LSB
MSB

Bit 1
Bit 6

Bit 2
Bit 5

Bit 3
Bit 4

Bit 4
Bit 3

Bit 5
Bit 2

Bit 6
Bit 1

MSB
LSB

MSB first (DORD = 0)
LSB first (DORD =1)

SCK (CPOL = 0)
mode 1

SCK (CPOL = 1)
mode 3

SS

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

Bit 7 6 5 4 3 2 1 0

0x2C (0x4C) SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 SPCR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 18-3. CPOL Functionality

CPOL Leading Edge Trailing Edge

0 Rising Falling

1 Falling Rising

141ATmega328P [DATASHEET]
7810D–AVR–01/15

• Bit 2 – CPHA: Clock Phase

The settings of the clock phase bit (CPHA) determine if data is sampled on the leading (first) or trailing (last) edge of SCK.
Refer to Figure 18-3 on page 139 and Figure 18-4 on page 140 for an example. The CPOL functionality is summarized
below:

• Bits 1, 0 – SPR1, SPR0: SPI Clock Rate Select 1 and 0

These two bits control the SCK rate of the device configured as a master. SPR1 and SPR0 have no effect on the slave.

The relationship between SCK and the oscillator clock frequency fosc is shown in Table 18-5.

18.5.2 SPSR – SPI Status Register

• Bit 7 – SPIF: SPI Interrupt Flag

When a serial transfer is complete, the SPIF Flag is set. An interrupt is generated if SPIE in SPCR is set and global
interrupts are enabled. If SS is an input and is driven low when the SPI is in master mode, this will also set the SPIF flag.
SPIF is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, the SPIF bit is
cleared by first reading the SPI status register with SPIF set, then accessing the SPI data register (SPDR).

• Bit 6 – WCOL: Write COLlision Flag

The WCOL bit is set if the SPI data register (SPDR) is written during a data transfer. The WCOL bit (and the SPIF bit) are
cleared by first reading the SPI status register with WCOL set, and then accessing the SPI data register.

Table 18-4. CPHA Functionality

CPHA Leading Edge Trailing Edge

0 Sample Setup

1 Setup Sample

Table 18-5. Relationship Between SCK and the Oscillator Frequency

SPI2X SPR1 SPR0 SCK Frequency

0 0 0 fosc/4

0 0 1 fosc/16

0 1 0 fosc/64

0 1 1 fosc/128

1 0 0 fosc/2

1 0 1 fosc/8

1 1 0 fosc/32

1 1 1 fosc/64

Bit 7 6 5 4 3 2 1 0

0x2D (0x4D) SPIF WCOL – – – – – SPI2X SPSR

Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

ATmega328P [DATASHEET]
7810D–AVR–01/15

142

• Bit 5..1 – Res: Reserved Bits

These bits are reserved bits in the Atmel® ATmega328P and will always read as zero.

• Bit 0 – SPI2X: Double SPI Speed Bit

When this bit is written logic one the SPI speed (SCK frequency) will be doubled when the SPI is in master mode
(see Table 18-5 on page 141). This means that the minimum SCK period will be two CPU clock periods. When the SPI is
configured as slave, the SPI is only guaranteed to work at fosc/4 or lower.

The SPI interface on the Atmel ATmega328P is also used for program memory and EEPROM downloading or uploading.
See Section 27.8 “Serial Downloading” on page 254 for serial programming and verification.

18.5.3 SPDR – SPI Data Register

The SPI data register is a read/write register used for data transfer between the register file and the SPI shift register. Writing
to the register initiates data transmission. Reading the register causes the shift register Receive buffer to be read.

Bit 7 6 5 4 3 2 1 0

0x2E (0x4E) MSB LSB SPDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value X X X X X X X X Undefined

143ATmega328P [DATASHEET]
7810D–AVR–01/15

19. USART0

19.1 Features
● Full duplex operation (independent serial receive and transmit registers)

● Asynchronous or synchronous operation

● Master or slave clocked synchronous operation

● High resolution baud rate generator

● Supports serial frames with 5, 6, 7, 8, or 9 data bits and 1 or 2 stop bits

● Odd or even parity generation and parity check supported by hardware

● Data overrun detection

● Framing error detection

● Noise filtering includes false start bit detection and digital low pass filter

● Three separate interrupts on TX complete, TX data register empty and RX complete

● Multi-processor communication mode

● Double speed asynchronous communication mode

19.2 Overview

The universal synchronous and asynchronous serial receiver and transmitter (USART) is a highly flexible serial
communication device.

The USART0 can also be used in master SPI mode, see Section 20. “USART in SPI Mode” on page 166. The power
reduction USART bit, PRUSART0, in Section 9.10 “Minimizing Power Consumption” on page 36 must be disabled by writing
a logical zero to it.

A simplified block diagram of the USART transmitter is shown in Figure 19-1 on page 144. CPU accessible I/O registers and
I/O pins are shown in bold.

The dashed boxes in the block diagram separate the three main parts of the USART (listed from the top): Clock generator,
transmitter and receiver. Control registers are shared by all units. The clock generation logic consists of synchronization
logic for external clock input used by synchronous slave operation, and the baud rate generator. The XCKn (transfer clock)
pin is only used by synchronous transfer mode. The transmitter consists of a single write buffer, a serial shift register, parity
generator and control logic for handling different serial frame formats. The write buffer allows a continuous transfer of data
without any delay between frames. The receiver is the most complex part of the USART module due to its clock and data
recovery units. The recovery units are used for asynchronous data reception. In addition to the recovery units, the receiver
includes a parity checker, control logic, a shift register and a two level receive buffer (UDRn). The receiver supports the
same frame formats as the transmitter, and can detect frame error, data overrun and parity errors.

ATmega328P [DATASHEET]
7810D–AVR–01/15

144

Figure 19-1. USART Block Diagram(1)

Note: 1. Refer to Figure 1-1 on page 3 and Table 13-9 on page 70 for USART0 pin placement.

19.3 Clock Generation

The clock generation logic generates the base clock for the transmitter and receiver. The USART supports four modes of
clock operation: Normal asynchronous, double speed asynchronous, master synchronous and slave synchronous mode.
The UMSELn bit in USART control and status register C (UCSRnC) selects between asynchronous and synchronous
operation. Double speed (asynchronous mode only) is controlled by the U2Xn found in the UCSRnA register. When using
synchronous mode (UMSELn = 1), the data direction register for the XCKn pin (DDR_XCKn) controls whether the clock
source is internal (master mode) or external (slave mode). The XCKn pin is only active when using synchronous mode.

Transmit Shift Register

Receive Shift Register
Data

Recovery

Clock
Recovery

Parity
Checker

Parity
Generator

Pin
Control

TX
Control

Pin
Control

Pin
Control

RX
Control

UDRn (Transmit)

Transmitter

Clock Generator

Receiver

UCSRnA UCSRnCUCSRnB

Sync Logic

OSC

UDRn (Receive)

D
AT

A
B

U
S

Baud Rate Generator

UBRRn [H:L]

XCKn

RxDn

TxDn

145ATmega328P [DATASHEET]
7810D–AVR–01/15

Figure 19-2 shows a block diagram of the clock generation logic.

Figure 19-2. Clock Generation Logic, Block Diagram

Signal description:
txclk Transmitter clock (Internal Signal).

rxclk Receiver base clock (Internal Signal).

xcki Input from XCK pin (internal Signal). Used for synchronous slave operation.

xcko Clock output to XCK pin (Internal Signal). Used for synchronous master operation.

fosc XTAL pin frequency (System Clock).

19.3.1 Internal Clock Generation – The Baud Rate Generator

Internal clock generation is used for the asynchronous and the synchronous master modes of operation. The description in
this section refers to Figure 19-2.

The USART baud rate register (UBRRn) and the down-counter connected to it function as a programmable prescaler or
baud rate generator. The down-counter, running at system clock (fosc), is loaded with the UBRRn value each time the
counter has counted down to zero or when the UBRRnL register is written. A clock is generated each time the counter
reaches zero. This clock is the baud rate generator clock output (= fosc/(UBRRn+1)). The transmitter divides the baud rate
generator clock output by 2, 8 or 16 depending on mode. The baud rate generator output is used directly by the receiver’s
clock and data recovery units. However, the recovery units use a state machine that uses 2, 8 or 16 states depending on
mode set by the state of the UMSELn, U2Xn and DDR_XCKn bits.

Sync
Register

Edge
Detector

Prescaling
Down-Counter /2

XCKn
Pin

/4
0

0
1

1

0
1

0
1

/2

UBRRn

DDR_XCKn UCPOLn

U2Xn

DDR_XCKn

UBRRn+1

txclk

rxclk

UMSELn

foscn

OSC

xcki
xcko

ATmega328P [DATASHEET]
7810D–AVR–01/15

146

Table 19-1 contains equations for calculating the baud rate (in bits per second) and for calculating the UBRRn value for each
mode of operation using an internally generated clock source.

Some examples of UBRRn values for some system clock frequencies are found in Table 19-9 on page 163.

19.3.2 Double Speed Operation (U2Xn)

The transfer rate can be doubled by setting the U2Xn bit in UCSRnA. Setting this bit only has effect for the asynchronous
operation. Set this bit to zero when using synchronous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling the transfer rate for
asynchronous communication. Note however that the receiver will in this case only use half the number of samples (reduced
from 16 to 8) for data sampling and clock recovery, and therefore a more accurate baud rate setting and system clock are
required when this mode is used. For the transmitter, there are no downsides.

19.3.3 External Clock

External clocking is used by the synchronous slave modes of operation. The description in this section refers to Figure 19-2
on page 145 for details.

External clock input from the XCKn pin is sampled by a synchronization register to minimize the chance of meta-stability.
The output from the synchronization register must then pass through an edge detector before it can be used by the
transmitter and receiver. This process introduces a two CPU clock period delay and therefore the maximum external XCKn
clock frequency is limited by the following equation:

Note that fosc depends on the stability of the system clock source. It is therefore recommended to add some margin to avoid
possible loss of data due to frequency variations.

Table 19-1. Equations for Calculating Baud Rate Register Setting

Operating Mode Equation for Calculating Baud Rate(1)
Equation for Calculating UBRRn
Value

Asynchronous normal mode (U2Xn = 0)

Asynchronous double speed mode
(U2Xn = 1)

Synchronous master mode

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps)

BAUD Baud rate (in bits per second, bps)

fOSC System oscillator clock frequency

UBRRn Contents of the UBRRnH and UBRRnL registers, (0-4095)

BAUD
fOSC

16 UBRRn 1+ 
---------------------------------------= UBRRn

fOSC

16BAUD
----------------------- 1–=

BAUD
fOSC

8 UBRRn 1+ 
------------------------------------= UBRRn

fOSC

8BAUD
-------------------- 1–=

BAUD
fOSC

8 UBRRn 1+ 
------------------------------------= UBRRn

fOSC

2BAUD
-------------------- 1–=

fXCK

fOSC

4
-----------

147ATmega328P [DATASHEET]
7810D–AVR–01/15

19.3.4 Synchronous Clock Operation

When synchronous mode is used (UMSELn = 1), the XCKn pin will be used as either clock input (Slave) or clock output
(master). The dependency between the clock edges and data sampling or data change is the same. The basic principle is
that data input (on RxDn) is sampled at the opposite XCKn clock edge of the edge the data output (TxDn) is changed.

Figure 19-3. Synchronous Mode XCKn Timing

The UCPOLn bit UCRSC selects which XCKn clock edge is used for data sampling and which is used for data change. As
Figure 19-3 shows, when UCPOLn is zero the data will be changed at rising XCKn edge and sampled at falling XCKn edge.
If UCPOLn is set, the data will be changed at falling XCKn edge and sampled at rising XCKn edge.

19.4 Frame Formats

A serial frame is defined to be one character of data bits with synchronization bits (start and stop bits), and optionally a parity
bit for error checking. The USART accepts all 30 combinations of the following as valid frame formats:

● 1 start bit

● 5, 6, 7, 8, or 9 data bits

● no, even or odd parity bit

● 1 or 2 stop bits

A frame starts with the start bit followed by the least significant data bit. Then the next data bits, up to a total of nine, are
succeeding, ending with the most significant bit. If enabled, the parity bit is inserted after the data bits, before the stop bits.
When a complete frame is transmitted, it can be directly followed by a new frame, or the communication line can be set to an
idle (high) state. Figure 19-4 illustrates the possible combinations of the frame formats. Bits inside brackets are optional.

Figure 19-4. Frame Formats

St Start bit, always low.

(n) Data bits (0 to 8).

P Parity bit. Can be odd or even.

Sp Stop bit, always high.

IDLE No transfers on the communication line (RxDn or TxDn). An IDLE line must be high.

XCK

RxD/ TxD

XCK

UCPOL = 1

UCPOL = 0

RxD/ TxD

Sample

Sample

ST 0 1 2 3 4 [5] [6] [7] [8] (St/IDLE)(IDLE)

FRAME

[P] Sp1 [Sp2]

ATmega328P [DATASHEET]
7810D–AVR–01/15

148

The frame format used by the USART is set by the UCSZn2:0, UPMn1:0 and USBSn bits in UCSRnB and UCSRnC. The
receiver and transmitter use the same setting. Note that changing the setting of any of these bits will corrupt all ongoing
communication for both the receiver and transmitter.

The USART character size (UCSZn2:0) bits select the number of data bits in the frame. The USART parity mode (UPMn1:0)
bits enable and set the type of parity bit. The selection between one or two stop bits is done by the USART stop bit select
(USBSn) bit. The receiver ignores the second stop bit. An FE (frame error) will therefore only be detected in the cases where
the first stop bit is zero.

19.4.1 Parity Bit Calculation

The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is used, the result of the exclusive or is
inverted. The relation between the parity bit and data bits is as follows:

Peven Parity bit using even parity

Podd Parity bit using odd parity

dn Data bit n of the character

If used, the parity bit is located between the last data bit and first stop bit of a serial frame.

19.5 USART Initialization

The USART has to be initialized before any communication can take place. The initialization process normally consists of
setting the baud rate, setting frame format and enabling the transmitter or the receiver depending on the usage. For interrupt
driven USART operation, the global interrupt flag should be cleared (and interrupts globally disabled) when doing the
initialization.

Before doing a re-initialization with changed baud rate or frame format, be sure that there are no ongoing transmissions
during the period the registers are changed. The TXCn flag can be used to check that the transmitter has completed all
transfers, and the RXC flag can be used to check that there are no unread data in the receive buffer. Note that the TXCn flag
must be cleared before each transmission (before UDRn is written) if it is used for this purpose.

Peven dn 1–  d3 d2 d1 d0 0
Podd

     
dn 1–  d3 d2 d1 d0 1     

=
=

149ATmega328P [DATASHEET]
7810D–AVR–01/15

The following simple USART initialization code examples show one assembly and one C function that are equal in
functionality. The examples assume asynchronous operation using polling (no interrupts enabled) and a fixed frame format.
The baud rate is given as a function parameter. For the assembly code, the baud rate parameter is assumed to be stored in
the r17:r16 registers.

Note: 1. See Section 5. “About Code Examples” on page 8.

More advanced initialization routines can be made that include frame format as parameters, disable interrupts and so on.
However, many applications use a fixed setting of the baud and control registers, and for these types of applications the
initialization code can be placed directly in the main routine, or be combined with initialization code for other I/O modules.

Assembly Code Example(1)

USART_Init:
; Set baud rate
out UBRRnH, r17
out UBRRnL, r16
; Enable receiver and transmitter
ldi r16, (1<<RXENn)|(1<<TXENn)
out UCSRnB,r16
; Set frame format: 8data, 2stop bit
ldi r16, (1<<USBSn)|(3<<UCSZn0)
out UCSRnC,r16
ret

C Code Example(1)

#define FOSC 1843200 // Clock Speed
#define BAUD 9600
#define MYUBRR FOSC/16/BAUD-1
void main(void)
{
...

USART_Init(MYUBRR)
...
}
void USART_Init(unsigned int ubrr)
{

/*Set baud rate */
UBRR0H = (unsigned char)(ubrr>>8);
UBRR0L = (unsigned char)ubrr;
Enable receiver and transmitter */
UCSR0B = (1<<RXEN0)|(1<<TXEN0);
/* Set frame format: 8data, 2stop bit */
UCSR0C = (1<<USBS0)|(3<<UCSZ00);

}

ATmega328P [DATASHEET]
7810D–AVR–01/15

150

19.6 Data Transmission – The USART Transmitter

The USART transmitter is enabled by setting the transmit enable (TXEN) bit in the UCSRnB register. When the transmitter is
enabled, the normal port operation of the TxDn pin is overridden by the USART and given the function as the transmitter’s
serial output. The baud rate, mode of operation and frame format must be set up once before doing any transmissions. If
synchronous operation is used, the clock on the XCKn pin will be overridden and used as transmission clock.

19.6.1 Sending Frames with 5 to 8 Data Bit

A data transmission is initiated by loading the transmit buffer with the data to be transmitted. The CPU can load the transmit
buffer by writing to the UDRn I/O location. The buffered data in the transmit buffer will be moved to the shift register when the
shift register is ready to send a new frame. The shift register is loaded with new data if it is in idle state (no ongoing
transmission) or immediately after the last stop bit of the previous frame is transmitted. When the shift register is loaded with
new data, it will transfer one complete frame at the rate given by the baud register, U2Xn bit or by XCKn depending on mode
of operation.

The following code examples show a simple USART transmit function based on polling of the data register empty (UDREn)
flag. When using frames with less than eight bits, the most significant bits written to the UDRn are ignored. The USART has
to be initialized before the function can be used. For the assembly code, the data to be sent is assumed to be stored in
register R16.

Note: 1. See Section 5. “About Code Examples” on page 8

The function simply waits for the transmit buffer to be empty by checking the UDREn flag, before loading it with new data to
be transmitted. If the data register empty interrupt is utilized, the interrupt routine writes the data into the buffer.

Assembly Code Example(1)

USART_Transmit:
; Wait for empty transmit buffer
sbis UCSRnA,UDREn
rjmp USART_Transmit
; Put data (r16) into buffer, sends the data
out UDRn,r16
ret

C Code Example(1)

void USART_Transmit(unsigned char data)
{

/* Wait for empty transmit buffer */
while (!(UCSRnA & (1<<UDREn)))
;
/* Put data into buffer, sends the data */
UDRn = data;

}

151ATmega328P [DATASHEET]
7810D–AVR–01/15

19.6.2 Sending Frames with 9 Data Bit

If 9-bit characters are used (UCSZn = 7), the ninth bit must be written to the TXB8 bit in UCSRnB before the low byte of the
character is written to UDRn. The following code examples show a transmit function that handles 9-bit characters. For the
assembly code, the data to be sent is assumed to be stored in registers R17:R16.

Notes: 1. These transmit functions are written to be general functions. They can be optimized if the contents of the
UCSRnB is static. For example, only the TXB8 bit of the UCSRnB Register is used after initialization.

2. See Section 5. “About Code Examples” on page 8.

The ninth bit can be used for indicating an address frame when using multi processor communication mode or for other
protocol handling as for example synchronization.

19.6.3 Transmitter Flags and Interrupts

The USART transmitter has two flags that indicate its state: USART data register empty (UDREn) and transmit complete
(TXCn). Both flags can be used for generating interrupts.

The data register empty (UDREn) flag indicates whether the transmit buffer is ready to receive new data. This bit is set when
the transmit buffer is empty, and cleared when the transmit buffer contains data to be transmitted that has not yet been
moved into the shift register. For compatibility with future devices, always write this bit to zero when writing the UCSRnA
register.

When the data register empty interrupt enable (UDRIEn) bit in UCSRnB is written to one, the USART data register empty
interrupt will be executed as long as UDREn is set (provided that global interrupts are enabled). UDREn is cleared by writing
UDRn. When interrupt-driven data transmission is used, the data register empty interrupt routine must either write new data
to UDRn in order to clear UDREn or disable the data register empty interrupt, otherwise a new interrupt will occur once the
interrupt routine terminates.

The transmit complete (TXCn) flag bit is set one when the entire frame in the transmit shift register has been shifted out and
there are no new data currently present in the transmit buffer. The TXCn flag bit is automatically cleared when a transmit
complete interrupt is executed, or it can be cleared by writing a one to its bit location. The TXCn flag is useful in half-duplex
communication interfaces (like the RS-485 standard), where a transmitting application must enter receive mode and free the
communication bus immediately after completing the transmission.

Assembly Code Example(1)(2)

USART_Transmit:
; Wait for empty transmit buffer
sbis UCSRnA,UDREn
rjmp USART_Transmit
; Copy 9th bit from r17 to TXB8
cbi UCSRnB,TXB8
sbrc r17,0
sbi UCSRnB,TXB8
; Put LSB data (r16) into buffer, sends the data
out UDRn,r16
ret

C Code Example(1)(2)

void USART_Transmit(unsigned int data)
{

/* Wait for empty transmit buffer */
while (!(UCSRnA & (1<<UDREn))))
;
/* Copy 9th bit to TXB8 */
UCSRnB &= ~(1<<TXB8);
if (data & 0x0100)

UCSRnB |= (1<<TXB8);
/* Put data into buffer, sends the data */
UDRn = data;

}

ATmega328P [DATASHEET]
7810D–AVR–01/15

152

When the transmit compete interrupt enable (TXCIEn) bit in UCSRnB is set, the USART transmit complete interrupt will be
executed when the TXCn flag becomes set (provided that global interrupts are enabled). When the transmit complete
interrupt is used, the interrupt handling routine does not have to clear the TXCn flag, this is done automatically when the
interrupt is executed.

19.6.4 Parity Generator

The parity generator calculates the parity bit for the serial frame data. When parity bit is enabled (UPMn1 = 1), the
transmitter control logic inserts the parity bit between the last data bit and the first stop bit of the frame that is sent.

19.6.5 Disabling the Transmitter

The disabling of the transmitter (setting the TXEN to zero) will not become effective until ongoing and pending transmissions
are completed, i.e., when the transmit shift register and transmit buffer register do not contain data to be transmitted. When
disabled, the transmitter will no longer override the TxDn pin.

19.7 Data Reception – The USART Receiver

The USART receiver is enabled by writing the receive enable (RXENn) bit in the
UCSRnB register to one. When the receiver is enabled, the normal pin operation of the RxDn pin is overridden by the
USART and given the function as the receiver’s serial input. The baud rate, mode of operation and frame format must be set
up once before any serial reception can be done. If synchronous operation is used, the clock on the XCKn pin will be used as
transfer clock.

19.7.1 Receiving Frames with 5 to 8 Data Bits

The receiver starts data reception when it detects a valid start bit. Each bit that follows the start bit will be sampled at the
baud rate or XCKn clock, and shifted into the receive shift register until the first stop bit of a frame is received. A second stop
bit will be ignored by the receiver. When the first stop bit is received, i.e., a complete serial frame is present in the receive
shift register, the contents of the shift register will be moved into the receive buffer. The receive buffer can then be read by
reading the UDRn I/O location.

The following code example shows a simple USART receive function based on polling of the Receive Complete (RXCn)
Flag. When using frames with less than eight bits the most significant bits of the data read from the UDRn will be masked to
zero. The USART has to be initialized before the function can be used.

Note: 1. See Section 5. “About Code Examples” on page 8
For I/O registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must
be replaced with instructions that allow access to extended I/O. Typically “LDS” and “STS” combined with
“SBRS”, “SBRC”, “SBR”, and “CBR”.

The function simply waits for data to be present in the receive buffer by checking the RXCn flag, before reading the buffer
and returning the value.

Assembly Code Example(1)

USART_Receive:
; Wait for data to be received
sbis UCSRnA, RXCn
rjmp USART_Receive
; Get and return received data from buffer
in r16, UDRn
ret

C Code Example(1)

unsigned char USART_Receive(void)
{

/* Wait for data to be received */
while (!(UCSRnA & (1<<RXCn)))
;
/* Get and return received data from buffer */
return UDRn;

}

153ATmega328P [DATASHEET]
7810D–AVR–01/15

19.7.2 Receiving Frames with 9 Data Bits

If 9-bit characters are used (UCSZn=7) the ninth bit must be read from the RXB8n bit in UCSRnB before reading the low bits
from the UDRn. This rule applies to the FEn, DORn and UPEn status flags as well. Read status from UCSRnA, then data
from UDRn. Reading the UDRn I/O location will change the state of the receive buffer FIFO and consequently the TXB8n,
FEn, DORn and UPEn bits, which all are stored in the FIFO, will change.

The following code example shows a simple USART receive function that handles both nine bit characters and the status
bits.

Note: 1. See Section 5. “About Code Examples” on page 8
For I/O registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must
be replaced with instructions that allow access to extended I/O. Typically “LDS” and “STS” combined with
“SBRS”, “SBRC”, “SBR”, and “CBR”.

The receive function example reads all the I/O registers into the register file before any computation is done. This gives an
optimal receive buffer utilization since the buffer location read will be free to accept new data as early as possible.

Assembly Code Example(1)

USART_Receive:
; Wait for data to be received
sbis UCSRnA, RXCn
rjmp USART_Receive
; Get status and 9th bit, then data from buffer
in r18, UCSRnA
in r17, UCSRnB
in r16, UDRn
; If error, return -1
andi r18,(1<<FEn)|(1<<DORn)|(1<<UPEn)
breq USART_ReceiveNoError
ldi r17, HIGH(-1)
ldi r16, LOW(-1)

USART_ReceiveNoError:
; Filter the 9th bit, then return
lsr r17
andi r17, 0x01
ret

C Code Example(1)

unsigned int USART_Receive(void)
{

unsigned char status, resh, resl;
/* Wait for data to be received */
while (!(UCSRnA & (1<<RXCn)))

;
/* Get status and 9th bit, then data */
/* from buffer */
status = UCSRnA;
resh = UCSRnB;
resl = UDRn;
/* If error, return -1 */
if (status & (1<<FEn)|(1<<DORn)|(1<<UPEn))

return -1;
/* Filter the 9th bit, then return */
resh = (resh >> 1) & 0x01;
return ((resh << 8) | resl);

}

ATmega328P [DATASHEET]
7810D–AVR–01/15

154

19.7.3 Receive Compete Flag and Interrupt

The USART receiver has one flag that indicates the receiver state.

The receive complete (RXCn) flag indicates if there are unread data present in the receive buffer. This flag is one when
unread data exist in the receive buffer, and zero when the receive buffer is empty (i.e., does not contain any unread data). If
the receiver is disabled (RXENn = 0), the receive buffer will be flushed and consequently the RXCn bit will become zero.

When the receive complete interrupt enable (RXCIEn) in UCSRnB is set, the USART receive complete interrupt will be
executed as long as the RXCn flag is set (provided that global interrupts are enabled). When interrupt-driven data reception
is used, the receive complete routine must read the received data from UDRn in order to clear the RXCn flag, otherwise a
new interrupt will occur once the interrupt routine terminates.

19.7.4 Receiver Error Flags

The USART receiver has three error flags: Frame error (FEn), data overrun (DORn) and parity error (UPEn). All can be
accessed by reading UCSRnA. Common for the error flags is that they are located in the receive buffer together with the
frame for which they indicate the error status. Due to the buffering of the error flags, the UCSRnA must be read before the
receive buffer (UDRn), since reading the UDRn I/O location changes the buffer read location. Another equality for the error
flags is that they can not be altered by software doing a write to the flag location. However, all flags must be set to zero when
the UCSRnA is written for upward compatibility of future USART implementations. None of the error flags can generate
interrupts.

The frame error (FEn) flag indicates the state of the first stop bit of the next readable frame stored in the receive buffer. The
FEn flag is zero when the stop bit was correctly read (as one), and the FEn flag will be one when the stop bit was incorrect
(zero). This flag can be used for detecting out-of-sync conditions, detecting break conditions and protocol handling. The FEn
flag is not affected by the setting of the USBSn bit in UCSRnC since the receiver ignores all, except for the first, stop bits. For
compatibility with future devices, always set this bit to zero when writing to UCSRnA.

The data overrun (DORn) flag indicates data loss due to a receiver buffer full condition. A data overrun occurs when the
receive buffer is full (two characters), it is a new character waiting in the receive shift register, and a new start bit is detected.
If the DORn flag is set there was one or more serial frame lost between the frame last read from UDRn, and the next frame
read from UDRn. For compatibility with future devices, always write this bit to zero when writing to UCSRnA. The DORn flag
is cleared when the frame received was successfully moved from the shift register to the receive buffer.

The parity error (UPEn) flag indicates that the next frame in the receive buffer had a parity error when received. If parity
check is not enabled the UPEn bit will always be read zero. For compatibility with future devices, always set this bit to zero
when writing to UCSRnA. For more details see Section 19.4.1 “Parity Bit Calculation” on page 148 and Section 19.7.5 “Parity
Checker” on page 154.

19.7.5 Parity Checker

The parity checker is active when the high USART parity mode (UPMn1) bit is set. Type of parity check to be performed (odd
or even) is selected by the UPMn0 bit. When enabled, the parity checker calculates the parity of the data bits in incoming
frames and compares the result with the parity bit from the serial frame. The result of the check is stored in the receive buffer
together with the received data and stop bits. The parity error (UPEn) flag can then be read by software to check if the frame
had a parity error.

The UPEn bit is set if the next character that can be read from the receive buffer had a parity error when received and the
parity checking was enabled at that point (UPMn1 = 1). This bit is valid until the receive buffer (UDRn) is read.

19.7.6 Disabling the Receiver

In contrast to the transmitter, disabling of the Receiver will be immediate. Data from ongoing receptions will therefore be lost.
When disabled (i.e., the RXENn is set to zero) the receiver will no longer override the normal function of the RxDn port pin.
The receiver buffer FIFO will be flushed when the receiver is disabled. Remaining data in the buffer will be lost.

155ATmega328P [DATASHEET]
7810D–AVR–01/15

19.7.7 Flushing the Receive Buffer

The receiver buffer FIFO will be flushed when the receiver is disabled, i.e., the buffer will be emptied of its contents. Unread
data will be lost. If the buffer has to be flushed during normal operation, due to for instance an error condition, read the UDRn
I/O location until the RXCn flag is cleared. The following code example shows how to flush the receive buffer.

Note: 1. See Section 5. “About Code Examples” on page 8.
For I/O registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must
be replaced with instructions that allow access to extended I/O. Typically “LDS” and “STS” combined with
“SBRS”, “SBRC”, “SBR”, and “CBR”.

19.8 Asynchronous Data Reception

The USART includes a clock recovery and a data recovery unit for handling asynchronous data reception. The clock
recovery logic is used for synchronizing the internally generated baud rate clock to the incoming asynchronous serial frames
at the RxDn pin. The data recovery logic samples and low pass filters each incoming bit, thereby improving the noise
immunity of the receiver. The asynchronous reception operational range depends on the accuracy of the internal baud rate
clock, the rate of the incoming frames, and the frame size in number of bits.

19.8.1 Asynchronous Clock Recovery

The clock recovery logic synchronizes internal clock to the incoming serial frames. Figure 19-5 illustrates the sampling
process of the start bit of an incoming frame. The sample rate is 16 times the baud rate for Normal mode, and eight times the
baud rate for double speed mode. The horizontal arrows illustrate the synchronization variation due to the sampling process.
Note the larger time variation when using the double speed mode (U2Xn = 1) of operation. Samples denoted zero are
samples done when the RxDn line is idle (i.e., no communication activity).

Figure 19-5. Start Bit Sampling

When the clock recovery logic detects a high (idle) to low (start) transition on the RxDn line, the start bit detection sequence
is initiated. Let sample 1 denote the first zero-sample as shown in the figure. The clock recovery logic then uses samples 8,
9, and 10 for normal mode, and samples 4, 5, and 6 for double speed mode (indicated with sample numbers inside boxes on
the figure), to decide if a valid start bit is received. If two or more of these three samples have logical high levels (the majority
wins), the start bit is rejected as a noise spike and the receiver starts looking for the next high to low-transition. If however, a
valid start bit is detected, the clock recovery logic is synchronized and the data recovery can begin. The synchronization
process is repeated for each start bit.

Assembly Code Example(1)

USART_Flush:
sbis UCSRnA, RXCn
ret
in r16, UDRn
rjmp USART_Flush

C Code Example(1)

void USART_Flush(void)
{

unsigned char dummy;
while (UCSRnA & (1<<RXCn)) dummy = UDRn;

}

0

IDLERxD

Sample
(U2X = 0)

Sample
(U2X = 1)

START BIT 0

0 1 2 3 4 5 6 7 8 1 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3

ATmega328P [DATASHEET]
7810D–AVR–01/15

156

19.8.2 Asynchronous Data Recovery

When the receiver clock is synchronized to the start bit, the data recovery can begin. The data recovery unit uses a state
machine that has 16 states for each bit in normal mode and eight states for each bit in double speed mode. Figure 19-6
shows the sampling of the data bits and the parity bit. Each of the samples is given a number that is equal to the state of the
recovery unit.

Figure 19-6. Sampling of Data and Parity Bit

The decision of the logic level of the received bit is taken by doing a majority voting of the logic value to the three samples in
the center of the received bit. The center samples are emphasized on the figure by having the sample number inside boxes.
The majority voting process is done as follows: If two or all three samples have high levels, the received bit is registered to
be a logic 1. If two or all three samples have low levels, the received bit is registered to be a logic 0. This majority voting
process acts as a low pass filter for the incoming signal on the RxDn pin. The recovery process is then repeated until a
complete frame is received. Including the first stop bit. Note that the receiver only uses the first stop bit of a frame.

Figure 19-7 shows the sampling of the stop bit and the earliest possible beginning of the start bit of the next frame.

Figure 19-7. Stop Bit Sampling and Next Start Bit Sampling

The same majority voting is done to the stop bit as done for the other bits in the frame. If the stop bit is registered to have a
logic 0 value, the frame error (FEn) flag will be set.

A new high to low transition indicating the start bit of a new frame can come right after the last of the bits used for majority
voting. For normal speed mode, the first low level sample can be at point marked (A) in Figure 19-7. For double speed mode
the first low level must be delayed to (B). (C) marks a stop bit of full length. The early start bit detection influences the
operational range of the receiver.

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)

Bit n

1 2 3 4 5 6 7 8 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)

STOP 1

1 2 3 4 5 6 0/1

1 2 3 4 5 6 7 8 9 10 0/1 0/1 0/1

(A) (B) (C)

157ATmega328P [DATASHEET]
7810D–AVR–01/15

19.8.3 Asynchronous Operational Range

The operational range of the receiver is dependent on the mismatch between the received bit rate and the internally
generated baud rate. If the transmitter is sending frames at too fast or too slow bit rates, or the internally generated baud rate
of the receiver does not have a similar (see Table 19-2) base frequency, the receiver will not be able to synchronize the
frames to the start bit.

The following equations can be used to calculate the ratio of the incoming data rate and internal receiver baud rate.

D Sum of character size and parity size (D = 5 to 10 bit)

S Samples per bit. S = 16 for normal speed mode and S = 8 for double speed
mode.

SF First sample number used for majority voting. SF = 8 for normal speed and
SF = 4 for double speed mode.

SM Middle sample number used for majority voting. SM = 9 for normal speed and
SM = 5 for double speed mode.

Rslow is the ratio of the slowest incoming data rate that can be accepted in relation to
the receiver baud rate. Rfast is the ratio of the fastest incoming data rate that can
be accepted in relation to the receiver baud rate.

Table 19-2 and Table 19-3 list the maximum receiver baud rate error that can be tolerated. Note that normal speed mode has
higher toleration of baud rate variations.

Table 19-2. Recommended Maximum Receiver Baud Rate Error for Normal Speed Mode (U2Xn = 0)

D
(Data+Parity Bit) Rslow (%) Rfast (%) Max Total Error (%)

Recommended Max Receiver
Error (%)

5 93.20 106.67 +6.67/–6.8 ±3.0

6 94.12 105.79 +5.79/–5.88 ±2.5

7 94.81 105.11 +5.11/–5.19 ±2.0

8 95.36 104.58 +4.58/–4.54 ±2.0

9 95.81 104.14 +4.14/–4.19 ±1.5

10 96.17 103.78 +3.78/–3.83 ±1.5

Table 19-3. Recommended Maximum Receiver Baud Rate Error for Double Speed Mode (U2Xn = 1)

D
(Data+Parity Bit) Rslow (%) Rfast (%) Max Total Error (%)

Recommended Max Receiver
Error (%)

5 94.12 105.66 +5.66/–5.88 ±2.5

6 94.92 104.92 +4.92/–5.08 ±2.0

7 95.52 104,35 +4.35/–4.48 ±1.5

8 96.00 103.90 +3.90/–4.00 ±1.5

9 96.39 103.53 +3.53/–3.61 ±1.5

10 96.70 103.23 +3.23/–3.30 ±1.0

Rslow
D 1+ S

S 1– D+ S SF+
---= Rfast

D 2+ S
D 1+ S SM+

------------------------------------=

ATmega328P [DATASHEET]
7810D–AVR–01/15

158

The recommendations of the maximum receiver baud rate error was made under the assumption that the receiver and
transmitter equally divides the maximum total error.

There are two possible sources for the receivers baud rate error. The receiver’s system clock (XTAL) will always have some
minor instability over the supply voltage range and the temperature range. When using a crystal to generate the system
clock, this is rarely a problem, but for a resonator the system clock may differ more than 2% depending of the resonators
tolerance. The second source for the error is more controllable. The baud rate generator can not always do an exact division
of the system frequency to get the baud rate wanted. In this case an UBRRn value that gives an acceptable low error can be
used if possible.

19.9 Multi-processor Communication Mode

Setting the multi-processor communication mode (MPCMn) bit in UCSRnA enables a filtering function of incoming frames
received by the USART receiver. Frames that do not contain address information will be ignored and not put into the receive
buffer. This effectively reduces the number of incoming frames that has to be handled by the CPU, in a system with multiple
MCUs that communicate via the same serial bus. The transmitter is unaffected by the MPCMn setting, but has to be used
differently when it is a part of a system utilizing the multi-processor communication mode.

If the receiver is set up to receive frames that contain 5 to 8 data bits, then the first stop bit indicates if the frame contains
data or address information. If the receiver is set up for frames with nine data bits, then the ninth bit (RXB8n) is used for
identifying address and data frames. When the frame type bit (the first stop or the ninth bit) is one, the frame contains an
address. When the frame type bit is zero the frame is a data frame.

The multi-processor communication mode enables several slave MCUs to receive data from a master MCU. This is done by
first decoding an address frame to find out which MCU has been addressed. If a particular slave MCU has been addressed,
it will receive the following data frames as normal, while the other slave MCUs will ignore the received frames until another
address frame is received.

19.9.1 Using MPCMn

For an MCU to act as a master MCU, it can use a 9-bit character frame format (UCSZn = 7). The ninth bit (TXB8n) must be
set when an address frame (TXB8n = 1) or cleared when a data frame (TXB = 0) is being transmitted. The slave MCUs must
in this case be set to use a 9-bit character frame format.

The following procedure should be used to exchange data in multi-processor communication mode:

1. All Slave MCUs are in multi-processor communication mode (MPCMn in
UCSRnA is set).

2. The master MCU sends an address frame, and all slaves receive and read this frame. In the Slave MCUs, the
RXCn flag in UCSRnA will be set as normal.

3. Each slave MCU reads the UDRn register and determines if it has been selected. If so, it clears the MPCMn bit in
UCSRnA, otherwise it waits for the next address byte and keeps the MPCMn setting.

4. The addressed MCU will receive all data frames until a new address frame is received. The other slave MCUs,
which still have the MPCMn bit set, will ignore the data frames.

5. When the last data frame is received by the addressed MCU, the addressed MCU sets the MPCMn bit and waits
for a new address frame from master. The process then repeats from 2.

Using any of the 5- to 8-bit character frame formats is possible, but impractical since the receiver must change between
using n and n+1 character frame formats. This makes full-duplex operation difficult since the transmitter and receiver uses
the same character size setting. If 5- to 8-bit character frames are used, the transmitter must be set to use two stop bit
(USBSn = 1) since the first stop bit is used for indicating the frame type.

Do not use read-modify-write instructions (SBI and CBI) to set or clear the MPCMn bit. The MPCMn bit shares the same I/O
location as the TXCn flag and this might accidentally be cleared when using SBI or CBI instructions.

159ATmega328P [DATASHEET]
7810D–AVR–01/15

19.10 Register Description

19.10.1 UDRn – USART I/O Data Register n

The USART transmit data buffer register and USART receive data buffer registers share the same I/O address referred to as
USART data register or UDRn. The transmit data buffer register (TXB) will be the destination for data written to the UDRn
register location. Reading the UDRn register location will return the contents of the receive data buffer register (RXB).

For 5-, 6-, or 7-bit characters the upper unused bits will be ignored by the transmitter and set to zero by the receiver.

The transmit buffer can only be written when the UDREn flag in the UCSRnA register is set. Data written to UDRn when the
UDREn flag is not set, will be ignored by the USART transmitter. When data is written to the transmit buffer, and the
transmitter is enabled, the transmitter will load the data into the transmit shift register when the shift register is empty. Then
the data will be serially transmitted on the TxDn pin.

The receive buffer consists of a two level FIFO. The FIFO will change its state whenever the receive buffer is accessed. Due
to this behavior of the receive buffer, do not use read-modify-write instructions (SBI and CBI) on this location. Be careful
when using bit test instructions (SBIC and SBIS), since these also will change the state of the FIFO.

19.10.2 UCSRnA – USART Control and Status Register n A

• Bit 7 – RXCn: USART Receive Complete

This flag bit is set when there are unread data in the receive buffer and cleared when the receive buffer is empty (i.e., does
not contain any unread data). If the receiver is disabled, the receive buffer will be flushed and consequently the RXCn bit will
become zero. The RXCn flag can be used to generate a receive complete interrupt (see description of the RXCIEn bit).

• Bit 6 – TXCn: USART Transmit Complete

This flag bit is set when the entire frame in the transmit shift register has been shifted out and there are no new data currently
present in the transmit buffer (UDRn). The TXCn flag bit is automatically cleared when a transmit complete interrupt is
executed, or it can be cleared by writing a one to its bit location. The TXCn flag can generate a transmit complete interrupt
(see description of the TXCIEn bit).

• Bit 5 – UDREn: USART Data Register Empty

The UDREn flag indicates if the transmit buffer (UDRn) is ready to receive new data. If UDREn is one, the buffer is empty,
and therefore ready to be written. The UDREn flag can generate a data register empty interrupt (see description of the
UDRIEn bit). UDREn is set after a reset to indicate that the transmitter is ready.

• Bit 4 – FEn: Frame Error

This bit is set if the next character in the receive buffer had a frame error when received. I.e., when the first stop bit of the
next character in the receive buffer is zero. This bit is valid until the receive buffer (UDRn) is read. The FEn bit is zero when
the stop bit of received data is one. Always set this bit to zero when writing to UCSRnA.

• Bit 3 – DORn: Data OverRun

This bit is set if a data overrun condition is detected. A data overrun occurs when the receive buffer is full (two characters), it
is a new character waiting in the receive shift register, and a new start bit is detected. This bit is valid until the receive buffer
(UDRn) is read. Always set this bit to zero when writing to UCSRnA.

Bit 7 6 5 4 3 2 1 0

RXB[7:0] UDRn (Read)

TXB[7:0] UDRn (Write)

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

RXCn TXCn UDREn FEn DORn UPEn U2Xn MPCMn UCSRnA

Read/Write R R/W R R R R R/W R/W

Initial Value 0 0 1 0 0 0 0 0

ATmega328P [DATASHEET]
7810D–AVR–01/15

160

• Bit 2 – UPEn: USART Parity Error

This bit is set if the next character in the receive buffer had a parity error when received and the parity checking was enabled
at that point (UPMn1 = 1). This bit is valid until the receive buffer (UDRn) is read. Always set this bit to zero when writing to
UCSRnA.

• Bit 1 – U2Xn: Double the USART Transmission Speed

This bit only has effect for the asynchronous operation. Write this bit to zero when using synchronous operation.

Writing this bit to one will reduce the divisor of the baud rate divider from 16 to 8 effectively doubling the transfer rate for
asynchronous communication.

• Bit 0 – MPCMn: Multi-processor Communication Mode

This bit enables the multi-processor communication mode. When the MPCMn bit is written to one, all the incoming frames
received by the USART receiver that do not contain address information will be ignored. The transmitter is unaffected by the
MPCMn setting. For more detailed information see Section 19.9 “Multi-processor Communication Mode” on page 158.

19.10.3 UCSRnB – USART Control and Status Register n B

• Bit 7 – RXCIEn: RX Complete Interrupt Enable n

Writing this bit to one enables interrupt on the RXCn flag. A USART receive complete interrupt will be generated only if the
RXCIEn bit is written to one, the global interrupt flag in SREG is written to one and the RXCn bit in UCSRnA is set.

• Bit 6 – TXCIEn: TX Complete Interrupt Enable n

Writing this bit to one enables interrupt on the TXCn flag. A USART transmit complete interrupt will be generated only if the
TXCIEn bit is written to one, the global interrupt flag in SREG is written to one and the TXCn bit in UCSRnA is set.

• Bit 5 – UDRIEn: USART Data Register Empty Interrupt Enable n

Writing this bit to one enables interrupt on the UDREn flag. A data register empty interrupt will be generated only if the
UDRIEn bit is written to one, the global interrupt flag in SREG is written to one and the UDREn bit in UCSRnA is set.

• Bit 4 – RXENn: Receiver Enable n

Writing this bit to one enables the USART receiver. The receiver will override normal port operation for the RxDn pin when
enabled. Disabling the receiver will flush the receive buffer invalidating the FEn, DORn, and UPEn flags.

• Bit 3 – TXENn: Transmitter Enable n

Writing this bit to one enables the USART transmitter. The transmitter will override normal port operation for the TxDn pin
when enabled. The disabling of the transmitter (writing TXENn to zero) will not become effective until ongoing and pending
transmissions are completed, i.e., when the transmit shift register and transmit buffer register do not contain data to be
transmitted. When disabled, the transmitter will no longer override the TxDn port.

• Bit 2 – UCSZn2: Character Size n

The UCSZn2 bits combined with the UCSZn1:0 bit in UCSRnC sets the number of data bits (character size) in a frame the
receiver and transmitter use.

• Bit 1 – RXB8n: Receive Data Bit 8 n

RXB8n is the ninth data bit of the received character when operating with serial frames with nine data bits. Must be read
before reading the low bits from UDRn.

• Bit 0 – TXB8n: Transmit Data Bit 8 n

TXB8n is the ninth data bit in the character to be transmitted when operating with serial frames with nine data bits. Must be
written before writing the low bits to UDRn.

Bit 7 6 5 4 3 2 1 0

RXCIEn TXCIEn UDRIEn RXENn TXENn UCSZn2 RXB8n TXB8n UCSRnB

Read/Write R/W R/W R/W R/W R/W R/W R R/W

Initial Value 0 0 0 0 0 0 0 0

161ATmega328P [DATASHEET]
7810D–AVR–01/15

19.10.4 UCSRnC – USART Control and Status Register n C

• Bits 7:6 – UMSELn1:0 USART Mode Select

These bits select the mode of operation of the USARTn as shown in Table 19-4.

• Bits 5:4 – UPMn1:0: Parity Mode

These bits enable and set type of parity generation and check. If enabled, the transmitter will automatically generate and
send the parity of the transmitted data bits within each frame. The receiver will generate a parity value for the incoming data
and compare it to the UPMn setting. If a mismatch is detected, the UPEn flag in UCSRnA will be set.

• Bit 3 – USBSn: Stop Bit Select

This bit selects the number of stop bits to be inserted by the transmitter. The receiver ignores this setting.

Bit 7 6 5 4 3 2 1 0

UMSELn1 UMSELn0 UPMn1 UPMn0 USBSn UCSZn1 UCSZn0 UCPOLn UCSRnC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 1 1 0

Table 19-4. UMSELn Bits Settings

UMSELn1 UMSELn0 Mode

0 0 Asynchronous USART

0 1 Synchronous USART

1 0 (Reserved)

1 1 Master SPI (MSPIM)(1)

Note: 1. See Section 20. “USART in SPI Mode” on page 166 for full description of the master SPI mode (MSPIM)
operation

Table 19-5. UPMn Bits Settings

UPMn1 UPMn0 Parity Mode

0 0 Disabled

0 1 Reserved

1 0 Enabled, even parity

1 1 Enabled, odd parity

Table 19-6. USBS Bit Settings

USBSn Stop Bit(s)

0 1-bit

1 2-bit

ATmega328P [DATASHEET]
7810D–AVR–01/15

162

• Bit 2:1 – UCSZn1:0: Character Size

The UCSZn1:0 bits combined with the UCSZn2 bit in UCSRnB sets the number of data bits (character size) in a frame the
receiver and transmitter use.

• Bit 0 – UCPOLn: Clock Polarity

This bit is used for synchronous mode only. Write this bit to zero when asynchronous mode is used. The UCPOLn bit sets
the relationship between data output change and data input sample, and the synchronous clock (XCKn).

19.10.5 UBRRnL and UBRRnH – USART Baud Rate Registers

• Bit 15:12 – Reserved Bits

These bits are reserved for future use. For compatibility with future devices, these bit must be written to zero when UBRRnH
is written.

• Bit 11:0 – UBRR11:0: USART Baud Rate Register

This is a 12-bit register which contains the USART baud rate. The UBRRnH contains the four most significant bits, and the
UBRRnL contains the eight least significant bits of the USART baud rate. Ongoing transmissions by the transmitter and
receiver will be corrupted if the baud rate is changed. Writing UBRRnL will trigger an immediate update of the baud rate
prescaler.

Table 19-7. UCSZn Bits Settings

UCSZn2 UCSZn1 UCSZn0 Character Size

0 0 0 5-bit

0 0 1 6-bit

0 1 0 7-bit

0 1 1 8-bit

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Reserved

1 1 1 9-bit

Table 19-8. UCPOLn Bit Settings

UCPOLn Transmitted Data Changed (Output of TxDn Pin) Received Data Sampled (Input on RxDn Pin)

0 Rising XCKn edge Falling XCKn edge

1 Falling XCKn edge Rising XCKn edge

Bit 15 14 13 12 11 10 9 8

– – – – UBRRn[11:8] UBRRnH

UBRRn[7:0] UBRRnL

7 6 5 4 3 2 1 0

Read/Write
R R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

163ATmega328P [DATASHEET]
7810D–AVR–01/15

19.11 Examples of Baud Rate Setting

For standard crystal and resonator frequencies, the most commonly used baud rates for asynchronous operation can be
generated by using the UBRRn settings in Table 19-9. UBRRn values which yield an actual baud rate differing less than
0.5% from the target baud rate, are bold in the table. Higher error ratings are acceptable, but the receiver will have less noise
resistance when the error ratings are high, especially for large serial frames (see Section 19.8.3 “Asynchronous Operational
Range” on page 157). The error values are calculated using the following equation:

Table 19-9. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies

Baud
Rate
(bps)

fosc = 1.0000MHz fosc = 1.8432MHz fosc = 2.0000MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error

2400 25 0.2% 51 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%

4800 12 0.2% 25 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%

9600 6 –7.0% 12 0.2% 11 0.0% 23 0.0% 12 0.2% 25 0.2%

14.4k 3 8.5% 8 –3.5% 7 0.0% 15 0.0% 8 –3.5% 16 2.1%

19.2k 2 8.5% 6 –7.0% 5 0.0% 11 0.0% 6 –7.0% 12 0.2%

28.8k 1 8.5% 3 8.5% 3 0.0% 7 0.0% 3 8.5% 8 –3.5%

38.4k 1 –18.6% 2 8.5% 2 0.0% 5 0.0% 2 8.5% 6 –7.0%

57.6k 0 8.5% 1 8.5% 1 0.0% 3 0.0% 1 8.5% 3 8.5%

76.8k – – 1 –18.6% 1 –25.0% 2 0.0% 1 –18.6% 2 8.5%

115.2k – – 0 8.5% 0 0.0% 1 0.0% 0 8.5% 1 8.5%

230.4k – – – – – – 0 0.0% – – – –

250k – – – – – – – – – – 0 0.0%

Max.(1) 62.5kbps 125kbps 115.2kbps 230.4kbps 125kbps 250kbps
Note: 1. UBRRn = 0, error = 0.0%

Error % 
BaudRateClosest Match

BaudRate
-- 1– 
  100%=

ATmega328P [DATASHEET]
7810D–AVR–01/15

164

Table 19-10. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies

Baud
Rate
(bps)

fosc = 3.6864MHz fosc = 4.0000MHz fosc = 7.3728MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error

2400 95 0.0% 191 0.0% 103 0.2% 207 0.2% 191 0.0% 383 0.0%

4800 47 0.0% 95 0.0% 51 0.2% 103 0.2% 95 0.0% 191 0.0%

9600 23 0.0% 47 0.0% 25 0.2% 51 0.2% 47 0.0% 95 0.0%

14.4k 15 0.0% 31 0.0% 16 2.1% 34 –0.8% 31 0.0% 63 0.0%

19.2k 11 0.0% 23 0.0% 12 0.2% 25 0.2% 23 0.0% 47 0.0%

28.8k 7 0.0% 15 0.0% 8 –3.5% 16 2.1% 15 0.0% 31 0.0%

38.4k 5 0.0% 11 0.0% 6 –7.0% 12 0.2% 11 0.0% 23 0.0%

57.6k 3 0.0% 7 0.0% 3 8.5% 8 –3.5% 7 0.0% 15 0.0%

76.8k 2 0.0% 5 0.0% 2 8.5% 6 –7.0% 5 0.0% 11 0.0%

115.2k 1 0.0% 3 0.0% 1 8.5% 3 8.5% 3 0.0% 7 0.0%

230.4k 0 0.0% 1 0.0% 0 8.5% 1 8.5% 1 0.0% 3 0.0%

250k 0 –7.8% 1 –7.8% 0 0.0% 1 0.0% 1 –7.8% 3 –7.8%

0.5M – – 0 –7.8% – – 0 0.0% 0 –7.8% 1 –7.8%

1M – – – – – – – – – – 0 –7.8%

Max.(1) 230.4kbps 460.8kbps 250kbps 0.5Mbps 460.8kbps 921.6kbps

Note: 1. UBRRn = 0, error = 0.0%

Table 19-11. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies

Baud
Rate
(bps)

fosc = 8.0000MHz fosc = 11.0592MHz fosc = 14.7456MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error

2400 207 0.2% 416 –0.1% 287 0.0% 575 0.0% 383 0.0% 767 0.0%

4800 103 0.2% 207 0.2% 143 0.0% 287 0.0% 191 0.0% 383 0.0%

9600 51 0.2% 103 0.2% 71 0.0% 143 0.0% 95 0.0% 191 0.0%

14.4k 34 –0.8% 68 0.6% 47 0.0% 95 0.0% 63 0.0% 127 0.0%

19.2k 25 0.2% 51 0.2% 35 0.0% 71 0.0% 47 0.0% 95 0.0%

28.8k 16 2.1% 34 –0.8% 23 0.0% 47 0.0% 31 0.0% 63 0.0%

38.4k 12 0.2% 25 0.2% 17 0.0% 35 0.0% 23 0.0% 47 0.0%

57.6k 8 –3.5% 16 2.1% 11 0.0% 23 0.0% 15 0.0% 31 0.0%

76.8k 6 –7.0% 12 0.2% 8 0.0% 17 0.0% 11 0.0% 23 0.0%

115.2k 3 8.5% 8 –3.5% 5 0.0% 11 0.0% 7 0.0% 15 0.0%

230.4k 1 8.5% 3 8.5% 2 0.0% 5 0.0% 3 0.0% 7 0.0%

250k 1 0.0% 3 0.0% 2 –7.8% 5 –7.8% 3 –7.8% 6 5.3%

0.5M 0 0.0% 1 0.0% – – 2 –7.8% 1 –7.8% 3 –7.8%

1M – – 0 0.0% – – – – 0 –7.8% 1 –7.8%

Max.(1) 0.5Mbps 1Mbps 691.2kbps 1.3824Mbps 921.6kbps 1.8432Mbps

Note: 1. UBRRn = 0, error = 0.0%

165ATmega328P [DATASHEET]
7810D–AVR–01/15

Table 19-12. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies

Baud Rate (bps)

fosc = 16.0000MHz

U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error

2400 416 –0.1% 832 0.0%

4800 207 0.2% 416 –0.1%

9600 103 0.2% 207 0.2%

14.4k 68 0.6% 138 –0.1%

19.2k 51 0.2% 103 0.2%

28.8k 34 –0.8% 68 0.6%

38.4k 25 0.2% 51 0.2%

57.6k 16 2.1% 34 –0.8%

76.8k 12 0.2% 25 0.2%

115.2k 8 –3.5% 16 2.1%

230.4k 3 8.5% 8 –3.5%

250k 3 0.0% 7 0.0%

0.5M 1 0.0% 3 0.0%

1M 0 0.0% 1 0.0%

Max.(1) 1Mbps 2Mbps

Note: 1. UBRRn = 0, error = 0.0%

ATmega328P [DATASHEET]
7810D–AVR–01/15

166

20. USART in SPI Mode

20.1 Features
● Full duplex, three-wire synchronous data transfer

● Master operation

● Supports all four SPI modes of operation (mode 0, 1, 2, and 3)

● LSB first or MSB first data transfer (configurable data order)

● Queued operation (double buffered)

● High resolution baud rate generator

● High speed operation (fXCKmax = fCK/2)

● Flexible interrupt generation

20.2 Overview

The universal synchronous and asynchronous serial receiver and transmitter (USART) can be set to a master SPI compliant
mode of operation.

Setting both UMSELn1:0 bits to one enables the USART in MSPIM logic. In this mode of operation the SPI master control
logic takes direct control over the USART resources. These resources include the transmitter and receiver shift register and
buffers, and the baud rate generator. The parity generator and checker, the data and clock recovery logic, and the RX and
TX control logic is disabled. The USART RX and TX control logic is replaced by a common SPI transfer control logic.
However, the pin control logic and interrupt generation logic is identical in both modes of operation.

The I/O register locations are the same in both modes. However, some of the functionality of the control registers changes
when using MSPIM.

20.3 Clock Generation

The clock generation logic generates the base clock for the transmitter and receiver. For USART MSPIM mode of operation
only internal clock generation (i.e. master operation) is supported. The data direction register for the XCKn pin (DDR_XCKn)
must therefore be set to one (i.e. as output) for the USART in MSPIM to operate correctly. Preferably the DDR_XCKn should
be set up before the USART in MSPIM is enabled (i.e. TXENn and RXENn bit set to one).

The internal clock generation used in MSPIM mode is identical to the USART synchronous master mode. The baud rate or
UBRRn setting can therefore be calculated using the same equations, see Table 20-1:

BAUD Baud rate (in bits per second, bps)

fOSC System oscillator clock frequency

UBRRn Contents of the UBRRnH and UBRRnL registers, (0-4095)

Table 20-1. Equations for Calculating Baud Rate Register Setting

Operating Mode Equation for Calculating Baud Rate(1) Equation for Calculating UBRRn Value

Synchronous master mode

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps)

BAUD
fOSC

2 UBRRn 1+ 
------------------------------------= UBRRn

fOSC

2BAUD
-------------------- 1–=

167ATmega328P [DATASHEET]
7810D–AVR–01/15

20.4 SPI Data Modes and Timing

There are four combinations of XCKn (SCK) phase and polarity with respect to serial data, which are determined by control
bits UCPHAn and UCPOLn. The data transfer timing diagrams are shown in Figure 20-1. Data bits are shifted out and
latched in on opposite edges of the XCKn signal, ensuring sufficient time for data signals to stabilize. The UCPOLn and
UCPHAn functionality is summarized in Table 20-2. Note that changing the setting of any of these bits will corrupt all ongoing
communication for both the receiver and transmitter.

Figure 20-1. UCPHAn and UCPOLn Data Transfer Timing Diagrams.

20.5 Frame Formats

A serial frame for the MSPIM is defined to be one character of 8 data bits. The USART in MSPIM mode has two valid frame
formats:

● 8-bit data with MSB first

● 8-bit data with LSB first

A frame starts with the least or most significant data bit. Then the next data bits, up to a total of eight, are succeeding, ending
with the most or least significant bit accordingly. When a complete frame is transmitted, a new frame can directly follow it, or
the communication line can be set to an idle (high) state.

The UDORDn bit in UCSRnC sets the frame format used by the USART in MSPIM mode. The receiver and transmitter use
the same setting. Note that changing the setting of any of these bits will corrupt all ongoing communication for both the
receiver and transmitter.

16-bit data transfer can be achieved by writing two data bytes to UDRn. A UART transmit complete interrupt will then signal
that the 16-bit value has been shifted out.

Table 20-2. UCPOLn and UCPHAn Functionality

UCPOLn UCPHAn SPI Mode Leading Edge Trailing Edge

0 0 0 Sample (rising) Setup (falling)

0 1 1 Setup (rising) Sample (falling)

1 0 2 Sample (falling) Setup (rising)

1 1 3 Setup (falling) Sample (rising)

XCK

UCPOL = 0 UCPOL = 1

U
C

P
H

A
 =

 1
U

C
P

H
A

 =
 0

Data setup (TXD)

Data sample (RXD)

XCK

Data setup (TXD)

Data sample (RXD)

XCK

Data setup (TXD)

Data sample (RXD)

XCK

Data setup (TXD)

Data sample (RXD)

ATmega328P [DATASHEET]
7810D–AVR–01/15

168

20.5.1 USART MSPIM Initialization

The USART in MSPIM mode has to be initialized before any communication can take place. The initialization process
normally consists of setting the baud rate, setting master mode of operation (by setting DDR_XCKn to one), setting frame
format and enabling the transmitter and the receiver. Only the transmitter can operate independently. For interrupt driven
USART operation, the global interrupt flag should be cleared (and thus interrupts globally disabled) when doing the
initialization.

Note: To ensure immediate initialization of the XCKn output the baud-rate register (UBRRn) must be zero at the time
the transmitter is enabled. Contrary to the normal mode USART operation the UBRRn must then be written to
the desired value after the transmitter is enabled, but before the first transmission is started. Setting UBRRn to
zero before enabling the transmitter is not necessary if the initialization is done immediately after a reset since
UBRRn is reset to zero.

Before doing a re-initialization with changed baud rate, data mode, or frame format, be sure that there is no ongoing
transmissions during the period the registers are changed. The TXCn flag can be used to check that the transmitter has
completed all transfers, and the RXCn flag can be used to check that there are no unread data in the receive buffer. Note
that the TXCn flag must be cleared before each transmission (before UDRn is written) if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one C function that are equal in
functionality. The examples assume polling (no interrupts enabled). The baud rate is given as a function parameter. For the
assembly code, the baud rate parameter is assumed to be stored in the r17:r16 registers.

Note: 1. See Section 5. “About Code Examples” on page 8.

Assembly Code Example(1)

USART_Init:
clr r18
out UBRRnH,r18
out UBRRnL,r18
; Setting the XCKn port pin as output, enables master mode.
sbi XCKn_DDR, XCKn
; Set MSPI mode of operation and SPI data mode 0.
ldi r18, (1<<UMSELn1)|(1<<UMSELn0)|(0<<UCPHAn)|(0<<UCPOLn)
out UCSRnC,r18
; Enable receiver and transmitter.
ldi r18, (1<<RXENn)|(1<<TXENn)
out UCSRnB,r18
; Set baud rate.
; IMPORTANT: The Baud Rate must be set after the transmitter is

enabled!
out UBRRnH, r17
out UBRRnL, r18
ret

C Code Example(1)

void USART_Init(unsigned int baud)
{

UBRRn = 0;
/* Setting the XCKn port pin as output, enables master mode. */
XCKn_DDR |= (1<<XCKn);
/* Set MSPI mode of operation and SPI data mode 0. */
UCSRnC = (1<<UMSELn1)|(1<<UMSELn0)|(0<<UCPHAn)|(0<<UCPOLn);
/* Enable receiver and transmitter. */
UCSRnB = (1<<RXENn)|(1<<TXENn);
/* Set baud rate. */
/* IMPORTANT: The Baud Rate must be set after the transmitter is

enabled
*/
UBRRn = baud;

}

169ATmega328P [DATASHEET]
7810D–AVR–01/15

20.6 Data Transfer

Using the USART in MSPI mode requires the transmitter to be enabled, i.e. the TXENn bit in the UCSRnB register is set to
one. When the transmitter is enabled, the normal port operation of the TxDn pin is overridden and given the function as the
transmitter's serial output. Enabling the receiver is optional and is done by setting the RXENn bit in the UCSRnB register to
one. When the receiver is enabled, the normal pin operation of the RxDn pin is overridden and given the function as the
receiver's serial input. The XCKn will in both cases be used as the transfer clock.

After initialization the USART is ready for doing data transfers. A data transfer is initiated by writing to the UDRn I/O location.
This is the case for both sending and receiving data since the transmitter controls the transfer clock. The data written to
UDRn is moved from the transmit buffer to the shift register when the shift register is ready to send a new frame.

Note: To keep the input buffer in sync with the number of data bytes transmitted, the UDRn register must be read
once for each byte transmitted. The input buffer operation is identical to normal USART mode, i.e. if an
overflow occurs the character last received will be lost, not the first data in the buffer. This means that if four
bytes are transferred, byte 1 first, then byte 2, 3, and 4, and the UDRn is not read before all transfers are
completed, then byte 3 to be received will be lost, and not byte 1.

The following code examples show a simple USART in MSPIM mode transfer function based on polling of the data register
empty (UDREn) flag and the receive complete (RXCn) Flag. The USART has to be initialized before the function can be
used. For the assembly code, the data to be sent is assumed to be stored in register R16 and the data received will be
available in the same register (R16) after the function returns.

The function simply waits for the transmit buffer to be empty by checking the UDREn flag, before loading it with new data to
be transmitted. The function then waits for data to be present in the receive buffer by checking the RXCn flag, before reading
the buffer and returning the value.

Note: 1. See Section 5. “About Code Examples” on page 8.

Assembly Code Example(1)

USART_MSPIM_Transfer:
; Wait for empty transmit buffer
sbis UCSRnA, UDREn
rjmp USART_MSPIM_Transfer
; Put data (r16) into buffer, sends the data
out UDRn,r16
; Wait for data to be received

USART_MSPIM_Wait_RXCn:
sbis UCSRnA, RXCn
rjmp USART_MSPIM_Wait_RXCn
; Get and return received data from buffer
in r16, UDRn
ret

C Code Example(1)

unsigned char USART_Receive(void)
{

/* Wait for empty transmit buffer */
while (!(UCSRnA & (1<<UDREn)));
/* Put data into buffer, sends the data */
UDRn = data;
/* Wait for data to be received */
while (!(UCSRnA & (1<<RXCn)));
/* Get and return received data from buffer */
return UDRn;

}

ATmega328P [DATASHEET]
7810D–AVR–01/15

170

20.6.1 Transmitter and Receiver Flags and Interrupts

The RXCn, TXCn, and UDREn flags and corresponding interrupts in USART in MSPIM mode are identical in function to the
normal USART operation. However, the receiver error status flags (FE, DOR, and PE) are not in use and is always read as
zero.

20.6.2 Disabling the Transmitter or Receiver

The disabling of the transmitter or receiver in USART in MSPIM mode is identical in function to the normal USART operation.

20.7 AVR USART MSPIM versus AVR SPI

The USART in MSPIM mode is fully compatible with the AVR SPI regarding:

● Master mode timing diagram.

● The UCPOLn bit functionality is identical to the SPI CPOL bit.

● The UCPHAn bit functionality is identical to the SPI CPHA bit.

● The UDORDn bit functionality is identical to the SPI DORD bit.

However, since the USART in MSPIM mode reuses the USART resources, the use of the USART in MSPIM mode is
somewhat different compared to the SPI. In addition to differences of the control register bits, and that only master operation
is supported by the USART in MSPIM mode, the following features differ between the two modules:

● The USART in MSPIM mode includes (double) buffering of the transmitter. The SPI has no buffer.

● The USART in MSPIM mode receiver includes an additional buffer level.

● The SPI WCOL (write collision) bit is not included in USART in MSPIM mode.

● The SPI double speed mode (SPI2X) bit is not included. However, the same effect is achieved by setting UBRRn
accordingly.

● Interrupt timing is not compatible.

● Pin control differs due to the master only operation of the USART in MSPIM mode.

A comparison of the USART in MSPIM mode and the SPI pins is shown in Table 20-3.

20.8 Register Description

The following section describes the registers used for SPI operation using the USART.

20.8.1 UDRn – USART MSPIM I/O Data Register

The function and bit description of the USART data register (UDRn) in MSPI mode is identical to normal USART operation.
See Section 19.10.1 “UDRn – USART I/O Data Register n” on page 159.

20.8.2 UCSRnA – USART MSPIM Control and Status Register n A

Table 20-3. Comparison of USART in MSPIM Mode and SPI Pins

USART_MSPIM SPI Comment

TxDn MOSI Master out only

RxDn MISO Master in only

XCKn SCK (Functionally identical)

(N/A) SS Not supported by USART in MSPIM

Bit 7 6 5 4 3 2 1 0

RXCn TXCn UDREn - - - - - UCSRnA

Read/Write R R/W R R R R R R

Initial Value 0 0 0 0 0 1 1 0

171ATmega328P [DATASHEET]
7810D–AVR–01/15

• Bit 7 - RXCn: USART Receive Complete

This flag bit is set when there are unread data in the receive buffer and cleared when the receive buffer is empty (i.e., does
not contain any unread data). If the receiver is disabled, the receive buffer will be flushed and consequently the RXCn bit will
become zero. The RXCn flag can be used to generate a receive complete interrupt (see description of the RXCIEn bit).

• Bit 6 - TXCn: USART Transmit Complete

This flag bit is set when the entire frame in the transmit shift register has been shifted out and there are no new data currently
present in the transmit buffer (UDRn). The TXCn flag bit is automatically cleared when a transmit complete interrupt is
executed, or it can be cleared by writing a one to its bit location. The TXCn flag can generate a transmit complete interrupt
(see description of the TXCIEn bit).

• Bit 5 - UDREn: USART Data Register Empty

The UDREn flag indicates if the transmit buffer (UDRn) is ready to receive new data. If UDREn is one, the buffer is empty,
and therefore ready to be written. The UDREn flag can generate a data register empty interrupt (see description of the
UDRIE bit). UDREn is set after a reset to indicate that the transmitter is ready.

• Bit 4:0 - Reserved Bits in MSPI mode

When in MSPI mode, these bits are reserved for future use. For compatibility with future devices, these bits must be written
to zero when UCSRnA is written.

20.8.3 UCSRnB – USART MSPIM Control and Status Register n B

• Bit 7 - RXCIEn: RX Complete Interrupt Enable

Writing this bit to one enables interrupt on the RXCn flag. A USART receive complete interrupt will be generated only if the
RXCIEn bit is written to one, the global interrupt flag in SREG is written to one and the RXCn bit in UCSRnA is set.

• Bit 6 - TXCIEn: TX Complete Interrupt Enable

Writing this bit to one enables interrupt on the TXCn flag. A USART transmit complete interrupt will be generated only if the
TXCIEn bit is written to one, the global interrupt flag in SREG is written to one and the TXCn bit in UCSRnA is set.

• Bit 5 - UDRIE: USART Data Register Empty Interrupt Enable

Writing this bit to one enables interrupt on the UDREn flag. A data register empty interrupt will be generated only if the
UDRIE bit is written to one, the global interrupt flag in SREG is written to one and the UDREn bit in UCSRnA is set.

• Bit 4 - RXENn: Receiver Enable

Writing this bit to one enables the USART receiver in MSPIM mode. The receiver will override normal port operation for the
RxDn pin when enabled. Disabling the receiver will flush the receive buffer. Only enabling the receiver in MSPI mode (i.e.
setting RXENn=1 and TXENn=0) has no meaning since it is the transmitter that controls the transfer clock and since only
master mode is supported.

• Bit 3 - TXENn: Transmitter Enable

Writing this bit to one enables the USART transmitter. The transmitter will override normal port operation for the TxDn pin
when enabled. The disabling of the transmitter (writing TXENn to zero) will not become effective until ongoing and pending
transmissions are completed, i.e., when the transmit shift register and transmit buffer register do not contain data to be
transmitted. When disabled, the transmitter will no longer override the TxDn port.

• Bit 2:0 - Reserved Bits in MSPI mode

When in MSPI mode, these bits are reserved for future use. For compatibility with future devices, these bits must be written
to zero when UCSRnB is written.

Bit 7 6 5 4 3 2 1 0

RXCIEn TXCIEn UDRIE RXENn TXENn - - - UCSRnB

Read/Write R/W R/W R/W R/W R/W R R R

Initial Value 0 0 0 0 0 1 1 0

ATmega328P [DATASHEET]
7810D–AVR–01/15

172

20.8.4 UCSRnC – USART MSPIM Control and Status Register n C

• Bit 7:6 - UMSELn1:0: USART Mode Select

These bits select the mode of operation of the USART as shown in Table 20-4. See Section 19.10.4 “UCSRnC – USART
Control and Status Register n C” on page 161 for full description of the normal USART operation. The MSPIM is enabled
when both UMSELn bits are set to one. The UDORDn, UCPHAn, and UCPOLn can be set in the same write operation where
the MSPIM is enabled.

• Bit 5:3 - Reserved Bits in MSPI mode

When in MSPI mode, these bits are reserved for future use. For compatibility with future devices, these bits must be written
to zero when UCSRnC is written.

• Bit 2 - UDORDn: Data Order

When set to one the LSB of the data word is transmitted first. When set to zero the MSB of the data word is transmitted first.
Refer to the frame formats section page 4 for details.

• Bit 1 - UCPHAn: Clock Phase

The UCPHAn bit setting determine if data is sampled on the leasing edge (first) or tailing (last) edge of XCKn. Refer to the
SPI data modes and timing section page 4 for details.

• Bit 0 - UCPOLn: Clock Polarity

The UCPOLn bit sets the polarity of the XCKn clock. The combination of the UCPOLn and UCPHAn bit settings determine
the timing of the data transfer. Refer to the SPI data modes and timing section page 4 for details.

20.8.5 USART MSPIM Baud Rate Registers - UBRRnL and UBRRnH

The function and bit description of the baud rate registers in MSPI mode is identical to normal USART operation. See
Section 19.10.5 “UBRRnL and UBRRnH – USART Baud Rate Registers” on page 162.

Bit 7 6 5 4 3 2 1 0

UMSELn1 UMSELn0 - - - UDORDn UCPHAn UCPOLn UCSRnC

Read/Write R/W R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 1 1 0

Table 20-4. UMSELn Bits Settings

UMSELn1 UMSELn0 Mode

0 0 Asynchronous USART

0 1 Synchronous USART

1 0 Reserved

1 1 Master SPI (MSPIM)

173ATmega328P [DATASHEET]
7810D–AVR–01/15

21. 2-wire Serial Interface

21.1 Features
● Simple yet powerful and flexible communication interface, only two bus lines needed

● Both master and slave operation supported

● Device can operate as transmitter or receiver

● 7-bit address space allows up to 128 different slave addresses

● Multi-master arbitration support

● Up to 400kHz data transfer speed

● Slew-rate limited output drivers

● Noise suppression circuitry rejects spikes on bus lines

● Fully programmable slave address with general call support

● Address recognition causes wake-up when AVR® is in sleep mode

● Compatible with Phillips’ I2C protocol

21.2 2-wire Serial Interface Bus Definition

The 2-wire serial interface (TWI) is ideally suited for typical microcontroller applications. The TWI protocol allows the
systems designer to interconnect up to 128 different devices using only two bi-directional bus lines, one for clock (SCL) and
one for data (SDA). The only external hardware needed to implement the bus is a single pull-up resistor for each of the TWI
bus lines. All devices connected to the bus have individual addresses, and mechanisms for resolving bus contention are
inherent in the TWI protocol.

Figure 21-1. TWI Bus Interconnection

Device 1

SDA

SCL

VCC

Device 2 Device 3 Device n........ R1 R2

ATmega328P [DATASHEET]
7810D–AVR–01/15

174

21.2.1 TWI Terminology

The following definitions are frequently encountered in this section.

The PRTWI bit in Section 9.10 “Minimizing Power Consumption” on page 36 must be written to zero to enable the 2-wire
serial interface.

21.2.2 Electrical Interconnection

As depicted in Figure 21-1 on page 173, both bus lines are connected to the positive supply voltage through pull-up
resistors. The bus drivers of all TWI-compliant devices are open-drain or open-collector. This implements a wired-AND
function which is essential to the operation of the interface. A low level on a TWI bus line is generated when one or more TWI
devices output a zero. A high level is output when all TWI devices tri-state their outputs, allowing the pull-up resistors to pull
the line high. Note that all AVR® devices connected to the TWI bus must be powered in order to allow any bus operation.

The number of devices that can be connected to the bus is only limited by the bus capacitance limit of 400pF and the 7-bit
slave address space. A detailed specification of the electrical characteristics of the TWI is given in Section 28.8 “2-wire
Serial Interface Characteristics” on page 264. Two different sets of specifications are presented there, one relevant for bus
speeds below 100kHz, and one valid for bus speeds up to 400kHz.

21.3 Data Transfer and Frame Format

21.3.1 Transferring Bits

Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line. The level of the data line must be
stable when the clock line is high. The only exception to this rule is for generating start and stop conditions.

Figure 21-2. Data Validity

Table 21-1. TWI Terminology

Term Description

Master The device that initiates and terminates a transmission. The master also generates the SCL clock.

Slave The device addressed by a master.

Transmitter The device placing data on the bus.

Receiver The device reading data from the bus.

SDA

SCL

Data Stable

Data Change

Data Stable

175ATmega328P [DATASHEET]
7810D–AVR–01/15

21.3.2 START and STOP Conditions

The master initiates and terminates a data transmission. The transmission is initiated when the master issues a START
condition on the bus, and it is terminated when the master issues a STOP condition. Between a START and a STOP
condition, the bus is considered busy, and no other master should try to seize control of the bus. A special case occurs when
a new START condition is issued between a START and STOP condition. This is referred to as a REPEATED START
condition, and is used when the master wishes to initiate a new transfer without relinquishing control of the bus. After a
REPEATED START, the bus is considered busy until the next STOP. This is identical to the START behavior, and therefore
START is used to describe both START and REPEATED START for the remainder of this datasheet, unless otherwise
noted. As depicted below, START and STOP conditions are signalled by changing the level of the SDA line when the SCL
line is high.

Figure 21-3. START, REPEATED START and STOP Conditions

21.3.3 Address Packet Format

All address packets transmitted on the TWI bus are 9 bits long, consisting of 7 address bits, one READ/WRITE control bit
and an acknowledge bit. If the READ/WRITE bit is set, a read operation is to be performed, otherwise a write operation
should be performed. When a slave recognizes that it is being addressed, it should acknowledge by pulling SDA low in the
ninth SCL (ACK) cycle. If the addressed Slave is busy, or for some other reason can not service the master’s request, the
SDA line should be left high in the ACK clock cycle. The master can then transmit a STOP condition, or a REPEATED
START condition to initiate a new transmission. An address packet consisting of a slave address and a READ or a WRITE
bit is called SLA+R or SLA+W, respectively.

The MSB of the address byte is transmitted first. Slave addresses can freely be allocated by the designer, but the address
0000 000 is reserved for a general call.

When a general call is issued, all slaves should respond by pulling the SDA line low in the ACK cycle. A general call is used
when a master wishes to transmit the same message to several slaves in the system. When the general call address
followed by a write bit is transmitted on the bus, all slaves set up to acknowledge the general call will pull the SDA line low in
the ack cycle. The following data packets will then be received by all the slaves that acknowledged the general call. Note that
transmitting the general call address followed by a read bit is meaningless, as this would cause contention if several slaves
started transmitting different data.

All addresses of the format 1111 xxx should be reserved for future purposes.

Figure 21-4. Address Packet Format

SDA

SCL

START START REPEATED STARTSTOP STOP

SDA

SCL

START

Addr MSB Addr LSB R/W ACK

1 2 7 8 9

ATmega328P [DATASHEET]
7810D–AVR–01/15

176

21.3.4 Data Packet Format

All data packets transmitted on the TWI bus are nine bits long, consisting of one data byte and an acknowledge bit. During a
data transfer, the master generates the clock and the START and STOP conditions, while the receiver is responsible for
acknowledging the reception. An acknowledge (ACK) is signalled by the receiver pulling the SDA line low during the ninth
SCL cycle. If the receiver leaves the SDA line high, a NACK is signalled. When the receiver has received the last byte, or for
some reason cannot receive any more bytes, it should inform the transmitter by sending a NACK after the final byte. The
MSB of the data byte is transmitted first.

Figure 21-5. Data Packet Format

21.3.5 Combining Address and Data Packets into a Transmission

A transmission basically consists of a START condition, a SLA+R/W, one or more data packets and a STOP condition. An
empty message, consisting of a START followed by a STOP condition, is illegal. Note that the Wired-ANDing of the SCL line
can be used to implement handshaking between the master and the slave. The slave can extend the SCL low period by
pulling the SCL line low. This is useful if the clock speed set up by the master is too fast for the slave, or the slave needs
extra time for processing between the data transmissions. The slave extending the SCL low period will not affect the SCL
high period, which is determined by the master. As a consequence, the slave can reduce the TWI data transfer speed by
prolonging the SCL duty cycle.

Figure 21-6 shows a typical data transmission. Note that several data bytes can be transmitted between the SLA+R/W and
the STOP condition, depending on the software protocol implemented by the application software.

Figure 21-6. Typical Data Transmission

Aggregate
SDA

SDA from
Transmitter

SDA from
Receiver

SCL from
Master

Data MSB Data LSB ACK

1 2 7

Data Byte STOP, REPEATED
START or next

Data Byte

SLA + R/W

8 9

SDA

SCL

STOPSTART SLA + R/W Data Byte

Addr MSB Addr LSB Data MSB Data LSB ACKR/W ACK

1 2 7 8 9 1 2 7 8 9

177ATmega328P [DATASHEET]
7810D–AVR–01/15

21.4 Multi-master Bus Systems, Arbitration and Synchronization

The TWI protocol allows bus systems with several masters. Special concerns have been taken in order to ensure that
transmissions will proceed as normal, even if two or more masters initiate a transmission at the same time. Two problems
arise in multi-master systems:

● An algorithm must be implemented allowing only one of the masters to complete the transmission. All other masters
should cease transmission when they discover that they have lost the selection process. This selection process is
called arbitration. When a contending master discovers that it has lost the arbitration process, it should immediately
switch to slave mode to check whether it is being addressed by the winning master. The fact that multiple masters
have started transmission at the same time should not be detectable to the slaves, i.e. the data being transferred on
the bus must not be corrupted.

● Different masters may use different SCL frequencies. A scheme must be devised to synchronize the serial clocks
from all masters, in order to let the transmission proceed in a lockstep fashion. This will facilitate the arbitration
process.

The wired-ANDing of the bus lines is used to solve both these problems. The serial clocks from all masters will be wired-
ANDed, yielding a combined clock with a high period equal to the one from the master with the shortest high period. The low
period of the combined clock is equal to the low period of the master with the longest low period. Note that all masters listen
to the SCL line, effectively starting to count their SCL high and low time-out periods when the combined SCL line goes high
or low, respectively.

Figure 21-7. SCL Synchronization Between Multiple Masters

Arbitration is carried out by all masters continuously monitoring the SDA line after outputting data. If the value read from the
SDA line does not match the value the master had output, it has lost the arbitration. Note that a master can only lose
arbitration when it outputs a high SDA value while another master outputs a low value. The losing master should
immediately go to slave mode, checking if it is being addressed by the winning master. The SDA line should be left high, but
losing masters are allowed to generate a clock signal until the end of the current data or address packet.

Arbitration will continue until only one master remains, and this may take many bits. If several masters are trying to address
the same slave, arbitration will continue into the data packet.

SCL from
Master A

SCL from
Master B

SCL Bus
Line

Masters Start
Counting Low Period

Masters Start
Counting High Period

TAlow TAhigh

TBlow TBhigh

ATmega328P [DATASHEET]
7810D–AVR–01/15

178

Figure 21-8. Arbitration Between Two Masters

Note that arbitration is not allowed between:

● A REPEATED START condition and a data bit.

● A STOP condition and a data bit.

● A REPEATED START and a STOP condition.

It is the user software’s responsibility to ensure that these illegal arbitration conditions never occur. This implies that in
multi-master systems, all data transfers must use the same composition of SLA+R/W and data packets. In other words: All
transmissions must contain the same number of data packets, otherwise the result of the arbitration is undefined.

SDA from
Master A

SDA from
Master B

Synchronized
SCL Line

SDA Line

START Master A Loses
Arbitration, SDAA ≠ SDA

179ATmega328P [DATASHEET]
7810D–AVR–01/15

21.5 Overview of the TWI Module

The TWI module is comprised of several sub modules, as shown in Figure 21-9. All registers drawn in a thick line are
accessible through the AVR® data bus.

Figure 21-9. Overview of the TWI Module

21.5.1 SCL and SDA Pins

These pins interface the AVR TWI with the rest of the MCU system. The output drivers contain a slew-rate limiter in order to
conform to the TWI specification. The input stages contain a spike suppression unit removing spikes shorter than 50ns. Note
that the internal pull-ups in the AVR pads can be enabled by setting the PORT bits corresponding to the SCL and SDA pins,
as explained in the I/O port section. The internal pull-ups can in some systems eliminate the need for external ones.

START/ STOP
Control

Spike
Filter

Slew-rate
Control

Address/ Data Shift
Register (TWDR)Arbitration detection

Spike Suppression

Bit Rate Register
(TWBR)

Prescaler

Ack

Bus Interface Unit

SCL

Spike
Filter

Slew-rate
Control

SDA

Bit Rate Generator

Address Register
(TWAR)

Address Comparator

Address Match Unit

Status Register
(TWSR)

Control Register
(TWCR)

State Machine and
Status control

Control Unit

TW
I U

ni
t

ATmega328P [DATASHEET]
7810D–AVR–01/15

180

21.5.2 Bit Rate Generator Unit

This unit controls the period of SCL when operating in a master mode. The SCL period is controlled by settings in the TWI bit
rate register (TWBR) and the prescaler bits in the TWI status register (TWSR). Slave operation does not depend on bit rate
or prescaler settings, but the CPU clock frequency in the slave must be at least 16 times higher than the SCL frequency.
Note that slaves may prolong the SCL low period, thereby reducing the average TWI bus clock period. The SCL frequency is
generated according to the following equation:

● TWBR = Value of the TWI Bit rate register.

● PrescalerValue = Value of the prescaler, see Table 21-8 on page 200.

Note: Pull-up resistor values should be selected according to the SCL frequency and the capacitive bus line load.
See Table 28-7 on page 264 for value of pull-up resistor.

21.5.3 Bus Interface Unit

This unit contains the data and address shift register (TWDR), a START/STOP controller and arbitration detection hardware.
The TWDR contains the address or data bytes to be transmitted, or the address or data bytes received. In addition to the
8-bit TWDR, the bus interface unit also contains a register containing the (N)ACK bit to be transmitted or received. This
(N)ACK register is not directly accessible by the application software. However, when receiving, it can be set or cleared by
manipulating the TWI control register (TWCR). When in transmitter mode, the value of the received (N)ACK bit can be
determined by the value in the TWSR.

The START/STOP controller is responsible for generation and detection of START, REPEATED START, and STOP
conditions. The START/STOP controller is able to detect START and STOP conditions even when the AVR MCU is in one of
the sleep modes, enabling the MCU to wake up if addressed by a master.

If the TWI has initiated a transmission as master, the arbitration detection hardware continuously monitors the transmission
trying to determine if arbitration is in process. If the TWI has lost an arbitration, the control unit is informed. Correct action
can then be taken and appropriate status codes generated.

21.5.4 Address Match Unit

The address match unit checks if received address bytes match the seven-bit address in the TWI address register (TWAR).
If the TWI general call recognition enable (TWGCE) bit in the TWAR is written to one, all incoming address bits will also be
compared against the general call address. Upon an address match, the control unit is informed, allowing correct action to
be taken. The TWI may or may not acknowledge its address, depending on settings in the TWCR. The address match unit is
able to compare addresses even when the AVR® MCU is in sleep mode, enabling the MCU to wake up if addressed by a
master.

If another interrupt (e.g., INT0) occurs during TWI power-down address match and wakes up the CPU, the TWI aborts
operation and return to it’s idle state. If this cause any problems, ensure that TWI Address Match is the only enabled
interrupt when entering power-down.

SCL frequency
CPU Clock frequency

16 2 TWBR + PrescalerValue 
---=

181ATmega328P [DATASHEET]
7810D–AVR–01/15

21.5.5 Control Unit

The control unit monitors the TWI bus and generates responses corresponding to settings in the TWI control register
(TWCR). When an event requiring the attention of the application occurs on the TWI bus, the TWI interrupt flag (TWINT) is
asserted. In the next clock cycle, the TWI status register (TWSR) is updated with a status code identifying the event. The
TWSR only contains relevant status information when the TWI interrupt flag is asserted. At all other times, the TWSR
contains a special status code indicating that no relevant status information is available. As long as the TWINT flag is set, the
SCL line is held low. This allows the application software to complete its tasks before allowing the TWI transmission to
continue.

The TWINT flag is set in the following situations:

● After the TWI has transmitted a START/REPEATED START condition.

● After the TWI has transmitted SLA+R/W.

● After the TWI has transmitted an address byte.

● After the TWI has lost arbitration.

● After the TWI has been addressed by own slave address or general call.

● After the TWI has received a data byte.

● After a STOP or REPEATED START has been received while still addressed as a slave.

● When a bus error has occurred due to an illegal START or STOP condition.

21.6 Using the TWI

The AVR® TWI is byte-oriented and interrupt based. Interrupts are issued after all bus events, like reception of a byte or
transmission of a START condition. Because the TWI is interrupt-based, the application software is free to carry on other
operations during a TWI byte transfer. Note that the TWI interrupt enable (TWIE) bit in TWCR together with the global
interrupt enable bit in SREG allow the application to decide whether or not assertion of the TWINT flag should generate an
interrupt request. If the TWIE bit is cleared, the application must poll the TWINT flag in order to detect actions on the TWI
bus.

When the TWINT flag is asserted, the TWI has finished an operation and awaits application response. In this case, the TWI
status register (TWSR) contains a value indicating the current state of the TWI bus. The application software can then
decide how the TWI should behave in the next TWI bus cycle by manipulating the TWCR and TWDR registers.

Figure 21-10 is a simple example of how the application can interface to the TWI hardware. In this example, a master wishes
to transmit a single data byte to a slave. This description is quite abstract, a more detailed explanation follows later in this
section. A simple code example implementing the desired behavior is also presented.

Figure 21-10. Interfacing the Application to the TWI in a Typical Transmission

START

TW
I

H
ar

dw
ar

e
A

ct
io

n

A
pp

lic
at

io
n

A
ct

io
n

TWI bus

Indicates
TWINT set

SLA + W A A STOPData

1. Application
writes to TWCR to

initiate
transmission of

START

2. TWINT set.
Status code indicates
START condition sent

4. TWINT set.
Status code indicates

SLA + W sent,
ACK received

6. TWINT set.
Status code indicates

data sent, ACK received

3. Check TWSR to see if START was
sent. Application loads SLA + W into
TWDR, and loads appropriate control
signals into TWCR, making sure that

TWINT is written to one,
and TWSTA is written to zero.

5. Check TWSR to see if SLA + W was
sent and ACK received.

Application loads data intoTWDR, and
loads appropriate control signals into
TWCR, making sure that TWINT is

written to one

7. Check TWSR to see if data was sent
and ACK received.

Application loads appropriate control
signals to send STOP into TWCR,

makin sure that TWINT is
written to one

ATmega328P [DATASHEET]
7810D–AVR–01/15

182

1. The first step in a TWI transmission is to transmit a START condition. This is done by writing a specific value into
TWCR, instructing the TWI hardware to transmit a START condition. Which value to write is described later on.
However, it is important that the TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The
TWI will not start any operation as long as the TWINT bit in TWCR is set. Immediately after the application has
cleared TWINT, the TWI will initiate transmission of the START condition.

2. When the START condition has been transmitted, the TWINT flag in TWCR is set, and TWSR is updated with a
status code indicating that the START condition has successfully been sent.

3. The application software should now examine the value of TWSR, to make sure that the START condition was
successfully transmitted. If TWSR indicates otherwise, the application software might take some special action,
like calling an error routine. Assuming that the status code is as expected, the application must load SLA+W into
TWDR. Remember that TWDR is used both for address and data. After TWDR has been loaded with the desired
SLA+W, a specific value must be written to TWCR, instructing the TWI hardware to transmit the SLA+W present in
TWDR. Which value to write is described later on. However, it is important that the TWINT bit is set in the value
written. Writing a one to TWINT clears the flag. The TWI will not start any operation as long as the TWINT bit in
TWCR is set. Immediately after the application has cleared TWINT, the TWI will initiate transmission of the
address packet.

4. When the address packet has been transmitted, the TWINT flag in TWCR is set, and TWSR is updated with a
status code indicating that the address packet has successfully been sent. The status code will also reflect
whether a slave acknowledged the packet or not.

5. The application software should now examine the value of TWSR, to make sure that the address packet was
successfully transmitted, and that the value of the ACK bit was as expected. If TWSR indicates otherwise, the
application software might take some special action, like calling an error routine. Assuming that the status code is
as expected, the application must load a data packet into TWDR. Subsequently, a specific value must be written to
TWCR, instructing the TWI hardware to transmit the data packet present in TWDR. Which value to write is
described later on.
However, it is important that the TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The
TWI will not start any operation as long as the TWINT bit in TWCR is set. Immediately after the application has
cleared TWINT, the TWI will initiate transmission of the data packet.

6. When the data packet has been transmitted, the TWINT flag in TWCR is set, and TWSR is updated with a status
code indicating that the data packet has successfully been sent. The status code will also reflect whether a slave
acknowledged the packet or not.

7. The application software should now examine the value of TWSR, to make sure that the data packet was
successfully transmitted, and that the value of the ACK bit was as expected. If TWSR indicates otherwise, the
application software might take some special action, like calling an error routine. Assuming that the status code is
as expected, the application must write a specific value to TWCR, instructing the TWI hardware to transmit a
STOP condition. Which value to write is described later on. However, it is important that the TWINT bit is set in the
value written. Writing a one to TWINT clears the flag. The TWI will not start any operation as long as the TWINT bit
in TWCR is set. Immediately after the application has cleared TWINT, the TWI will initiate transmission of the
STOP condition. Note that TWINT is NOT set after a STOP condition has been sent.

Even though this example is simple, it shows the principles involved in all TWI transmissions. These can be summarized as
follows:

● When the TWI has finished an operation and expects application response, the TWINT flag is set. The SCL line is
pulled low until TWINT is cleared.

● When the TWINT flag is set, the user must update all TWI registers with the value relevant for the next TWI bus cycle.
As an example, TWDR must be loaded with the value to be transmitted in the next bus cycle.

● After all TWI register updates and other pending application software tasks have been completed, TWCR is written.
When writing TWCR, the TWINT bit should be set. Writing a one to TWINT clears the flag. The TWI will then
commence executing whatever operation was specified by the TWCR setting.

183ATmega328P [DATASHEET]
7810D–AVR–01/15

In the following an assembly and C implementation of the example is given. Note that the code below assumes that several
definitions have been made, for example by using include-files.

Table 21-2. Assembly code Example

Assembly Code Example C Example Comments

1
ldi r16, (1<<TWINT)|(1<<TWSTA)|

(1<<TWEN)
out TWCR, r16

TWCR = (1<<TWINT)|(1<<TWSTA)|
(1<<TWEN) Send START condition

2

wait1:
in r16,TWCR
sbrs r16,TWINT
rjmp wait1

while (!(TWCR & (1<<TWINT)))
;

Wait for TWINT flag set. This
indicates that the START
condition has been transmitted

3

in r16,TWSR
andi r16, 0xF8
cpi r16, START
brne ERROR

if ((TWSR & 0xF8) != START)
ERROR();

Check value of TWI status
register. Mask prescaler bits. If
status different from START go
to ERROR

ldi r16, SLA_W
out TWDR, r16
ldi r16, (1<<TWINT) |
(1<<TWEN)
out TWCR, r16

TWDR = SLA_W;
TWCR = (1<<TWINT) |
(1<<TWEN);

Load SLA_W into TWDR
register. Clear TWINT bit in
TWCR to start transmission of
address

4

wait2:
in r16,TWCR
sbrs r16,TWINT
rjmp wait2

while (!(TWCR & (1<<TWINT)))
;

Wait for TWINT flag set. This
indicates that the SLA+W has
been transmitted, and
ACK/NACK has been received.

5

in r16,TWSR
andi r16, 0xF8
cpi r16, MT_SLA_ACK
brne ERROR

if ((TWSR & 0xF8) != MT_SLA_ACK)
ERROR();

Check value of TWI status
register. Mask prescaler bits. If
status different from
MT_SLA_ACK go to ERROR

ldi r16, DATA
out TWDR, r16
ldi r16, (1<<TWINT) |
(1<<TWEN)
out TWCR, r16

TWDR = DATA;
TWCR = (1<<TWINT) | (1<<TWEN); Load DATA into TWDR register.

clear TWINT bit in TWCR to
start transmission of data

6

wait3:
in r16,TWCR
sbrs r16,TWINT
rjmp wait3

while (!(TWCR & (1<<TWINT)))
;

Wait for TWINT flag set. This
indicates that the DATA has
been transmitted, and
ACK/NACK has been received.

7

in r16,TWSR
andi r16, 0xF8
cpi r16, MT_DATA_ACK
brne ERROR

if ((TWSR & 0xF8)!= MT_DATA_ACK)
ERROR();

Check value of TWI status
register. Mask prescaler bits. If
status different from
MT_DATA_ACK go to ERROR

ldi r16, (1<<TWINT)|(1<<TWEN)|
(1<<TWSTO)

out TWCR, r16

TWCR = (1<<TWINT)|(1<<TWEN)|
(1<<TWSTO); Transmit STOP condition

ATmega328P [DATASHEET]
7810D–AVR–01/15

184

21.7 Transmission Modes

The TWI can operate in one of four major modes. These are named master transmitter (MT), master receiver (MR), slave
transmitter (ST) and slave receiver (SR). Several of these modes can be used in the same application. As an example, the
TWI can use MT mode to write data into a TWI EEPROM, MR mode to read the data back from the EEPROM. If other
masters are present in the system, some of these might transmit data to the TWI, and then SR mode would be used. It is the
application software that decides which modes are legal.

The following sections describe each of these modes. Possible status codes are described along with figures detailing data
transmission in each of the modes. These figures contain the following abbreviations:

S: START condition

Rs: REPEATED START condition

R: Read bit (high level at SDA)

W: Write bit (low level at SDA)

A: Acknowledge bit (low level at SDA)

A: Not acknowledge bit (high level at SDA)

Data: 8-bit data byte

P: STOP condition

SLA: Slave address

In Figure 21-12 on page 187 to Figure 21-18 on page 196, circles are used to indicate that the TWINT flag is set. The
numbers in the circles show the status code held in TWSR, with the prescaler bits masked to zero. At these points, actions
must be taken by the application to continue or complete the TWI transfer. The TWI transfer is suspended until the TWINT
flag is cleared by software.

When the TWINT flag is set, the status code in TWSR is used to determine the appropriate software action. For each status
code, the required software action and details of the following serial transfer are given in Table 21-3 on page 186 to
Table 21-6 on page 195. Note that the prescaler bits are masked to zero in these tables.

21.7.1 Master Transmitter Mode

In the master transmitter mode, a number of data bytes are transmitted to a slave receiver (see Figure 21-11). In order to
enter a master mode, a START condition must be transmitted. The format of the following address packet determines
whether master transmitter or master receiver mode is to be entered. If SLA+W is transmitted, MT mode is entered, if SLA+R
is transmitted, MR mode is entered. All the status codes mentioned in this section assume that the prescaler bits are zero or
are masked to zero.

Figure 21-11. Data Transfer in Master Transmitter Mode

Device 1
Master

Transmitter

SDA

SCL

VCC

Device 3 Device n........ R1 R2
Device 2

Slave
Receiver

185ATmega328P [DATASHEET]
7810D–AVR–01/15

A START condition is sent by writing the following value to TWCR:

TWEN must be set to enable the 2-wire serial interface, TWSTA must be written to one to transmit a START condition and
TWINT must be written to one to clear the TWINT flag. The TWI will then test the 2-wire serial bus and generate a START
condition as soon as the bus becomes free. After a START condition has been transmitted, the TWINT flag is set by
hardware, and the status code in TWSR will be 0x08 (see Table 21-3). In order to enter MT mode, SLA+W must be
transmitted. This is done by writing SLA+W to TWDR. Thereafter the TWINT bit should be cleared (by writing it to one) to
continue the transfer. This is accomplished by writing the following value to TWCR:

When SLA+W have been transmitted and an acknowledgement bit has been received, TWINT is set again and a number of
status codes in TWSR are possible. Possible status codes in master mode are 0x18, 0x20, or 0x38. The appropriate action
to be taken for each of these status codes is detailed in Table 21-3.

When SLA+W has been successfully transmitted, a data packet should be transmitted. This is done by writing the data byte
to TWDR. TWDR must only be written when TWINT is high. If not, the access will be discarded, and the write collision bit
(TWWC) will be set in the TWCR register. After updating TWDR, the TWINT bit should be cleared (by writing it to one) to
continue the transfer. This is accomplished by writing the following value to TWCR:

This scheme is repeated until the last byte has been sent and the transfer is ended by generating a STOP condition or a
repeated START condition. A STOP condition is generated by writing the following value to TWCR:

A REPEATED START condition is generated by writing the following value to TWCR:

After a repeated START condition (state 0x10) the 2-wire serial interface can access the same slave again, or a new slave
without transmitting a STOP condition. Repeated START enables the master to switch between slaves, master transmitter
mode and master receiver mode without losing control of the bus.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 1 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 0 1 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 1 0 X 1 0 X

ATmega328P [DATASHEET]
7810D–AVR–01/15

186

Table 21-3. Status Codes for Master Transmitter Mode

Status Code
(TWSR)

Prescaler
Bits are 0

Status of the 2-wire
Serial Bus and 2-wire

Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware

To/from TWDR To TWCR

STA STO TWINT TWEA

0x08 A START condition has
been transmitted

Load SLA+W 0 0 1 X SLA+W will be transmitted;
ACK or NOT ACK will be received

0x10 A repeated START
condition has been

transmitted

Load SLA+W or

Load SLA+R

0

0

0

0

1

1

X

X

SLA+W will be transmitted;
ACK or NOT ACK will be received
SLA+R will be transmitted;
Logic will switch to master receiver mode

0x18 SLA+W has been
transmitted; ACK has

been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or
NOT ACK will be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START
condition will be transmitted and TWSTO
flag will be reset

0x20 SLA+W has been
transmitted; NOT ACK

has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or
NOT ACK will be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START
condition will be transmitted and TWSTO
flag will be reset

0x28 Data byte has been
transmitted; ACK has

been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or
NOT ACK will be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START
condition will be transmitted and TWSTO
flag will be reset

0x30 Data byte has been
transmitted; NOT ACK

has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or
NOT ACK will be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START
condition will be transmitted and TWSTO
flag will be reset

0x38 Arbitration lost in SLA+W
or data bytes

No TWDR action or

No TWDR action

0

1

0

0

1

1

X

X

2-wire Serial Bus will be released and not
addressed Slave mode entered
A START condition will be transmitted when
the bus becomes free

187ATmega328P [DATASHEET]
7810D–AVR–01/15

Figure 21-12. Formats and States in the Master Transmitter Mode

S
Successfull
transmission
to a slave
receiver

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Not acknowledge
received after a
data byte

Arbitration lost and
addressed as slave

From master to slave Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the 2-Wire Serial Bus.
The prescaler bits are zero or masked to zero

From slave to master

Arbitration lost in slave
address or data byte

SLA W

RS SLA W

A A P

A P R

MR

MT

DATA

ADATA

$08 $18

$20

$38

$28

A P

$30

$38

$10

A or A Other master
continues

$68 $78

n

A Other master
continues

To corresponding
states in slave mode

A or A Other master
continues

$B0

ATmega328P [DATASHEET]
7810D–AVR–01/15

188

21.7.2 Master Receiver Mode

In the master receiver mode, a number of data bytes are received from a slave transmitter (slave see Figure 21-13). In order
to enter a master mode, a START condition must be transmitted. The format of the following address packet determines
whether master transmitter or master receiver mode is to be entered. If SLA+W is transmitted, MT mode is entered, if SLA+R
is transmitted, MR mode is entered. All the status codes mentioned in this section assume that the prescaler bits are zero or
are masked to zero.

Figure 21-13. Data Transfer in Master Receiver Mode

A START condition is sent by writing the following value to TWCR:

TWEN must be written to one to enable the 2-wire serial interface, TWSTA must be written to one to transmit a START
condition and TWINT must be set to clear the TWINT flag. The TWI will then test the 2-wire serial bus and generate a
START condition as soon as the bus becomes free. After a START condition has been transmitted, the TWINT flag is set by
hardware, and the status code in TWSR will be 0x08 (See Table 21-3 on page 186). In order to enter MR mode, SLA+R must
be transmitted. This is done by writing SLA+R to TWDR. Thereafter the TWINT bit should be cleared (by writing it to one) to
continue the transfer. This is accomplished by writing the following value to TWCR:

When SLA+R have been transmitted and an acknowledgement bit has been received, TWINT is set again and a number of
status codes in TWSR are possible. Possible status codes in master mode are 0x38, 0x40, or 0x48. The appropriate action
to be taken for each of these status codes is detailed in Table 21-4 on page 189. Received data can be read from the TWDR
register when the TWINT flag is set high by hardware. This scheme is repeated until the last byte has been received. After
the last byte has been received, the MR should inform the ST by sending a NACK after the last received data byte. The
transfer is ended by generating a STOP condition or a repeated START condition. A STOP condition is generated by writing
the following value to TWCR:

A REPEATED START condition is generated by writing the following value to TWCR:

After a repeated START condition (state 0x10) the 2-wire serial interface can access the same slave again, or a new slave
without transmitting a STOP condition. Repeated START enables the master to switch between slaves, master transmitter
mode and master receiver mode without losing control over the bus.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 1 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 0 1 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 1 0 X 1 0 X

Device 1
Master

Receiver

SDA

SCL

VCC

Device 3 Device n........ R1 R2
Device 2

Slave
Transmitter

189ATmega328P [DATASHEET]
7810D–AVR–01/15

Table 21-4. Status Codes for Master Receiver Mode

Status Code
(TWSR)

Prescaler
Bits are 0

Status of the 2-wire
Serial Bus and 2-wire

Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware

To/from TWDR To TWCR

STA STO TWINT TWEA

0x08 A START condition has
been transmitted

Load SLA+R 0 0 1 X SLA+R will be transmitted
ACK or NOT ACK will be received

0x10 A repeated START
condition has been

transmitted

Load SLA+R or

Load SLA+W

0

0

0

0

1

1

X

X

SLA+R will be transmitted
ACK or NOT ACK will be received
SLA+W will be transmitted
logic will switch to master transmitter mode

0x38 Arbitration lost in SLA+R
or NOT ACK bit

No TWDR action or

No TWDR action

0

1

0

0

1

1

X

X

2-wire serial bus will be released and not
addressed slave mode will be entered
A START condition will be transmitted when
the bus becomes free

0x40 SLA+R has been
transmitted; ACK has

been received

No TWDR action or

No TWDR action

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK
will be returned
Data byte will be received and ACK will be
returned

0x48 SLA+R has been
transmitted; NOT ACK

has been received

No TWDR action or
No TWDR action or

No TWDR action

1
0

1

0
1

1

1
1

1

X
X

X

Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START
condition will be transmitted and TWSTO
flag will be reset

0x50 Data byte has been
received; ACK has been

returned

Read data byte or

Read data byte

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK
will be returned
Data byte will be received and ACK will be
returned

0x58 Data byte has been
received; NOT ACK has

been returned

Read data byte or
Read data byte or

Read data byte

1
0

1

0
1

1

1
1

1

X
X

X

Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START
condition will be transmitted and TWSTO
flag will be reset

ATmega328P [DATASHEET]
7810D–AVR–01/15

190

Figure 21-14. Formats and States in the Master Receiver Mode

21.7.3 Slave Receiver Mode

In the slave receiver mode, a number of data bytes are received from a master transmitter (see Figure 21-15). All the status
codes mentioned in this section assume that the prescaler bits are zero or are masked to zero.

Figure 21-15. Data Transfer in Slave Receiver Mode

S
Successfull
reception
from a slave
receiver

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Arbitration lost and
addressed as slave

Arbitration lost in slave
address or data byte

From master to slave Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the 2-Wire Serial Bus.
The prescaler bits are zero or masked to zero

From slave to master

SLA R

RS SLA R

A DATAA P

A P W

MT

MR

DATA

ADATA

$08 $40

$48

$38

$50 $58

$38

$10

A

A or A Other master
continues

$68 $78

n

A Other master
continues

To corresponding
states in slave mode

A or A Other master
continues

$B0

Device 1
Slave

Receiver

SDA

VCC

SCL

Device 3 Device n........ R1 R2
Device 2

Master
Transmitter

191ATmega328P [DATASHEET]
7810D–AVR–01/15

To initiate the slave receiver mode, TWAR and TWCR must be initialized as follows:

The upper 7 bits are the address to which the 2-wire serial interface will respond when addressed by a master. If the LSB is
set, the TWI will respond to the general call address (0x00), otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable the acknowledgement of
the device’s own slave address or the general call address. TWSTA and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own slave address (or the general
call address if enabled) followed by the data direction bit. If the direction bit is “0” (write), the TWI will operate in SR mode,
otherwise ST mode is entered. After its own slave address and the write bit have been received, the TWINT flag is set and a
valid status code can be read from TWSR. The status code is used to determine the appropriate software action. The
appropriate action to be taken for each status code is detailed in Table 21-5. The slave receiver mode may also be entered if
arbitration is lost while the TWI is in the master mode (see states 0x68 and 0x78).

If the TWEA bit is reset during a transfer, the TWI will return a “not acknowledge” (“1”) to SDA after the next received data
byte. This can be used to indicate that the slave is not able to receive any more bytes. While TWEA is zero, the TWI does not
acknowledge its own slave address. However, the 2-wire serial bus is still monitored and address recognition may resume at
any time by setting TWEA. This implies that the TWEA bit may be used to temporarily isolate the TWI from the 2-wire serial
bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA bit is set, the interface can
still acknowledge its own slave address or the general call address by using the 2-wire serial bus clock as a clock source.
The part will then wake up from sleep and the TWI will hold the SCL clock low during the wake up and until the TWINT flag is
cleared (by writing it to one). Further data reception will be carried out as normal, with the AVR® clocks running as normal.
Observe that if the AVR is set up with a long start-up time, the SCL line may be held low for a long time, blocking other data
transmissions.

Note that the 2-wire serial interface data register – TWDR does not reflect the last byte present on the bus when waking up
from these sleep modes.

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

value Device’s own slave address

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 0 1 0 0 0 1 0 X

Table 21-5. Status Codes for Slave Receiver Mode

Status Code
(TWSR)

Prescaler
Bits are 0

Status of the 2-wire Serial
Bus and 2-wire Serial

Interface Hardware

Application Software Response

Next Action Taken by TWI Hardware

To/from TWDR To TWCR

STA STO TWINT TWEA

0x60
Own SLA+W has been

received; ACK has been
returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK
will be returned
Data byte will be received and ACK will be
returned

0x68

Arbitration lost in SLA+R/W
as Master; own SLA+W has

been received; ACK has
been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK
will be returned
Data byte will be received and ACK will be
returned

0x70
General call address has
been received; ACK has

been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK
will be returned
Data byte will be received and ACK will be
returned

0x78

Arbitration lost in SLA+R/W
as Master; General call

address has been received;
ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK
will be returned
Data byte will be received and ACK will be
returned

0x80

Previously addressed with
own SLA+W; data has been

received; ACK has been
returned

Read data byte or

Read data byte

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK
will be returned
Data byte will be received and ACK will be
returned

ATmega328P [DATASHEET]
7810D–AVR–01/15

192

0x88 Previously addressed with
own SLA+W; data has been

received; NOT ACK has
been returned

Read data byte or

Read data byte or

Read data byte or

Read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave
mode; no recognition of own SLA or GCA
Switched to the not addressed Slave
mode; own SLA will be recognized; GCA
will be recognized if TWGCE = “1”
Switched to the not addressed Slave
mode; no recognition of own SLA or GCA;
a START condition will be transmitted
when the bus becomes free
Switched to the not addressed Slave
mode; own SLA will be recognized; GCA
will be recognized if TWGCE = “1”; a
START condition will be transmitted when
the bus becomes free

0x90 Previously addressed with
general call; data has been

received; ACK has been
returned

Read data byte or

Read data byte

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK
will be returned
Data byte will be received and ACK will be
returned

0x98 Previously addressed with
general call; data has been

received; NOT ACK has
been returned

Read data byte or

Read data byte or

Read data byte or

Read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave
mode; no recognition of own SLA or GCA
Switched to the not addressed Slave
mode; own SLA will be recognized; GCA
will be recognized if TWGCE = “1”
Switched to the not addressed Slave
mode; no recognition of own SLA or GCA;
a START condition will be transmitted
when the bus becomes free
Switched to the not addressed Slave
mode; own SLA will be recognized; GCA
will be recognized if TWGCE = “1”; a
START condition will be transmitted when
the bus becomes free

0xA0 A STOP condition or
repeated START condition

has been received while still
addressed as slave

No action 0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave
mode; no recognition of own SLA or GCA
Switched to the not addressed Slave
mode; own SLA will be recognized; GCA
will be recognized if TWGCE = “1”
Switched to the not addressed Slave
mode; no recognition of own SLA or GCA;
a START condition will be transmitted
when the bus becomes free
Switched to the not addressed Slave
mode; own SLA will be recognized; GCA
will be recognized if TWGCE = “1”; a
START condition will be transmitted when
the bus becomes free

Table 21-5. Status Codes for Slave Receiver Mode (Continued)

Status Code
(TWSR)

Prescaler
Bits are 0

Status of the 2-wire Serial
Bus and 2-wire Serial

Interface Hardware

Application Software Response

Next Action Taken by TWI Hardware

To/from TWDR To TWCR

STA STO TWINT TWEA

193ATmega328P [DATASHEET]
7810D–AVR–01/15

Figure 21-16. Formats and States in the Slave Receiver Mode

S
Reception of the own
slave address and one or
more data bytes. All are
acknowledged

Last data byte received
is not acknowledged

Last data byte received
is not acknowledged

Arbitration lost as master
and addressed as slave

Arbitration lost as master
and as slave by general call

From master to slave Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the 2-Wire Serial Bus.
The prescaler bits are zero or masked to zero

From slave to master

SLA W A DATAA P or S

A

DATA

ADATA

$60

$68

$80 $80 $A0

$88

A

P or SA

n

$90 $90 $A0

$98

P or SA

Reception of the general call
address and one or more
data bytes

A

$70

General Call DATAA P or S

A

DATA

$78

A

ATmega328P [DATASHEET]
7810D–AVR–01/15

194

21.7.4 Slave Transmitter Mode

In the slave transmitter mode, a number of data bytes are transmitted to a master receiver (see Figure 21-17). All the status
codes mentioned in this section assume that the prescaler bits are zero or are masked to zero.

Figure 21-17. Data Transfer in Slave Transmitter Mode

To initiate the slave transmitter mode, TWAR and TWCR must be initialized as follows:

The upper seven bits are the address to which the 2-wire serial interface will respond when addressed by a master. If the
LSB is set, the TWI will respond to the general call address (0x00), otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable the acknowledgement of
the device’s own slave address or the general call address. TWSTA and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own slave address (or the general
call address if enabled) followed by the data direction bit. If the direction bit is “1” (read), the TWI will operate in ST mode,
otherwise SR mode is entered. After its own slave address and the write bit have been received, the TWINT flag is set and a
valid status code can be read from TWSR. The status code is used to determine the appropriate software action. The
appropriate action to be taken for each status code is detailed in Table 21-6 on page 195. The slave transmitter mode may
also be entered if arbitration is lost while the TWI is in the master mode (see state 0xB0).

If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of the transfer. State 0xC0 or state 0xC8
will be entered, depending on whether the master receiver transmits a NACK or ACK after the final byte. The TWI is
switched to the not addressed slave mode, and will ignore the master if it continues the transfer. Thus the master receiver
receives all “1” as serial data. State 0xC8 is entered if the master demands additional data bytes (by transmitting ACK), even
though the slave has transmitted the last byte (TWEA zero and expecting NACK from the master).

While TWEA is zero, the TWI does not respond to its own slave address. However, the 2-wire serial bus is still monitored
and address recognition may resume at any time by setting TWEA. This implies that the TWEA bit may be used to
temporarily isolate the TWI from the 2-wire serial bus.

In all sleep modes other than idle mode, the clock system to the TWI is turned off. If the TWEA bit is set, the interface can still
acknowledge its own slave address or the general call address by using the 2-wire serial bus clock as a clock source. The
part will then wake up from sleep and the TWI will hold the SCL clock will low during the wake up and until the TWINT flag is
cleared (by writing it to one). Further data transmission will be carried out as normal, with the AVR® clocks running as
normal. Observe that if the AVR is set up with a long start-up time, the SCL line may be held low for a long time, blocking
other data transmissions.

Note that the 2-wire serial interface data register – TWDR does not reflect the last byte present on the bus when waking up
from these sleep modes.

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

value Device’s Own Slave Address

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 0 1 0 0 0 1 0 X

Device 1
Slave

Transmitter

SDA

VCC

SCL

Device 3 Device n........ R1 R2
Device 2

Master
Receiver

195ATmega328P [DATASHEET]
7810D–AVR–01/15

Table 21-6. Status Codes for Slave Transmitter Mode

Status Code
(TWSR)

Prescaler
Bits are 0

Status of the 2-wire Serial
Bus and 2-wire Serial

Interface Hardware

Application Software Response

Next Action Taken by TWI Hardware

To/from TWDR To TWCR

STA STO TWINT TWEA

0xA8 Own SLA+R has been
received; ACK has been

returned

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and
NOT ACK should be received
Data byte will be transmitted and ACK
should be received

0xB0 Arbitration lost in SLA+R/W
as Master; own SLA+R has

been received; ACK has
been returned

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and
NOT ACK should be received
Data byte will be transmitted and ACK
should be received

0xB8 Data byte in TWDR has
been transmitted; ACK has

been received

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and
NOT ACK should be received
Data byte will be transmitted and ACK
should be received

0xC0 Data byte in TWDR has
been transmitted; NOT
ACK has been received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave
mode; no recognition of own SLA or GCA
Switched to the not addressed slave
mode; own SLA will be recognized; GCA
will be recognized if TWGCE = “1”
Switched to the not addressed Slave
mode; no recognition of own SLA or
GCA; a START condition will be
transmitted when the bus becomes free
Switched to the not addressed Slave
mode; own SLA will be recognized; GCA
will be recognized if TWGCE = “1”; a
START condition will be transmitted when
the bus becomes free

0xC8 Last data byte in TWDR
has been transmitted

(TWEA = “0”); ACK has
been received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed slave
mode; no recognition of own SLA or GCA
Switched to the not addressed Slave
mode; own SLA will be recognized; GCA
will be recognized if TWGCE = “1”
Switched to the not addressed Slave
mode; no recognition of own SLA or
GCA; a START condition will be
transmitted when the bus becomes free
Switched to the not addressed Slave
mode; own SLA will be recognized; GCA
will be recognized if TWGCE = “1”; a
START condition will be transmitted when
the bus becomes free

ATmega328P [DATASHEET]
7810D–AVR–01/15

196

Figure 21-18. Formats and States in the Slave Transmitter Mode

21.7.5 Miscellaneous States

There are two status codes that do not correspond to a defined TWI state, see Table 21-7.

Status 0xF8 indicates that no relevant information is available because the TWINT flag is not set. This occurs between other
states, and when the TWI is not involved in a serial transfer.

Status 0x00 indicates that a bus error has occurred during a 2-wire serial bus transfer. A bus error occurs when a START or
STOP condition occurs at an illegal position in the format frame. Examples of such illegal positions are during the serial
transfer of an address byte, a data byte, or an acknowledge bit. When a bus error occurs, TWINT is set. To recover from a
bus error, the TWSTO flag must set and TWINT must be cleared by writing a logic one to it. This causes the TWI to enter the
not addressed slave mode and to clear the TWSTO flag (no other bits in TWCR are affected). The SDA and SCL lines are
released, and no STOP condition is transmitted.

S
Reception of the own
slave address and one
or more data bytes

Last data byte transmitted.
Switched to not adressed
slave (TWEA = “0”

Arbitration lost as master
and addressed as slave

From master to slave Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the 2-Wire Serial Bus.
The prescaler bits are zero or masked to zero

From slave to master

SLA R A DATAA P or S

A

DATA

All 1’s

ADATA

$A8

$B0

$B8 $C0

$C8

A

P or SA

n

Table 21-7. Miscellaneous States

Status Code
(TWSR)

Prescaler
Bits are 0

Status of the 2-wire Serial
Bus and 2-wire Serial

Interface Hardware

Application Software Response

Next Action Taken by TWI Hardware

To/from TWDR To TWCR

STA STO TWINT TWEA

0xF8
No relevant state information

available; TWINT = “0”
No TWDR

action
No TWCR action Wait or proceed current transfer

0x00
Bus error due to an illegal
START or STOP condition

No TWDR
action

0 1 1 X

Only the internal hardware is affected,
no STOP condition is sent on the bus. In
all cases, the bus is released and
TWSTO is cleared.

197ATmega328P [DATASHEET]
7810D–AVR–01/15

21.7.6 Combining Several TWI Modes

In some cases, several TWI modes must be combined in order to complete the desired action. Consider for example reading
data from a serial EEPROM. Typically, such a transfer involves the following steps:

1. The transfer must be initiated.

2. The EEPROM must be instructed what location should be read.

3. The reading must be performed.

4. The transfer must be finished.

Note that data is transmitted both from master to slave and vice versa. The master must instruct the slave what location it
wants to read, requiring the use of the MT mode. Subsequently, data must be read from the slave, implying the use of the
MR mode. Thus, the transfer direction must be changed. The master must keep control of the bus during all these steps, and
the steps should be carried out as an atomical operation. If this principle is violated in a multi master system, another Master
can alter the data pointer in the EEPROM between steps 2 and 3, and the master will read the wrong data location. Such a
change in transfer direction is accomplished by transmitting a REPEATED START between the transmission of the address
byte and reception of the data. After a REPEATED START, the master keeps ownership of the bus. The following figure
shows the flow in this transfer.

Figure 21-19. Combining Several TWI Modes to Access a Serial EEPROM

21.8 Multi-master Systems and Arbitration

If multiple masters are connected to the same bus, transmissions may be initiated simultaneously by one or more of them.
The TWI standard ensures that such situations are handled in such a way that one of the masters will be allowed to proceed
with the transfer, and that no data will be lost in the process. An example of an arbitration situation is depicted below, where
two masters are trying to transmit data to a slave receiver.

Figure 21-20. An Arbitration Example

S

S = START P = STOPRS = REPEATED START

PRSASLA + W A A AADDRESS

Master Transmitter

Transmitted from master to slave Transmitted from slave to master

Master Receiver

DATASLA + R

Device 1
Master

Transmitter

SDA

SCL

VCC

Device n........ R1 R2
Device 2

Master
Transmitter

Device 3
Slave

Receiver

ATmega328P [DATASHEET]
7810D–AVR–01/15

198

Several different scenarios may arise during arbitration, as described below:

● Two or more masters are performing identical communication with the same slave. In this case, neither the slave nor
any of the masters will know about the bus contention.

● Two or more masters are accessing the same slave with different data or direction bit. In this case, arbitration will
occur, either in the READ/WRITE bit or in the data bits. The masters trying to output a one on SDA while another
Master outputs a zero will lose the arbitration. Losing masters will switch to not addressed Slave mode or wait until the
bus is free and transmit a new START condition, depending on application software action.

● Two or more masters are accessing different slaves. In this case, arbitration will occur in the SLA bits. Masters trying
to output a one on SDA while another master outputs a zero will lose the arbitration. Masters losing arbitration in SLA
will switch to slave mode to check if they are being addressed by the winning master. If addressed, they will switch to
SR or ST mode, depending on the value of the READ/WRITE bit. If they are not being addressed, they will switch to
not addressed slave mode or wait until the bus is free and transmit a new START condition, depending on application
software action.

This is summarized in Figure 21-21. Possible status values are given in circles.

Figure 21-21. Possible Status Codes Caused by Arbitration

21.9 Register Description

21.9.1 TWBR – TWI Bit Rate Register

• Bits 7..0 – TWI Bit Rate Register

TWBR selects the division factor for the bit rate generator. The bit rate generator is a frequency divider which generates the
SCL clock frequency in the master modes. See Section 21.5.2 “Bit Rate Generator Unit” on page 180 for calculating bit
rates.

Own
Address/ General Call

received

Direction

TWI bus will be released and not addressed slave mode will be entered
A START condition will be transmitted when the bus becomes free

Data byte will be received and NOT ACK will be returned
Data byte will be received and ACK will be returned

Last data byte will be transmitted and NOT ACK should be received
Data byte will be transmitted and ACK should be received

START SLA

NO

YES

Write

Read

38

68/78

Arbitration lost in SLA Arbitration lost in DATA

DATA STOP

B0

Bit 7 6 5 4 3 2 1 0

(0xB8) TWBR7 TWBR6 TWBR5 TWBR4 TWBR3 TWBR2 TWBR1 TWBR0 TWBR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

199ATmega328P [DATASHEET]
7810D–AVR–01/15

21.9.2 TWCR – TWI Control Register

The TWCR is used to control the operation of the TWI. It is used to enable the TWI, to initiate a master access by applying a
START condition to the bus, to generate a receiver acknowledge, to generate a stop condition, and to control halting of the
bus while the data to be written to the bus are written to the TWDR. It also indicates a write collision if data is attempted
written to TWDR while the register is inaccessible.

• Bit 7 – TWINT: TWI Interrupt Flag

This bit is set by hardware when the TWI has finished its current job and expects application software response. If the I-bit in
SREG and TWIE in TWCR are set, the MCU will jump to the TWI interrupt vector. While the TWINT flag is set, the SCL low
period is stretched. The TWINT flag must be cleared by software by writing a logic one to it. Note that this flag is not
automatically cleared by hardware when executing the interrupt routine. Also note that clearing this flag starts the operation
of the TWI, so all accesses to the TWI address register (TWAR), TWI status register (TWSR), and TWI data register (TWDR)
must be complete before clearing this flag.

• Bit 6 – TWEA: TWI Enable Acknowledge Bit

The TWEA bit controls the generation of the acknowledge pulse. If the TWEA bit is written to one, the ACK pulse is
generated on the TWI bus if the following conditions are met:

1. The device’s own slave address has been received.

2. A general call has been received, while the TWGCE bit in the TWAR is set.

3. A data byte has been received in master receiver or slave receiver mode.

By writing the TWEA bit to zero, the device can be virtually disconnected from the 2-wire serial bus temporarily. Address
recognition can then be resumed by writing the TWEA bit to one again.

• Bit 5 – TWSTA: TWI START Condition Bit

The application writes the TWSTA bit to one when it desires to become a master on the 2-wire serial bus. The TWI hardware
checks if the bus is available, and generates a START condition on the bus if it is free. However, if the bus is not free, the
TWI waits until a STOP condition is detected, and then generates a new START condition to claim the bus master status.
TWSTA must be cleared by software when the START condition has been transmitted.

• Bit 4 – TWSTO: TWI STOP Condition Bit

Writing the TWSTO bit to one in master mode will generate a STOP condition on the 2-wire serial bus. When the STOP
condition is executed on the bus, the TWSTO bit is cleared automatically. In slave mode, setting the TWSTO bit can be used
to recover from an error condition. This will not generate a STOP condition, but the TWI returns to a well-defined
unaddressed slave mode and releases the SCL and SDA lines to a high impedance state.

• Bit 3 – TWWC: TWI Write Collision Flag

The TWWC bit is set when attempting to write to the TWI data register – TWDR when TWINT is low. This flag is cleared by
writing the TWDR register when TWINT is high.

• Bit 2 – TWEN: TWI Enable Bit

The TWEN bit enables TWI operation and activates the TWI interface. When TWEN is written to one, the TWI takes control
over the I/O pins connected to the SCL and SDA pins, enabling the slew-rate limiters and spike filters. If this bit is written to
zero, the TWI is switched off and all TWI transmissions are terminated, regardless of any ongoing operation.

• Bit 1 – Res: Reserved Bit

This bit is a reserved bit and will always read as zero.

• Bit 0 – TWIE: TWI Interrupt Enable

When this bit is written to one, and the I-bit in SREG is set, the TWI interrupt request will be activated for as long as the
TWINT flag is high.

Bit 7 6 5 4 3 2 1 0

(0xBC) TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE TWCR

Read/Write R/W R/W R/W R/W R R/W R R/W

Initial Value 0 0 0 0 0 0 0 0

ATmega328P [DATASHEET]
7810D–AVR–01/15

200

21.9.3 TWSR – TWI Status Register

• Bits 7..3 – TWS: TWI Status

These 5 bits reflect the status of the TWI logic and the 2-wire serial bus. The different status codes are described later in this
section. Note that the value read from TWSR contains both the 5-bit status value and the 2-bit prescaler value. The
application designer should mask the prescaler bits to zero when checking the status bits. This makes status checking
independent of prescaler setting. This approach is used in this datasheet, unless otherwise noted.

• Bit 2 – Res: Reserved Bit

This bit is reserved and will always read as zero.

• Bits 1..0 – TWPS: TWI Prescaler Bits

These bits can be read and written, and control the bit rate prescaler.

To calculate bit rates, see Section 21.5.2 “Bit Rate Generator Unit” on page 180. The value of TWPS1..0 is used in the
equation.

21.9.4 TWDR – TWI Data Register

In transmit mode, TWDR contains the next byte to be transmitted. In receive mode, the TWDR contains the last byte
received. It is writable while the TWI is not in the process of shifting a byte. This occurs when the TWI interrupt flag (TWINT)
is set by hardware. Note that the data register cannot be initialized by the user before the first interrupt occurs. The data in
TWDR remains stable as long as TWINT is set. While data is shifted out, data on the bus is simultaneously shifted in. TWDR
always contains the last byte present on the bus, except after a wake up from a sleep mode by the TWI interrupt. In this
case, the contents of TWDR is undefined.

In the case of a lost bus arbitration, no data is lost in the transition from master to slave. Handling of the ACK bit is controlled
automatically by the TWI logic, the CPU cannot access the ACK bit directly.

• Bits 7..0 – TWD: TWI Data Register

These eight bits constitute the next data byte to be transmitted, or the latest data byte received on the 2-wire serial bus.

Bit 7 6 5 4 3 2 1 0

(0xB9) TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0 TWSR

Read/Write R R R R R R R/W R/W

Initial Value 1 1 1 1 1 0 0 0

Table 21-8. TWI Bit Rate Prescaler

TWPS1 TWPS0 Prescaler Value

0 0 1

0 1 4

1 0 16

1 1 64

Bit 7 6 5 4 3 2 1 0

(0xBB) TWD7 TWD6 TWD5 TWD4 TWD3 TWD2 TWD1 TWD0 TWDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 1

201ATmega328P [DATASHEET]
7810D–AVR–01/15

21.9.5 TWAR – TWI (Slave) Address Register

The TWAR should be loaded with the 7-bit slave address (in the seven most significant bits of TWAR) to which the TWI will
respond when programmed as a slave transmitter or receiver, and not needed in the master modes. In multi master
systems, TWAR must be set in masters which can be addressed as slaves by other masters.

The LSB of TWAR is used to enable recognition of the general call address (0x00). There is an associated address
comparator that looks for the slave address (or general call address if enabled) in the received serial address. If a match is
found, an interrupt request is generated.

• Bits 7..1 – TWA: TWI (Slave) Address Register

These seven bits constitute the slave address of the TWI unit.

• Bit 0 – TWGCE: TWI General Call Recognition Enable Bit

If set, this bit enables the recognition of a general call given over the 2-wire serial bus.

21.9.6 TWAMR – TWI (Slave) Address Mask Register

• Bits 7..1 – TWAM: TWI Address Mask

The TWAMR can be loaded with a 7-bit slave address mask. Each of the bits in TWAMR can mask (disable) the
corresponding address bits in the TWI address register (TWAR). If the mask bit is set to one then the address match logic
ignores the compare between the incoming address bit and the corresponding bit in TWAR. Figure 21-22 shown the address
match logic in detail.

Figure 21-22. TWI Address Match Logic, Block Diagram

• Bit 0 – Res: Reserved Bit

This bit is an unused bit in the ATmega328P, and will always read as zero.

Bit 7 6 5 4 3 2 1 0

(0xBA) TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE TWAR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 0

Bit 7 6 5 4 3 2 1 0

(0xBD) TWAM[6:0] – TWAMR

Read/Write R/W R/W R/W R/W R/W R/W R/W R

Initial Value 0 0 0 0 0 0 0 0

TWAR0
Address
Match

TWAMR0

Address Bit Comparator 6 to 1

Address Bit Comparator 0

Address
Bit 0

ATmega328P [DATASHEET]
7810D–AVR–01/15

202

22. Analog Comparator

22.1 Overview

The analog comparator compares the input values on the positive pin AIN0 and negative pin AIN1. When the voltage on the
positive pin AIN0 is higher than the voltage on the negative pin AIN1, the analog comparator output, ACO, is set. The
comparator’s output can be set to trigger the Timer/Counter1 input capture function. In addition, the comparator can trigger a
separate interrupt, exclusive to the analog comparator. The user can select interrupt triggering on comparator output rise, fall
or toggle. A block diagram of the comparator and its surrounding logic is shown in Figure 22-1.

The power reduction ADC bit, PRADC, in Section 9.10 “Minimizing Power Consumption” on page 36 must be disabled by
writing a logical zero to be able to use the ADC input MUX.

Figure 22-1. Analog Comparator Block Diagram(2)

Notes: 1. See Table 22-1.

2. Refer to Figure 1-1 on page 3 and Table 13-9 on page 70 for analog comparator pin placement.

22.2 Analog Comparator Multiplexed Input

It is possible to select any of the ADC7..0 pins to replace the negative input to the analog comparator. The ADC multiplexer
is used to select this input, and consequently, the ADC must be switched off to utilize this feature. If the analog comparator
multiplexer enable bit (ACME in ADCSRB) is set and the ADC is switched off (ADEN in ADCSRA is zero), MUX2..0 in
ADMUX select the input pin to replace the negative input to the analog comparator, as shown in Table 22-1. If ACME is
cleared or ADEN is set, AIN1 is applied to the negative input to the analog comparator.

Bandgap
Reference

Interrupt
Select

AIN0

VCC

ACIS1

ADC Multiplexer
Output(1)

ACIS0 ACIC

ACO

ACIE

Analog
Comparator
IRQ

ACI

To T/C1 Capture
Trigger MUX

ACBG

ACME
ADEN

ACD

+

-

AIN1

Table 22-1. Analog Comparator Multiplexed Input

ACME ADEN MUX2..0 Analog Comparator Negative Input

0 x xxx AIN1

1 1 xxx AIN1

1 0 000 ADC0

1 0 001 ADC1

1 0 010 ADC2

1 0 011 ADC3

1 0 100 ADC4

1 0 101 ADC5

1 0 110 ADC6

1 0 111 ADC7

203ATmega328P [DATASHEET]
7810D–AVR–01/15

22.3 Register Description

22.3.1 ADCSRB – ADC Control and Status Register B

• Bit 6 – ACME: Analog Comparator Multiplexer Enable

When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is zero), the ADC multiplexer selects the
negative input to the Analog Comparator. When this bit is written logic zero, AIN1 is applied to the negative input of the
Analog Comparator. For a detailed description of this bit, see Section 22.2 “Analog Comparator Multiplexed Input” on page
202.

22.3.2 ACSR – Analog Comparator Control and Status Register

• Bit 7 – ACD: Analog Comparator Disable

When this bit is written logic one, the power to the analog comparator is switched off. This bit can be set at any time to turn
off the analog comparator. This will reduce power consumption in active and idle mode. When changing the ACD bit, the
analog comparator interrupt must be disabled by clearing the ACIE bit in ACSR. Otherwise an interrupt can occur when the
bit is changed.

• Bit 6 – ACBG: Analog Comparator Bandgap Select

When this bit is set, a fixed bandgap reference voltage replaces the positive input to the analog comparator. When this bit is
cleared, AIN0 is applied to the positive input of the analog comparator. When the bandgap referance is used as input to the
analog comparator, it will take a certain time for the voltage to stabilize. If not stabilized, the first conversion may give a
wrong value. See Section 10.7 “Internal Voltage Reference” on page 43

• Bit 5 – ACO: Analog Comparator Output

The output of the analog comparator is synchronized and then directly connected to ACO. The synchronization introduces a
delay of 1 - 2 clock cycles.

• Bit 4 – ACI: Analog Comparator Interrupt Flag

This bit is set by hardware when a comparator output event triggers the interrupt mode defined by ACIS1 and ACIS0. The
analog comparator interrupt routine is executed if the ACIE bit is set and the I-bit in SREG is set. ACI is cleared by hardware
when executing the corresponding interrupt handling vector. Alternatively, ACI is cleared by writing a logic one to the flag.

• Bit 3 – ACIE: Analog Comparator Interrupt Enable

When the ACIE bit is written logic one and the I-bit in the status register is set, the analog comparator interrupt is activated.
When written logic zero, the interrupt is disabled.

Bit 7 6 5 4 3 2 1 0

(0x7B) – ACME – – – ADTS2 ADTS1 ADTS0 ADCSRB

Read/Write R R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x30 (0x50) ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 ACSR

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 N/A 0 0 0 0 0

ATmega328P [DATASHEET]
7810D–AVR–01/15

204

• Bit 2 – ACIC: Analog Comparator Input Capture Enable

When written logic one, this bit enables the input capture function in Timer/Counter1 to be triggered by the analog
comparator. The comparator output is in this case directly connected to the input capture front-end logic, making the
comparator utilize the noise canceler and edge select features of the Timer/Counter1 input capture interrupt. When written
logic zero, no connection between the analog comparator and the input capture function exists. To make the comparator
trigger the Timer/Counter1 input capture interrupt, the ICIE1 bit in the timer interrupt mask register (TIMSK1) must be set.

• Bits 1, 0 – ACIS1, ACIS0: Analog Comparator Interrupt Mode Select

These bits determine which comparator events that trigger the analog comparator interrupt. The different settings are shown
in Table 22-2.

When changing the ACIS1/ACIS0 bits, the analog comparator interrupt must be disabled by clearing its interrupt enable bit in
the ACSR register. Otherwise an interrupt can occur when the bits are changed.

22.3.3 DIDR1 – Digital Input Disable Register 1

• Bit 7..2 – Res: Reserved Bits

These bits are unused bits in the ATmega328P, and will always read as zero.

• Bit 1, 0 – AIN1D, AIN0D: AIN1, AIN0 Digital Input Disable

When this bit is written logic one, the digital input buffer on the AIN1/0 pin is disabled. The corresponding PIN register bit will
always read as zero when this bit is set. When an analog signal is applied to the AIN1/0 pin and the digital input from this pin
is not needed, this bit should be written logic one to reduce power consumption in the digital input buffer.

Table 22-2. ACIS1/ACIS0 Settings

ACIS1 ACIS0 Interrupt Mode

0 0 Comparator interrupt on output toggle.

0 1 Reserved

1 0 Comparator interrupt on falling output edge.

1 1 Comparator interrupt on rising output edge.

Bit 7 6 5 4 3 2 1 0

(0x7F) – – – – – – AIN1D AIN0D DIDR1

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

205ATmega328P [DATASHEET]
7810D–AVR–01/15

23. Analog-to-Digital Converter

23.1 Features
● 10-bit resolution

● 0.5 LSB integral non-linearity

● ±2 LSB absolute accuracy

● 65 to 260µs conversion time

● Up to 15kSPS

● 6 multiplexed single ended input channels

● 2 additional multiplexed single ended input channels

● Temperature sensor input channel

● Optional left adjustment for ADC result readout

● 0 to VCC ADC input voltage range

● Selectable 1.1V ADC reference voltage

● Free running or single conversion mode

● Interrupt on ADC conversion complete

● Sleep mode noise canceler

23.2 Overview

The Atmel® ATmega328P features a 10-bit successive approximation ADC. The ADC is connected to an 8-channel analog
multiplexer which allows eight single-ended voltage inputs constructed from the pins of Port A. The single-ended voltage
inputs refer to 0V (GND).

The ADC contains a sample and hold circuit which ensures that the input voltage to the ADC is held at a constant level
during conversion. A block diagram of the ADC is shown in Figure 23-1 on page 206.

The ADC has a separate analog supply voltage pin, AVCC. AVCC must not differ more than ±0.3V from VCC. See Section 23.6
“ADC Noise Canceler” on page 211 on how to connect this pin.

Internal reference voltages of nominally 1.1V or AVCC are provided on-chip. The voltage reference may be externally
decoupled at the AREF pin by a capacitor for better noise performance.

The power reduction ADC bit, PRADC, in Section 9.10 “Minimizing Power Consumption” on page 36 must be disabled by
writing a logical zero to enable the ADC.

The ADC converts an analog input voltage to a 10-bit digital value through successive approximation. The minimum value
represents GND and the maximum value represents the voltage on the AREF pin minus 1 LSB. Optionally, AVCC or an
internal 1.1V reference voltage may be connected to the AREF pin by writing to the REFSn bits in the ADMUX register. The
internal voltage reference may thus be decoupled by an external capacitor at the AREF pin to improve noise immunity.

ATmega328P [DATASHEET]
7810D–AVR–01/15

206

Figure 23-1. Analog to Digital Converter Block Schematic Operation

The analog input channel is selected by writing to the MUX bits in ADMUX. Any of the ADC input pins, as well as GND and a
fixed bandgap voltage reference, can be selected as single ended inputs to the ADC. The ADC is enabled by setting the
ADC Enable bit, ADEN in ADCSRA. Voltage reference and input channel selections will not go into effect until ADEN is set.
The ADC does not consume power when ADEN is cleared, so it is recommended to switch off the ADC before entering
power saving sleep modes.

The ADC generates a 10-bit result which is presented in the ADC data registers, ADCH and ADCL. By default, the result is
presented right adjusted, but can optionally be presented left adjusted by setting the ADLAR bit in ADMUX.

If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read ADCH. Otherwise, ADCL must
be read first, then ADCH, to ensure that the content of the data registers belongs to the same conversion. Once ADCL is
read, ADC access to data registers is blocked.

Prescaler

-

+

15 0

ADC Multiplexer
Select (ADMUX)

MUX Decoder

AVCC

8-Bit Data Bus

AREF

GND

ADC7

ADC6

ADC5

ADC4

ADC3

ADC2

ADC1

ADC0

10-Bit DAC

Input
MUX

Sample and Hold
Comparator

Internal 1.1V
Reference

Conversion Logic

ADC Conversion
Complete IRQ

ADC CTRL and Status
Register (ADCSRA)

ADC Data Register
(ADCH/ADCL)

A
D

IF

A
D

E
N

R
E

FS
1

R
E

FS
0

A
D

LA
R

M
U

X
3

M
U

X
2

M
U

X
1

M
U

X
0

C
ha

nn
el

 S
el

ec
tio

n

A
D

S
C

A
D

IF

A
D

FR

A
D

P
S

2

A
D

P
S

1

A
D

P
S

0

A
D

IE

Bandgap
Reference

Temperature
Sensor

A
D

C
[9

:0
]

ADC
Multiplexer
Output

207ATmega328P [DATASHEET]
7810D–AVR–01/15

This means that if ADCL has been read, and a conversion completes before ADCH is read, neither register is updated and
the result from the conversion is lost. When ADCH is read, ADC access to the ADCH and ADCL registers is re-enabled.

The ADC has its own interrupt which can be triggered when a conversion completes. When ADC access to the data registers
is prohibited between reading of ADCH and ADCL, the interrupt will trigger even if the result is lost.

23.3 Starting a Conversion

A single conversion is started by disabling the power reduction ADC bit, PRADC, in Section 9.10 “Minimizing Power
Consumption” on page 36 by writing a logical zero to it and writing a logical one to the ADC start conversion bit, ADSC. This
bit stays high as long as the conversion is in progress and will be cleared by hardware when the conversion is completed. If
a different data channel is selected while a conversion is in progress, the ADC will finish the current conversion before
performing the channel change.

Alternatively, a conversion can be triggered automatically by various sources. Auto triggering is enabled by setting the ADC
auto trigger enable bit, ADATE in ADCSRA. The trigger source is selected by setting the ADC trigger select bits, ADTS in
ADCSRB (See description of the ADTS bits for a list of the trigger sources). When a positive edge occurs on the selected
trigger signal, the ADC prescaler is reset and a conversion is started. This provides a method of starting conversions at fixed
intervals. If the trigger signal still is set when the conversion completes, a new conversion will not be started. If another
positive edge occurs on the trigger signal during conversion, the edge will be ignored. Note that an interrupt flag will be set
even if the specific interrupt is disabled or the global interrupt enable bit in SREG is cleared. A conversion can thus be
triggered without causing an interrupt. However, the interrupt flag must be cleared in order to trigger a new conversion at the
next interrupt event.

Figure 23-2. ADC Auto Trigger Logic

Using the ADC interrupt flag as a trigger source makes the ADC start a new conversion as soon as the ongoing conversion
has finished. The ADC then operates in free running mode, constantly sampling and updating the ADC data register. The
first conversion must be started by writing a logical one to the ADSC bit in ADCSRA. In this mode the ADC will perform
successive conversions independently of whether the ADC interrupt flag, ADIF is cleared or not.

If auto triggering is enabled, single conversions can be started by writing ADSC in ADCSRA to one. ADSC can also be used
to determine if a conversion is in progress. The ADSC bit will be read as one during a conversion, independently of how the
conversion was started.

Edge
Detector

Conversion
Logic

Prescaler

ADIF

ADSC

ADATE
START CLKADC

ADTS[2:0]

.

.

.

.

SOURCE 1

SOURCE n

ATmega328P [DATASHEET]
7810D–AVR–01/15

208

23.4 Prescaling and Conversion Timing

Figure 23-3. ADC Prescaler

By default, the successive approximation circuitry requires an input clock frequency between 50kHz and 200kHz to get
maximum resolution. If a lower resolution than 10 bits is needed, the input clock frequency to the ADC can be higher than
200kHz to get a higher sample rate.

The ADC module contains a prescaler, which generates an acceptable ADC clock frequency from any CPU frequency above
100kHz. The prescaling is set by the ADPS bits in ADCSRA. The prescaler starts counting from the moment the ADC is
switched on by setting the ADEN bit in ADCSRA. The prescaler keeps running for as long as the ADEN bit is set, and is
continuously reset when ADEN is low.

When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the conversion starts at the following rising
edge of the ADC clock cycle.

A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is switched on (ADEN in ADCSRA is set)
takes 25 ADC clock cycles in order to initialize the analog circuitry.

When the bandgap reference voltage is used as input to the ADC, it will take a certain time for the voltage to stabilize. If not
stabilized, the first value read after the first conversion may be wrong.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal conversion and 13.5 ADC clock
cycles after the start of an first conversion. When a conversion is complete, the result is written to the ADC data registers,
and ADIF is set. In single conversion mode, ADSC is cleared simultaneously. The software may then set ADSC again, and a
new conversion will be initiated on the first rising ADC clock edge.

When auto triggering is used, the prescaler is reset when the trigger event occurs. This assures a fixed delay from the trigger
event to the start of conversion. In this mode, the sample-and-hold takes place two ADC clock cycles after the rising edge on
the trigger source signal. Three additional CPU clock cycles are used for synchronization logic.

In free running mode, a new conversion will be started immediately after the conversion completes, while ADSC remains
high. For a summary of conversion times, see Table 23-1 on page 210.

7-bit ADC Prescaler

ADC Clock Source

ADEN
START

CK

ADPS0
ADPS1
ADPS2

Reset

C
K

/2

C
K

/4

C
K

/8

C
K

/1
6

C
K

/3
2

C
K

/6
4

C
K

/1
28

209ATmega328P [DATASHEET]
7810D–AVR–01/15

Figure 23-4. ADC Timing Diagram, First Conversion (Single Conversion Mode)

Figure 23-5. ADC Timing Diagram, Single Conversion

1 2 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2 3Cycle Number

First Conversion

Sign and MSB of Result

LSB of Result

Next
Conversion

MUX and REFS
Update

Conversion
Complete MUX and REFS

Update

ADC Clock

ADEN

ADSC

ADIF

ADCH

ADCL

Sample and Hold

1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3Cycle Number

One Conversion

Sign and MSB of Result

LSB of Result

Next Conversion

MUX and REFS
Update

Conversion
Complete MUX and REFS

Update

ADC Clock

ADSC

ADIF

ADCH

ADCL

Sample and Hold

ATmega328P [DATASHEET]
7810D–AVR–01/15

210

Figure 23-6. ADC Timing Diagram, Auto Triggered Conversion

Figure 23-7. ADC Timing Diagram, Free Running Conversion

Table 23-1. ADC Conversion Time

Condition
Sample and Hold

(Cycles from Start of Conversion) Conversion Time (Cycles)

First conversion 13.5 25

Normal conversions, single ended 1.5 13

Auto triggered conversions 2 13.5

1 2 3 4 5 6 7 8 9 10 11 12 13 1 2Cycle Number

One Conversion

Sign and MSB of Result

LSB of Result

Next Conversion

MUX and REFS
Update

Prescaler
Reset

Prescaler
Reset

Conversion
Complete

ADC Clock

Trigger
Source

ADIF

ADATE

ADCH

ADCL

Sample and Hold

11 12 13 1 2 3 4Cycle Number

One Conversion

Sign and MSB of Result

LSB of Result

Next Conversion

MUX and REFS
Update

Conversion
Complete

ADC Clock

ADSC

ADIF

ADCH

ADCL

Sample and Hold

211ATmega328P [DATASHEET]
7810D–AVR–01/15

23.5 Changing Channel or Reference Selection

The MUXn and REFS1:0 bits in the ADMUX register are single buffered through a temporary register to which the CPU has
random access. This ensures that the channels and reference selection only takes place at a safe point during the
conversion. The channel and reference selection is continuously updated until a conversion is started. Once the conversion
starts, the channel and reference selection is locked to ensure a sufficient sampling time for the ADC. Continuous updating
resumes in the last ADC clock cycle before the conversion completes (ADIF in ADCSRA is set). Note that the conversion
starts on the following rising ADC clock edge after ADSC is written. The user is thus advised not to write new channel or
reference selection values to ADMUX until one ADC clock cycle after ADSC is written.

If auto triggering is used, the exact time of the triggering event can be indeterministic. Special care must be taken when
updating the ADMUX register, in order to control which conversion will be affected by the new settings.

If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If the ADMUX register is changed in this
period, the user cannot tell if the next conversion is based on the old or the new settings. ADMUX can be safely updated in
the following ways:

a. When ADATE or ADEN is cleared.

b. During conversion, minimum one ADC clock cycle after the trigger event.

c. After a conversion, before the Interrupt Flag used as trigger source is cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next ADC conversion.

23.5.1 ADC Input Channels

When changing channel selections, the user should observe the following guidelines to ensure that the correct channel is
selected:

In single conversion mode, always select the channel before starting the conversion. The channel selection may be changed
one ADC clock cycle after writing one to ADSC. However, the simplest method is to wait for the conversion to complete
before changing the channel selection.

In free running mode, always select the channel before starting the first conversion. The channel selection may be changed
one ADC clock cycle after writing one to ADSC. However, the simplest method is to wait for the first conversion to complete,
and then change the channel selection. Since the next conversion has already started automatically, the next result will
reflect the previous channel selection. Subsequent conversions will reflect the new channel selection.

23.5.2 ADC Voltage Reference

The reference voltage for the ADC (VREF) indicates the conversion range for the ADC. Single ended channels that exceed
VREF will result in codes close to 0x3FF. VREF can be selected as either AVCC, internal 1.1V reference, or external AREF pin.

AVCC is connected to the ADC through a passive switch. The internal 1.1V reference is generated from the internal bandgap
reference (VBG) through an internal amplifier. In either case, the external AREF pin is directly connected to the ADC, and the
reference voltage can be made more immune to noise by connecting a capacitor between the AREF pin and ground. VREF
can also be measured at the AREF pin with a high impedance voltmeter. Note that VREF is a high impedance source, and
only a capacitive load should be connected in a system.

If the user has a fixed voltage source connected to the AREF pin, the user may not use the other reference voltage options
in the application, as they will be shorted to the external voltage. If no external voltage is applied to the AREF pin, the user
may switch between AVCC and 1.1V as reference selection. The first ADC conversion result after switching reference voltage
source may be inaccurate, and the user is advised to discard this result.

23.6 ADC Noise Canceler

The ADC features a noise canceler that enables conversion during sleep mode to reduce noise induced from the CPU core
and other I/O peripherals. The noise canceler can be used with ADC noise reduction and idle mode. To make use of this
feature, the following procedure should be used:

a. Make sure that the ADC is enabled and is not busy converting. Single Conversion mode must be selected and the
ADC conversion complete interrupt must be enabled.

b. Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a conversion once the CPU has been halted.

ATmega328P [DATASHEET]
7810D–AVR–01/15

212

c. If no other interrupts occur before the ADC conversion completes, the ADC interrupt will wake up the CPU and
execute the ADC Conversion Complete interrupt routine. If another interrupt wakes up the CPU before the ADC
conversion is complete, that interrupt will be executed, and an ADC Conversion Complete interrupt request will be
generated when the ADC conversion completes. The CPU will remain in active mode until a new sleep command
is executed.

Note that the ADC will not be automatically turned off when entering other sleep modes than idle mode and ADC noise
reduction mode. The user is advised to write zero to ADEN before entering such sleep modes to avoid excessive power
consumption.

23.6.1 Analog Input Circuitry

The analog input circuitry for single ended channels is illustrated in Figure 23-8 on page 212 An analog source applied to
ADCn is subjected to the pin capacitance and input leakage of that pin, regardless of whether that channel is selected as
input for the ADC. When the channel is selected, the source must drive the S/H capacitor through the series resistance
(combined resistance in the input path).

The ADC is optimized for analog signals with an output impedance of approximately 10k or less. If such a source is used,
the sampling time will be negligible. If a source with higher impedance is used, the sampling time will depend on how long
time the source needs to charge the S/H capacitor, with can vary widely. The user is recommended to only use low
impedance sources with slowly varying signals, since this minimizes the required charge transfer to the S/H capacitor.

Signal components higher than the nyquist frequency (fADC/2) should not be present for either kind of channels, to avoid
distortion from unpredictable signal convolution. The user is advised to remove high frequency components with a low-pass
filter before applying the signals as inputs to the ADC.

Figure 23-8. Analog Input Circuitry

23.6.2 Analog Noise Canceling Techniques

Digital circuitry inside and outside the device generates EMI which might affect the accuracy of analog measurements. If
conversion accuracy is critical, the noise level can be reduced by applying the following techniques:

a. Keep analog signal paths as short as possible. Make sure analog tracks run over the analog ground plane, and
keep them well away from high-speed switching digital tracks.

b. The AVCC pin on the device should be connected to the digital VCC supply voltage via an LC network as shown in
Figure 23-9 on page 213.

c. Use the ADC noise canceler function to reduce induced noise from the CPU.

d. If any ADC [3..0] port pins are used as digital outputs, it is essential that these do not switch while a
conversion is in progress. However, using the 2-wire interface (ADC4 and ADC5) will only affect the
conversion on ADC4 and ADC5 and not the other ADC channels.

IIL

VCC/2

CS/H = 14pF

IIH

ADCn
1 to 100kΩ

213ATmega328P [DATASHEET]
7810D–AVR–01/15

Figure 23-9. ADC Power Connections

23.6.3 ADC Accuracy Definitions

An n-bit single-ended ADC converts a voltage linearly between GND and VREF in 2n steps (LSBs). The lowest code is read
as 0, and the highest code is read as 2n–1.

Several parameters describe the deviation from the ideal behavior:

● Offset: The deviation of the first transition (0x000 to 0x001) compared to the ideal transition (at 0.5 LSB). Ideal value:
0 LSB.

Figure 23-10. Offset Error

G
N

D

V
C

C

P
C

5
(A

D
C

5/
S

C
L)

P
C

4
(A

D
C

4/
S

D
A

)

P
C

3
(A

D
C

3)

P
C

2
(A

D
C

2)

PC1 (ADC1)

A
na

lo
g

G
ro

un
d

P
la

ne

PC0 (ADC0)

ADC7

GND

10
0n

F
10

μH

AVCC

ADC6

AREF

PB5

Offset
Error

Output Code

Ideal ADC

Actual ADC

VREF Input Voltage

ATmega328P [DATASHEET]
7810D–AVR–01/15

214

● Gain error: After adjusting for offset, the gain error is found as the deviation of the last transition (0x3FE to 0x3FF)
compared to the ideal transition (at 1.5 LSB below maximum). Ideal value: 0 LSB

Figure 23-11. Gain Error

● Integral non-linearity (INL): After adjusting for offset and gain error, the INL is the maximum deviation of an actual
transition compared to an ideal transition for any code. Ideal value: 0 LSB.

Figure 23-12. Integral Non-linearity (INL)

Output Code

Ideal ADC

Actual ADC

VREF Input Voltage

Gain
Error

Output Code

Ideal ADCIN
L

Actual ADC

VREF Input Voltage

215ATmega328P [DATASHEET]
7810D–AVR–01/15

● Differential non-linearity (DNL): The maximum deviation of the actual code width (the interval between two adjacent
transitions) from the ideal code width (1 LSB). Ideal value: 0 LSB.

Figure 23-13. Differential Non-linearity (DNL)

● Quantization error: Due to the quantization of the input voltage into a finite number of codes, a range of input voltages
(1 LSB wide) will code to the same value. Always ±0.5 LSB.

● Absolute accuracy: The maximum deviation of an actual (unadjusted) transition compared to an ideal transition for
any code. This is the compound effect of offset, gain error, differential error, non-linearity, and quantization error. Ideal
value: ±0.5 LSB.

23.7 ADC Conversion Result

After the conversion is complete (ADIF is high), the conversion result can be found in the ADC result registers (ADCL,
ADCH).

For single ended conversion, the result is:

where VIN is the voltage on the selected input pin and VREF the selected voltage reference (see Table 23-3 on page 217 and
Table 23-4 on page 218). 0x000 represents analog ground, and 0x3FF represents the selected reference voltage minus one
LSB.

23.8 Temperature Measurement

The temperature measurement is based on an on-chip temperature sensor that is coupled to a single ended ADC input.
MUX[4..0] bits in ADMUX register enables the temperature sensor. The internal 1.1V voltage reference must also be
selected for the ADC voltage reference source in the temperature sensor measurement. When the temperature sensor is
enabled, the ADC converter can be used in single conversion mode to measure the voltage over the temperature sensor.

The measured voltage has a linear relationship to the temperature as described in Table 23-2 on page 215.

The voltage sensitivity is approximately 1LSB/°C and the accuracy of the temperature measurement is ±10°C using
manufacturing calibration values (TS_GAIN, TS_OFFSET).

The values described in Table 23-2 are typical values. However, due to the process variation the temperature sensor output
varies from one chip to another.

Output Code

0x3FF

0x000

0

1 LSB

DNL

VREF Input Voltage

ADC
VIN 1024

VREF
---------------------------=

Table 23-2. Sensor Output Code versus Temperature (Typical Values)

Temperature/°C –40°C +25°C +125°C

0x010D 0x0160 0x01E0

ATmega328P [DATASHEET]
7810D–AVR–01/15

216

23.8.1 Manufacturing Calibration

Calibration values determined during test are available in the signature row.

The temperature in degrees celsius can be calculated using the formula:

Where:.

a. ADCH and ADCL are the ADC data registers,

b. is the temperature sensor gain

c. TS_OFFSET is the temperature sensor offset correction term

TS_GAIN is the unsigned fixed point 8-bit temperature sensor gain factor in

1/128th units stored in the signature row.

TS_OFFSET is the signed twos complement temperature sensor offset reading

stored in the signature row. See Table 26-5 on page 236 for signature row parameter address

The following code example allows to read signature row data
.equ TS_GAIN = 0x0003
.equ TS_OFFSET = 0x0002
LDI R30,LOW(TS_GAIN)
LDI R31,HIGH (TS_GAIN)
RCALL Read_signature_row
MOV R17,R16; Save R16 result
LDI R30,LOW(TS_OFFSET)
LDI R31,HIGH (TS_OFFSET)
RCALL Read_signature_row
; R16 holds TS_OFFSET and R17 holds TS_GAIN
Read_signature_row:
IN R16,SPMCSR; Wait for SPMEN ready
SBRC R16,SPMEN; Exit loop here when SPMCSR is free
RJMP Read_signature_row
LDI R16,((1<<SIGRD)|(1<<SPMEN)); We need to set SIGRD and SPMEN together
OUT SPMCSR,R16; and execute the LPM within 3 cycles
LPM R16,Z
RET

ADCH<<8  ADCL+  273 100 TS_OFFSET–+ –  128
TS_GAIN

--- 25+

217ATmega328P [DATASHEET]
7810D–AVR–01/15

23.9 Register Description

23.9.1 ADMUX – ADC Multiplexer Selection Register

• Bit 7:6 – REFS1:0: Reference Selection Bits

These bits select the voltage reference for the ADC, as shown in Table 23-3. If these bits are changed during a conversion,
the change will not go in effect until this conversion is complete (ADIF in ADCSRA is set). The internal voltage reference
options may not be used if an external reference voltage is being applied to the AREF pin.

• Bit 5 – ADLAR: ADC Left Adjust Result

The ADLAR bit affects the presentation of the ADC conversion result in the ADC data register. Write one to ADLAR to left
adjust the result. Otherwise, the result is right adjusted. Changing the ADLAR bit will affect the ADC data register
immediately, regardless of any ongoing conversions. For a complete description of this bit, see Section 23.9.3 “ADCL and
ADCH – The ADC Data Register” on page 219.

• Bit 4 – Res: Reserved Bit

This bit is an unused bit in the Atmel® ATmega328P, and will always read as zero.

• Bits 3:0 – MUX3:0: Analog Channel Selection Bits

The value of these bits selects which analog inputs are connected to the ADC. See Table 23-4 on page 218 for details. If
these bits are changed during a conversion, the change will not go in effect until this conversion is complete (ADIF in
ADCSRA is set).

Bit 7 6 5 4 3 2 1 0

(0x7C) REFS1 REFS0 ADLAR – MUX3 MUX2 MUX1 MUX0 ADMUX

Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 23-3. Voltage Reference Selections for ADC

REFS1 REFS0 Voltage Reference Selection

0 0 AREF, internal VREF turned off

0 1 AVCC with external capacitor at AREF pin

1 0 Reserved

1 1 Internal 1.1V voltage reference with external capacitor at AREF pin

ATmega328P [DATASHEET]
7810D–AVR–01/15

218

23.9.2 ADCSRA – ADC Control and Status Register A

• Bit 7 – ADEN: ADC Enable

Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turning the ADC off while a conversion is
in progress, will terminate this conversion.

• Bit 6 – ADSC: ADC Start Conversion

In single conversion mode, write this bit to one to start each conversion. In free running mode, write this bit to one to start the
first conversion. The first conversion after ADSC has been written after the ADC has been enabled, or if ADSC is written at
the same time as the ADC is enabled, will take 25 ADC clock cycles instead of the normal 13. This first conversion performs
initialization of the ADC.

ADSC will read as one as long as a conversion is in progress. When the conversion is complete, it returns to zero. Writing
zero to this bit has no effect.

• Bit 5 – ADATE: ADC Auto Trigger Enable

When this bit is written to one, auto triggering of the ADC is enabled. The ADC will start a conversion on a positive edge of
the selected trigger signal. The trigger source is selected by setting the ADC trigger select bits, ADTS in ADCSRB.

• Bit 4 – ADIF: ADC Interrupt Flag

This bit is set when an ADC conversion completes and the data registers are updated. The ADC conversion complete
interrupt is executed if the ADIE bit and the I-bit in SREG are set. ADIF is cleared by hardware when executing the
corresponding interrupt handling vector. Alternatively, ADIF is cleared by writing a logical one to the flag. Beware that if
doing a read-modify-write on ADCSRA, a pending interrupt can be disabled. This also applies if the SBI and CBI instructions
are used.

Table 23-4. Input Channel Selections

MUX3..0 Single Ended Input

0000 ADC0

0001 ADC1

0010 ADC2

0011 ADC3

0100 ADC4

0101 ADC5

0110 ADC6

0111 ADC7

1000 ADC8(1)

1001 (reserved)

1010 (reserved)

1011 (reserved)

1100 (reserved)

1101 (reserved)

1110 1.1V (VBG)

1111 0V (GND)

Note: 1. For temperature sensor.

Bit 7 6 5 4 3 2 1 0

(0x7A) ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 ADCSRA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

219ATmega328P [DATASHEET]
7810D–AVR–01/15

• Bit 3 – ADIE: ADC Interrupt Enable

When this bit is written to one and the I-bit in SREG is set, the ADC conversion complete interrupt is activated.

• Bits 2:0 – ADPS2:0: ADC Prescaler Select Bits

These bits determine the division factor between the system clock frequency and the input clock to the ADC.

23.9.3 ADCL and ADCH – The ADC Data Register

23.9.3.1 ADLAR = 0

23.9.3.2 ADLAR = 1

When an ADC conversion is complete, the result is found in these two registers.

When ADCL is read, the ADC data register is not updated until ADCH is read. Consequently, if the result is left adjusted and
no more than 8-bit precision is required, it is sufficient to read ADCH. Otherwise, ADCL must be read first, then ADCH.

The ADLAR bit in ADMUX, and the MUXn bits in ADMUX affect the way the result is read from the registers. If ADLAR is set,
the result is left adjusted. If ADLAR is cleared (default), the result is right adjusted.

• ADC9:0: ADC Conversion Result

These bits represent the result from the conversion, as detailed in Section 23.7 “ADC Conversion Result” on page 215.

Table 23-5. ADC Prescaler Selections

ADPS2 ADPS1 ADPS0 Division Factor

0 0 0 2

0 0 1 2

0 1 0 4

0 1 1 8

1 0 0 16

1 0 1 32

1 1 0 64

1 1 1 128

Bit 15 14 13 12 11 10 9 8

(0x79) – – – – – – ADC9 ADC8 ADCH

(0x78) ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

(0x79) ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH

(0x78) ADC1 ADC0 – – – – – – ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

ATmega328P [DATASHEET]
7810D–AVR–01/15

220

23.9.4 ADCSRB – ADC Control and Status Register B

• Bit 7, 5:3 – Res: Reserved Bits

These bits are reserved for future use. To ensure compatibility with future devices, these bits must be written to zero when
ADCSRB is written.

• Bit 2:0 – ADTS2:0: ADC Auto Trigger Source

If ADATE in ADCSRA is written to one, the value of these bits selects which source will trigger an ADC conversion. If ADATE
is cleared, the ADTS2:0 settings will have no effect. A conversion will be triggered by the rising edge of the selected interrupt
flag. Note that switching from a trigger source that is cleared to a trigger source that is set, will generate a positive edge on
the trigger signal. If ADEN in ADCSRA is set, this will start a conversion. Switching to free running mode (ADTS[2:0]=0) will
not cause a trigger event, even if the ADC interrupt flag is set.

23.9.5 DIDR0 – Digital Input Disable Register 0

• Bits 7:6 – Res: Reserved Bits

These bits are reserved for future use. To ensure compatibility with future devices, these bits must be written to zero when
DIDR0 is written.

• Bit 5:0 – ADC5D..ADC0D: ADC5..0 Digital Input Disable

When this bit is written logic one, the digital input buffer on the corresponding ADC pin is disabled. The corresponding PIN
register bit will always read as zero when this bit is set. When an analog signal is applied to the ADC5..0 pin and the digital
input from this pin is not needed, this bit should be written logic one to reduce power consumption in the digital input buffer.

Note that ADC pins ADC7 and ADC6 do not have digital input buffers, and therefore do not require digital input disable bits.

Bit 7 6 5 4 3 2 1 0

(0x7B) – ACME – – – ADTS2 ADTS1 ADTS0 ADCSRB

Read/Write R R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 23-6. ADC Auto Trigger Source Selections

ADTS2 ADTS1 ADTS0 Trigger Source

0 0 0 Free running mode

0 0 1 Analog comparator

0 1 0 External interrupt request 0

0 1 1 Timer/Counter0 compare match A

1 0 0 Timer/Counter0 overflow

1 0 1 Timer/Counter1 compare match B

1 1 0 Timer/Counter1 overflow

1 1 1 Timer/Counter1 capture event

Bit 7 6 5 4 3 2 1 0

(0x7E) – – ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D DIDR0

Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

221ATmega328P [DATASHEET]
7810D–AVR–01/15

24. debugWIRE On-chip Debug System

24.1 Features
● Complete program flow control

● Emulates all on-chip functions, both digital and analog, except RESET pin

● Real-time operation

● Symbolic debugging support (both at C and assembler source level, or for other HLLs)

● Unlimited number of program break points (using software break points)

● Non-intrusive operation

● Electrical characteristics identical to real device

● Automatic configuration system

● High-speed operation

● Programming of non-volatile memories

24.2 Overview

The debugWIRE on-chip debug system uses a one-wire, bi-directional interface to control the program flow, execute AVR®
instructions in the CPU and to program the different non-volatile memories.

24.3 Physical Interface

When the debugWIRE enable (DWEN) fuse is programmed and lock bits are unprogrammed, the debugWIRE system within
the target device is activated. The RESET port pin is configured as a wire-AND (open-drain) bi-directional I/O pin with pull-up
enabled and becomes the communication gateway between target and emulator.

Figure 24-1. The debugWIRE Setup

Figure 24-1 shows the schematic of a target MCU, with debugWIRE enabled, and the emulator connector. The system clock
is not affected by debugWIRE and will always be the clock source selected by the CKSEL fuses.

When designing a system where debugWIRE will be used, the following observations must be made for correct operation:

● Pull-up resistors on the dW/(RESET) line must not be smaller than 10k. The pull-up resistor is not required for
debugWIRE functionality.

● Connecting the RESET pin directly to VCC will not work.

● Capacitors connected to the RESET pin must be disconnected when using debugWire.

● All external reset sources must be disconnected.

GND

1.8 - 5.5V

dw

VCC

dw(RESET)

ATmega328P [DATASHEET]
7810D–AVR–01/15

222

24.4 Software Break Points

debugWIRE supports program memory break points by the AVR® break instruction. Setting a Break Point in AVR Studio®
will insert a BREAK instruction in the program memory. The instruction replaced by the BREAK instruction will be stored.
When program execution is continued, the stored instruction will be executed before continuing from the program memory.
A break can be inserted manually by putting the BREAK instruction in the program.

The flash must be re-programmed each time a break point is changed. This is automatically handled by AVR Studio through
the debugWIRE interface. The use of break points will therefore reduce the flash data retention. Devices used for debugging
purposes should not be shipped to end customers.

24.5 Limitations of debugWIRE

The debugWIRE communication pin (dW) is physically located on the same pin as external reset (RESET). An external reset
source is therefore not supported when the debugWIRE is enabled.

A programmed DWEN fuse enables some parts of the clock system to be running in all sleep modes. This will increase the
power consumption while in sleep. Thus, the DWEN fuse should be disabled when debugWire is not used.

24.6 Register Description

The following section describes the registers used with the debugWire.

24.6.1 DWDR – debugWire Data Register

The DWDR register provides a communication channel from the running program in the MCU to the debugger. This register
is only accessible by the debugWIRE and can therefore not be used as a general purpose register in the normal operations.

Bit 7 6 5 4 3 2 1 0

DWDR[7:0] DWDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

223ATmega328P [DATASHEET]
7810D–AVR–01/15

25. Self-Programming the Flash, ATmega328P

25.1 Overview

In Atmel® ATmega328P, there is no read-while-write support, and no separate boot loader section. The SPM instruction can
be executed from the entire flash.

The device provides a self-programming mechanism for downloading and uploading program code by the MCU itself. The
self-programming can use any available data interface and associated protocol to read code and write (program) that code
into the program memory.

The program memory is updated in a page by page fashion. Before programming a page with the data stored in the
temporary page buffer, the page must be erased. The temporary page buffer is filled one word at a time using SPM and the
buffer can be filled either before the page erase command or between a page erase and a page write operation:

Alternative 1, fill the buffer before a page erase

● Fill temporary page buffer

● Perform a page erase

● Perform a page write

Alternative 2, fill the buffer after page erase

● Perform a page erase

● Fill temporary page buffer

● Perform a page write

If only a part of the page needs to be changed, the rest of the page must be stored (for example in the temporary page
buffer) before the erase, and then be re-written. When using alternative 1, the boot loader provides an effective read-modify-
write feature which allows the user software to first read the page, do the necessary changes, and then write back the
modified data. If alternative 2 is used, it is not possible to read the old data while loading since the page is already erased.
The temporary page buffer can be accessed in a random sequence. It is essential that the page address used in both the
page erase and page write operation is addressing the same page.

25.1.1 Performing Page Erase by SPM

To execute page erase, set up the address in the Z-pointer, write “00000011” to SPMCSR and execute SPM within four
clock cycles after writing SPMCSR. The data in R1 and R0 is ignored. The page address must be written to PCPAGE in the
Z-register. Other bits in the Z-pointer will be ignored during this operation.

● The CPU is halted during the page erase operation.

25.1.2 Filling the Temporary Buffer (Page Loading)

To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write “00000001” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR. The content of PCWORD in the Z-register is used to address
the data in the temporary buffer. The temporary buffer will auto-erase after a page write operation or by writing the
RWWSRE bit in SPMCSR. It is also erased after a system reset. Note that it is not possible to write more than one time to
each address without erasing the temporary buffer. If the EEPROM is written in the middle of an SPM page load operation,
all data loaded will be lost.

25.1.3 Performing a Page Write

To execute page write, set up the address in the Z-pointer, write “00000101” to SPMCSR and execute SPM within four clock
cycles after writing SPMCSR. The data in R1 and R0 is ignored. The page address must be written to PCPAGE. Other bits
in the Z-pointer must be written to zero during this operation.

● The CPU is halted during the page write operation.

ATmega328P [DATASHEET]
7810D–AVR–01/15

224

25.2 Addressing the Flash During Self-Programming

The Z-pointer is used to address the SPM commands.

Since the flash is organized in pages (see Table 27-9 on page 245), the program counter can be treated as having two
different sections. One section, consisting of the least significant bits, is addressing the words within a page, while the most
significant bits are addressing the pages. This is shown in Figure 26-3 on page 233. Note that the page erase and page write
operations are addressed independently. Therefore it is of major importance that the software addresses the same page in
both the page erase and page write operation.

The LPM instruction uses the Z-pointer to store the address. Since this instruction addresses the flash byte-by-byte, also the
LSB (bit Z0) of the Z-pointer is used.

Figure 25-1. Addressing the Flash During SPM(1)

Note: 1. The different variables used in Figure 26-3 on page 233 are listed in Table 27-9 on page 245.

25.2.1 EEPROM Write Prevents Writing to SPMCSR

Note that an EEPROM write operation will block all software programming to flash. Reading the fuses and lock bits from
software will also be prevented during the EEPROM write operation. It is recommended that the user checks the status bit
(EEPE) in the EECR register and verifies that the bit is cleared before writing to the SPMCSR register.

Bit 15 14 13 12 11 10 9 8

ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8

ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

7 6 5 4 3 2 1 0

Bit

PAGEMSBPCMSB

ZPAGEMSBZPCMSB 0115
Z-register

Program
Counter

Page Address
within the Flash

Word Address
within a Page

0

PCWORDPCPAGE

02

01

00

PAGEEND

PCWORD[PAGEMSB:0]
Page

Program Memory

Instruction Word

Page

225ATmega328P [DATASHEET]
7810D–AVR–01/15

25.2.2 Reading the Fuse and Lock Bits from Software

It is possible to read both the fuse and lock bits from software. To read the lock bits, load the Z-pointer with 0x0001 and set
the BLBSET and SELFPRGEN bits in SPMCSR. When an LPM instruction is executed within three CPU cycles after the
BLBSET and SELFPRGEN bits are set in SPMCSR, the value of the Lock bits will be loaded in the destination register. The
BLBSET and SELFPRGEN bits will auto-clear upon completion of reading the lock bits or if no LPM instruction is executed
within three CPU cycles or no SPM instruction is executed within four CPU cycles. When BLBSET and SELFPRGEN are
cleared, LPM will work as described in the Instruction set manual.

The algorithm for reading the fuse low byte is similar to the one described above for reading the lock bits. To read the fuse
low byte, load the Z-pointer with 0x0000 and set the BLBSET and SELFPRGEN bits in SPMCSR. When an LPM instruction
is executed within three cycles after the BLBSET and SELFPRGEN bits are set in the SPMCSR, the value of the fuse low
byte (FLB) will be loaded in the destination register as shown below.See Table 27-5 on page 243 for a detailed description
and mapping of the fuse low byte.

Similarly, when reading the fuse high byte (FHB), load 0x0003 in the Z-pointer. When an LPM instruction is executed within
three cycles after the BLBSET and SELFPRGEN bits are set in the SPMCSR, the value of the fuse high byte will be loaded
in the destination register as shown below. See Table 27-4 on page 242 for detailed description and mapping of the
extended fuse byte.

Similarly, when reading the extended fuse byte (EFB), load 0x0002 in the Z-pointer. When an LPM instruction is executed
within three cycles after the BLBSET and SELFPRGEN bits are set in the SPMCSR, the value of the extended fuse byte will
be loaded in the destination register as shown below. See Table 27-5 on page 243 for detailed description and mapping of
the extended fuse byte.

Fuse and lock bits that are programmed, will be read as zero. Fuse and lock bits that are unprogrammed, will be read as
one.

25.2.3 Preventing Flash Corruption

During periods of low VCC, the flash program can be corrupted because the supply voltage is too low for the CPU and the
flash to operate properly. These issues are the same as for board level systems using the flash, and the same design
solutions should be applied.

A flash program corruption can be caused by two situations when the voltage is too low. First, a regular write sequence to
the flash requires a minimum voltage to operate correctly. Secondly, the CPU itself can execute instructions incorrectly, if the
supply voltage for executing instructions is too low.

Flash corruption can easily be avoided by following these design recommendations (one is sufficient):

1. Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can be done by
enabling the internal brown-out detector (BOD) if the operating voltage matches the detection level. If not, an
external low VCC reset protection circuit can be used. If a reset occurs while a write operation is in progress, the
write operation will be completed provided that the power supply voltage is sufficient.

2. Keep the AVR® core in power-down sleep mode during periods of low VCC. This will prevent the CPU from
attempting to decode and execute instructions, effectively protecting the SPMCSR register and thus the flash from
unintentional writes.

Bit 7 6 5 4 3 2 1 0

Rd – – – – – – LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0

Bit 7 6 5 4 3 2 1 0

Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0

Bit 7 6 5 4 3 2 1 0

Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0

ATmega328P [DATASHEET]
7810D–AVR–01/15

226

25.2.4 Programming Time for Flash when Using SPM

The calibrated RC oscillator is used to time flash accesses. Table 26-6 on page 237 shows the typical programming time for
flash accesses from the CPU.

25.2.5 Simple Assembly Code Example for a Boot Loader

Note that the RWWSB bit will always be read as zero in Atmel® ATmega328P. Nevertheless, it is recommended to check
this bit as shown in the code example, to ensure compatibility with devices supporting read-while-write.

;-the routine writes one page of data from RAM to Flash
; the first data location in RAM is pointed to by the Y pointer
; the first data location in Flash is pointed to by the Z-pointer
;-error handling is not included
;-the routine must be placed inside the Boot space
; (at least the Do_spm sub routine). Only code inside NRWW section can
; be read during Self-Programming (Page Erase and Page Write).
;-registers used: r0, r1, temp1 (r16), temp2 (r17), looplo (r24),
; loophi (r25), spmcrval (r20)
; storing and restoring of registers is not included in the routine
; register usage can be optimized at the expense of code size
;-It is assumed that either the interrupt table is moved to the Boot
; loader section or that the interrupts are disabled.

.equ PAGESIZEB = PAGESIZE*2 ;PAGESIZEB is page size in BYTES, not words

.org SMALLBOOTSTART
Write_page:

;Page Erase
ldi spmcrval, (1<<PGERS) | (1<<SELFPRGEN)
rcall Do_spm

;re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
rcall Do_spm

;transfer data from RAM to Flash page buffer
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256

Wrloop:
ld r0, Y+
ld r1, Y+
ldi spmcrval, (1<<SELFPRGEN)
rcall Do_spm
adiw ZH:ZL, 2
sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256
brne Wrloop

;execute Page Write
subi ZL, low(PAGESIZEB) ;restore pointer
sbci ZH, high(PAGESIZEB) ;not required for PAGESIZEB<=256
ldi spmcrval, (1<<PGWRT) | (1<<SELFPRGEN)
rcall Do_spm

;re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)

Table 25-1. SPM Programming Time(1)

Symbol Min Programming Time Max Programming Time

Flash write (page erase, page write, and write lock
bits by SPM)

3.7ms 4.5ms

Note: 1. Minimum and maximum programming time is per individual operation.

227ATmega328P [DATASHEET]
7810D–AVR–01/15

rcall Do_spm

;read back and check, optional
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256
subi YL, low(PAGESIZEB) ;restore pointer
sbci YH, high(PAGESIZEB)

Rdloop:
lpm r0, Z+
ld r1, Y+
cpse r0, r1
rjmp Error
sbiw loophi:looplo, 1 ;use subi for PAGESIZEB<=256
brne Rdloop

;return to RWW section
;verify that RWW section is safe to read

Return:
in temp1, SPMCSR
sbrs temp1, RWWSB ; If RWWSB is set, the RWW section is not ready yet
ret
;re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
rcall Do_spm
rjmp Return

Do_spm:
;check for previous SPM complete

Wait_spm:
in temp1, SPMCSR
sbrc temp1, SELFPRGEN
rjmp Wait_spm
;input: spmcrval determines SPM action
;disable interrupts if enabled, store status
in temp2, SREG
cli
;check that no EEPROM write access is present

Wait_ee:
sbic EECR, EEPE
rjmp Wait_ee
;SPM timed sequence
out SPMCSR, spmcrval
spm
;restore SREG (to enable interrupts if originally enabled)
out SREG, temp2
ret

ATmega328P [DATASHEET]
7810D–AVR–01/15

228

25.3 Register Description’

25.3.1 SPMCSR – Store Program Memory Control and Status Register

The store program memory control and status register contains the control bits needed to control the program memory
operations.

• Bit 7 – SPMIE: SPM Interrupt Enable

When the SPMIE bit is written to one, and the I-bit in the status register is set (one), the SPM ready interrupt will be enabled.
The SPM ready interrupt will be executed as long as the SELFPRGEN bit in the SPMCSR register is cleared. The interrupt
will not be generated during EEPROM write or SPM.

• Bit 6 – RWWSB: Read-While-Write Section Busy

This bit is for compatibility with devices supporting read-while-write. It will always read as zero in ATmega328P.

• Bit 5 – Res: Reserved Bit

This bit is a reserved bit in the ATmega328P and will always read as zero.

• Bit 4 – RWWSRE: Read-While-Write Section Read Enable

If the RWWSRE bit is written while filling the temporary page buffer, the temporary page buffer will be cleared and the data
will be lost.

• Bit 3 – BLBSET: Boot Lock Bit Set

An LPM instruction within three cycles after BLBSET and SELFPRGEN are set in the SPMCSR register, will read either the
lock bits or the fuse bits (depending on Z0 in the Z-pointer) into the destination register. See Section 25.2.2 “Reading the
Fuse and Lock Bits from Software” on page 225 for details.

• Bit 2 – PGWRT: Page Write

If this bit is written to one at the same time as SELFPRGEN, the next SPM instruction within four clock cycles executes page
write, with the data stored in the temporary buffer. The page address is taken from the high part of the Z-pointer. The data in
R1 and R0 are ignored. The PGWRT bit will auto-clear upon completion of a page write, or if no SPM instruction is executed
within four clock cycles. The CPU is halted during the entire page write operation.

• Bit 1 – PGERS: Page Erase

If this bit is written to one at the same time as SELFPRGEN, the next SPM instruction within four clock cycles executes page
erase. The page address is taken from the high part of the Z-pointer. The data in R1 and R0 are ignored. The PGERS bit will
auto-clear upon completion of a page erase, or if no SPM instruction is executed within four clock cycles. The CPU is halted
during the entire page write operation.

• Bit 0 – SELFPRGEN: Self Programming Enable

This bit enables the SPM instruction for the next four clock cycles. If written to one together with either RWWSRE, BLBSET,
PGWRT, or PGERS, the following SPM instruction will have a special meaning, see description above. If only SELFPRGEN
is written, the following SPM instruction will store the value in R1:R0 in the temporary page buffer addressed by the
Z-pointer. The LSB of the Z-pointer is ignored. The SELFPRGEN bit will auto-clear upon completion of an SPM instruction,
or if no SPM instruction is executed within four clock cycles. During page erase and page write, the SELFPRGEN bit remains
high until the operation is completed.

Writing any other combination than “10001”, “01001”, “00101”, “00011” or “00001” in the lower five bits will have no effect.

Bit 7 6 5 4 3 2 1 0

0x37 (0x57) SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SELFPRGEN SPMCSR

Read/Write R/W R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

229ATmega328P [DATASHEET]
7810D–AVR–01/15

26. Boot Loader Support – Read-While-Write Self-Programming

26.1 Features
● Read-while-write self-programming

● Flexible boot memory size

● High security (separate boot lock bits for a flexible protection)

● Separate fuse to select reset vector

● Optimized page(1) size

● Code efficient algorithm

● Efficient read-modify-write support

Note: 1. A page is a section in the flash consisting of several bytes (see Table 27-9 on page 245) used during
programming. The page organization does not affect normal operation.

26.2 Overview

The boot loader support provides a real read-while-write self-programming mechanism for downloading and uploading
program code by the MCU itself. This feature allows flexible application software updates controlled by the MCU using a
flash-resident boot loader program. The boot loader program can use any available data interface and associated protocol to
read code and write (program) that code into the flash memory, or read the code from the program memory. The program
code within the boot loader section has the capability to write into the entire flash, including the boot loader memory. The
boot loader can thus even modify itself, and it can also erase itself from the code if the feature is not needed anymore. The
size of the boot loader memory is configurable with fuses and the boot loader has two separate sets of boot lock bits which
can be set independently. This gives the user a unique flexibility to select different levels of protection.

26.3 Application and Boot Loader Flash Sections

The flash memory is organized in two main sections, the Application section and the boot loader section (see Figure 26-2 on
page 231). The size of the different sections is configured by the BOOTSZ fuses as shown in Figure 26-2 on page 231.
These two sections can have different level of protection since they have different sets of lock bits.

26.3.1 Application Section

The application section is the section of the flash that is used for storing the application code. The protection level for the
application section can be selected by the application boot lock bits (boot lock bits 0), see Table 26-2 on page 232. The
application section can never store any boot loader code since the SPM instruction is disabled when executed from the
application section.

26.3.2 BLS – Boot Loader Section

While the application section is used for storing the application code, the The boot loader software must be located in the
BLS since the SPM instruction can initiate a programming when executing from the BLS only. The SPM instruction can
access the entire flash, including the BLS itself. The protection level for the boot loader section can be selected by the boot
loader lock bits (boot lock bits 1), see Table 26-3 on page 232.

26.4 Read-While-Write and No Read-While-Write Flash Sections

Whether the CPU supports read-while-write or if the CPU is halted during a boot loader software update is dependent on
which address that is being programmed. In addition to the two sections that are configurable by the BOOTSZ fuses as
described above, the flash is also divided into two fixed sections, the read-while-write (RWW) section and the No read-while-
write (NRWW) section. The limit between the RWW- and NRWW sections is given in Figure 26-2 on page 231. The main
difference between the two sections is:

● When erasing or writing a page located inside the RWW section, the NRWW section can be read during the
operation.

● When erasing or writing a page located inside the NRWW section, the CPU is halted during the entire operation.

Note that the user software can never read any code that is located inside the RWW section during a boot loader software
operation. The syntax “read-while-write section” refers to which section that is being programmed (erased or written), not
which section that actually is being read during a boot loader software update.

ATmega328P [DATASHEET]
7810D–AVR–01/15

230

26.4.1 RWW – Read-While-Write Section

If a boot loader software update is programming a page inside the RWW section, it is possible to read code from the flash,
but only code that is located in the NRWW section. During an on-going programming, the software must ensure that the
RWW section never is being read. If the user software is trying to read code that is located inside the RWW section (i.e., by
a call/jmp/lpm or an interrupt) during programming, the software might end up in an unknown state. To avoid this, the
interrupts should either be disabled or moved to the boot loader section. The boot loader section is always located in the
NRWW section. The RWW section busy bit (RWWSB) in the store program memory control and status register (SPMCSR)
will be read as logical one as long as the RWW section is blocked for reading. After a programming is completed, the
RWWSB must be cleared by software before reading code located in the RWW section. See Section 26.9.1 “SPMCSR –
Store Program Memory Control and Status Register” on page 239 for details on how to clear RWWSB.

26.4.2 NRWW – No Read-While-Write Section

The code located in the NRWW section can be read when the boot loader software is updating a page in the RWW section.
When the boot loader code updates the NRWW section, the CPU is halted during the entire page erase or page write
operation.

Figure 26-1. Read-While-Write versus No Read-While-Write

Table 26-1. Read-While-Write Features

Which Section does the
Z-pointer Address during the

Programming?
Which Section can be read

during Programming? CPU Halted?
Read-While-Write

Supported?

RWW section NRWW section No Yes

NRWW section None Yes No

Z-pointer
Addresses RWW
Section

Code located in
NRWW Section
can be Read During
the Operation

Z-pointer
Addresses NRWW
Section

CPU is Halted During
the Operation

Read While Write
(RWW) Section

No Read While Write
(NRWW) Section

231ATmega328P [DATASHEET]
7810D–AVR–01/15

Figure 26-2. Memory Sections

26.5 Boot Loader Lock Bits

If no boot loader capability is needed, the entire flash is available for application code. The boot loader has two separate sets
of boot lock bits which can be set independently. This gives the user a unique flexibility to select different levels of protection.

The user can select:

● To protect the entire flash from a software update by the MCU.

● To protect only the boot loader flash section from a software update by the MCU.

● To protect only the application flash section from a software update by the MCU.

● Allow software update in the entire flash.

See Table 26-2 on page 232 and Table 26-3 on page 232 for further details. The boot lock bits can be set in software and in
serial or parallel programming mode, but they can be cleared by a chip erase command only. The general write lock (lock bit
mode 2) does not control the programming of the flash memory by SPM instruction. Similarly, the general read/write lock
(lock bit mode 1) does not control reading nor writing by LPM/SPM, if it is attempted.

Program Memory
BOOTSZ = ’11’

0x0000

Flashend

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-

W
rit

e
S

ec
tio

n

End RWW
Start NRWW

End Application
Start Boot Loader

Program Memory
BOOTSZ = ’10’

0x0000

Flashend

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-

W
rit

e
S

ec
tio

n

End RWW
Start NRWW

End Application
Start Boot Loader

Program Memory
BOOTSZ = ’01’

0x0000

Flashend

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-

W
rit

e
S

ec
tio

n

End RWW
Start NRWW

End Application
Start Boot Loader

Program Memory
BOOTSZ = ’00’

0x0000

Flashend

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-

W
rit

e
S

ec
tio

n

End RWW, End
Application
Start NRWW,
Start Boot Loader

Application Flash Section

Application Flash Section

Boot Loader Flash Section Boot Loader Flash Section

Application Flash Section

Application Flash Section

Boot Loader Flash Section

Application Flash Section

Application Flash Section

Boot Loader Flash Section

Application Flash Section

ATmega328P [DATASHEET]
7810D–AVR–01/15

232

26.6 Entering the Boot Loader Program

Entering the boot loader takes place by a jump or call from the application program. This may be initiated by a trigger such
as a command received via USART, or SPI interface. Alternatively, the boot reset fuse can be programmed so that the reset
vector is pointing to the boot flash start address after a reset. In this case, the boot loader is started after a reset. After the
application code is loaded, the program can start executing the application code. Note that the fuses cannot be changed by
the MCU itself. This means that once the boot reset fuse is programmed, the reset vector will always point to the boot loader
reset and the fuse can only be changed through the serial or parallel programming interface.

Table 26-2. Boot Lock Bit0 Protection Modes (Application Section)(1)

BLB0 Mode BLB02 BLB01 Protection

1 1 1 No restrictions for SPM or LPM accessing the application section.

2 1 0 SPM is not allowed to write to the application section.

3 0 0

SPM is not allowed to write to the application section, and LPM executing
from the boot loader section is not allowed to read from the application
section. If interrupt vectors are placed in the boot loader section, interrupts
are disabled while executing from the application section.

4 0 1
LPM executing from the boot loader section is not allowed to read from the
application section. If interrupt vectors are placed in the boot loader section,
interrupts are disabled while executing from the application section.

Note: 1. “1” means unprogrammed, “0” means programmed

Table 26-3. Boot Lock Bit1 Protection Modes (Boot Loader Section)(1)

BLB1 Mode BLB12 BLB11 Protection

1 1 1 No restrictions for SPM or LPM accessing the boot loader section.

2 1 0 SPM is not allowed to write to the boot loader section.

3 0 0

SPM is not allowed to write to the boot loader section, and LPM executing
from the application section is not allowed to read from the boot loader
section. If interrupt vectors are placed in the application section, interrupts
are disabled while executing from the boot loader section.

4 0 1
LPM executing from the application section is not allowed to read from the
boot loader section. If interrupt vectors are placed in the application section,
interrupts are disabled while executing from the boot loader section.

Note: 1. “1” means unprogrammed, “0” means programmed

Table 26-4. Boot Reset Fuse(1)

BOOTRST Reset Address

1 Reset vector = application reset (address 0x0000)

0 Reset vector = boot loader reset
Note: 1. “1” means unprogrammed, “0” means programmed

233ATmega328P [DATASHEET]
7810D–AVR–01/15

26.7 Addressing the Flash During Self-Programming

The Z-pointer is used to address the SPM commands.

Since the flash is organized in pages (see Table 27-9 on page 245), the program counter can be treated as having two
different sections. One section, consisting of the least significant bits, is addressing the words within a page, while the most
significant bits are addressing the pages. This is1 shown in Figure 26-3. Note that the page erase and page write operations
are addressed independently. Therefore it is of major importance that the boot loader software addresses the same page in
both the page erase and page write operation. Once a programming operation is initiated, the address is latched and the
Z-pointer can be used for other operations.

The only SPM operation that does not use the Z-pointer is setting the boot loader lock bits. The content of the Z-pointer is
ignored and will have no effect on the operation. The LPM instruction does also use the Z-pointer to store the address. Since
this instruction addresses the flash byte-by-byte, also the LSB (bit Z0) of the Z-pointer is used.

Figure 26-3. Addressing the Flash During SPM

Bit 15 14 13 12 11 10 9 8

ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8

ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

7 6 5 4 3 2 1 0

Bit

PAGEMSBPCMSB

ZPAGEMSBZPCMSB 0115
Z-register

Program
Counter

Page Address
within the Flash

Word Address
within a Page

0

PCWORDPCPAGE

02

01

00

PAGEEND

PCWORD[PAGEMSB:0]
Page

Program Memory

Instruction Word

Page

ATmega328P [DATASHEET]
7810D–AVR–01/15

234

26.8 Self-Programming the Flash

The program memory is updated in a page by page fashion. Before programming a page with the data stored in the
temporary page buffer, the page must be erased. The temporary page buffer is filled one word at a time using SPM and the
buffer can be filled either before the page erase command or between a page erase and a page write operation:

Alternative 1, fill the buffer before a page erase

● Fill temporary page buffer

● Perform a page erase

● Perform a page write

Alternative 2, fill the buffer after page erase

● Perform a page erase

● Fill temporary page buffer

● Perform a page write

If only a part of the page needs to be changed, the rest of the page must be stored (for example in the temporary page
buffer) before the erase, and then be rewritten. When using alternative 1, the boot loader provides an effective read-modify-
write feature which allows the user software to first read the page, do the necessary changes, and then write back the
modified data. If alternative 2 is used, it is not possible to read the old data while loading since the page is already erased.
The temporary page buffer can be accessed in a random sequence. It is essential that the page address used in both the
page erase and page write operation is addressing the same page. See Section 26.8.13 “Simple Assembly Code Example
for a Boot Loader” on page 237 for an assembly code example.

26.8.1 Performing Page Erase by SPM

To execute page erase, set up the address in the Z-pointer, write “X0000011” to SPMCSR and execute SPM within four
clock cycles after writing SPMCSR. The data in R1 and R0 is ignored. The page address must be written to PCPAGE in the
Z-register. Other bits in the Z-pointer will be ignored during this operation.

● Page erase to the RWW section: The NRWW section can be read during the page erase.

● Page erase to the NRWW section: The CPU is halted during the operation.

26.8.2 Filling the Temporary Buffer (Page Loading)

To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write “00000001” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR. The content of PCWORD in the Z-register is used to address
the data in the temporary buffer. The temporary buffer will auto-erase after a page write operation or by writing the
RWWSRE bit in SPMCSR. It is also erased after a system reset. Note that it is not possible to write more than one time to
each address without erasing the temporary buffer.

If the EEPROM is written in the middle of an SPM page load operation, all data loaded will be lost.

26.8.3 Performing a Page Write

To execute page write, set up the address in the Z-pointer, write “X0000101” to SPMCSR and execute SPM within four clock
cycles after writing SPMCSR. The data in R1 and R0 is ignored. The page address must be written to PCPAGE. Other bits
in the Z-pointer must be written to zero during this operation.

● Page write to the RWW section: The NRWW section can be read during the page write.

● Page write to the NRWW section: The CPU is halted during the operation.

26.8.4 Using the SPM Interrupt

If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt when the SELFPRGEN bit in SPMCSR is
cleared. This means that the interrupt can be used instead of polling the SPMCSR register in software. When using the SPM
interrupt, the interrupt vectors should be moved to the BLS section to avoid that an interrupt is accessing the RWW section
when it is blocked for reading. How to move the interrupts is described in Section 11. “Interrupts” on page 49.

235ATmega328P [DATASHEET]
7810D–AVR–01/15

26.8.5 Consideration While Updating BLS

Special care must be taken if the user allows the boot loader section to be updated by leaving boot lock bit11
unprogrammed. An accidental write to the boot loader itself can corrupt the entire boot loader, and further software updates
might be impossible. If it is not necessary to change the boot loader software itself, it is recommended to program the boot
lock bit11 to protect the boot loader software from any internal software changes.

26.8.6 Prevent Reading the RWW Section During Self-Programming

During self-programming (either page erase or page write), the RWW section is always blocked for reading. The user
software itself must prevent that this section is addressed during the self programming operation. The RWWSB in the
SPMCSR will be set as long as the RWW section is busy. During self-programming the interrupt vector table should be
moved to the BLS as described in Section 10.8 “Watchdog Timer” on page 43, or the interrupts must be disabled. Before
addressing the RWW section after the programming is completed, the user software must clear the RWWSB by writing the
RWWSRE. See Section 26.8.13 “Simple Assembly Code Example for a Boot Loader” on page 237 for an example.

26.8.7 Setting the Boot Loader Lock Bits by SPM

To set the boot loader lock bits and general lock bits, write the desired data to R0, write “X0001001” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR.

See Table 26-2 on page 232 and Table 26-3 on page 232 for how the different settings of the boot loader bits affect the flash
access.

If bits 5..0 in R0 are cleared (zero), the corresponding lock bit will be programmed if an SPM instruction is executed within
four cycles after BLBSET and SELFPRGEN are set in SPMCSR. The Z-pointer is don’t care during this operation, but for
future compatibility it is recommended to load the Z-pointer with 0x0001 (same as used for reading the lOck bits). For future
compatibility it is also recommended to set bits 7 and 6 in R0 to “1” when writing the lock bits. When programming the lock
bits the entire flash can be read during the operation.

26.8.8 EEPROM Write Prevents Writing to SPMCSR

Note that an EEPROM write operation will block all software programming to flash. Reading the fuses and lock bits from
software will also be prevented during the EEPROM write operation. It is recommended that the user checks the status bit
(EEPE) in the EECR register and verifies that the bit is cleared before writing to the SPMCSR register.

26.8.9 Reading the Fuse and Lock Bits from Software

It is possible to read both the fuse and lock bits from software. To read the lock bits, load the Z-pointer with 0x0001 and set
the BLBSET and SELFPRGEN bits in SPMCSR. When an LPM instruction is executed within three CPU cycles after the
BLBSET and SELFPRGEN bits are set in SPMCSR, the value of the lock bits will be loaded in the destination register. The
BLBSET and SELFPRGEN bits will auto-clear upon completion of reading the lock bits or if no LPM instruction is executed
within three CPU cycles or no SPM instruction is executed within four CPU cycles. When BLBSET and SELFPRGEN are
cleared, LPM will work as described in the instruction set manual.

The algorithm for reading the fuse low byte is similar to the one described above for reading the lock bits. To read the fuse
low byte, load the Z-pointer with 0x0000 and set the BLBSET and SELFPRGEN bits in SPMCSR. When an LPM instruction
is executed within three cycles after the BLBSET and SELFPRGEN bits are set in the SPMCSR, the value of the fuse low
byte (FLB) will be loaded in the destination register as shown below. Refer to Table 27-5 on page 243 for a detailed
description and mapping of the fuse low byte.

Bit 7 6 5 4 3 2 1 0

R0 1 1 BLB12 BLB11 BLB02 BLB01 LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd – – BLB12 BLB11 BLB02 BLB01 LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0

ATmega328P [DATASHEET]
7810D–AVR–01/15

236

Similarly, when reading the fuse high byte, load 0x0003 in the Z-pointer. When an LPM instruction is executed within three
cycles after the BLBSET and SELFPRGEN bits are set in the SPMCSR, the value of the fuse high byte (FHB) will be loaded
in the destination register as shown below. Refer to Table 27-7 on page 244 for detailed description and mapping of the fuse
high byte.

When reading the extended fuse byte, load 0x0002 in the Z-pointer. When an LPM instruction is executed within three cycles
after the BLBSET and SELFPRGEN bits are set in the SPMCSR, the value of the extended fuse byte (EFB) will be loaded in
the destination register as shown below. Refer to Table 27-4 on page 242 for detailed description and mapping of the
extended fuse byte.

Fuse and lock bits that are programmed, will be read as zero. Fuse and lock bits that are unprogrammed, will be read as
one.

26.8.10 Reading the Signature Row from Software

To read the signature row from software, load the Z-pointer with the signature byte address given in Table 26-5 and set the
SIGRD and SPMEN bits in SPMCSR. When an LPM instruction is executed within three CPU cycles after the SIGRD and
SPMEN bits are set in SPMCSR, the signature byte value will be loaded in the destination register. The SIGRD and SPMEN
bits will auto-clear upon completion of reading the signature row lock bits or if no LPM instruction is executed within three
CPU cycles. When SIGRD and SPMEN are cleared, LPM will work as described in the Instruction set Manual.

26.8.11 Preventing Flash Corruption

During periods of low VCC, the flash program can be corrupted because the supply voltage is too low for the CPU and the
flash to operate properly. These issues are the same as for board level systems using the flash, and the same design
solutions should be applied.

A flash program corruption can be caused by two situations when the voltage is too low. First, a regular write sequence to
the flash requires a minimum voltage to operate correctly. Secondly, the CPU itself can execute instructions incorrectly, if the
supply voltage for executing instructions is too low.

Bit 7 6 5 4 3 2 1 0

Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0

Bit 7 6 5 4 3 2 1 0

Rd – – – – EFB3 EFB2 EFB1 EFB0

Table 26-5. Signature Row Addressing

Signature Byte Z-Pointer Address

Device signature byte 1 0x0000

Device signature byte 2 0x0002

Device signature byte 3 0x0004

RC oscillator calibration byte 0x0001

TSOFFSET - temp sensor offset 0x0002

TSGAIN - temp sensor gain 0x0003

Note: All other addresses are reserved for future use.

237ATmega328P [DATASHEET]
7810D–AVR–01/15

Flash corruption can easily be avoided by following these design recommendations (one is sufficient):

1. If there is no need for a boot loader update in the system, program the boot loader lock bits to prevent any boot
loader software updates.

2. Keep the AVR® RESET active (low) during periods of insufficient power supply voltage. This can be done by
enabling the internal brown-out detector (BOD) if the operating voltage matches the detection level. If not, an
external low VCC reset protection circuit can be used. If a reset occurs while a write operation is in progress, the
write operation will be completed provided that the power supply voltage is sufficient.

3. Keep the AVR core in power-down sleep mode during periods of low VCC. This will prevent the CPU from
attempting to decode and execute instructions, effectively protecting the SPMCSR register and thus the flash from
unintentional writes.

26.8.12 Programming Time for Flash when Using SPM

The calibrated RC oscillator is used to time flash accesses. Table 26-6 shows the typical programming time for flash
accesses from the CPU.

26.8.13 Simple Assembly Code Example for a Boot Loader

;-the routine writes one page of data from RAM to Flash
; the first data location in RAM is pointed to by the Y pointer
; the first data location in Flash is pointed to by the Z-pointer
;-error handling is not included
;-the routine must be placed inside the Boot space
; (at least the Do_spm sub routine). Only code inside NRWW section can
; be read during Self-Programming (Page Erase and Page Write).
;-registers used: r0, r1, temp1 (r16), temp2 (r17), looplo (r24),
; loophi (r25), spmcrval (r20)
; storing and restoring of registers is not included in the routine
; register usage can be optimized at the expense of code size
;-It is assumed that either the interrupt table is moved to the Boot
; loader section or that the interrupts are disabled.

.equ PAGESIZEB = PAGESIZE*2 ;PAGESIZEB is page size in BYTES, not words

.org SMALLBOOTSTART
Write_page:

;Page Erase
ldi spmcrval, (1<<PGERS) | (1<<SELFPRGEN)
call Do_spm

;re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
call Do_spm

;transfer data from RAM to Flash page buffer
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256

Wrloop:
ld r0, Y+
ld r1, Y+
ldi spmcrval, (1<<SELFPRGEN)
call Do_spm
adiw ZH:ZL, 2

Table 26-6. SPM Programming Time(1)

Symbol Min Programming Time Max Programming Time

Flash write (page erase, page write, and write lock
bits by SPM)

3.7ms 4.5ms

Note: 1. Minimum and maximum programming time is per individual operation.

ATmega328P [DATASHEET]
7810D–AVR–01/15

238

sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256
brne Wrloop

;execute Page Write
subi ZL, low(PAGESIZEB) ;restore pointer
sbci ZH, high(PAGESIZEB) ;not required for PAGESIZEB<=256
ldi spmcrval, (1<<PGWRT) | (1<<SELFPRGEN)
call Do_spm

;re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
call Do_spm

;read back and check, optional
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256
subi YL, low(PAGESIZEB) ;restore pointer
sbci YH, high(PAGESIZEB)

Rdloop:
lpm r0, Z+
ld r1, Y+
cpse r0, r1
jmp Error
sbiw loophi:looplo, 1 ;use subi for PAGESIZEB<=256
brne Rdloop

;return to RWW section
;verify that RWW section is safe to read

Return:
in temp1, SPMCSR
sbrs temp1, RWWSB ; If RWWSB is set, the RWW section is not ready yet
ret
;re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
call Do_spm
rjmp Return

Do_spm:
;check for previous SPM complete

Wait_spm:
in temp1, SPMCSR
sbrc temp1, SELFPRGEN
rjmp Wait_spm
;input: spmcrval determines SPM action
;disable interrupts if enabled, store status
in temp2, SREG
cli
;check that no EEPROM write access is present

Wait_ee:
sbic EECR, EEPE
rjmp Wait_ee
;SPM timed sequence
out SPMCSR, spmcrval
spm
;restore SREG (to enable interrupts if originally enabled)
out SREG, temp2
ret

239ATmega328P [DATASHEET]
7810D–AVR–01/15

26.8.14 ATmega328P Boot Loader Parameters

In Table 26-7 through Table 26-9, the parameters used in the description of the self programming are given.

For details about these two section, see Section 26.4.2 “NRWW – No Read-While-Write Section” on page 230 and Section
26.4.1 “RWW – Read-While-Write Section” on page 230.

26.9 Register Description

26.9.1 SPMCSR – Store Program Memory Control and Status Register

The store program memory control and status register contains the control bits needed to control the boot loader operations.

Table 26-7. Boot Size Configuration, ATmega328P

BOOTSZ1 BOOTSZ0 Boot Size Pages
Application

Flash Section
Boot Loader

Flash Section
End Application

Section
Boot Reset Address (Start

Boot Loader Section)

1 1 256 words 4 0x0000 - 0x3EFF 0x3F00 - 0x3FFF 0x3EFF 0x3F00

1 0 512 words 8 0x0000 - 0x3DFF 0x3E00 - 0x3FFF 0x3DFF 0x3E00

0 1 1024 words 16 0x0000 - 0x3BFF 0x3C00 - 0x3FFF 0x3BFF 0x3C00

0 0 2048 words 32 0x0000 - 0x37FF 0x3800 - 0x3FFF 0x37FF 0x3800
Note: The different BOOTSZ fuse configurations are shown in Figure 26-2 on page 231.

Table 26-8. Read-While-Write Limit, ATmega328P

Section Pages Address

Read-while-write section (RWW) 224 0x0000 - 0x37FF

No read-while-write section (NRWW) 32 0x3800 - 0x3FFF

Table 26-9. Explanation of Different Variables used in Figure 26-3 and the Mapping to the Z-pointer, ATmega328P

Variable
Corresponding

Z-value(1) Description

PCMSB 13
Most significant bit in the program counter. (the program
counter is 14 bits PC[13:0])

PAGEMSB 5
Most significant bit which is used to address the words within
one page (64 words in a page requires 6 bits PC [5:0])

ZPCMSB Z14
Bit in Z-register that is mapped to PCMSB. Because Z0 is not
used, the ZPCMSB equals PCMSB + 1.

ZPAGEMSB Z6
Bit in Z-register that is mapped to PAGEMSB. Because Z0 is
not used, the ZPAGEMSB equals PAGEMSB + 1.

PCPAGE PC[13:6] Z14:Z7
Program counter page address: Page select, for page erase
and page write

PCWORD PC[5:0] Z6:Z1
Program counter word address: Word select, for filling
temporary buffer (must be zero during page write operation)

Note: 1. Z15: always ignored
Z0: should be zero for all SPM commands, byte select for the LPM instruction.
See Section 26.7 “Addressing the Flash During Self-Programming” on page 233 for details about the use of
Z-pointer during self-programming.

Bit 7 6 5 4 3 2 1 0

0x37 (0x57) SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SELFPRGEN SPMCSR

Read/Write R/W R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

ATmega328P [DATASHEET]
7810D–AVR–01/15

240

• Bit 7 – SPMIE: SPM Interrupt Enable

When the SPMIE bit is written to one, and the I-bit in the status register is set (one), the SPM ready interrupt will be enabled.
The SPM ready interrupt will be executed as long as the SELFPRGEN bit in the SPMCSR register is cleared.

• Bit 6 – RWWSB: Read-While-Write Section Busy

When a self-programming (page erase or page write) operation to the RWW section is initiated, the RWWSB will be set
(one) by hardware. When the RWWSB bit is set, the RWW section cannot be accessed. The RWWSB bit will be cleared if
the RWWSRE bit is written to one after a self-programming operation is completed. Alternatively the RWWSB bit will
automatically be cleared if a page load operation is initiated.

• Bit 5 – Res: Reserved Bit

This bit is a reserved bit in the Atmel® ATmega328P and always read as zero.

• Bit 4 – RWWSRE: Read-While-Write Section Read Enable

When programming (page erase or page write) to the RWW section, the RWW section is blocked for reading (the RWWSB
will be set by hardware). To re-enable the RWW section, the user software must wait until the programming is completed
(SELFPRGEN will be cleared). Then, if the RWWSRE bit is written to one at the same time as SELFPRGEN, the next SPM
instruction within four clock cycles re-enables the RWW section. The RWW section cannot be re-enabled while the flash is
busy with a page erase or a page write (SELFPRGEN is set). If the RWWSRE bit is written while the flash is being loaded,
the flash load operation will abort and the data loaded will be lost.

• Bit 3 – BLBSET: Boot Lock Bit Set

If this bit is written to one at the same time as SELFPRGEN, the next SPM instruction within four clock cycles sets boot lock
bits and memory lock bits, according to the data in R0. The data in R1 and the address in the Z-pointer are ignored. The
BLBSET bit will automatically be cleared upon completion of the lock bit set, or if no SPM instruction is executed within four
clock cycles.

An LPM instruction within three cycles after BLBSET and SELFPRGEN are set in the SPMCSR register, will read either the
lock bits or the fuse bits (depending on Z0 in the Z-pointer) into the destination register. See Section 26.8.9 “Reading the
Fuse and Lock Bits from Software” on page 235 for details.

• Bit 2 – PGWRT: Page Write

If this bit is written to one at the same time as SELFPRGEN, the next SPM instruction within four clock cycles executes page
write, with the data stored in the temporary buffer. The page address is taken from the high part of the Z-pointer. The data in
R1 and R0 are ignored. The PGWRT bit will auto-clear upon completion of a page write, or if no SPM instruction is executed
within four clock cycles. The CPU is halted during the entire page write operation if the NRWW section is addressed.

• Bit 1 – PGERS: Page Erase

If this bit is written to one at the same time as SELFPRGEN, the next SPM instruction within four clock cycles executes page
erase. The page address is taken from the high part of the Z-pointer. The data in R1 and R0 are ignored. The PGERS bit will
auto-clear upon completion of a page erase, or if no SPM instruction is executed within four clock cycles. The CPU is halted
during the entire page write operation if the NRWW section is addressed.

• Bit 0 – SELFPRGEN: Self Programming Enable

This bit enables the SPM instruction for the next four clock cycles. If written to one together with either RWWSRE, BLBSET,
PGWRT or PGERS, the following SPM instruction will have a special meaning, see description above. If only SELFPRGEN
is written, the following SPM instruction will store the value in R1:R0 in the temporary page buffer addressed by the
Z-pointer. The LSB of the Z-pointer is ignored. The SELFPRGEN bit will auto-clear upon completion of an SPM instruction,
or if no SPM instruction is executed within four clock cycles. During page erase and page write, the SELFPRGEN bit remains
high until the operation is completed.

Writing any other combination than “10001”, “01001”, “00101”, “00011” or “00001” in the lower five bits will have no effect.

241ATmega328P [DATASHEET]
7810D–AVR–01/15

27. Memory Programming

27.1 Program And Data Memory Lock Bits

The Atmel® ATmega328P provides six lock bits which can be left unprogrammed (“1”) or can be programmed (“0”) to obtain
the additional features listed in Table 27-2. The lock bits can only be erased to “1” with the chip erase command.The
ATmega328P has no separate boot loader section. The SPM instruction is enabled for the whole flash if the SELFPRGEN
fuse is programmed (“0”), otherwise it is disabled.

Table 27-1. Lock Bit Byte(1)

Lock Bit Byte Bit No Description Default Value

7 – 1 (unprogrammed)

6 – 1 (unprogrammed)

BLB12(2) 5 Boot lock bit 1 (unprogrammed)

BLB11(2) 4 Boot lock bit 1 (unprogrammed)

BLB02(2) 3 Boot lock bit 1 (unprogrammed)

BLB01(2) 2 Boot lock bit 1 (unprogrammed)

LB2 1 Lock bit 1 (unprogrammed)

LB1 0 Lock bit 1 (unprogrammed)

Notes: 1. “1” means unprogrammed, “0” means programmed

2. Only on ATmega328P.

Table 27-2. Lock Bit Protection Modes(1)(2)

Memory Lock Bits Protection Type

LB Mode LB2 LB1

1 1 1 No memory lock features enabled.

2 1 0
Further programming of the flash and EEPROM is disabled in parallel and
serial programming mode. The fuse bits are locked in both serial and parallel
programming mode.(1)

3 0 0
Further programming and verification of the flash and EEPROM is disabled in
parallel and serial programming mode. The boot lock bits and fuse bits are
locked in both serial and parallel programming mode.(1)

Notes: 1. Program the fuse bits and boot lock bits before programming the LB1 and LB2.

2. “1” means unprogrammed, “0” means programmed

ATmega328P [DATASHEET]
7810D–AVR–01/15

242

27.2 Fuse Bits

The ATmega328P has three fuse bytes. Table 27-4 - Table 27-7 on page 244 describe briefly the functionality of all the fuses
and how they are mapped into the fuse bytes. Note that the fuses are read as logical zero, “0”, if they are programmed.

Table 27-3. Lock Bit Protection Modes(1)(2)

BLB0 Mode BLB02 BLB01

1 1 1 No restrictions for SPM or LPM accessing the application section.

2 1 0 SPM is not allowed to write to the application section.

3 0 0

SPM is not allowed to write to the application section, and LPM executing
from the boot loader section is not allowed to read from the application
section. If interrupt vectors are placed in the boot loader section, interrupts
are disabled while executing from the application section.

4 0 1
LPM executing from the boot loader section is not allowed to read from the
application section. If interrupt vectors are placed in the boot loader section,
interrupts are disabled while executing from the application section.

BLB1 Mode BLB12 BLB11

1 1 1 No restrictions for SPM or LPM accessing the boot loader section.

2 1 0 SPM is not allowed to write to the boot loader section.

3 0 0

SPM is not allowed to write to the boot loader section, and LPM executing
from the application section is not allowed to read from the boot loader
section. If interrupt vectors are placed in the application section, interrupts
are disabled while executing from the boot loader section.

4 0 1
LPM executing from the application section is not allowed to read from the
boot loader section. If interrupt vectors are placed in the application section,
interrupts are disabled while executing from the boot loader section.

Notes: 1. Program the fuse bits and boot lock bits before programming the LB1 and LB2.

2. “1” means unprogrammed, “0” means programmed

Table 27-4. Extended Fuse Byte for ATmega328P

Extended Fuse Byte Bit No Description Default Value

– 7 – 1

– 6 – 1

– 5 – 1

– 4 – 1

– 3 – 1

– 2 – 1

– 1 – 1

SELFPRGEN 0 Self programming enable 1 (unprogrammed)

243ATmega328P [DATASHEET]
7810D–AVR–01/15

Table 27-5. Extended Fuse Byte for ATmega328P

Extended Fuse Byte Bit No. Description Default Value

– 7 – 1

– 6 – 1

– 5 – 1

– 4 – 1

– 3 – 1

BODLEVEL2(1) 2 Brown-out detector trigger level 1 (unprogrammed)

BODLEVEL1(1) 1 Brown-out detector trigger level 1 (unprogrammed)

BODLEVEL0(1) 0 Brown-out detector trigger level 1 (unprogrammed)

Note: 1. See Table 28-5 on page 262 for BODLEVEL fuse decoding.

Table 27-6. Fuse High Byte for ATmega328P

High Fuse Byte Bit No. Description Default Value

RSTDISBL(1) 7 External reset disable 1 (unprogrammed)

DWEN 6 debugWIRE enable 1 (unprogrammed)

SPIEN(2) 5
Enable serial program and data
downloading

0 (programmed, SPI programming
enabled)

WDTON(3) 4 Watchdog timer always On 1 (unprogrammed)

EESAVE 3
EEPROM memory is preserved
through the chip erase

1 (unprogrammed), EEPROM not
reserved

BOOTSZ1 2
Select boot size
(see Table 26-7 on page 239
for details)

0 (programmed)(4)

BOOTSZ0 1
Select boot size
(see Table 26-7 on page 239
for details)

0 (programmed)(4)

BOOTRST 0 Select reset vector 1 (unprogrammed)

Notes: 1. See Section 13.3.2 “Alternate Functions of Port C” on page 68 for description of RSTDISBL fuse.

2. The SPIEN fuse is not accessible in serial programming mode.

3. See Section 10.9.2 “WDTCSR – Watchdog Timer Control Register” on page 47 for details.

4. The default value of BOOTSZ[1:0] results in maximum boot size. See Section 27-11 “Pin Name Mapping” on
page 246.

ATmega328P [DATASHEET]
7810D–AVR–01/15

244

The status of the fuse bits is not affected by chip erase. Note that the fuse bits are locked if lock bit1 (LB1) is programmed.
program the fuse bits before programming the lock bits.

27.2.1 Latching of Fuses

The fuse values are latched when the device enters programming mode and changes of the fuse values will have no effect
until the part leaves programming mode. This does not apply to the EESAVE fuse which will take effect once it is
programmed. The fuses are also latched on power-up in normal mode.

27.3 Signature Bytes

All Atmel microcontrollers have a three-byte signature code which identifies the device. This code can be read in both serial
and parallel mode, also when the device is locked. The three bytes reside in a separate address space. For the Atmel®
ATmega328P the signature bytes are given in Table 27-8.

27.4 Calibration Byte

The Atmel ATmega328P has a byte calibration value for the internal RC oscillator. This byte resides in the high byte of
address 0x000 in the signature address space. During reset, this byte is automatically written into the OSCCAL register to
ensure correct frequency of the calibrated RC oscillator.

Table 27-7. Fuse Low Byte

Low Fuse Byte Bit No. Description Default Value

CKDIV8(2)4 7 Divide clock by 8 0 (programmed)

CKOUT(3) 6 Clock output 1 (unprogrammed)

SUT1 5 Select start-up time 1 (unprogrammed)(1)

SUT0 4 Select start-up time 0 (programmed)(1)

CKSEL3 3 Select clock source 0 (programmed)(2)

CKSEL2 2 Select clock source 0 (programmed)(2)

CKSEL1 1 Select clock source 1 (unprogrammed)(2)

CKSEL0 0 Select clock source 0 (programmed)

Notes: 1. The default value of SUT1..0 results in maximum start-up time for the default clock source. See Table 8-11 on
page 30 for details.

2. The default setting of CKSEL3..0 results in internal RC oscillator at 8MHz. See Table 8-10 on page 30 for
details.

3. The CKOUT fuse allows the system clock to be output on PORTB0. See Section 8.9 “Clock Output Buffer” on
page 31 for details.

4. See Section 8.11 “System Clock Prescaler” on page 32 for details.

Table 27-8. Device ID

Part

Signature Bytes Address

0x000 0x001 0x002

ATmega328P 0x1E 0x95 0x0F

245ATmega328P [DATASHEET]
7810D–AVR–01/15

27.5 Page Size

27.6 Parallel Programming Parameters, Pin Mapping, and Commands

This section describes how to parallel program and verify flash program memory, EEPROM data memory, memory lock bits,
and fuse bits in the ATmega328P. Pulses are assumed to be at least 250ns unless otherwise noted.

27.6.1 Signal Names

In this section, some pins of the Atmel® ATmega328P are referenced by signal names describing their functionality during
parallel programming, see Figure 27-1 and Table 27-11 on page 246. Pins not described in the following table are referenced
by pin names.

The XA1/XA0 pins determine the action executed when the XTAL1 pin is given a positive pulse. The bit coding is shown in
Table 27-13 on page 246.

When pulsing WR or OE, the command loaded determines the action executed. The different commands are shown in Table
27-14 on page 246.

Figure 27-1. Parallel Programming

Note: VCC to 0.3V < AVCC < VCC + 0.3V, however, AVCC should always be within 4.5 to 5.5V

Table 27-9. No. of Words in a Page and No. of Pages in the Flash

Device Flash Size Page Size PCWORD No. of Pages PCPAGE PCMSB

ATmega328P
16K words
(32K bytes)

64 words PC[5:0] 256 PC[13:6] 13

Table 27-10. No. of Words in a Page and No. of Pages in the EEPROM

Device EEPROM Size Page Size PCWORD No. of Pages PCPAGE EEAMSB

ATmega328P 1K bytes 4 bytes EEA[1:0] 256 EEA[9:2] 9

GND

XTAL1

PC2

PD1

PD2

PD3

PD4

DATA
PD5

PD6

PD7

RESET

VCC

AVCC

PC[1:0]:PB[5:0]

+ 4.5V to 5.5V

+ 4.5V to 5.5V

RDY/BSY

OE

WR

BS1

XA0

XA1

PAGEL

+12V

BS2

ATmega328P [DATASHEET]
7810D–AVR–01/15

246

Table 27-11. Pin Name Mapping

Signal Name in
Programming Mode Pin Name I/O Function

RDY/BSY PD1 O
0: Device is busy programming, 1: Device is ready for
new command

OE PD2 I Output enable (active low)

WR PD3 I Write pulse (active low)

BS1 PD4 I Byte select 1 (“0” selects low byte, “1” selects high byte)

XA0 PD5 I XTAL action Bit 0

XA1 PD6 I XTAL action Bit 1

PAGEL PD7 I Program memory and EEPROM data page load

BS2 PC2 I
Byte select 2 (“0” selects low byte, “1” selects 2’nd high
byte)

DATA {PC[1:0]: PB[5:0]} I/O Bi-directional data bus (output when OE is low)

Table 27-12. Pin Values Used to Enter Programming Mode

Pin Symbol Value

PAGEL Prog_enable[3] 0

XA1 Prog_enable[2] 0

XA0 Prog_enable[1] 0

BS1 Prog_enable[0] 0

Table 27-13. XA1 and XA0 Coding

XA1 XA0 Action when XTAL1 is Pulsed

0 0 Load flash or EEPROM address (high or low address byte determined by BS1).

0 1 Load data (high or low data byte for flash determined by BS1).

1 0 Load command

1 1 No action, idle

Table 27-14. Command Byte Bit Coding

Command Byte Command Executed

1000 0000 Chip erase

0100 0000 Write fuse bits

0010 0000 Write lock bits

0001 0000 Write flash

0001 0001 Write EEPROM

0000 1000 Read signature bytes and calibration byte

0000 0100 Read fuse and lock bits

0000 0010 Read flash

0000 0011 Read EEPROM

247ATmega328P [DATASHEET]
7810D–AVR–01/15

27.7 Parallel Programming

27.7.1 Enter Programming Mode

The following algorithm puts the device in parallel (high-voltage) programming mode:

1. Set prog_enable pins listed in Table 27-12 on page 246 to “0000”, RESET pin to 0V and VCC to 0V.

2. Apply 4.5 to 5.5V between VCC and GND.

Ensure that VCC reaches at least àpçV within the next 20µs.

3. Wait 20 to 60µs, and apply 11.5 to 12.5V to RESET.

4. Keep the Prog_enable pins unchanged for at least10µs after the high-voltage has been applied to ensure the
prog_enable signature has been latched.

5. Wait at least 300µs before giving any parallel programming commands.

6. Exit programming mode by power the device down or by bringing RESET pin to 0V.

If the rise time of the VCC is unable to fulfill the requirements listed above, the following alternative algorithm can be used.

1. Set prog_enable pins listed in Table 27-12 on page 246 to “0000”, RESET pin to 0V and VCC to 0V.

2. Apply 4.5 to 5.5V between VCC and GND.

3. Monitor VCC, and as soon as VCC reaches 0.9 to 1.1V, apply 11.5 to 12.5V to RESET.

4. Keep the prog_enable pins unchanged for at least 10µs after the high-voltage has been applied to ensure the
prog_enable signature has been latched.

5. Wait until VCC actually reaches 4.5 to 5.5V before giving any parallel programming commands.

6. Exit programming mode by power the device down or by bringing RESET pin to 0V.

27.7.2 Considerations for Efficient Programming

The loaded command and address are retained in the device during programming. For efficient programming, the following
should be considered.

● The command needs only be loaded once when writing or reading multiple memory locations.

● Skip writing the data value 0xFF, that is the contents of the entire EEPROM (unless the EESAVE fuse is programmed)
and flash after a chip erase.

● Address high byte needs only be loaded before programming or reading a new 256 word window in flash or 256 byte
EEPROM. This consideration also applies to signature bytes reading.

27.7.3 Chip Erase

The chip erase will erase the flash and EEPROM(1) memories plus lock bits. The lock bits are not reset until the program
memory has been completely erased. The fuse bits are not changed. A chip erase must be performed before the flash
and/or EEPROM are reprogrammed.

Note: 1. The EEPRPOM memory is preserved during chip erase if the EESAVE fuse is programmed.

Load command “chip erase”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “1000 0000”. This is the command for chip erase.

4. Give XTAL1 a positive pulse. This loads the command.

5. Give WR a negative pulse. This starts the chip erase. RDY/BSY goes low.

6. Wait until RDY/BSY goes high before loading a new command.

ATmega328P [DATASHEET]
7810D–AVR–01/15

248

27.7.4 Programming the Flash

The Flash is organized in pages, see Table 27-9 on page 245. When programming the flash, the program data is latched into
a page buffer. This allows one page of program data to be programmed simultaneously. The following procedure describes
how to program the entire flash memory:

A. Load Command “Write Flash”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “0001 0000”. This is the command for write flash.

4. Give XTAL1 a positive pulse. This loads the command.

B. Load Address Low byte

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “0”. This selects low address.

3. Set DATA = Address low byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the address low byte.

C. Load Data Low Byte

1. Set XA1, XA0 to “01”. This enables data loading.

2. Set DATA = Data low byte (0x00 - 0xFF).

3. Give XTAL1 a positive pulse. This loads the data byte.

D. Load Data High Byte

1. Set BS1 to “1”. This selects high data byte.

2. Set XA1, XA0 to “01”. This enables data loading.

3. Set DATA = Data high byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the data byte.

E. Latch Data

1. Set BS1 to “1”. This selects high data byte.

2. Give PAGEL a positive pulse. This latches the data bytes. (See Figure 27-3 on page 249 for signal waveforms)

F. Repeat B through E until the entire buffer is filled or until all data within the page is loaded.

While the lower bits in the address are mapped to words within the page, the higher bits address the pages within the flash.
This is illustrated in Figure 27-2 on page 249. Note that if less than eight bits are required to address words in the page
(Page size < 256), the most significant bit(s) in the address low byte are used to address the page when performing a page
write.

G. Load Address High byte

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “1”. This selects high address.

3. Set DATA = Address high byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the address high byte.

H. Program Page

1. Give WR a negative pulse. This starts programming of the entire page of data. RDY/BSY goes low.

2. Wait until RDY/BSY goes high (See Figure 27-3 on page 249 for signal waveforms).

I. Repeat B through H until the entire flash is programmed or until all data has been programmed.

J. End page programming

1. 1. Set XA1, XA0 to “10”. This enables command loading.

2. Set DATA to “0000 0000”. This is the command for No operation.

3. Give XTAL1 a positive pulse. This loads the command, and the internal write signals are reset.

249ATmega328P [DATASHEET]
7810D–AVR–01/15

Figure 27-2. Addressing the Flash which is Organized in Pages(1)

Note: 1. PCPAGE and PCWORD are listed in Table 27-9 on page 245.

Figure 27-3. Programming the Flash Waveforms(1)

Note: 1. “XX” is don’t care. The letters refer to the programming description above.

PAGEMSBPCMSB
Program
Counter

Word Address
within a Page

Page Address
within the Flash

PCWORDPCPAGE

02

01

00

PAGEEND

PCWORD[PAGEMSB:0]
Page

Program Memory

Instruction Word

Page

0x10 ADDR. LOW

A B

DATA

XA1

XA0

BS1

BS2

XTAL1

WR

PAGEL

RDY/BSY

OE

RESET +12V

DATA LOW DATA HIGH

C D

ADDR. LOW

B

DATA LOW DATA HIGH

C D

F

XX

E

XX

E

XXADDR. HIGH

G H

ATmega328P [DATASHEET]
7810D–AVR–01/15

250

27.7.5 Programming the EEPROM

The EEPROM is organized in pages, see Table 27-10 on page 245. When programming the EEPROM, the program data is
latched into a page buffer. This allows one page of data to be programmed simultaneously. The programming algorithm for
the EEPROM data memory is as follows (refer to Section 27.7.4 “Programming the Flash” on page 248 for details on
command, address and data loading):

1. A: Load Command “0001 0001”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. C: Load Data (0x00 - 0xFF).

5. E: Latch data (give PAGEL a positive pulse).

K: Repeat 3 through 5 until the entire buffer is filled.

L: Program EEPROM page

1. Set BS1 to “0”.

2. Give WR a negative pulse. This starts programming of the EEPROM page. RDY/BSY goes low.

3. Wait until to RDY/BSY goes high before programming the next page (See Figure 27-4 for signal waveforms).

Figure 27-4. Programming the EEPROM Waveforms

27.7.6 Reading the Flash

The algorithm for reading the flash memory is as follows (refer to Section 27.7.4 “Programming the Flash” on page 248 for
details on command and address loading):

1. A: Load command “0000 0010”.

2. G: Load address high byte (0x00 - 0xFF).

3. B: Load address low byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The flash word low byte can now be read at DATA.

5. Set BS1 to “1”. The flash word high byte can now be read at DATA.

6. Set OE to “1”.

0x11

A G

DATA

XA1

XA0

BS1

BS2

XTAL1

WR

PAGEL

RDY/BSY

OE

RESET +12V

B C

ADDR. LOW ADDR. LOW

B

DATA XX

C E

K

XXDATA

E L

ADDR. HIGH

251ATmega328P [DATASHEET]
7810D–AVR–01/15

27.7.7 Reading the EEPROM

The algorithm for reading the EEPROM memory is as follows (refer to Section 27.7.4 “Programming the Flash” on page 248
for details on command and address loading):

1. A: Load command “0000 0011”.

2. G: Load address high byte (0x00 - 0xFF).

3. B: Load address low byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The EEPROM data byte can now be read at DATA.

5. Set OE to “1”.

27.7.8 Programming the Fuse Low Bits

The algorithm for programming the fuse low bits is as follows (refer to Section 27.7.4 “Programming the Flash” on page 248
for details on command and data loading):

1. A: Load command “0100 0000”.

2. C: Load data low byte. Bit n = “0” programs and bit n = “1” erases the fuse bit.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

27.7.9 Programming the Fuse High Bits

The algorithm for programming the fuse high bits is as follows (refer to Section 27.7.4 “Programming the Flash” on page 248
for details on command and data loading):

1. A: Load command “0100 0000”.

2. C: Load data low byte. Bit n = “0” programs and bit n = “1” erases the fuse bit.

3. Set BS1 to “1” and BS2 to “0”. This selects high data byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. Set BS1 to “0”. This selects low data byte.

27.7.10 Programming the Extended Fuse Bits

The algorithm for programming the extended fuse bits is as follows (refer to Section 27.7.4 “Programming the Flash” on page
248 for details on command and data loading):

1. 1. A: Load command “0100 0000”.

2. 2. C: Load data low byte. Bit n = “0” programs and bit n = “1” erases the fuse bit.

3. 3. Set BS1 to “0” and BS2 to “1”. This selects extended data byte.

4. 4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. 5. Set BS2 to “0”. This selects low data byte.

ATmega328P [DATASHEET]
7810D–AVR–01/15

252

Figure 27-5. Programming the FUSES Waveforms

27.7.11 Programming the Lock Bits

The algorithm for programming the lock bits is as follows (refer to Section 27.7.4 “Programming the Flash” on page 248 for
details on command and data loading):

1. A: Load command “0010 0000”.

2. C: Load data low byte. Bit n = “0” programs the lock bit. If LB mode 3 is programmed (LB1 and LB2 is
programmed), it is not possible to program the boot lock bits by any external programming mode.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

The lock bits can only be cleared by executing chip erase.

27.7.12 Reading the Fuse and Lock Bits

The algorithm for reading the fuse and lock bits is as follows (refer to Section 27.7.4 “Programming the Flash” on page 248
for details on command loading):

1. A: Load command “0000 0100”.

2. Set OE to “0”, BS2 to “0” and BS1 to “0”. The status of the fuse low bits can now be read at DATA (“0” means
programmed).

3. Set OE to “0”, BS2 to “1” and BS1 to “1”. The status of the fuse high bits can now be read at DATA (“0” means
programmed).

4. Set OE to “0”, BS2 to “1”, and BS1 to “0”. The status of the extended fuse bits can now be read at DATA (“0”
means programmed).

5. Set OE to “0”, BS2 to “0” and BS1 to “1”. The status of the lock bits can now be read at DATA (“0” means
programmed).

6. Set OE to “1”.

0x40

A C

DATA

XA1

XA0

BS1

BS2

XTAL1

WR

PAGEL

RDY/BSY

OE

RESET +12V

0x40 0x40 DATA

A

DATA XX

C

Write Fuse Low byte Write Fuse High byte Write Extended Fuse byte

XXDATA

A

XX

C

253ATmega328P [DATASHEET]
7810D–AVR–01/15

Figure 27-6. Mapping between BS1, BS2 and the Fuse and Lock Bits During Read

27.7.13 Reading the Signature Bytes

The algorithm for reading the signature bytes is as follows (refer to Section 27.7.4 “Programming the Flash” on page 248 for
details on command and address loading):

1. A: Load command “0000 1000”.

2. B: Load address low byte (0x00 - 0x02).

3. Set OE to “0”, and BS1 to “0”. The selected signature byte can now be read at DATA.

4. Set OE to “1”.

27.7.14 Reading the Calibration Byte

The algorithm for reading the calibration byte is as follows (refer to Section 27.7.4 “Programming the Flash” on page 248 for
details on command and address loading):

1. A: Load command “0000 1000”.

2. B: Load address low byte, 0x00.

3. Set OE to “0”, and BS1 to “1”. The calibration byte can now be read at DATA.

4. Set OE to “1”.

27.7.15 Parallel Programming Characteristics

For characteristics of the parallel programming, see Section 28.10 “Parallel Programming Characteristics” on page 265.

Extended Fuse Byte

0

1

Fuse Low Byte

BS2

Fuse High Byte

0

1

Lock Bits

BS2

BS1

DATA

0

1

ATmega328P [DATASHEET]
7810D–AVR–01/15

254

27.8 Serial Downloading

Both the flash and EEPROM memory arrays can be programmed using the serial SPI bus while RESET is pulled to GND.
The serial interface consists of pins SCK, MOSI (input) and MISO (output). After RESET is set low, the programming enable
instruction needs to be executed first before program/erase operations can be executed. NOTE, in Table 27-15, the pin
mapping for SPI programming is listed. Not all parts use the SPI pins dedicated for the internal SPI interface.

Figure 27-7. Serial Programming and Verify(1)

Notes: 1. If the device is clocked by the internal oscillator, it is no need to connect a clock source to the XTAL1 pin.

2. VCC – 0.3V < AVCC < VCC + 0.3V, however, AVCC should always be within 2.7 to 5.5V

When programming the EEPROM, an auto-erase cycle is built into the self-timed programming operation (in the serial mode
ONLY) and there is no need to first execute the chip erase instruction. The chip erase operation turns the content of every
memory location in both the program and EEPROM arrays into 0xFF.

Depending on CKSEL fuses, a valid clock must be present. The minimum low and high periods for the serial clock (SCK)
input are defined as follows:

Low: > 2 CPU clock cycles for fck < 12MHz, 3 CPU clock cycles for fck ≥ 12MHz

High: > 2 CPU clock cycles for fck < 12MHz, 3 CPU clock cycles for fck ≥ 12MHz

27.8.1 Serial Programming Pin Mapping

GND

XTAL1

RESET

VCC

AVCC

+ 1.8V to 5.5V

+ 1.8V to 5.5V(2)

MOSI

MISO

SCK

Table 27-15. Pin Mapping Serial Programming

Symbol Pins I/O Description

MOSI PB3 I Serial data in

MISO PB4 O Serial data out

SCK PB5 I Serial clock

255ATmega328P [DATASHEET]
7810D–AVR–01/15

27.8.2 Serial Programming Algorithm

When writing serial data to the Atmel® ATmega328P, data is clocked on the rising edge of SCK.

When reading data from the ATmega328P, data is clocked on the falling edge of SCK. See Figure 27-9 on page 257 for
timing details.

To program and verify the ATmega328P in the serial programming mode, the following sequence is recommended (see
serial programming instruction set in Table 27-17 on page 256):

1. Power-up sequence:
Apply power between VCC and GND while RESET and SCK are set to “0”. In some systems, the programmer can
not guarantee that SCK is held low during power-up. In this case, RESET must be given a positive pulse of at
least two CPU clock cycles duration after SCK has been set to “0”.

2. Wait for at least 20ms and enable serial programming by sending the programming enable serial instruction to pin
MOSI.

3. The serial programming instructions will not work if the communication is out of synchronization. When in sync.
the second byte (0x53), will echo back when issuing the third byte of the programming enable instruction. Whether
the echo is correct or not, all four bytes of the instruction must be transmitted. If the 0x53 did not echo back, give
RESET a positive pulse and issue a new programming enable command.

4. The flash is programmed one page at a time. The memory page is loaded one byte at a time by supplying the 6
LSB of the address and data together with the load program memory page instruction. To ensure correct loading
of the page, the data low byte must be loaded before data high byte is applied for a given address. The program
memory page is stored by loading the write program memory page instruction with the 7 MSB of the address. If
polling (RDY/BSY) is not used, the user must wait at least tWD_FLASH before issuing the next page (see
Table 27-16). Accessing the serial programming interface before the flash write operation completes can result in
incorrect programming.

5. A: The EEPROM array is programmed one byte at a time by supplying the address and data together with the
appropriate Write instruction. An EEPROM memory location is first automatically erased before new data is
written. If polling (RDY/BSY) is not used, the user must wait at least tWD_EEPROM before issuing the next byte (see
Table 27-16). In a chip erased device, no 0xFFs in the data file(s) need to be programmed.
B: The EEPROM array is programmed one page at a time. The memory page is loaded one byte at a time by
supplying the 6 LSB of the address and data together with the Load EEPROM memory page instruction. The
EEPROM memory page is stored by loading the write EEPROM memory page instruction with the 7 MSB of the
address. When using EEPROM page access only byte locations loaded with the Load EEPROM memory page
instruction is altered. The remaining locations remain unchanged.
If polling (RDY/BSY) is not used, the used must wait at least tWD_EEPROM before issuing the next byte (see
Table 27-16). In a chip erased device, no 0xFF in the data file(s) need to be programmed.

6. Any memory location can be verified by using the read instruction which returns the content at the selected
address at serial output MISO.

7. At the end of the programming session, RESET can be set high to commence normal operation.

8. Power-off sequence (if needed):
Set RESET to “1”.
Turn VCC power off.

Table 27-16. Typical Wait Delay Before Writing the Next Flash or EEPROM Location

Symbol Minimum Wait Delay

tWD_FLASH 4.5ms

tWD_EEPROM 3.6ms

tWD_ERASE 9.0ms

ATmega328P [DATASHEET]
7810D–AVR–01/15

256

27.8.3 Serial Programming Instruction set

Table 27-17 and Figure 27-8 on page 257 describes the Instruction set.

Table 27-17. Serial Programming Instruction Set (Hexadecimal Values)

Instruction/Operation

Instruction Format

Byte 1 Byte 2 Byte 3 Byte4

Programming enable $AC $53 $00 $00

Chip erase (program memory/EEPROM) $AC $80 $00 $00

Poll RDY/BSY $F0 $00 $00 data byte out

Load instructions

Load extended address byte(1) $4D $00 Extended adr $00

Load program memory page, high byte $48 $00 adr LSB high data byte in

Load program memory page, low byte $40 $00 adr LSB low data byte in

Load EEPROM memory page (page
access)

$C1 $00 0000 000aa data byte in

Read instructions

Read program memory, high byte $28 adr MSB adr LSB high data byte out

Read program memory, low byte $20 adr MSB adr LSB low data byte out

Read EEPROM memory $A0 0000 00aa aaaa aaaa data byte out

Read lock bits $58 $00 $00 data byte out

Read signature byte $30 $00 0000 000aa data byte out

Read fuse bits $50 $00 $00 data byte out

Read fuse high bits $58 $08 $00 data byte out

Read extended fuse bits $50 $08 $00 data byte out

Read calibration byte $38 $00 $00 data byte out

Write instructions(6)

Write program memory page $4C adr MSB adr LSB $00

Write EEPROM memory $C0 0000 00aa aaaa aaaa data byte in

Write EEPROM memory page (page
access)

$C2 0000 00aa aaaa aa00 $00

Write lock bits $AC $E0 $00 data byte in

Write fuse bits $AC $A0 $00 data byte in

Write fuse high bits $AC $A8 $00 data byte in

Write extended fuse bits $AC $A4 $00 data byte in

Notes: 1. Not all instructions are applicable for all parts.

2. a = address.

3. Bits are programmed ‘0’, unprogrammed ‘1’.

4. To ensure future compatibility, unused fuses and lock bits should be unprogrammed (‘1’).

5. Refer to the corresponding section for fuse and lock bits, calibration and signature bytes and page size.

6. Instructions accessing program memory use a word address. This address may be random within the page
range.

7. See http://www.atmel.com/avr for application notes regarding programming and programmers.

257ATmega328P [DATASHEET]
7810D–AVR–01/15

If the LSB in RDY/BSY data byte out is ‘1’, a programming operation is still pending. Wait until this bit returns ‘0’ before the
next instruction is carried out.

Within the same page, the low data byte must be loaded prior to the high data byte.

After data is loaded to the page buffer, program the EEPROM page, see Figure 27-8.

Figure 27-8. Serial Programming Instruction Example

27.8.4 SPI Serial Programming Characteristics

Figure 27-9. Serial Programming Waveforms

For characteristics of the SPI module see Section 28.7 “SPI Timing Characteristics” on page 262.

Byte 1 Byte 2 Byte 3 Byte 4

Page 0

Page 1

Page 2

Adr LBSAdr MBS

Bit 15 B 0 Bit 15 B 0

Byte 1 Byte 2 Byte 3 Byte 4

Adr LBSAdr MBS

Page N-1

Program Memory/
EEPROM Memory

Serial Programming Instruction

Page Buffer

Page Number

Page Offset

Load Program Memory Page (High/Low Byte)/
Load EEPROM Memory Page (page access)

Write Program Memory Page/
Write EEPROM Memory Page

SERIAL DATA INPUT
(MOSI)

SERIAL DATA OUTPUT
(MISO)

SERIAL CLOCK INPUT
(SCK)

SAMPLE

MSB LSB

MSB LSB

ATmega328P [DATASHEET]
7810D–AVR–01/15

258

28. Electrical Characteristics

All DC/AC characteristics contained in this datasheet are based on characterization of Atmel® ATmega328P AVR®
microcontroller manufactured in an automotive process technology.

28.1 Absolute Maximum Ratings
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameters Min. Typ. Max. Unit

Operating temperature –55 +125 °C

Storage temperature –65 +150 °C

Voltage on any pin except RESET with respect
to ground

–0.5 VCC + 0.5 V

Voltage on RESET with respect to ground –0.5 +13.0 V

Maximum operating voltage 6.0 V

DC current per I/O pin 40.0 mA

DC current VCC and GND pins 200.0 mA

Injection current at VCC = 0V ±5.0(1) mA

Injection current at VCC = 5V ±1.0 mA
Note: 1. Maximum current per port = ±30mA

28.2 DC Characteristics
TA = –40°C to +125°C, VCC = 2.7V to 5.5V (unless otherwise noted)

Parameter Condition Symbol Min. Typ. Max. Unit

Input low voltage, except
XTAL1 and RESET pin

VCC = 2.7V to 5.5V VIL –0.5 0.3VCC
(1) V

Input high voltage, except
XTAL1 and RESET pins

VCC = 2.7V to 5.5V VIH 0.6VCC
(2) VCC + 0.5 V

Input low voltage,
XTAL1 pin

VCC = 2.7V to 5.5V VIL1 –0.5 0.1VCC
(1) V

Input high voltage,
XTAL1 pin

VCC = 2.7V to 5.5V VIH1 0.7VCC
(2) VCC + 0.5 V

Notes: 1. “Max” means the highest value where the pin is guaranteed to be read as low

2. “Min” means the lowest value where the pin is guaranteed to be read as high

3. Although each I/O port can sink more than the test conditions (20mA at VCC = 5V, 10mA at VCC = 3V) under steady
state conditions (non-transient), the following must be observed:
ATmega328P:
1] The sum of all IOL, for ports C0 - C5, should not exceed 100mA.
2] The sum of all IOL, for ports B0 - B5, D5 - D7, XTAL1, XTAL2 should not exceed 100mA.
3] The sum of all IOL, for ports D0 - D4, should not exceed 100mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current
greater than the listed test condition.

4. Although each I/O port can source more than the test conditions (20mA at VCC = 5V, 10mA at VCC = 3V) under steady
state conditions (non-transient), the following must be observed:
ATmega328P:
1] The sum of all IOH, for ports C0 - C5, D0- D4, should not exceed 150mA.
2] The sum of all IOH, for ports B0 - B5, D5 - D7, XTAL1, XTAL2 should not exceed 150mA.
If IIOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.

259ATmega328P [DATASHEET]
7810D–AVR–01/15

Input low voltage,
RESET pin

VCC = 2.7V to 5.5V VIL2 –0.5 0.1VCC
(1) V

Input high voltage,
RESET pin

VCC = 2.7V to 5.5V VIH2 0.9VCC
(2) VCC + 0.5 V

Output low voltage(3) IOL = 20mA, VCC = 5V
IOL = 5mA, VCC = 3V

VOL
0.8
0.5

V

Output high voltage(4) IOH = –20mA, VCC = 5V
IOH = –10mA, VCC = 3V

VOH
4.1
2.3

V

Input leakage
Current I/O pin

VCC = 5.5V, pin low
(absolute value)

IIL 1 µA

Input leakage
Current I/O pin

VCC = 5.5V, pin high
(absolute value)

IIH 1 µA

Reset pull-up resistor RRST 30 60 k

I/O pin pull-up resistor RPU 20 50 k

Analog comparator
Input offset voltage

0.4V < Vin < Vcc – 0.5
(absolute value)

VACIO 10 40 mV

Analog comparator
Input leakage current

VCC = 5V
Vin = VCC/2

IACLK –50 +50 nA

28.2 DC Characteristics (Continued)
TA = –40°C to +125°C, VCC = 2.7V to 5.5V (unless otherwise noted)

Parameter Condition Symbol Min. Typ. Max. Unit

Notes: 1. “Max” means the highest value where the pin is guaranteed to be read as low

2. “Min” means the lowest value where the pin is guaranteed to be read as high

3. Although each I/O port can sink more than the test conditions (20mA at VCC = 5V, 10mA at VCC = 3V) under steady
state conditions (non-transient), the following must be observed:
ATmega328P:
1] The sum of all IOL, for ports C0 - C5, should not exceed 100mA.
2] The sum of all IOL, for ports B0 - B5, D5 - D7, XTAL1, XTAL2 should not exceed 100mA.
3] The sum of all IOL, for ports D0 - D4, should not exceed 100mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current
greater than the listed test condition.

4. Although each I/O port can source more than the test conditions (20mA at VCC = 5V, 10mA at VCC = 3V) under steady
state conditions (non-transient), the following must be observed:
ATmega328P:
1] The sum of all IOH, for ports C0 - C5, D0- D4, should not exceed 150mA.
2] The sum of all IOH, for ports B0 - B5, D5 - D7, XTAL1, XTAL2 should not exceed 150mA.
If IIOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.

ATmega328P [DATASHEET]
7810D–AVR–01/15

260

28.4 Speed Grades

Figure 28-1. Maximum Frequency

28.5 Clock Characteristics

28.5.1 Calibrated Internal RC Oscillator Accuracy

28.3 DC Characteristics
TA = –40°C to +125°C, VCC = 2.7V to 5.5V (unless otherwise noted)

Parameter Condition Symbol Min. Typ.(2) Max. Units

Power supply current(1)

Active 4MHz, VCC = 3V

ICC

1.5 2.4 mA

Active 8MHz, VCC = 5V 5.2 10 mA

Active 16MHz, VCC = 5V 9.2 14 mA

Idle 4MHz, VCC = 3V 0.25 0.6 mA

Idle 8MHz, VCC = 5V 1.0 1.6 mA

Idle 16MHz, VCC = 5V 1.9 2.8 mA

Power-down mode(3)

WDT enabled, VCC = 3V 44 µA

WDT enabled, VCC = 5V 66 µA

WDT disabled, VCC = 3V 40 µA

WDT disabled, VCC = 5V 60 µA
Notes: 1. Values with Section 9.10 “Minimizing Power Consumption” on page 36 enabled (0xFF).

2. Typical values at 25°C.

3. The current consumption values include input leakage current.

Safe Operating Area

2.7V

8MHz

16MHz

5.5V4.5V

Table 28-1. Calibration Accuracy of Internal RC Oscillator

Frequency VCC Temperature Calibration Accuracy

Factory
Calibration

8.0MHz
3V 25°C ±2%

2.7V to 5.5V –40°C to +125°C ±14%

261ATmega328P [DATASHEET]
7810D–AVR–01/15

28.5.2 Watchdog Oscillator Accuracy

28.5.3 External Clock Drive Waveforms

Figure 28-2. External Clock Drive Waveforms

28.5.4 External Clock Drive

28.6 System and Reset Characteristics

Table 28-2. Accuracy of Watchdog Oscillator

Parameter Condition Symbol Min Typ Max Unit

Watchdog oscillator frequency Vcc = 2.7 to 5.5V Fwdt 76 128 180 KHz

tCHCX

VIH1

VIL1

tCHCX
tCLCH tCHCL

tCLCX

tCLCL

Table 28-3. External Clock Drive

Parameter Symbol

VCC = 2.7 to 5.5V VCC = 4.5 to 5.5V

UnitMin. Max. Min. Max.

Oscillator frequency 1/tCLCL 0 8 0 16 MHz

High time tCHCX 50 25 ns

Low time tCLCX 50 25 ns

Rise time tCLCH 1.6 0.5 ns

Fall time tCHCL 1.6 0.5 ns

Change in period from one
clock cycle to the next

tCLCL 2 2 %

Note: All DC/AC characteristics contained in this datasheet are based on characterization of ATmega328P AVR
microcontroller manufactured in an automotive process technology.

Table 28-4. Reset, Brown-out and Internal Voltage Characteristics

Parameter Symbol Min Typ Max Unit

Brown-out detector hysteresis VHYST 80 mV

Bandgap reference voltage VCC = 5V VBG 1.0 1.1 1.2 V

ATmega328P [DATASHEET]
7810D–AVR–01/15

262

28.7 SPI Timing Characteristics

See Figure 28-3 on page 263 and Figure 28-4 on page 263 for details.

Table 28-5. BODLEVEL Fuse Coding(1)

BODLEVEL 2:0 Fuses Min VBOT Typ VBOT Max VBOT Units

111 BOD disabled

110 Reserved

V101 2.5 2.7 2.9

100 4.0 4.3 4.6

011

Reserved
010

001

000

Note: 1. VBOT may be below nominal minimum operating voltage for some devices. For devices where this is the case,
the device is tested down to VCC = VBOT during the production test. This guarantees that a brown-out reset will
occur before VCC drops to a voltage where correct operation of the microcontroller is no longer guaranteed.
The test is performed using BODLEVEL = 100 and BODLEVEL = 101 for ATmega328P.

Table 28-6. SPI Timing Parameters

Description Mode Min Typ Max

1 SCK period Master See Table 18-5 on page 141

ns

2 SCK high/low Master 50% duty cycle

3 Rise/fall time Master 3.6

4 Setup Master 10

5 Hold Master 10

6 Out to SCK Master 0.5  tsck

7 SCK to out Master 10

8 SCK to out high Master 10

9 SS low to out Slave 15

10 SCK period Slave 4  tck

11 SCK high/low(1) Slave 2  tck

12 Rise/fall time Slave 1600

13 Setup Slave 10

14 Hold Slave tck

15 SCK to out Slave 15

16 SCK to SS high Slave 20

17 SS high to tri-state Slave 10

18 SS low to SCK Slave 20

Notes: 1. In SPI programming mode the minimum SCK high/low period is:
- 2 tCLCL for fCK < 12MHz
- 3 tCLCL for fCK > 12MHz

2. All AC/AC characteristics contained in this datasheet are based on characterization of ATmega328P AVR®
microcontroller manufactured in an automotive process technology.

263ATmega328P [DATASHEET]
7810D–AVR–01/15

Figure 28-3. SPI Interface Timing Requirements (Master Mode)

Figure 28-4. SPI Interface Timing Requirements (Slave Mode)

6

MSB

SS

SCK
(CPOL = 0)

SCK
(CPOL = 1)

MISO
(Data Input)

MOSI
(Data Output)

MSB LSB

LSB...

...

4 5

87

1

2 2

3

9

MSB

SS

SCK
(CPOL = 0)

SCK
(CPOL = 1)

MOSI
(Data Input)

MISO
(Data Output)

MSB X

LSB...

...

13 14

1715

10 16

11 11

12

LSB

ATmega328P [DATASHEET]
7810D–AVR–01/15

264

28.8 2-wire Serial Interface Characteristics

Table 28-7 describes the requirements for devices connected to the 2-wire serial bus. The Atmel® ATmega328P 2-wire serial
interface meets or exceeds these requirements under the noted conditions.

Timing symbols refer to Figure 28-5 on page 265.

Table 28-7. 2-wire Serial Bus Requirements

Parameter Condition Symbol Min Max Units

Input low-voltage VIL –0.5 0.3 VCC V

Input high-voltage VIH 0.7 VCC VCC + 0.5 V

Hysteresis of schmitt trigger inputs Vhys
(1) 0.05 VCC

(2) – V

Output low-voltage 3mA sink current VOL
(1) 0 0.4 V

Rise time for both SDA and SCL tr
(1) 20 + 0.1Cb

(3)(2) 300 ns

Output fall time from VIHmin to VILmax 10pF < Cb < 400pF(3) tof
(1) 20 + 0.1Cb

(3)(2) 250 ns

Spikes suppressed by input filter tSP
(1) 0 50(2) ns

Input current each I/O pin 0.1VCC < Vi < 0.9VCC Ii –10 10 µA

Capacitance for each I/O pin Ci
(1) – 10 pF

SCL clock frequency fCK
(4) >max(16fSCL, 250kHz)(5) fSCL 0 400 kHz

Value of pull-up resistor

fSCL ≤ 100kHz

Rp

fSCL > 100kHz

Hold time (repeated) START condition
fSCL ≤ 100kHz

tHD;STA

4.0 – µs

fSCL > 100kHz 0.6 – µs

Low period of the SCL clock
fSCL ≤ 100kHz

tLOW

4.7 – µs

fSCL > 100kHz 1.3 – µs

High period of the SCL clock
fSCL ≤ 100kHz

tHIGH

4.0 – µs

fSCL > 100kHz 0.6 – µs

Set-up time for a repeated START
condition

fSCL ≤ 100kHz
tSU;STA

4.7 – µs

fSCL > 100kHz 0.6 – µs

Data hold time
fSCL ≤ 100kHz

tHD;DAT

0 3.45 µs

fSCL > 100kHz 0 0.9 µs

Data setup time
fSCL ≤ 100kHz

tSU;DAT

250 – ns

fSCL > 100kHz 100 – ns

Setup time for STOP condition
fSCL ≤ 100kHz

tSU;STO

4.0 – µs

fSCL > 100kHz 0.6 – µs

Bus free time between a STOP and
START condition

fSCL ≤ 100kHz
tBUF

4.7 – µs

fSCL > 100kHz 1.3 – µs

Notes: 1. In Atmel ATmega328P, this parameter is characterized and not 100% tested.

2. Required only for fSCL > 100kHz.

3. Cb = capacitance of one bus line in pF.

4. fCK = CPU clock frequency

5. This requirement applies to all Atmel ATmega328P 2-wire serial interface operation. Other devices connected
to the 2-wire serial bus need only obey the general fSCL requirement.

VCC 0.4V–

3mA
---------------------------- 1000ns

Cb
----------------- 

VCC 0.4V–

3mA
---------------------------- 300ns

Cb
-------------- 

265ATmega328P [DATASHEET]
7810D–AVR–01/15

Figure 28-5. 2-wire Serial Bus Timing

28.9 ADC Characteristics

28.10 Parallel Programming Characteristics

tof

tSU,STA tSU,STO
tHD,STA

tBUF

tHD,DAT tSU,DAT

tHIGH

tLOW tLOW

SCL

SDA

tr

Table 28-8. ADC Characteristics

Parameter Condition Symbol Min Typ Max Unit

Resolution
–40°C +125°C / 2.70 to 5.50V

ADC clock = 200kHz
10 bits

Absolute accuracy Vcc = 4.0V,VREF = 4.0V TUE 2.2 3.5 LSB

Integral non linearity Vcc = 4.0V, VREF = 4.0V INL 0.6 1.5 LSB

Differential non linearity Vcc = 4.0V, VREF = 4.0V DNL 0.3 0.7 LSB

Gain error Vcc = 4.0V, VREF = 4.0V –3.5 +3.5 LSB

Offset error Vcc = 4.0V, VREF = 4.0V –3.5 +3.5 LSB

Clock frequency 50 200 kHz

Analog supply voltage AVCC Vcc – 0.3 Vcc + 0.3 V

Reference voltage VREF 1.0 AVCC V

Input voltage Vin GND VREF V

Internal voltage reference Vcc = 5v Vint 1.0 1.1 1.2 V

Reference input resistance Rref 22.4 32 41.6 k

Analog input resistance Rain 100 M

Table 28-9. Parallel Programming Characteristics, VCC = 5V ±10%

Parameter Symbol Min Typ Max Units

Programming enable voltage VPP 11.5 12.5 V

Programming enable current IPP 250 µA

Data and control valid before XTAL1 high tDVXH 67 ns

XTAL1 low to XTAL1 high tXLXH 200 ns

XTAL1 pulse width high tXHXL 150 ns

Data and control hold after XTAL1 low tXLDX 67 ns

XTAL1 low to WR low tXLWL 0 ns

XTAL1 low to PAGEL high tXLPH 0 ns

PAGEL low to XTAL1 high tPLXH 150 ns

Notes: 1. tWLRH is valid for the write flash, write EEPROM, write fuse bits and write lock bits commands.

2. tWLRH_CE is valid for the chip erase command.

ATmega328P [DATASHEET]
7810D–AVR–01/15

266

Figure 28-6. Parallel Programming Timing, Including some General Timing Requirements

BS1 valid before PAGEL high tBVPH 67 ns

PAGEL pulse width high tPHPL 150 ns

BS1 hold after PAGEL low tPLBX 67 ns

BS2/1 hold after WR low tWLBX 67 ns

PAGEL low to WR low tPLWL 67 ns

BS1 valid to WR low tBVWL 67 ns

WR pulse Width low tWLWH 150 ns

WR low to RDY/BSY low tWLRL 0 1 µs

WR low to RDY/BSY high(1) tWLRH 3.7 4.5 ms

WR low to RDY/BSY high for chip erase(2) tWLRH_CE 7.5 9 ms

XTAL1 low to OE low tXLOL 0 ns

BS1 valid to DATA valid tBVDV 0 250 ns

OE low to DATA valid tOLDV 250 ns

OE high to DATA tri-stated tOHDZ 250 ns

Table 28-9. Parallel Programming Characteristics, VCC = 5V ±10% (Continued)

Parameter Symbol Min Typ Max Units

Notes: 1. tWLRH is valid for the write flash, write EEPROM, write fuse bits and write lock bits commands.

2. tWLRH_CE is valid for the chip erase command.

XTAL1

PAGEL

WR

Data and Control
(DATA, XA0/1, BS1, BS2)

tXHXL

tDVXH

tBVPH

tXLWL

tXLDX

tPHPL

tPLBX

tPLWL

tBVWL tWLBX

tWLWH

tWLRL

tWLRH

RDY/BSY

267ATmega328P [DATASHEET]
7810D–AVR–01/15

Figure 28-7. Parallel Programming Timing, Loading Sequence with Timing Requirements(1)

Note: 1. The timing requirements shown in Figure 28-6 (i.e., tDVXH, tXHXL, and tXLDX) also apply to loading operation.

Figure 28-8. Parallel Programming Timing, Reading Sequence (within the Same Page) with Timing Requirements(1)

Note: 1. The timing requirements shown in Figure 28-6 on page 266 (i.e., tDVXH, tXHXL, and tXLDX) also apply to reading
operation.

XTAL1

BS1

PAGEL

DATA

XA0

XA1

tXLXH tPLXHtXLPH

Load Address
(Low Byte)

Load Data
(Low Byte)

Load Data
(High Byte)

Load Address
(Low Byte)Load Data

ADDR0 (Low Byte) ADDR1 (Low Byte)DATA (Low Byte) DATA (High Byte)

XTAL1

BS1

OE

DATA

XA0

XA1

tBVDV

tXLOL

tOLDV

tOHDZ

Load Address
(Low Byte)

Read Data
(Low Byte)

Read Data
(High Byte)

Load Address
(Low Byte)

ADDR0 (Low Byte) ADDR1 (Low Byte)DATA (Low Byte) DATA (High Byte)

ATmega328P [DATASHEET]
7810D–AVR–01/15

268

29. Typical Characteristics

The data contained in this section are characterized values of actual automotive silicon. Unless otherwise specified, the data
contained in this chapter are for –40° to 125°C.

The following charts show typical behavior. These figures are not tested during manufacturing. All current consumption
measurements are performed with all I/O pins configured as inputs and with internal pull-ups enabled. A square wave
generator with rail-to-rail output is used as clock source.

All Active- and idle current consumption measurements are done with all bits in the PRR register set and thus, the
corresponding I/O modules are turned off. Also the analog comparator is disabled during these measurements. The “supply
current of IO modules” shows the additional current consumption compared to ICC active and ICC idle for every I/O module
controlled by the power reduction register. See Section 9.9 “Power Reduction Register” on page 36 for details.

The power consumption in power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage, operating frequency, loading of I/O pins,
switching rate of I/O pins, code executed and ambient temperature. The dominating factors are operating voltage and
frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as CL  VCC  f where CL = load capacitance,
VCC = operating voltage and f = average switching frequency of I/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to function properly at
frequencies higher than the ordering code indicates.

The difference between current consumption in power-down mode with watchdog timer enabled and power-down mode with
watchdog timer disabled represents the differential current drawn by the watchdog timer.

29.1 ATmega328P Typical Characteristics

29.1.1 Active Supply Current

Figure 29-1. Active Supply Current versus Frequency

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

14

16

12

10

8

6

4

2

0

I C
C
 (

m
A

)

5.5

5.0

4.5

3.6

3.3

3.0

2.7

269ATmega328P [DATASHEET]
7810D–AVR–01/15

Figure 29-2. Idle Supply Current versus Frequency

29.1.2 Power-down Supply Current

Figure 29-3. Power-Down Supply Current versus VCC (Watchdog Timer Disabled)

Figure 29-4. Power-Down Supply Current versus VCC (Watchdog Timer Enabled)

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

3.5

4

3

2.5

2

1.5

1

0.5

0

I C
C
 (

m
A

)

5.5

5.0

4.5

3.6

3.3

3.0

2.7

2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

25

20

15

10

5

0

I C
C
 (

µ
A

)

125

85

25

-45

2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

25

20

35

30

15

10

5

0

I C
C
 (

µ
A

)

125

85

25

-45

ATmega328P [DATASHEET]
7810D–AVR–01/15

270

29.1.3 Pin Pull-Up

Figure 29-5. I/O Pin Pull-up Resistor Current versus Input Voltage (VCC = 5V)

Figure 29-6. Reset Pull-up Resistor Current versus Reset Pin Voltage (VCC = 5 V)

29.1.4 Pin Driver Strength

Figure 29-7. I/O Pin Output Voltage versus Sink Current (VCC = 3 V)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
VOP (V)

120

100

160

140

80

60

40

20

0

I O
P
 (

µ
A

)
125

85

25

-45

0 0.5 1.51 2 2.5 3 3.5 4 4.5 5
VRESET (V)

120

100

80

60

40

20

0

I R
E

S
E

T
 (

µ
A

) 125

85

25

-45

0 2 64 8 10 12 14 16 18 20
IOL (mA)

1.2

1

0.8

0.6

0.4

0.2

0

V
O

L
 (

V
)

125

85

25

-45

271ATmega328P [DATASHEET]
7810D–AVR–01/15

Figure 29-8. I/O Pin Output Voltage versus Sink Current (VCC = 5 V)

Figure 29-9. I/O Pin Output Voltage versus Source Current (VCC = 3 V)

Figure 29-10. I/O Pin Output Voltage versus Source Current (VCC = 5 V)

0 2 64 8 10 12 14 16 18 20
IOL (mA)

0.7

0.5

0.6

0.4

0.3

0.2

0.1

0

V
O

L
 (

V
)

125

85

25

-45

0 2 64 8 10 12 14 16 18 20
IOH (mA)

3.5

2.5

3

2

1.5

1

0.5

0

V
O

H
 (

V
)

125

85

25

-45

0 2 64 8 10 12 14 16 18 20
IOH (mA)

4.9

4.7

4.8

5.1

5

4.6

4.5

4.4

4.3

4.2

V
O

H
 (

V
)

125

85

25

-45

ATmega328P [DATASHEET]
7810D–AVR–01/15

272

29.1.5 Pin Threshold and Hysteresis

Figure 29-11. I/O Pin Input Threshold Voltage versus VCC (VIH, I/O Pin read as ‘1’)

Figure 29-12. I/O Pin Input Threshold Voltage versus VCC (VIL, I/O Pin read as ‘0’)

Figure 29-13. Reset Input Threshold Voltage versus VCC (VIH, I/O Pin read as ‘1’)

2 2.5 3.53 4 4.5 5 5.5
VCC (V)

3

3.5

2.5

2

1.5

1

0.5

0

T
h

re
sh

o
ld

 (
V

) 125

85

25

-45

2 2.5 3.53 4 4.5 5 5.5
VCC (V)

2.5

2

1.5

1

0.5

0

T
h

re
sh

o
ld

 (
V

) 125

85

25

-45

273ATmega328P [DATASHEET]
7810D–AVR–01/15

Figure 29-14. Reset Input Threshold Voltage versus VCC (VIL, I/O Pin read as ‘0’)

29.1.6 BOD Threshold

Figure 29-15. BOD Thresholds versus Temperature (BODLEVEL is 2.7V)

Figure 29-16. BOD Thresholds versus Temperature (BODLEVEL is 4.3V)

2 2.5 3.53 4 4.5 5 5.5

VCC (V)

2.5

2

1.5

1

0.5

0

T
h

re
sh

o
ld

 (
V

) 125

85

25

-45

-60 -50 -30-40 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Temperature (°C)

3

2.9

2.8

2.7

2.6

2.5

2.4

T
h

re
sh

o
ld

 (
V

)

1

0

-60 -50 -30-40 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Temperature (°C)

4.6

4.5

4.4

4.3

4.2

4.1

4

T
h

re
sh

o
ld

 (
V

)

1

0

ATmega328P [DATASHEET]
7810D–AVR–01/15

274

29.1.7 Internal Oscillator Speed

Figure 29-17. Watchdog Oscillator Frequency versus Temperature

Figure 29-18. Calibrated 8MHz RC Oscillator Frequency versus Temperature

Figure 29-19. Calibrated 8MHz RC Oscillator Frequency versus OSCCAL Value

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120

Temperature (°C)

130

120

110

160

150

140

100

90

80

F
R

C
 (

kH
z) 5.5

5.0

4.5

3.3

3.0

2.7

-45 -35 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125

Temperature (°C)

8.1

8

7.9

8.4

8.3

8.2

7.8

7.7

7.6

F
R

C
 (

M
H

z)

5.5

5.0

4.5

3.3

3.0

2.7

0 50 100 150 200 250

OSCCAL (X1)

12

10

8

6

4

14

16

2

0

F
R

C
 (

M
H

z)

125

85

25

-45

275ATmega328P [DATASHEET]
7810D–AVR–01/15

30. Register Summary
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

(0xFF) Reserved – – – – – – – –

(0xFE) Reserved – – – – – – – –

(0xFD) Reserved – – – – – – – –

(0xFC) Reserved – – – – – – – –

(0xFB) Reserved – – – – – – – –

(0xFA) Reserved – – – – – – – –

(0xF9) Reserved – – – – – – – –

(0xF8) Reserved – – – – – – – –

(0xF7) Reserved – – – – – – – –

(0xF6) Reserved – – – – – – – –

(0xF5) Reserved – – – – – – – –

(0xF4) Reserved – – – – – – – –

(0xF3) Reserved – – – – – – – –

(0xF2) Reserved – – – – – – – –

(0xF1) Reserved – – – – – – – –

(0xF0) Reserved – – – – – – – –

(0xEF) Reserved – – – – – – – –

(0xEE) Reserved – – – – – – – –

(0xED) Reserved – – – – – – – –

(0xEC) Reserved – – – – – – – –

(0xEB) Reserved – – – – – – – –

(0xEA) Reserved – – – – – – – –

(0xE9) Reserved – – – – – – – –

(0xE8) Reserved – – – – – – – –

(0xE7) Reserved – – – – – – – –

(0xE6) Reserved – – – – – – – –

(0xE5) Reserved – – – – – – – –

(0xE4) Reserved – – – – – – – –

(0xE3) Reserved – – – – – – – –

(0xE2) Reserved – – – – – – – –

(0xE1) Reserved – – – – – – – –

(0xE0) Reserved – – – – – – – –

(0xDF) Reserved – – – – – – – –

(0xDE) Reserved – – – – – – – –

(0xDD) Reserved – – – – – – – –

(0xDC) Reserved – – – – – – – –

(0xDB) Reserved – – – – – – – –

(0xDA) Reserved – – – – – – – –

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory
addresses should never be written.

2. I/O registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In
these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVR®, the CBI and
SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such status
flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing
I/O registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega328P
is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in opcode
for the IN and OUT instructions. For the extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and
LD/LDS/LDD instructions can be used.

ATmega328P [DATASHEET]
7810D–AVR–01/15

276

(0xD9) Reserved – – – – – – – –

(0xD8) Reserved – – – – – – – –

(0xD7) Reserved – – – – – – – –

(0xD6) Reserved – – – – – – – –

(0xD5) Reserved – – – – – – – –

(0xD4) Reserved – – – – – – – –

(0xD3) Reserved – – – – – – – –

(0xD2) Reserved – – – – – – – –

(0xD1) Reserved – – – – – – – –

(0xD0) Reserved – – – – – – – –

(0xCF) Reserved – – – – – – – –

(0xCE) Reserved – – – – – – – –

(0xCD) Reserved – – – – – – – –

(0xCC) Reserved – – – – – – – –

(0xCB) Reserved – – – – – – – –

(0xCA) Reserved – – – – – – – –

(0xC9) Reserved – – – – – – – –

(0xC8) Reserved – – – – – – – –

(0xC7) Reserved – – – – – – – –

(0xC6) UDR0 USART I/O data register 159

(0xC5) UBRR0H USART baud rate register high 162

(0xC4) UBRR0L USART baud rate register low 162

(0xC3) Reserved – – – – – – – –

(0xC2) UCSR0C UMSEL01 UMSEL00 UPM01 UPM00 USBS0
UCSZ01

/UDORD0
UCSZ00 /
UCPHA0

UCPOL0 161/172

(0xC1) UCSR0B RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80 160

(0xC0) UCSR0A RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0 159

(0xBF) Reserved – – – – – – – –

(0xBE) Reserved – – – – – – – –

(0xBD) TWAMR TWAM6 TWAM5 TWAM4 TWAM3 TWAM2 TWAM1 TWAM0 – 201

(0xBC) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE 199

(0xBB) TWDR 2-wire serial interface data register 200

(0xBA) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE 201

(0xB9) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0 200

(0xB8) TWBR 2-wire serial interface bit rate register 198

(0xB7) Reserved – – – – – – –

(0xB6) ASSR – EXCLK AS2 TCN2UB OCR2AUB OCR2BUB TCR2AUB TCR2BUB 133

(0xB5) Reserved – – – – – – – –

30. Register Summary (Continued)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory
addresses should never be written.

2. I/O registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In
these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVR®, the CBI and
SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such status
flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing
I/O registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega328P
is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in opcode
for the IN and OUT instructions. For the extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and
LD/LDS/LDD instructions can be used.

277ATmega328P [DATASHEET]
7810D–AVR–01/15

(0xB4) OCR2B Timer/Counter2 output compare register B 131

(0xB3) OCR2A Timer/Counter2 output compare register A 131

(0xB2) TCNT2 Timer/Counter2 (8-bit) 131

(0xB1) TCCR2B FOC2A FOC2B – – WGM22 CS22 CS21 CS20 130

(0xB0) TCCR2A COM2A1 COM2A0 COM2B1 COM2B0 – – WGM21 WGM20 127

(0xAF) Reserved – – – – – – – –

(0xAE) Reserved – – – – – – – –

(0xAD) Reserved – – – – – – – –

(0xAC) Reserved – – – – – – – –

(0xAB) Reserved – – – – – – – –

(0xAA) Reserved – – – – – – – –

(0xA9) Reserved – – – – – – – –

(0xA8) Reserved – – – – – – – –

(0xA7) Reserved – – – – – – – –

(0xA6) Reserved – – – – – – – –

(0xA5) Reserved – – – – – – – –

(0xA4) Reserved – – – – – – – –

(0xA3) Reserved – – – – – – – –

(0xA2) Reserved – – – – – – – –

(0xA1) Reserved – – – – – – – –

(0xA0) Reserved – – – – – – – –

(0x9F) Reserved – – – – – – – –

(0x9E) Reserved – – – – – – – –

(0x9D) Reserved – – – – – – – –

(0x9C) Reserved – – – – – – – –

(0x9B) Reserved – – – – – – – –

(0x9A) Reserved – – – – – – – –

(0x99) Reserved – – – – – – – –

(0x98) Reserved – – – – – – – –

(0x97) Reserved – – – – – – – –

(0x96) Reserved – – – – – – – –

(0x95) Reserved – – – – – – – –

(0x94) Reserved – – – – – – – –

(0x93) Reserved – – – – – – – –

(0x92) Reserved – – – – – – – –

(0x91) Reserved – – – – – – – –

(0x90) Reserved – – – – – – – –

(0x8F) Reserved – – – – – – – –

30. Register Summary (Continued)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory
addresses should never be written.

2. I/O registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In
these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVR®, the CBI and
SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such status
flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing
I/O registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega328P
is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in opcode
for the IN and OUT instructions. For the extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and
LD/LDS/LDD instructions can be used.

ATmega328P [DATASHEET]
7810D–AVR–01/15

278

(0x8E) Reserved – – – – – – – –

(0x8D) Reserved – – – – – – – –

(0x8C) Reserved – – – – – – – –

(0x8B) OCR1BH Timer/Counter1 - Output compare register B high byte 111

 (0x8A) OCR1BL Timer/Counter1 - Output compare register B low byte 111

(0x89) OCR1AH Timer/Counter1 - Output compare register A high byte 111

(0x88) OCR1AL Timer/Counter1 - Output compare register A low byte 111

(0x87) ICR1H Timer/Counter1 - Input capture register high byte 112

(0x86) ICR1L Timer/Counter1 - Input capture register low byte 112

(0x85) TCNT1H Timer/Counter1 - Counter register high byte 111

(0x84) TCNT1L Timer/Counter1 - Counter register low byte 111

(0x83) Reserved – – – – – – – –

(0x82) TCCR1C FOC1A FOC1B – – – – – – 111

(0x81) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 110

(0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 – – WGM11 WGM10 108

(0x7F) DIDR1 – – – – – – AIN1D AIN0D 204

(0x7E) DIDR0 – – ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D 220

(0x7D) Reserved – – – – – – – –

(0x7C) ADMUX REFS1 REFS0 ADLAR – MUX3 MUX2 MUX1 MUX0 217

(0x7B) ADCSRB – ACME – – – ADTS2 ADTS1 ADTS0 220

(0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 218

(0x79) ADCH ADC data register high byte 219

(0x78) ADCL ADC data register low byte 219

(0x77) Reserved – – – – – – – –

(0x76) Reserved – – – – – – – –

(0x75) Reserved – – – – – – – –

(0x74) Reserved – – – – – – – –

(0x73) Reserved – – – – – – – –

(0x72) Reserved – – – – – – – –

(0x71) Reserved – – – – – – – –

(0x70) TIMSK2 – – – – – OCIE2B OCIE2A TOIE2 132

(0x6F) TIMSK1 – – ICIE1 – – OCIE1B OCIE1A TOIE1 112

(0x6E) TIMSK0 – – – – – OCIE0B OCIE0A TOIE0 88

(0x6D) PCMSK2 PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 57

(0x6C) PCMSK1 – PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 57

(0x6B) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 57

(0x6A) Reserved – – – – – – – –

(0x69) EICRA – – – – ISC11 ISC10 ISC01 ISC00 54

30. Register Summary (Continued)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory
addresses should never be written.

2. I/O registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In
these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVR®, the CBI and
SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such status
flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing
I/O registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega328P
is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in opcode
for the IN and OUT instructions. For the extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and
LD/LDS/LDD instructions can be used.

279ATmega328P [DATASHEET]
7810D–AVR–01/15

(0x68) PCICR – – – – – PCIE2 PCIE1 PCIE0

(0x67) Reserved – – – – – – – –

(0x66) OSCCAL Oscillator calibration register 32

(0x65) Reserved – – – – – – – –

(0x64) PRR PRTWI PRTIM2 PRTIM0 – PRTIM1 PRSPI PRUSAR0 PRADC 36

(0x63) Reserved – – – – – – – –

(0x62) Reserved – – – – – – – –

(0x61) CLKPR CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 33

(0x60) WDTCSR WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 47

0x3F (0x5F) SREG I T H S V N Z C 10

0x3E (0x5E) SPH – – – – – (SP10) SP9 SP8 13

0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 13

0x3C (0x5C) Reserved – – – – – – – –

0x3B (0x5B) Reserved – – – – – – – –

0x3A (0x5A) Reserved – – – – – – – –

0x39 (0x59) Reserved – – – – – – – –

0x38 (0x58) Reserved – – – – – – – –

0x37 (0x57) SPMCSR SPMIE (RWWSB) – (RWWSRE) BLBSET PGWRT PGERS SELFPRGN 239

0x36 (0x56) Reserved – – – – – – – –

0x35 (0x55) MCUCR – BODS BODSE PUD – – IVSEL IVCE 38/52/72

0x34 (0x54) MCUSR – – – – WDRF BORF EXTRF PORF 46

0x33 (0x53) SMCR – – – – SM2 SM1 SM0 SE 35

0x32 (0x52) Reserved – – – – – – – –

0x31 (0x51) Reserved – – – – – – – –

0x30 (0x50) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 203

0x2F (0x4F) Reserved – – – – – – – –

0x2E (0x4E) SPDR SPI data register 142

0x2D (0x4D) SPSR SPIF WCOL – – – – – SPI2X 141

0x2C (0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 140

0x2B (0x4B) GPIOR2 General purpose I/O register 2 23

0x2A (0x4A) GPIOR1 General purpose I/O register 1 23

0x29 (0x49) Reserved – – – – – – – –

0x28 (0x48) OCR0B Timer/Counter0 output compare register B

0x27 (0x47) OCR0A Timer/Counter0 output compare register A

0x26 (0x46) TCNT0 Timer/Counter0 (8-bit)

0x25 (0x45) TCCR0B FOC0A FOC0B – – WGM02 CS02 CS01 CS00

0x24 (0x44) TCCR0A COM0A1 COM0A0 COM0B1 COM0B0 – – WGM01 WGM00

0x23 (0x43) GTCCR TSM – – – – – PSRASY PSRSYNC 115/134

30. Register Summary (Continued)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory
addresses should never be written.

2. I/O registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In
these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVR®, the CBI and
SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such status
flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing
I/O registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega328P
is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in opcode
for the IN and OUT instructions. For the extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and
LD/LDS/LDD instructions can be used.

ATmega328P [DATASHEET]
7810D–AVR–01/15

280

0x22 (0x42) EEARH (EEPROM address register high byte) 20

0x21 (0x41) EEARL EEPROM address register low byte 20

0x20 (0x40) EEDR EEPROM data register 20

0x1F (0x3F) EECR – – EEPM1 EEPM0 EERIE EEMPE EEPE EERE 20

0x1E (0x3E) GPIOR0 General purpose I/O register 0 23

0x1D (0x3D) EIMSK – – – – – – INT1 INT0 55

0x1C (0x3C) EIFR – – – – – – INTF1 INTF0 55

0x1B (0x3B) PCIFR – – – – – PCIF2 PCIF1 PCIF0

0x1A (0x3A) Reserved – – – – – – – –

0x19 (0x39) Reserved – – – – – – – –

0x18 (0x38) Reserved – – – – – – – –

0x17 (0x37) TIFR2 – – – – – OCF2B OCF2A TOV2 132

0x16 (0x36) TIFR1 – – ICF1 – – OCF1B OCF1A TOV1 113

0x15 (0x35) TIFR0 – – – – – OCF0B OCF0A TOV0

0x14 (0x34) Reserved – – – – – – – –

0x13 (0x33) Reserved – – – – – – – –

0x12 (0x32) Reserved – – – – – – – –

0x11 (0x31) Reserved – – – – – – – –

0x10 (0x30) Reserved – – – – – – – –

0x0F (0x2F) Reserved – – – – – – – –

0x0E (0x2E) Reserved – – – – – – – –

0x0D (0x2D) Reserved – – – – – – – –

0x0C (0x2C) Reserved – – – – – – – –

0x0B (0x2B) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 73

0x0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 73

0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 73

0x08 (0x28) PORTC – PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 73

0x07 (0x27) DDRC – DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 73

0x06 (0x26) PINC – PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 73

0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 72

0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 72

0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 72

0x02 (0x22) Reserved – – – – – – – –

0x01 (0x21) Reserved – – – – – – – –

0x0 (0x20) Reserved – – – – – – – –

30. Register Summary (Continued)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory
addresses should never be written.

2. I/O registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In
these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVR®, the CBI and
SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such status
flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing
I/O registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega328P
is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in opcode
for the IN and OUT instructions. For the extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and
LD/LDS/LDD instructions can be used.

281ATmega328P [DATASHEET]
7810D–AVR–01/15

31. Instruction Set Summary

Mnemonics Operands Description Operation Flags #Clocks

Arithmetic and Logic Instructions

ADD Rd, Rr Add two registers Rd  Rd + Rr Z,C,N,VH 1

ADC Rd, Rr Add with carry two registers Rd  Rd + Rr + C Z,C,N,V,H 1

ADIW Rdl, K Add immediate to word Rdh: Rdl  Rdh: Rdl + K Z,C,N,V,S 2

SUB Rd, Rr Subtract two registers Rd  Rd – Rr Z,C,N,V,H 1

SUBI Rd, K Subtract constant from register Rd  Rd – K Z,C,N,V,H 1

SBC Rd, Rr Subtract with carry two registers Rd  Rd – Rr – C Z,C,N,V,H 1

SBCI Rd, K
Subtract with carry constant from
reg.

Rd  Rd – K – C Z,C,N,V,H 1

SBIW Rdl, K Subtract immediate from word Rdh: Rdl  Rdh: Rdl – K Z,C,N,V,S 2

AND Rd, Rr Logical AND registers Rd Rd  Rr Z,N,V 1

ANDI Rd, K Logical AND register and constant Rd  Rd K Z,N,V 1

OR Rd, Rr Logical OR registers Rd  Rd v Rr Z,N,V 1

ORI Rd, K Logical OR register and constant Rd Rd v K Z,N,V 1

EOR Rd, Rr Exclusive OR registers Rd  Rd  Rr Z,N,V 1

COM Rd One’s complement Rd  0xFF  Rd Z,C,N,V 1

NEG Rd Two’s complement Rd  0x00  Rd Z,C,N,V,H 1

SBR Rd, K Set bit(s) in register Rd  Rd v K Z,N,V 1

CBR Rd, K Clear bit(s) in register Rd  Rd  (0xFF – K) Z,N,V 1

INC Rd Increment Rd  Rd + 1 Z,N,V 1

DEC Rd Decrement Rd  Rd  1 Z,N,V 1

TST Rd Test for zero or minus Rd  Rd  Rd Z,N,V 1

CLR Rd Clear register Rd  Rd  Rd Z,N,V 1

SER Rd Set register Rd  0xFF None 1

MUL Rd, Rr Multiply unsigned R1:R0  Rd  Rr Z,C 2

MULS Rd, Rr Multiply signed R1:R0  Rd  Rr Z,C 2

MULSU Rd, Rr Multiply signed with unsigned R1:R0  Rd  Rr Z,C 2

FMUL Rd, Rr Fractional multiply unsigned R1:R0  (Rd  Rr) << 1 Z,C 2

FMULS Rd, Rr Fractional multiply signed R1:R0  (Rd  Rr) << 1 Z,C 2

FMULSU Rd, Rr
Fractional multiply signed with
unsigned

R1:R0  (Rd  Rr) << 1 Z,C 2

Branch Instructions

RJMP k Relative jump PC PC + k + 1 None 2

IJMP Indirect jump to (Z) PC  Z None 2

JMP k Direct jump PC k None 3

RCALL k Relative subroutine call PC  PC + k + 1 None 3

ICALL Indirect call to (Z) PC  Z None 3

CALL k Direct subroutine call PC  k None 4

RET Subroutine return PC  STACK None 4

RETI Interrupt return PC  STACK I 4

CPSE Rd, Rr Compare, skip if equal if (Rd = Rr) PC PC + 2 or 3 None 1/2/3

CP Rd, Rr Compare Rd  Rr Z,N,V,C,H 1

ATmega328P [DATASHEET]
7810D–AVR–01/15

282

CPC Rd, Rr Compare with carry Rd  Rr  C Z, N,V,C,H 1

CPI Rd, K Compare register with immediate Rd  K Z, N,V,C,H 1

SBRC Rr, b Skip if bit in register cleared if (Rr (b) = 0) PC  PC + 2 or 3 None 1/2/3

SBRS Rr, b Skip if bit in register is set if (Rr(b)=1) PC  PC + 2 or 3 None 1/2/3

SBIC P, b Skip if bit in I/O register cleared if (P(b)=0) PC  PC + 2 or 3 None 1/2/3

SBIS P, b Skip if bit in I/O register is set if (P(b)=1) PC  PC + 2 or 3 None 1/2/3

BRBS s, k Branch if status flag set if (SREG(s) = 1) then PCPC + k + 1 None 1/2

BRBC s, k Branch if status flag cleared if (SREG(s) = 0) then PCPC + k + 1 None 1/2

BREQ k Branch if equal if (Z = 1) then PC  PC + k + 1 None 1/2

BRNE k Branch if not equal if (Z = 0) then PC  PC + k + 1 None 1/2

BRCS k Branch if carry set if (C = 1) then PC  PC + k + 1 None 1/2

BRCC k Branch if carry cleared if (C = 0) then PC  PC + k + 1 None 1/2

BRSH k Branch if same or higher if (C = 0) then PC  PC + k + 1 None 1/2

BRLO k Branch if lower if (C = 1) then PC  PC + k + 1 None 1/2

BRMI k Branch if minus if (N = 1) then PC  PC + k + 1 None 1/2

BRPL k Branch if plus if (N = 0) then PC  PC + k + 1 None 1/2

BRGE k Branch if greater or equal, signed if (N  V= 0) then PC  PC + k + 1 None 1/2

BRLT k Branch if less than zero, signed if (N  V= 1) then PC  PC + k + 1 None 1/2

BRHS k Branch if half carry flag set if (H = 1) then PC  PC + k + 1 None 1/2

BRHC k Branch if half carry flag cleared if (H = 0) then PC  PC + k + 1 None 1/2

BRTS k Branch if T flag set if (T = 1) then PC  PC + k + 1 None 1/2

BRTC k Branch if T flag cleared if (T = 0) then PC  PC + k + 1 None 1/2

BRVS k Branch if overflow flag is set if (V = 1) then PC  PC + k + 1 None 1/2

BRVC k Branch if overflow flag is cleared if (V = 0) then PC  PC + k + 1 None 1/2

BRIE k Branch if interrupt enabled if (I = 1) then PC  PC + k + 1 None 1/2

BRID k Branch if interrupt disabled if (I = 0) then PC  PC + k + 1 None 1/2

Bit and Bit-Test Instructions

SBI P, b Set bit in I/O register I/O (P, b)  1 None 2

CBI P, b Clear bit in I/O register I/O (P, b)  0 None 2

LSL Rd Logical shift left Rd(n+1)  Rd (n), Rd(0)  0 Z,C,N,V 1

LSR Rd Logical shift right Rd (n)  Rd(n+1), Rd(7)  0 Z,C,N,V 1

ROL Rd Rotate left through carry Rd(0) C,Rd(n+1)  Rd (n), C Rd(7) Z,C,N,V 1

ROR Rd Rotate right through carry Rd(7)  C, Rd (n)  Rd(n+1),C Rd(0) Z,C,N,V 1

ASR Rd Arithmetic shift right Rd (n)  Rd(n+1), n=0..6 Z,C,N,V 1

SWAP Rd Swap nibbles Rd(3..0) Rd(7..4),Rd(7..4) Rd(3..0) None 1

BSET s Flag set SREG (s)  1 SREG (s) 1

BCLR s Flag clear SREG (s)  0 SREG (s) 1

BST Rr, b Bit store from register to T T  Rr (b) T 1

BLD Rd, b Bit load from T to register Rd (b)  T None 1

SEC Set carry C  1 C 1

CLC Clear carry C  0 C 1

SEN Set negative flag N  1 N 1

31. Instruction Set Summary (Continued)

Mnemonics Operands Description Operation Flags #Clocks

283ATmega328P [DATASHEET]
7810D–AVR–01/15

CLN Clear negative flag N  0 N 1

SEZ Set zero flag Z  1 Z 1

CLZ Clear zero flag Z  0 Z 1

SEI Global interrupt enable I  1 I 1

CLI Global interrupt disable I 0 I 1

SES Set signed test flag S  1 S 1

CLS Clear signed test flag S  0 S 1

SEV Set twos complement overflow. V  1 V 1

CLV Clear twos complement overflow V  0 V 1

SET Set T in SREG T  1 T 1

CLT Clear T in SREG T  0 T 1

SEH Set half carry flag in SREG H  1 H 1

CLH Clear half carry flag in SREG H  0 H 1

Data Transfer Instructions

MOV Rd, Rr Move between registers Rd  Rr None 1

MOVW Rd, Rr Copy register word Rd+1:Rd  Rr+1:Rr None 1

LDI Rd, K Load immediate Rd  K None 1

LD Rd, X Load indirect Rd  (X) None 2

LD Rd, X+ Load indirect and post-inc. Rd  (X), X  X + 1 None 2

LD Rd, – X Load indirect and pre-dec. X  X – 1, Rd  (X) None 2

LD Rd, Y Load indirect Rd  (Y) None 2

LD Rd, Y+ Load indirect and post-inc. Rd  (Y), Y  Y + 1 None 2

LD Rd, – Y Load indirect and pre-dec. Y  Y – 1, Rd  (Y) None 2

LDD Rd, Y+ q Load indirect with displacement Rd  (Y + q) None 2

LD Rd, Z Load indirect Rd  (Z) None 2

LD Rd, Z+ Load indirect and post-inc. Rd  (Z), Z  Z+1 None 2

LD Rd, –Z Load indirect and pre-dec. Z  Z – 1, Rd  (Z) None 2

LDD Rd, Z+ q Load indirect with displacement Rd  (Z + q) None 2

LDS Rd, k Load direct from SRAM Rd  (k) None 2

ST X, Rr Store indirect (X) Rr None 2

ST X+, Rr Store indirect and post-inc. (X) Rr, X  X + 1 None 2

ST – X, Rr Store indirect and pre-dec. X  X – 1, (X)  Rr None 2

ST Y, Rr Store indirect (Y)  Rr None 2

ST Y+, Rr Store indirect and post-inc. (Y)  Rr, Y  Y + 1 None 2

ST – Y, Rr Store indirect and pre-dec. Y  Y – 1, (Y)  Rr None 2

STD Y+ q, Rr Store indirect with displacement (Y + q)  Rr None 2

ST Z, Rr Store indirect (Z)  Rr None 2

ST Z +, Rr Store indirect and post-inc. (Z)  Rr, Z  Z + 1 None 2

ST –Z, Rr Store indirect and pre-dec. Z  Z – 1, (Z)  Rr None 2

STD Z + q, Rr Store indirect with displacement (Z + q)  Rr None 2

STS k, Rr Store direct to SRAM (k)  Rr None 2

LPM Load program memory R0  (Z) None 3

31. Instruction Set Summary (Continued)

Mnemonics Operands Description Operation Flags #Clocks

ATmega328P [DATASHEET]
7810D–AVR–01/15

284

LPM Rd, Z Load program memory Rd  (Z) None 3

LPM Rd, Z+ Load program memory and post-inc Rd  (Z), Z  Z+1 None 3

SPM Store program memory (Z)  R1:R0 None –

IN Rd, P In port Rd  P None 1

OUT P, Rr Out port P  Rr None 1

PUSH Rr Push register on stack STACK  Rr None 2

POP Rd Pop register from stack Rd  STACK None 2

MCU Control Instructions

NOP No operation None 1

SLEEP Sleep (see specific descr. for sleep function) None 1

WDR Watchdog reset (see specific descr. for WDR/timer) None 1

BREAK Break For on-chip debug only None N/A

31. Instruction Set Summary (Continued)

Mnemonics Operands Description Operation Flags #Clocks

285ATmega328P [DATASHEET]
7810D–AVR–01/15

32. Ordering Information

32.1 ATmega328P

Speed (MHz)(2) Power Supply Ordering Code Package(1) Operational Range

16 2.7 to 5.5V ATmega328P-15AZ MA
Automotive

(–40°C to +125°C)

16 2.7 to 5.5V ATmega328P-15MZ PN
Automotive

(–40°C to +125°C)

Notes: 1. Pb-free packaging complies to the european directive for restriction of hazardous substances (RoHS directive).
Also halide free and fully green.

2. See Figure 28-3 on page 263.

Package Type

MA
MA, 32 - Lead, 77mm body size, 1.0mm body thickness 0.5mm lead pitch, thin profile plastic quad flat
package (TQFP)

PN PN, 32-Lead, 55mm body, 0.50mm, quad flat no lead package (QFN)

ATmega328P [DATASHEET]
7810D–AVR–01/15

286

33. Packaging Information

33.1 MA

Package Drawing Contact:
packagedrawings@atmel.com

GPC DRAWING NO. REV. TITLE

MAAUT C

02/29/12

MA, 32 Lds - 0.80mm Pitch, 7x7x1.00mm Body size
Thin Profile Plastic Quad Flat Package (TQFP)

D1

D

E

Drawings not scaled

E1

C

0°~7°

L

32

1.Notes:
2.

3.

This drawing is for general information only. Refer to JEDEC Drawing MS-026, Variation ABA.
Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25mm per side.
Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.
Lead coplanarity is 0.10mm maximum.

A
A2
A1

1

e

b

COMMON DIMENSIONS
(Unit of Measure = mm)

MIN NOM NOTEMAXSymbol

0.150.05A1

0.200.09C

0.80 TYP.e
32n

0.450.30b
0.750.45L

7.106.90 7.00D1/E1
9.00 9.258.75D/E
1.00 1.050.95A2

1.20A

2

Top View

Side View

Bottom View

287ATmega328P [DATASHEET]
7810D–AVR–01/15

33.2 PN

Package Drawing Contact:
packagedrawings@atmel.com

GPC DRAWING NO. REV. TITLE

PNZMF I

01/31/12

PN, 32 Leads - 0.50mm Pitch, 5x5mm
Very Thin Quad Flat no Lead Package (VQFN) Sawn

D

E

D2

E2

1

b

PIN1 ID

eSee Options
A, B

Option A

Pin 1# Chamfer
(C 0.30)

Pin 1# Notch
(C 0.20 R)

Option B

L

Drawings not scaled

N

1.Notes:
2.

This drawing is for general information only. Refer to JEDEC Drawing MO-220, Variation VHHD-2, for proper dimensions, tolerances, datums, etc.
Dimensions b applies to metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip.
If the terminal has the optical radius on the other end of the terminal, the dimensions should not be measured in that radius area.

A
A3

A1

0.080 C
C

1
0.30

Dia. Typ. Laser Marking

Seating Plane

COMMON DIMENSIONS
(Unit of Measure = mm)

MIN NOM NOTEMAXSymbol

0.050.00
0.80 0.85

A1

0.500.30 0.40L

32
0.50 BSC

n
e

0.30 20.18 0.25b

3.203.00 3.10D2/E2
5.00 BSCD/E
0.20 REFA3

0.90A

Top View
Side View

Bottom View

ATmega328P [DATASHEET]
7810D–AVR–01/15

288

34. Errata

34.1 Errata ATmega328P

The revision letter in this section refers to the revision of the Atmel® ATmega328P device.

34.1.1 Revision D

No known errata.

34.1.2 Revision A to Revision C

Not sampled.

35. Revision History

Please note that the following page numbers referred to in this section refer to the specific revision mentioned, not to this
document.

Revision No. History

7810D-AVR-01/15 Put datasheet in the latest template

7810C-AVR-10/12 ATmega88P and ATmega168P references removed

7810B-AVR-03/12
MA package updated

PN package updated

7810A-AVR-11/09
Creation of the automotive version starting from industrial version based on the

ATmega48P/88P/168P/328P datasheet 8025F-AVR-08/08. Temperature and voltage
ranges reflecting automotive requirements.

289ATmega328P [DATASHEET]
7810D–AVR–01/15

36. Table of Contents

Features . 1

1. Pin Configurations . 3
1.1 Pin Descriptions . 4
1.2 Disclaimer . 5
1.3 Automotive Quality Grade . 5

2. Overview . 6
2.1 Block Diagram . 6

3. Resources . 8

4. Data Retention . 8

5. About Code Examples . 8

6. AVR CPU Core . 9
6.1 Overview . 9
6.2 ALU – Arithmetic Logic Unit . 10
6.3 Status Register . 10
6.4 General Purpose Register File . 12
6.5 Stack Pointer . 13
6.6 Instruction Execution Timing . 14
6.7 Reset and Interrupt Handling . 15

7. AVR Memories . 17
7.1 Overview . 17
7.2 In-System Reprogrammable Flash Program Memory . 17
7.3 SRAM Data Memory . 18
7.4 EEPROM Data Memory . 19
7.5 I/O Memory . 19
7.6 Register Description. 20

8. System Clock and Clock Options . 24
8.1 Clock Systems and their Distribution . 24
8.2 Clock Sources . 25
8.3 Low Power Crystal Oscillator . 26
8.4 Full Swing Crystal Oscillator . 27
8.5 Low Frequency Crystal Oscillator . 29
8.6 Calibrated Internal RC Oscillator . 29
8.7 128 kHz Internal Oscillator. 30
8.8 External Clock . 31
8.9 Clock Output Buffer . 31
8.10 Timer/Counter Oscillator . 32
8.11 System Clock Prescaler. 32
8.12 Register Description. 32

ATmega328P [DATASHEET]
7810D–AVR–01/15

290

9. Power Management and Sleep Modes . 34
9.1 Sleep Modes . 34
9.2 BOD Disable . 35
9.3 Idle Mode . 35
9.4 ADC Noise Reduction Mode . 35
9.5 Power-down Mode. 35
9.6 Power-save Mode . 36
9.7 Standby Mode . 36
9.8 Extended Standby Mode . 36
9.9 Power Reduction Register . 36
9.10 Minimizing Power Consumption. 36
9.11 Register Description. 37

10. System Control and Reset . 40
10.1 Resetting the AVR . 40
10.2 Reset Sources . 40
10.3 Power-on Reset . 41
10.4 External Reset . 42
10.5 Brown-out Detection . 42
10.6 Watchdog System Reset . 43
10.7 Internal Voltage Reference . 43
10.8 Watchdog Timer. 43
10.9 Register Description. 46

11. Interrupts . 49
11.1 Interrupt Vectors in ATmega328P . 49
11.2 Register Description . 52

12. External Interrupts . 53
12.1 Pin Change Interrupt Timing . 53
12.2 Register Description . 54

13. I/O-Ports . 58
13.1 Overview . 58
13.2 Ports as General Digital I/O . 59
13.3 Alternate Port Functions . 63
13.4 Register Description. 72

14. 8-bit Timer/Counter0 with PWM . 74
14.1 Features. 74
14.2 Overview . 74
14.3 Timer/Counter Clock Sources . 75
14.4 Counter Unit. 75
14.5 Output Compare Unit . 76
14.6 Compare Match Output Unit . 77
14.7 Modes of Operation . 78
14.8 Timer/Counter Timing Diagrams . 82
14.9 Register Description . 84

291ATmega328P [DATASHEET]
7810D–AVR–01/15

15. 16-bit Timer/Counter1 with PWM . 89
15.1 Features. 89
15.2 Overview . 89
15.3 Accessing 16-bit Registers . 91
15.4 Timer/Counter Clock Sources . 94
15.5 Counter Unit . 95
15.6 Input Capture Unit . 95
15.7 Output Compare Units . 97
15.8 Compare Match Output Unit . 99
15.9 Modes of Operation . 100
15.10 Timer/Counter Timing Diagrams . 106
15.11 Register Description . 108

16. Timer/Counter0 and Timer/Counter1 Prescalers . 114
16.1 Internal Clock Source. 114
16.2 Prescaler Reset . 114
16.3 External Clock Source . 114
16.4 Register Description. 115

17. 8-bit Timer/Counter2 with PWM and Asynchronous Operation 116
17.1 Features. 116
17.2 Overview . 116
17.3 Timer/Counter Clock Sources . 117
17.4 Counter Unit. 117
17.5 Output Compare Unit . 118
17.6 Compare Match Output Unit . 119
17.7 Modes of Operation . 120
17.8 Timer/Counter Timing Diagrams . 124
17.9 Asynchronous Operation of Timer/Counter2 . 126
17.10 Timer/Counter Prescaler . 127
17.11 Register Description. 127

18. SPI – Serial Peripheral Interface . 135
18.1 Features. 135
18.2 Overview . 135
18.3 SS Pin Functionality. 138
18.4 Data Modes . 139
18.5 Register Description. 140

19. USART0 . 143
19.1 Features. 143
19.2 Overview . 143
19.3 Clock Generation . 144
19.4 Frame Formats . 147
19.5 USART Initialization . 148
19.6 Data Transmission – The USART Transmitter . 150
19.7 Data Reception – The USART Receiver . 152
19.8 Asynchronous Data Reception . 155
19.9 Multi-processor Communication Mode . 158
19.10 Register Description . 159
19.11 Examples of Baud Rate Setting . 163

ATmega328P [DATASHEET]
7810D–AVR–01/15

292

20. USART in SPI Mode . 166
20.1 Features. 166
20.2 Overview . 166
20.3 Clock Generation . 166
20.4 SPI Data Modes and Timing . 167
20.5 Frame Formats . 167
20.6 Data Transfer . 169
20.7 AVR USART MSPIM versus AVR SPI. 170
20.8 Register Description. 170

21. 2-wire Serial Interface . 173
21.1 Features. 173
21.2 2-wire Serial Interface Bus Definition. 173
21.3 Data Transfer and Frame Format . 174
21.4 Multi-master Bus Systems, Arbitration and Synchronization . 177
21.5 Overview of the TWI Module . 179
21.6 Using the TWI . 181
21.7 Transmission Modes . 184
21.8 Multi-master Systems and Arbitration . 197
21.9 Register Description. 198

22. Analog Comparator . 202
22.1 Overview . 202
22.2 Analog Comparator Multiplexed Input . 202
22.3 Register Description. 203

23. Analog-to-Digital Converter . 205
23.1 Features. 205
23.2 Overview . 205
23.3 Starting a Conversion . 207
23.4 Prescaling and Conversion Timing . 208
23.5 Changing Channel or Reference Selection . 211
23.6 ADC Noise Canceler . 211
23.7 ADC Conversion Result . 215
23.8 Temperature Measurement . 215
23.9 Register Description . 217

24. debugWIRE On-chip Debug System . 221
24.1 Features. 221
24.2 Overview . 221
24.3 Physical Interface. 221
24.4 Software Break Points . 222
24.5 Limitations of debugWIRE . 222
24.6 Register Description. 222

25. Self-Programming the Flash, ATmega328P . 223
25.1 Overview . 223
25.2 Addressing the Flash During Self-Programming . 224
25.3 Register Description’ . 228

293ATmega328P [DATASHEET]
7810D–AVR–01/15

26. Boot Loader Support – Read-While-Write Self-Programming 229
26.1 Features. 229
26.2 Overview . 229
26.3 Application and Boot Loader Flash Sections . 229
26.4 Read-While-Write and No Read-While-Write Flash Sections . 229
26.5 Boot Loader Lock Bits . 231
26.6 Entering the Boot Loader Program . 232
26.7 Addressing the Flash During Self-Programming . 233
26.8 Self-Programming the Flash . 234
26.9 Register Description. 239

27. Memory Programming . 241
27.1 Program And Data Memory Lock Bits . 241
27.2 Fuse Bits . 242
27.3 Signature Bytes . 244
27.4 Calibration Byte . 244
27.5 Page Size . 245
27.6 Parallel Programming Parameters, Pin Mapping, and Commands 245
27.7 Parallel Programming . 247
27.8 Serial Downloading . 254

28. Electrical Characteristics . 258
28.1 Absolute Maximum Ratings . 258
28.2 DC Characteristics . 258
28.3 DC Characteristics . 260
28.4 Speed Grades . 260
28.5 Clock Characteristics . 260
28.6 System and Reset Characteristics. 261
28.7 SPI Timing Characteristics. 262
28.8 2-wire Serial Interface Characteristics . 264
28.9 ADC Characteristics. 265
28.10 Parallel Programming Characteristics . 265

29. Typical Characteristics . 268
29.1 ATmega328P Typical Characteristics . 268

30. Register Summary . 275

31. Instruction Set Summary . 281

32. Ordering Information . 285
32.1 ATmega328P. 285

33. Packaging Information . 286
33.1 MA . 286
33.2 PN . 287

34. Errata . 288
34.1 Errata ATmega328P . 288

35. Revision History . 288

36. Table of Contents . 289

XX X XX X
Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2015 Atmel Corporation. / Rev.: 7810D–AVR–01/15

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR®, AVR Studio®, and others are registered trademarks or trademarks of Atmel
Corporation in U.S. and other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended,
authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written
consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems.
Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are
not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.

https://plus.google.com/117391618085377601886/posts
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
http://www.youtube.com/user/AtmelCorporation
https://www.facebook.com/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
www.atmel.com
www.atmel.com

	Features
	1. Pin Configurations
	1.1 Pin Descriptions
	1.1.1 VCC
	1.1.2 GND
	1.1.3 Port B (PB7:0) XTAL1/XTAL2/TOSC1/TOSC2
	1.1.4 Port C (PC5:0)
	1.1.5 PC6/RESET
	1.1.6 Port D (PD7:0)
	1.1.7 AVCC
	1.1.8 AREF
	1.1.9 ADC7:6 (TQFP and QFN/MLF Package Only)

	1.2 Disclaimer
	1.3 Automotive Quality Grade

	2. Overview
	2.1 Block Diagram

	3. Resources
	4. Data Retention
	5. About Code Examples
	6. AVR CPU Core
	6.1 Overview
	6.2 ALU – Arithmetic Logic Unit
	6.3 Status Register
	6.3.1 SREG – AVR Status Register

	6.4 General Purpose Register File
	6.4.1 The X-register, Y-register, and Z-register

	6.5 Stack Pointer
	6.5.1 SPH and SPL – Stack Pointer High and Stack Pointer Low Register

	6.6 Instruction Execution Timing
	6.7 Reset and Interrupt Handling
	6.7.1 Interrupt Response Time

	7. AVR Memories
	7.1 Overview
	7.2 In-System Reprogrammable Flash Program Memory
	7.3 SRAM Data Memory
	7.3.1 Data Memory Access Times

	7.4 EEPROM Data Memory
	7.4.1 EEPROM Read/Write Access
	7.4.2 Preventing EEPROM Corruption

	7.5 I/O Memory
	7.5.1 General Purpose I/O Registers

	7.6 Register Description
	7.6.1 EEARH and EEARL – The EEPROM Address Register
	7.6.2 EEDR – The EEPROM Data Register
	7.6.3 EECR – The EEPROM Control Register
	7.6.4 GPIOR2 – General Purpose I/O Register 2
	7.6.5 GPIOR1 – General Purpose I/O Register 1
	7.6.6 GPIOR0 – General Purpose I/O Register 0

	8. System Clock and Clock Options
	8.1 Clock Systems and their Distribution
	8.1.1 CPU Clock – clkCPU
	8.1.2 I/O Clock – clkI/O
	8.1.3 Flash Clock – clkFLASH
	8.1.4 Asynchronous Timer Clock – clkASY
	8.1.5 ADC Clock – clkADC

	8.2 Clock Sources
	8.2.1 Default Clock Source
	8.2.2 Clock Startup Sequence

	8.3 Low Power Crystal Oscillator
	8.4 Full Swing Crystal Oscillator
	8.5 Low Frequency Crystal Oscillator
	8.6 Calibrated Internal RC Oscillator
	8.7 128 kHz Internal Oscillator
	8.8 External Clock
	8.9 Clock Output Buffer
	8.10 Timer/Counter Oscillator
	8.11 System Clock Prescaler
	8.12 Register Description
	8.12.1 OSCCAL – Oscillator Calibration Register
	8.12.2 CLKPR – Clock Prescale Register

	9. Power Management and Sleep Modes
	9.1 Sleep Modes
	9.2 BOD Disable
	9.3 Idle Mode
	9.4 ADC Noise Reduction Mode
	9.5 Power-down Mode
	9.6 Power-save Mode
	9.7 Standby Mode
	9.8 Extended Standby Mode
	9.9 Power Reduction Register
	9.10 Minimizing Power Consumption
	9.10.1 Analog to Digital Converter
	9.10.2 Analog Comparator
	9.10.3 Brown-out Detector
	9.10.4 Internal Voltage Reference
	9.10.5 Watchdog Timer
	9.10.6 Port Pins
	9.10.7 On-chip Debug System

	9.11 Register Description
	9.11.1 SMCR – Sleep Mode Control Register
	9.11.2 MCUCR – MCU Control Register
	9.11.3 PRR – Power Reduction Register

	10. System Control and Reset
	10.1 Resetting the AVR
	10.2 Reset Sources
	10.3 Power-on Reset
	10.4 External Reset
	10.5 Brown-out Detection
	10.6 Watchdog System Reset
	10.7 Internal Voltage Reference
	10.7.1 Voltage Reference Enable Signals and Start-up Time

	10.8 Watchdog Timer
	10.8.1 Features
	10.8.2 Overview

	10.9 Register Description
	10.9.1 MCUSR – MCU Status Register
	10.9.2 WDTCSR – Watchdog Timer Control Register

	11. Interrupts
	11.1 Interrupt Vectors in ATmega328P
	11.2 Register Description
	11.2.1 Moving Interrupts Between Application and Boot Space
	11.2.2 MCUCR – MCU Control Register

	12. External Interrupts
	12.1 Pin Change Interrupt Timing
	12.2 Register Description
	12.2.1 EICRA – External Interrupt Control Register A
	12.2.2 EIMSK – External Interrupt Mask Register
	12.2.3 EIFR – External Interrupt Flag Register
	12.2.4 PCICR – Pin Change Interrupt Control Register
	12.2.5 PCIFR – Pin Change Interrupt Flag Register
	12.2.6 PCMSK2 – Pin Change Mask Register 2
	12.2.7 PCMSK1 – Pin Change Mask Register 1
	12.2.8 PCMSK0 – Pin Change Mask Register 0

	13. I/O-Ports
	13.1 Overview
	13.2 Ports as General Digital I/O
	13.2.1 Configuring the Pin
	13.2.2 Toggling the Pin
	13.2.3 Switching Between Input and Output
	13.2.4 Reading the Pin Value
	13.2.5 Digital Input Enable and Sleep Modes
	13.2.6 Unconnected Pins

	13.3 Alternate Port Functions
	13.3.1 Alternate Functions of Port B
	13.3.2 Alternate Functions of Port C
	13.3.3 Alternate Functions of Port D

	13.4 Register Description
	13.4.1 MCUCR – MCU Control Register
	13.4.2 PORTB – The Port B Data Register
	13.4.3 DDRB – The Port B Data Direction Register
	13.4.4 PINB – The Port B Input Pins Address
	13.4.5 PORTC – The Port C Data Register
	13.4.6 DDRC – The Port C Data Direction Register
	13.4.7 PINC – The Port C Input Pins Address
	13.4.8 PORTD – The Port D Data Register
	13.4.9 DDRD – The Port D Data Direction Register
	13.4.10 PIND – The Port D Input Pins Address

	14. 8-bit Timer/Counter0 with PWM
	14.1 Features
	14.2 Overview
	14.2.1 Definitions
	14.2.2 Registers

	14.3 Timer/Counter Clock Sources
	14.4 Counter Unit
	14.5 Output Compare Unit
	14.5.1 Force Output Compare
	14.5.2 Compare Match Blocking by TCNT0 Write
	14.5.3 Using the Output Compare Unit

	14.6 Compare Match Output Unit
	14.6.1 Compare Output Mode and Waveform Generation

	14.7 Modes of Operation
	14.7.1 Normal Mode
	14.7.2 Clear Timer on Compare Match (CTC) Mode
	14.7.3 Fast PWM Mode
	14.7.4 Phase Correct PWM Mode

	14.8 Timer/Counter Timing Diagrams
	14.9 Register Description
	14.9.1 TCCR0A – Timer/Counter Control Register A
	14.9.2 TCCR0B – Timer/Counter Control Register B
	14.9.3 TCNT0 – Timer/Counter Register
	14.9.4 OCR0A – Output Compare Register A
	14.9.5 OCR0B – Output Compare Register B
	14.9.6 TIMSK0 – Timer/Counter Interrupt Mask Register
	14.9.7 TIFR0 – Timer/Counter 0 Interrupt Flag Register

	15. 16-bit Timer/Counter1 with PWM
	15.1 Features
	15.2 Overview
	15.2.1 Registers
	15.2.2 Definitions

	15.3 Accessing 16-bit Registers
	15.3.1 Reusing the Temporary High Byte Register

	15.4 Timer/Counter Clock Sources
	15.5 Counter Unit
	15.6 Input Capture Unit
	15.6.1 Input Capture Trigger Source
	15.6.2 Noise Canceler
	15.6.3 Using the Input Capture Unit

	15.7 Output Compare Units
	15.7.1 Force Output Compare
	15.7.2 Compare Match Blocking by TCNT1 Write
	15.7.3 Using the Output Compare Unit

	15.8 Compare Match Output Unit
	15.8.1 Compare Output Mode and Waveform Generation

	15.9 Modes of Operation
	15.9.1 Normal Mode
	15.9.2 Clear Timer on Compare Match (CTC) Mode
	15.9.3 Fast PWM Mode
	15.9.4 Phase Correct PWM Mode
	15.9.5 Phase and Frequency Correct PWM Mode

	15.10 Timer/Counter Timing Diagrams
	15.11 Register Description
	15.11.1 TCCR1A – Timer/Counter1 Control Register A
	15.11.2 TCCR1B – Timer/Counter1 Control Register B
	15.11.3 TCCR1C – Timer/Counter1 Control Register C
	15.11.4 TCNT1H and TCNT1L – Timer/Counter1
	15.11.5 OCR1AH and OCR1AL – Output Compare Register 1 A
	15.11.6 OCR1BH and OCR1BL – Output Compare Register 1 B
	15.11.7 ICR1H and ICR1L – Input Capture Register 1
	15.11.8 TIMSK1 – Timer/Counter1 Interrupt Mask Register
	15.11.9 TIFR1 – Timer/Counter1 Interrupt Flag Register

	16. Timer/Counter0 and Timer/Counter1 Prescalers
	16.1 Internal Clock Source
	16.2 Prescaler Reset
	16.3 External Clock Source
	16.4 Register Description
	16.4.1 GTCCR – General Timer/Counter Control Register

	17. 8-bit Timer/Counter2 with PWM and Asynchronous Operation
	17.1 Features
	17.2 Overview
	17.2.1 Registers
	17.2.2 Definitions

	17.3 Timer/Counter Clock Sources
	17.4 Counter Unit
	17.5 Output Compare Unit
	17.5.1 Force Output Compare
	17.5.2 Compare Match Blocking by TCNT2 Write
	17.5.3 Using the Output Compare Unit

	17.6 Compare Match Output Unit
	17.6.1 Compare Output Mode and Waveform Generation

	17.7 Modes of Operation
	17.7.1 Normal Mode
	17.7.2 Clear Timer on Compare Match (CTC) Mode
	17.7.3 Fast PWM Mode
	17.7.4 Phase Correct PWM Mode

	17.8 Timer/Counter Timing Diagrams
	17.9 Asynchronous Operation of Timer/Counter2
	17.10 Timer/Counter Prescaler
	17.11 Register Description
	17.11.1 TCCR2A – Timer/Counter Control Register A
	17.11.2 TCCR2B – Timer/Counter Control Register B
	17.11.3 TCNT2 – Timer/Counter Register
	17.11.4 OCR2A – Output Compare Register A
	17.11.5 OCR2B – Output Compare Register B
	17.11.6 TIMSK2 – Timer/Counter2 Interrupt Mask Register
	17.11.7 TIFR2 – Timer/Counter2 Interrupt Flag Register
	17.11.8 ASSR – Asynchronous Status Register
	17.11.9 GTCCR – General Timer/Counter Control Register

	18. SPI – Serial Peripheral Interface
	18.1 Features
	18.2 Overview
	18.3 SS Pin Functionality
	18.3.1 Slave Mode
	18.3.2 Master Mode

	18.4 Data Modes
	18.5 Register Description
	18.5.1 SPCR – SPI Control Register
	18.5.2 SPSR – SPI Status Register
	18.5.3 SPDR – SPI Data Register

	19. USART0
	19.1 Features
	19.2 Overview
	19.3 Clock Generation
	19.3.1 Internal Clock Generation – The Baud Rate Generator
	19.3.2 Double Speed Operation (U2Xn)
	19.3.3 External Clock
	19.3.4 Synchronous Clock Operation

	19.4 Frame Formats
	19.4.1 Parity Bit Calculation

	19.5 USART Initialization
	19.6 Data Transmission – The USART Transmitter
	19.6.1 Sending Frames with 5 to 8 Data Bit
	19.6.2 Sending Frames with 9 Data Bit
	19.6.3 Transmitter Flags and Interrupts
	19.6.4 Parity Generator
	19.6.5 Disabling the Transmitter

	19.7 Data Reception – The USART Receiver
	19.7.1 Receiving Frames with 5 to 8 Data Bits
	19.7.2 Receiving Frames with 9 Data Bits
	19.7.3 Receive Compete Flag and Interrupt
	19.7.4 Receiver Error Flags
	19.7.5 Parity Checker
	19.7.6 Disabling the Receiver
	19.7.7 Flushing the Receive Buffer

	19.8 Asynchronous Data Reception
	19.8.1 Asynchronous Clock Recovery
	19.8.2 Asynchronous Data Recovery
	19.8.3 Asynchronous Operational Range

	19.9 Multi-processor Communication Mode
	19.9.1 Using MPCMn

	19.10 Register Description
	19.10.1 UDRn – USART I/O Data Register n
	19.10.2 UCSRnA – USART Control and Status Register n A
	19.10.3 UCSRnB – USART Control and Status Register n B
	19.10.4 UCSRnC – USART Control and Status Register n C
	19.10.5 UBRRnL and UBRRnH – USART Baud Rate Registers

	19.11 Examples of Baud Rate Setting

	20. USART in SPI Mode
	20.1 Features
	20.2 Overview
	20.3 Clock Generation
	20.4 SPI Data Modes and Timing
	20.5 Frame Formats
	20.5.1 USART MSPIM Initialization

	20.6 Data Transfer
	20.6.1 Transmitter and Receiver Flags and Interrupts
	20.6.2 Disabling the Transmitter or Receiver

	20.7 AVR USART MSPIM versus AVR SPI
	20.8 Register Description
	20.8.1 UDRn – USART MSPIM I/O Data Register
	20.8.2 UCSRnA – USART MSPIM Control and Status Register n A
	20.8.3 UCSRnB – USART MSPIM Control and Status Register n B
	20.8.4 UCSRnC – USART MSPIM Control and Status Register n C
	20.8.5 USART MSPIM Baud Rate Registers - UBRRnL and UBRRnH

	21. 2-wire Serial Interface
	21.1 Features
	21.2 2-wire Serial Interface Bus Definition
	21.2.1 TWI Terminology
	21.2.2 Electrical Interconnection

	21.3 Data Transfer and Frame Format
	21.3.1 Transferring Bits
	21.3.2 START and STOP Conditions
	21.3.3 Address Packet Format
	21.3.4 Data Packet Format
	21.3.5 Combining Address and Data Packets into a Transmission

	21.4 Multi-master Bus Systems, Arbitration and Synchronization
	21.5 Overview of the TWI Module
	21.5.1 SCL and SDA Pins
	21.5.2 Bit Rate Generator Unit
	21.5.3 Bus Interface Unit
	21.5.4 Address Match Unit
	21.5.5 Control Unit

	21.6 Using the TWI
	21.7 Transmission Modes
	21.7.1 Master Transmitter Mode
	21.7.2 Master Receiver Mode
	21.7.3 Slave Receiver Mode
	21.7.4 Slave Transmitter Mode
	21.7.5 Miscellaneous States
	21.7.6 Combining Several TWI Modes

	21.8 Multi-master Systems and Arbitration
	21.9 Register Description
	21.9.1 TWBR – TWI Bit Rate Register
	21.9.2 TWCR – TWI Control Register
	21.9.3 TWSR – TWI Status Register
	21.9.4 TWDR – TWI Data Register
	21.9.5 TWAR – TWI (Slave) Address Register
	21.9.6 TWAMR – TWI (Slave) Address Mask Register

	22. Analog Comparator
	22.1 Overview
	22.2 Analog Comparator Multiplexed Input
	22.3 Register Description
	22.3.1 ADCSRB – ADC Control and Status Register B
	22.3.2 ACSR – Analog Comparator Control and Status Register
	22.3.3 DIDR1 – Digital Input Disable Register 1

	23. Analog-to-Digital Converter
	23.1 Features
	23.2 Overview
	23.3 Starting a Conversion
	23.4 Prescaling and Conversion Timing
	23.5 Changing Channel or Reference Selection
	23.5.1 ADC Input Channels
	23.5.2 ADC Voltage Reference

	23.6 ADC Noise Canceler
	23.6.1 Analog Input Circuitry
	23.6.2 Analog Noise Canceling Techniques
	23.6.3 ADC Accuracy Definitions

	23.7 ADC Conversion Result
	23.8 Temperature Measurement
	23.8.1 Manufacturing Calibration

	23.9 Register Description
	23.9.1 ADMUX – ADC Multiplexer Selection Register
	23.9.2 ADCSRA – ADC Control and Status Register A
	23.9.3 ADCL and ADCH – The ADC Data Register
	23.9.3.1 ADLAR = 0
	23.9.3.2 ADLAR = 1

	23.9.4 ADCSRB – ADC Control and Status Register B
	23.9.5 DIDR0 – Digital Input Disable Register 0

	24. debugWIRE On-chip Debug System
	24.1 Features
	24.2 Overview
	24.3 Physical Interface
	24.4 Software Break Points
	24.5 Limitations of debugWIRE
	24.6 Register Description
	24.6.1 DWDR – debugWire Data Register

	25. Self-Programming the Flash, ATmega328P
	25.1 Overview
	25.1.1 Performing Page Erase by SPM
	25.1.2 Filling the Temporary Buffer (Page Loading)
	25.1.3 Performing a Page Write

	25.2 Addressing the Flash During Self-Programming
	25.2.1 EEPROM Write Prevents Writing to SPMCSR
	25.2.2 Reading the Fuse and Lock Bits from Software
	25.2.3 Preventing Flash Corruption
	25.2.4 Programming Time for Flash when Using SPM
	25.2.5 Simple Assembly Code Example for a Boot Loader

	25.3 Register Description’
	25.3.1 SPMCSR – Store Program Memory Control and Status Register

	26. Boot Loader Support – Read-While-Write Self-Programming
	26.1 Features
	26.2 Overview
	26.3 Application and Boot Loader Flash Sections
	26.3.1 Application Section
	26.3.2 BLS – Boot Loader Section

	26.4 Read-While-Write and No Read-While-Write Flash Sections
	26.4.1 RWW – Read-While-Write Section
	26.4.2 NRWW – No Read-While-Write Section

	26.5 Boot Loader Lock Bits
	26.6 Entering the Boot Loader Program
	26.7 Addressing the Flash During Self-Programming
	26.8 Self-Programming the Flash
	26.8.1 Performing Page Erase by SPM
	26.8.2 Filling the Temporary Buffer (Page Loading)
	26.8.3 Performing a Page Write
	26.8.4 Using the SPM Interrupt
	26.8.5 Consideration While Updating BLS
	26.8.6 Prevent Reading the RWW Section During Self-Programming
	26.8.7 Setting the Boot Loader Lock Bits by SPM
	26.8.8 EEPROM Write Prevents Writing to SPMCSR
	26.8.9 Reading the Fuse and Lock Bits from Software
	26.8.10 Reading the Signature Row from Software
	26.8.11 Preventing Flash Corruption
	26.8.12 Programming Time for Flash when Using SPM
	26.8.13 Simple Assembly Code Example for a Boot Loader
	26.8.14 ATmega328P Boot Loader Parameters

	26.9 Register Description
	26.9.1 SPMCSR – Store Program Memory Control and Status Register

	27. Memory Programming
	27.1 Program And Data Memory Lock Bits
	27.2 Fuse Bits
	27.2.1 Latching of Fuses

	27.3 Signature Bytes
	27.4 Calibration Byte
	27.5 Page Size
	27.6 Parallel Programming Parameters, Pin Mapping, and Commands
	27.6.1 Signal Names

	27.7 Parallel Programming
	27.7.1 Enter Programming Mode
	27.7.2 Considerations for Efficient Programming
	27.7.3 Chip Erase
	27.7.4 Programming the Flash
	27.7.5 Programming the EEPROM
	27.7.6 Reading the Flash
	27.7.7 Reading the EEPROM
	27.7.8 Programming the Fuse Low Bits
	27.7.9 Programming the Fuse High Bits
	27.7.10 Programming the Extended Fuse Bits
	27.7.11 Programming the Lock Bits
	27.7.12 Reading the Fuse and Lock Bits
	27.7.13 Reading the Signature Bytes
	27.7.14 Reading the Calibration Byte
	27.7.15 Parallel Programming Characteristics

	27.8 Serial Downloading
	27.8.1 Serial Programming Pin Mapping
	27.8.2 Serial Programming Algorithm
	27.8.3 Serial Programming Instruction set
	27.8.4 SPI Serial Programming Characteristics

	28. Electrical Characteristics
	28.1 Absolute Maximum Ratings
	28.2 DC Characteristics
	28.3 DC Characteristics
	28.4 Speed Grades
	28.5 Clock Characteristics
	28.5.1 Calibrated Internal RC Oscillator Accuracy
	28.5.2 Watchdog Oscillator Accuracy
	28.5.3 External Clock Drive Waveforms
	28.5.4 External Clock Drive

	28.6 System and Reset Characteristics
	28.7 SPI Timing Characteristics
	28.8 2-wire Serial Interface Characteristics
	28.9 ADC Characteristics
	28.10 Parallel Programming Characteristics

	29. Typical Characteristics
	29.1 ATmega328P Typical Characteristics
	29.1.1 Active Supply Current
	29.1.2 Power-down Supply Current
	29.1.3 Pin Pull-Up
	29.1.4 Pin Driver Strength
	29.1.5 Pin Threshold and Hysteresis
	29.1.6 BOD Threshold
	29.1.7 Internal Oscillator Speed

	30. Register Summary
	31. Instruction Set Summary
	32. Ordering Information
	32.1 ATmega328P

	33. Packaging Information
	33.1 MA
	33.2 PN

	34. Errata
	34.1 Errata ATmega328P
	34.1.1 Revision D
	34.1.2 Revision A to Revision C

	35. Revision History
	36. Table of Contents

