Object-Oriented Programming

Flocea Dominic

Technical University of Moldova

October 16, 2025

Flocea Dominic Technical University of Moldova October 16, 2025

1/51

Lecture 2: Classes, Objects,
Constructors

Flocea Dominic Technical University of Moldova October 16, 2025 2/51

Flocea Dominic Technical University of Moldova October 16, 2025 3/51

Top Left: Dolmabahge Palace
Middle Left: Hagia Sophia

Top Right: Saint Peter's Square

Middle Right: Rome's pantheon
Bottom: The Colosseum

Flocea Dominic Technical University of Moldova October 16, 2025 4/51

Lecture Quote

We who cut mere stones must always be envisioning
cathedrals.

— Creed of Quarry workers, from the book “The Pragmatic
Programmer”

Flocea Dominic Technical University of Moldova October 16, 2025 5/51

Course disclaimer

The lecture slides and materials, including the content
and theme were created by the author. Please do not
distribute and use without prior permission.

Flocea Dominic Technical University of Moldova October 16, 2025 6/51

Previously on OOP:

e Uncovered Objects-Oriented programming adoption and
history;

e Listed and defined common programming paradigms and
software quality factors;

e Explored general concepts and features of Object-Oriented
programming;

Flocea Dominic Technical University of Moldova October 16, 2025 7/51

Previously on OOP...

e Object-Oriented programming is a commonly used paradigm,
especially to tackle complex applications;

e It does so by modeling the domain as a collection of modular,
reusable interacting objects;

e Software quality is important and internal quality factors
predict external quality factors;

e The four pillars of Object-Oriented Programming are:

— Encapsulation
— Abstraction
— Inheritance
— Polymorphism

Flocea Dominic Technical University of Moldova October 16, 2025 8/51

Lecture Goals

By the end of this lecture, you should be able to:

e Understand the relationship between objects and classes;

e Explain the process of instantiation and the role of
constructors;

o Differentiate between concrete and abstract classes;

e Describe and apply the concept of static attributes and
methods;

e Explore how programming languages approch the same
concepts;

e Understand the lifetime of an object;

Flocea Dominic Technical University of Moldova October 16, 2025 9/51

Paradigm and Object Basics

We left on the case for Object-Oriented programming being
a programming paradigm centered around objects.

e Yes, and objects are the primary building blocks of every
Object-Oriented program;

e As discussed before all objects have a state (data, or attributes)
and defined behavior (methods);

e In OOP, state, and methods cannot exist outside or separate of
objects or classes*;

e An OOP practitioner defines the attributes and the methods of
an object with Classes;

Flocea Dominic Technical University of Moldova October 16, 2025 10/51

Classes and Methods vs Function

So a class is the constructs that we use to define objects. Is
it that simple? And the set of variables and functions are
bundled into objects?

e Yes, itis that simple. Classes are blueprints for objects.

e Butin OOP, using the term function could be misleading, as
functions do not belong to objects.

e To call a function, we do not need to instantiate an object...

e But to call a method, we always need an in memory object.

Flocea Dominic Technical University of Moldova October 16, 2025 11/51

Instantiation and Concrete Classes

Instantiation - | heard about it, when we call the new
keyword in Java/C#/C++ we instantiate the object. Is it that
simple or is there more to it?

e Your intuition is correct. Objects are complex data structures,
unlike integers, floats, or arrays which are primitives (generally)*.

e When we call new we instantiate the object in memory.

e A concrete class is all we need to instantiate objects.

e The limit to how many objects we can instantiate with the same
class is the hardware or if a limit was specified;

e While a concrete class is used to instantiate the object, an object
could represent multiple classes, more on this later in the
course;

Flocea Dominic Technical University of Moldova October 16, 2025 12/51

Concrete vs Abstract and Singleton

Woah, woah... What is a concrete class? Are there classes
that cannot be instatiated? How can we restrict the number
of objects? Also objects could represent multiple classes?

e Yes, there are classes that cannot be instantiated, called
abstract classes and we will cover them later;

e A concrete class has all the necessary instructions in order to
instantiate an object*;

e Usually, we just refer to them as classes, unless we want to
specify or make a distinction.

Flocea Dominic Technical University of Moldova October 16, 2025 13/51

Concrete vs Abstract and Singleton

Woah, woah... What is a concrete class? Are there classes
that cannot be instatiated? How can we restrict the number
of objects? Also objects could represent multiple classes?

e And yes, you can restrict number of objects of a class. This can
come in handy when want only one instance of an object ex.
Global Settings/Configuration. This is a Creational Design
Pattern called a Singleton, but design patterns are not covered
in this course.

e an object could represent multiple classes leading us to the
concept of Polymorphism, which we will cover later as well as
abstract classes.

Flocea Dominic Technical University of Moldova October 16, 2025 14/51

Instantiation and Constructors

| feel like instantiation is an interesting word, and maybe
there is more to it than meets the eye.

e Again your intuition is correct, objects are not just allocated in
memory, they are complex.

e When an object is instantiated, two general things are
happening - the memory is allocated, and it tries to load
instructions for its instantiation.

e Every object has its instructions for instantiation.

e We specify these instructions with a special method called the
constructor.

o If we do not instantiate it, (i.e. calling te new keyword), objects
point to a null pointer*;

Flocea Dominic Technical University of Moldova October 16, 2025 15/51

Abstraction

With class attributes, and methods and the constructor, we
have everything to construct objects

e Right, and remember, all that can be named can be an object.

e All you need is come up with a good abstraction - which is not
easy.

e A good abstraction includes only the valuable information, and
all that is unnecessary is ignored.

Flocea Dominic Technical University of Moldova October 16, 2025 16/51

Classes as Objects

All that can be named can be an object? Does that include
classes?

e Yes, classes are objects as well;

e This is true for most OOP languages, including Java, C#, Python,
Ruby;

e In C++ classes are not objects, but they have a similar construct
called type;nfo;

e Itis an object which keeps information characterizing its
instances - and the only one that can create these instances;

Flocea Dominic Technical University of Moldova October 16, 2025 17/51

Summary

e Object — an entity that combines state (data) and behavior
(methods).

e Class — a blueprint or template for creating objects.

¢ Instantiation — the process of creating an object from a class,
usually involving memory allocation and initialization through a
constructor.

e Method — a function defined within a class that operates on
the object’s data.

Flocea Dominic Technical University of Moldova October 16, 2025 18/51

Types of Classes

e Concrete Class — can be instantiated; provides full
implementation of its methods.

o Abstract Class — cannot be instantiated;

Flocea Dominic Technical University of Moldova October 16, 2025 19/51

Break or Quiz...

Flocea Dominic Technical University of Moldova October 16, 2025 20/51

e e
Constructors

e Every concrete class has a default constructor if one is not
specified;

e Generally the constructor method has the same name as the
Class itself (except for example: python);

e If a constructor has been specified - the default one generally is
no longer available, it has to explicitly declared.

Flocea Dominic Technical University of Moldova October 16, 2025 21/51

Types of Constructors

TYPES OF CONSTRUCTORS

Default

A constructor with no
arguments is called a default
constructor. It is the
constructor that is defined
implicitly by the compiler.

Flocea Dominic

Parameterized

This type of constructor is used
when we want to initialize the
object with certain values.
These values can be passed to
the constructors and
parameters.

Technical University of Moldova

*Copy Constructor

(not covered by course)

It is the constructor that is

called to make a copy of an

object. It is invoked in any of
the following cases-

An object of the class is returned by
value

An object of the class is passed(to a
function) by value as an argument

An object is constructed based on
another object of the same class

When compiler generates a temporary
object

October 16, 2025

22/51

Code

Enough talk - let's code

Flocea Dominic Technical University of Moldova October 16, 2025 23/51

Java Constructor (1) - Greeter class
1 class Greeter {

OooNouUuTbhWwWwN

10
11
12
13
14
15
16
17
18
19
20
21

2 M

// STATE
String thing;
int times;

// CONSTRUCTOR - same name as class
// no return type
// called when object is instantiated
// defines needed attributes to create the object
Greeter(String thing, int times) {
this.times = times;
this.thing = thing;
¥

// BEHAVIOR
String createGreeting() {
String result = "";
for (int 1 = 0; 1 < times; i++)
result += "hello ";
return result + thing;

F

Flocea Dominic Technical University of Moldova October 16, 2025 24/51

Java Constructor (2) - Greeter usage

1 public class Main {

2 public static void main(String[] args) {

3 // declaration

4 Greeter greeterFaf;

5 // instantiation

6 greeterFaf = new Greeter("FAF", 5);

7 // declaration + instantiation

8 Greeter greeterReader = new Greeter("reader!", 2);

9 // calling object method, which returns an object of
type String

10 var fafGreeting = greeterFaf.createGreeting();

11

12 // output -> hello hello hello hello hello FAF

13 System.out.println(fafGreeting);

14 // output -> hello hello reader!

15 System.out.println(greeterReader.createGreeting());
16 |

17 %

Flocea Dominic Technical University of Moldova October 16, 2025 25/51

Python Constructor

1

2 class Greeter:

3 def __init__(self, thing, times): # constructor
4 self.thing = thing

5 self.times = times

6

7 def __str__(self): # Special method, tells print how

to interpret object

8 return "hello " + self.thing * self.times

9
10 def greet(self, postfix):
11 result = ""
12 for _ in range(self.times):
13 result = result + "hello "
14 return result + " " + self.thing + postfix
15

16 # run and print those, understand the code
17 greet = Greeter("Worlda!", 3)

18 greeting = greet.greet("nice")

19 Greeter.greet(self=greet, postfix="postfix")

Flocea Dominic Technical University of Moldova October 16, 2025 26/51

C++ Constructor

class Greeter {

private: // optional declaration, private is the default
std::string thing;
int times;

public:
Greeter() : thing("World"), times(1) {} // shorthand
type constructor

coNO U WN —

9

10 std::string getThing() { return thing; }

11 void setThing(std::string newThing) { thing = newThing
5 i

12 % code will go here

1318

Flocea Dominic Technical University of Moldova October 16, 2025 27/51

Kotlin Constructor

1
2 // constructor example in Kotlin - concise yet verbose

3 // what we see in the parenthesis is the primary
constructor
class Greeter(thing: String = "", times: Int = 0) {

// your code goes here

fun main() {
// providing default parameters, allows us to
construct the object in 4 ways

10 val greeterl = Greeter("World", 3) // primary
constructor

11 val greeter2 = Greeter(times = 3) // named arguments
and default thing parameter

12 val greeter3 = Greeter() // default arguments

13 val greeter4 = Greeter(thing = "World") // order of

named arguments !matters

4
5
6}
7
8
9

14 }

Flocea Dominic Technical University of Moldova October 16, 2025 28/51

Static Methods and Attributes vs Instance Methods and
Attributes

We learned that attributes and methods belong to objects,
and if we want to call a method or access an attribute we
always need to instantiate the object first.

Well, not exactly. Some attributes and methods may belong to
the class itself, not the object;

These are created using the static keyword in Java, C#, and C++;

In Python, we use the @staticmethod decorator;

In Kotlin, we use the companion object construct;

Static members are created once per class, not per object —
they exist even before any object is instantiated.

Flocea Dominic Technical University of Moldova October 16, 2025 29/51

Static Methods and Attributes vs Instance Methods and
Attributes

We learned that attributes and methods belong to objects,
and if we want to call a method or access an attribute we
always need to instantiate the object first.

e That means we can access static attributes and methods
without instantiating the object;
e They are accessed through the class itself;

¢ Instance objects of the class can access static attributes and
methods of the class;

e Even if declared in the same class - static methods cannot
access non-static members;

Flocea Dominic Technical University of Moldova October 16, 2025 30/51

Static Methods and Attributes vs Instance Methods and
Attributes

We learned that attributes and methods belong to objects,
and if we want to call a method or access an attribute we
always need to instantiate the object first.

e Static members are useful for constants, counters, utility
functions, and factories;

e A common pitfall from people experienced in
functional/procedural programming is to overuse it;

e They quicky find out that some state variables might be
inaccesible from static methods that they use as functions,
ending up with a chain of static methods -> similar to
procedural/functional programming;

e Heavy static use breaks encapsulation and object-oriented
design principles;

Flocea Dominic Technical University of Moldova October 16, 2025 31/51

Code

Enough talk - let's code

Flocea Dominic Technical University of Moldova October 16, 2025 32/51

Java Static Constant, Counter

—

class StaticClass {

2 private int memberCounter; // cannot be accessed in
static methods

3 private static int staticCounter = 0; // constant -
can be accessed in static methods

4

5 public static void increment() {

6 staticCounter++; // allowed

7 memberCounter++; // not allowed: will not compile

8 I

9

10 public void increment() {

1M staticCounter++; // allowed

12 memberCounter++; // allowed

13 }

14 // getters

15 -

Flocea Dominic Technical University of Moldova October 16, 2025 33/51

Java Singleton using Static Method

1 class Singleton {

2 private static Singleton instance = null;
3 private int counter = 0;

4

5 private Singleton() {} // private constructor
6

7 public static Singleton getInstance() {

8 if (instance == null) {

9 instance = new Singleton();
10 }
11 return instance;
12 }
13 public void increment() {
14 counter++;
15 I
16 // getter
17 .

Flocea Dominic Technical University of Moldova October 16, 2025 34/51

Kotlin Singleton

object Singleton {
var counter = 0
fun increment() {
counter++
+

// getter
+

Nouh wN =

Flocea Dominic Technical University of Moldova October 16, 2025 35/51

Java Static factory method

1 class Person {

2 private String name;

3 private int age;

4 private Person(String name, int age) { // private

constructor

5 this.name = name;

6 this.age = age;

7 }

8 public static Person createAdult(String name) { //
static factory method

9 return new Person(name, 18); // default adult
age

10 I

11 public static Person createChild(String name) { //
static factory method

12 return new Person(name, 0); // default child age

13 }

14 }

Flocea Dominic Technical University of Moldova October 16, 2025 36/51

Object lifetime

Alright, but | think we are missing something... you said that
memory is being allocated everytime we instantiate an
object. We have created all these objects, but when do we
deallocate the memory, in other words, when do we free
this memory? Does it stay there?

e It depends on the language, but some things are consistent,
one of them is the lifetime of an object:

— Object declaration - no memory is allocated, the object
points to a null pointer*;

— Object instantiation - memory is allocated, and the
constructor is called;

— Object usage - methods are called, attributes are accessed,
problems are being solved, system is working;

— Object deallocation (deletion) - object goes out of scope
and memory is freed;

Flocea Dominic Technical University of Moldova October 16, 2025 37/51

Object lifetime

Okay, so how can | free the memory when the objects have
outlived their purpose?
e InJava, Kotlin, Python and C# you dont;

e A built-in system of automatic cleaning does it for you - the
garbage collector;

e The garbage collector (GC) frees the memory when objects are
no longer referenced;

e In C++ you do;

e You have to explicitly free the memory using the delete keyword;

Flocea Dominic Technical University of Moldova October 16, 2025 38/51

Object end of lifetime

So the GC automatically frees the memory once the objects
are no longer referenced? Why cant C++ create its own GC?

e Well, maybe | wasnt specific enough about the GC;

e GC may delay collection; no longer referenced doesn’'t mean
immediately freed;

e GC eventually frees the memory of objects that are no longer
referenced a process that could slow down the system;

e C++ primary focus is on performance and fine control over
application resources;

Flocea Dominic Technical University of Moldova October 16, 2025 39/51

Garbage Collector

Kototsu monster Reference from popular shonen - Bleach.

Flocea Dominic Technical University of Moldova October 16, 2025 40/51

Object end of lifetime: Destructors

So C++ does not have a garbage collector, and | have to
deallocate the memory everytime manually

Remember, C++ allows you to create objects on the stack.

C++ has a special method called the destructor, unlike the
constructor, it "deinstantiates” the object;

The destructor is called automatically when the object goes out
of scope;

The destructor has the same name as the class, but is prefixed
with a tilde ();

Flocea Dominic Technical University of Moldova October 16, 2025 41/51

Code

Enough talk - let's code

Flocea Dominic Technical University of Moldova October 16, 2025 42/51

C++ Destructor (delete & out of scope) (1)

1 class Greeter { // same as previous Greeter class

2 |

3 public:

4 /) ...

5 // DESTRUCTOR - same name as class, prefixed with ~ (
tilda)

6 ~Greeter() { std::cout << "bye-bye" << std::endl; }

7158

Flocea Dominic Technical University of Moldova October 16, 2025 43/51

C++ Destructor (delete & out of scope) (2)

1 int main() {
2 // out-of-scope auto destructor
3 I
4 auto greetOnStack = Greeter(); // stack object, auto
-call destructor
5 auto greetOnHeap = std::make_unique<Greeter>(); //
smart pointer, auto-call destructor
6 } // both objects go out of scope here, destructors
called automatically

// manual delete destructor call

auto greetOnHeapNew = new Greeter(); // remember to
delete if not using smart pointer

10 delete greetOnHeapNew;

11 85

O 00

Flocea Dominic Technical University of Moldova October 16, 2025 44/51

C++ Automatic destructor calls

So we are calling delete, the same way we are calling free in
C... I did this in C enough, | dont want to do this again, C++,
no thanks... Give me the GC instead!

e Well, C++ has a different approach to resource management,
and...;

e And you dont have to call delete everytime you deallocate
memory;

e This concept called RAIl - Resource Acquisition Is Initialization
does it for you;

Flocea Dominic Technical University of Moldova October 16, 2025 45/51

C++ RAlI

Sounds complicated, give me GC instead!

e No, itis not complicated, it is actually simple and elegant;

e Just create objects on the stack, and when they go out of scope,
the destructor is called automatically;

e For the heap use and smart pointers like std :: uniqueptror

Flocea Dominic Technical University of Moldova October 16, 2025 46/51

Code

Enough talk - let's code

Flocea Dominic Technical University of Moldova October 16, 2025 47/51

C++ Smart Pointers and RAII

1 class Greeter { // same as previous Greeter class

2/l ...

3 public:

4 /] ...

5 // DESTRUCTOR - same name as class, prefixed with ~ (
tilda)

6 ~Greeter() { std::cout << "bye-bye" << std::endl; }

71

8

9 int main() {

10

11 auto greetOnHeap = std::make_unique<Greeter>(); //

smart pointer, preffered to new keyword
12 } // object goes out of scope here, destructor called
automatically
13 return 0;
14 }

Flocea Dominic Technical University of Moldova October 16, 2025 48/51

RAIl vs Garbage Collection

e Garbage Collection (Java, Python, etc.) automatic delayed
cleanup.

e RAIl (C++) automatic cleanup, resources released exactly when
objects go out of scope.

e RAIl (C++) no background GC process, and no performance
overhead, also everything happens predictably, you dont have
to guess.

Flocea Dominic Technical University of Moldova October 16, 2025

49/51

Key Takeaways

e OOP models software as interacting objects built from reusable
class blueprints.

e Constructors define how objects are created; destructors define
how they are destroyed.

e Static members belong to the class, not instances.

e Memory management strategies are different for language to
language, GC vs developer-managed.

e RAIl and smart pointers make C++ both safe and performant,
removing most need for manual deletion and GC.

Flocea Dominic Technical University of Moldova October 16, 2025 50/51

Object-Oriented Programming

Or click me! (Not a scam)

Flocea Dominic Technical University of Moldova October 16, 2025 51/51

https://forms.office.com/e/77kM2vuCsS

