

АННОТАЦИЯ УЧЕБНГО МОДУЛЯ

Дискретная математика, теория вероятностей и статистика

1. Сведения о модуле

Факультет	Вычислите	Вычислительной техники, Информатики и Микроэлектроники			
Департамент	Информаті	Информатика и системная инженерия			
Цикл обучения	Цикл I, Вы	Цикл I, Высшее образование - бакалавриат			
Образовательная программа	Робототехн	Робототехника			
Год обучения	Семестр	Форма контро ля	Формативная категория	Категория опциональ- ности	Количе ство зачет- ных единиц
1-й год обучения очное/дуальное обучение	II	Е	F — фундаментальная дисциплина	О - обязательная дисциплина	8/6

2. Администрирование учебного модуля

	включая						
		аудиторные		самостоятельная работа		работа	
Всего часов (по учебному плану)	Лекции	Семинары	Лабораторны е занятия	Практически е занятия	Проекты	Изучение теоретического материала	Практически е упражнения
Очное/ дуальное обучение	60	30/0	-	30/30	-	60/45	60/45

3. Предварительные требования для изучения модуля

По учебному	Для достижения целей курса студенты должны владеть знаниями как курса математики
плану	средней школы (комбинаторный анализ, описательная статистика), так и курсов первого
плану	семестра, таких как математический анализ и программирование

4. Целевые компетенции Компетенции Результаты обучения в соответствии с уровнем НРК Общие/Профессиональные Выпускник/кандидат после получения квалификации может: ОК 1. Использование в 1. определять методы математического анализа и моделирования, а профессиональной деятельности также физические законы для формулирования, объяснения и концепций, теорий и методов обоснования типовых задач и решений в области электроники и автоматизации; фундаментальных наук 2. разрабатывать проекты в области электроники и автоматизации, применяя методы фундаментальных наук, специфических для данной области ОК 2. Оперирование фундаментальными концепциями из области компьютерных 3. использовать концепции из информатики, компьютерных наук, информационных и технологий и их приложений в электронике и автоматизации коммуникационных технологий ПК 1. Решение специфических задач в области робототехники и мехатроники с 10. разрабатывать алгоритмы расчёта для процессов, характерных

для робототехнических и мехатронных продуктов

5. Содержание модуля

применением специализированных

технических знаний

TT	Количество часов		
Тематика учебных занятий	очное	дуальное	
	обучение	обучение	
Тематика лекций			
Тематика лекций Дискретная математика			
Т1. Введение. Алгебра логики (булева алгебра).			
Цель изучения курса. Содержание курса. Функции булевой алгебры. Таблицы			
истинности. Эквивалентные преобразования и разложение булевых функций.	2	2	
Канонические формы. Дизъюнктивная каноническая форма (ДКФ).			
Конъюнктивная каноническая форма (ККФ)			
Т2. Булева алгебра логических функций. Свойства логических операций.	2	2	
Упрощение логических выражений		2	
Т3. Формы представления булевых функций.	2	2	
Диаграммы Карно, логические схемы, временные диаграммы.		2	
Т4. Полные системы булевых функций (ПСБФ).	2	2	
Определение ПСБФ. Часто используемые ПСБФ на практике.	L	2	
Т5. Минимизация булевых функций методом Куайна.			
Понятие метода Куайна. Определение простых и существенных импликант.	2	2	
Таблица покрытия. Определение минимальной дизьюнктивной формы (МДФ).			
Т6. Минимизация булевых функций методом Куайна-Маккласки.			
Алгоритм определения минимальной дизъюнктивной формы (МДФ).	2	2	
Определение простых импликант. Построение покрывающей таблицы.			
Т7. Минимизация булевых функций (БФ) с использованием диаграммы			
Карно.	2	2	
Разработка логических схем. Цель минимизации БФ. Определение и	L	2	
интерпретация диаграммы Карно. Графическое представление БФ.			
Т8. Теория графов. Вводные понятия.			
Неориентированные графы: связные графы, полные графы, деревья,	2	2	
гамильтоновы графы, эйлеровы графы, планарные графы. Способы	2	2	
представления неориентированных графов.			
Т9. Ориентированные графы. Вводные понятия.			
Методы представления. Алгоритм поиска в ширину. Алгоритм поиска в	2	2	
глубину. Покрывающий граф. Алгоритм определения покрывающего графа.			
Т10. Взвешенные графы. Минимальный (максимальный) путь.			
Алгоритм Форда для определения минимального (максимального) пути.	2	2	
Понятие минимального (максимального) пути. Концепция алгоритма Форда.	2	2	
Определение пути с минимальным (максимальным) значением.			
Т11. Алгоритм Беллмана-Калабы для определения минимального			
(максимального) пути.			
Концепция алгоритма Беллмана-Калабы. Различия между алгоритмами Форда	2	2	
и Беллмана-Калабы. Взвешенная матрица смежности. Определение			
минимального (максимального) пути.			
Т12. Транспортные сети.			
Алгоритм Форда-Фалкерсона для определения максимального потока.	2		
Определение транспортных сетей. Максимальный поток. Концепция алгоритма	2	2	
Форда-Фалкерсона. Теорема Форда-Фалкерсона.			
Т13. Гамильтоновы графы. Определение гамильтонова пути в			
ориентированном графе без циклов.	2	2	
Определение. Матрица пути. Достижимость вершин. Алгоритм Чена.			
T14. Determinarea drumului hamiltonian într-un graf orientat, ce conține	2		
circuite. Algoritmul Kaufman.		2	
Т15. Алгоритмы и модели алгоритмов. Формализация понятия алгоритма.			
Машины Тьюринга.	2	•	
Состав и принцип действия. Операции с машинами Тьюринга. Универсальная	2	2	
машина Тьюринга.			
Всего Дискретная математика:	30	30	
Тематика лекций Теория вероятностей и статистика			
Т1, Т2. Исчисление вероятностей.	4	4	
* * * * * * * * * * * * * * * * * * *			

Tr	Количество часов	
Тематика учебных занятий	очное обучение	дуальное обучение
Предмет изучения теории вероятностей и её место в математической статистике, частотная вероятность, субъективная вероятность. Вспомогательные понятия и результаты комбинаторики. Элементарные пространства событий, случайные события и операции над ними, поле событий, аксиоматическое определение		
вероятности. Свойства вероятности как следствие аксиоматического определения вероятности. Классическая, дискретная и геометрическая вероятности как частные случаи аксиоматической вероятности. Условная вероятность. Формула умножения вероятностей. Независимость случайных событий, формула Пуассона. Формулы для полной вероятности и Байеса.		
Т3, Т4. Случайные величины. Одномерная случайная величина, её функция распределения. Дискретные случайные величины, распределения. Непрерывные случайные величины, плотности распределения. Многомерные/векторные (двумерные) случайные величины, её функция распределения, маргинальные функции распределения. Виды двумерных случайных величин, распределения, плотности распределения, независимость случайных величин.	4	4
Т5, Т6. Числовые характеристики случайных величин. Параметры положения: среднее значение, мода, медиана, квантили. Дисперсия, стандартное отклонение, ковариация, коэффициент корреляции, линейная регрессия. Моменты случайной величины (начальный, центральный), асимметрия, сглаживание.	4	4
Т7, Т8. Распространённые вероятностные модели, неравенства, закон больших чисел, центральная предельная теорема. Распространённые распределения вероятностей в дискретном случае (равномерное, бернуллиевское, биномиальное, геометрическое, пуассоновское, мультиномиальное, гипергеометрическое). Распространённые распределения вероятностей в непрерывном случае (равномерное, экспоненциальное, нормальное, хи-квадрат (χ^2), Т-Стьюдента). Неравенство Чебышёва, закон больших чисел (в формах Чебышёва, Бернулли и Хинчина), центральная предельная теорема для независимых случайных величин.	4	4
Т9, Т10 Основные понятия статистики. Описательная статистика, теория вероятностей, математическая статистика, их объекты изучения и связь между ними. Статистическая совокупность. Данные и типы данных, рассматриваемые как реализации случайной величины (СВ) Х. Выборка объёмом п из статистической совокупности СВ Х, рассматриваемая как реализации п независимых СВ, одинаково распределённых, как СВ Х. Табличное и графическое представление данных, входящих в выборку, в зависимости от типа этих данных: статистический ряд (распределение выборки) относительных частот, гистограмма (абсолютных/относительных частот, плотности, диаграмма ящиков и вискеров), эмпирическая функция распределения. Вероятностное поведение СВ Х в выборке как основа для знания вероятностного поведения СВ Х во всей совокупности.	4	4
Т11. Основные понятия математической статистики. Статистика, оценщики, несмещенные, состоятельные и эффективные точечные оценки. Характеристики выборки (среднее значение, дисперсия и эмпирическая функция распределения) и их свойства. Точечные оценки максимального правдоподобия.	2	2
Т12. Интервальные оценки (доверительные интервалы). Введение. Определение понятия интервальной оценки. Доверительные интервалы для среднего значения. Доверительные интервалы для дисперсии.	2	2
Т13, Т14. Статистическая проверка гипотез. Введение. Статистическая проверка гипотез: основные понятия. Статистическая проверка гипотез о среднем значении, доле и дисперсии: Z-критерии, критерии Стьюдента и χ². Статистическая проверка гипотез и р-значение. Статистическая проверка гипотез о различиях, связанных с парными данными (зависимыми выборками). Проверка гипотез о различии между средними значениями двух независимых статистических совокупностей. Критерий Фишера о равенстве	4	4

	Количество часов		
Тематика учебных занятий	очное	дуальное	
	обучение	обучение	
средних значений, основанный на двух выборках из нормально распределенной			
статистической совокупности. Непараметрические критерии (тесты) для			
проверки гипотез, основанных на распределении χ^2 . Тест нормальности Шапиро-			
Уилка и тест Колмогорова-Смирнова.			
Т15. Регрессионный анализ связи и степени связи двух количественных			
переменных. Диаграмма рассеяния. Степень связи и коэффициент корреляции Пирсона. Линейная регрессия и	2	2	
оценка параметров линии регрессии методом наименьших квадратов.			
Всего Теория вероятностей и статистика:	30	30	
Всего модуль Дискретная математика, теория вероятностей и			
статистика	60	60	
Темы семинаров			
Тематика семинаров Дискретная математика		1	
S1. Булева алгебра. Эквивалентные преобразования и разложение булевых функций. Построение таблиц истины. Определение канонических форм: ДКФ и ККФ.	2	-	
S2. Упрощение логических выражений с использованием свойств булевых операций. Полные системы булевых функций.	2	-	
S3. Представление логических функций в различных формах: логические выражения, диаграммы Карно, логические схемы, временные диаграммы. Минимизация булевых функций. Метод Куайна.	2	-	
S4 Минимизация булевых функций. Метод Куайна-Маккласки. Диаграмма Карно. Логические схемы.	2	-	
S5. Определение минимального (максимального) пути с помощью алгоритма Форда и алгоритма Беллмана-Калабы.	2	-	
S6. Определение максимального потока в транспортных сетях с помощью	2	-	
алгоритма Форда-Фуллкерсона.	2		
S7. Определение гамильтонова пути в ориентированном графе без циклов.	<u> </u>	-	
S8. Определение гамильтонова пути в ориентированном графе, содержащем контуры.	1	-	
Всего семинары Дискретная математика:	15	_	
Тематика семинаров Теория вероятностей и статис			
S1. Случайные события, типы событий, операции с событиями. Расчет вероятностей. Знакомство с языком R	2	-	
S2. Условная вероятность, формула общей вероятности, формула Байеса	2	-	
S3. Числовые характеристики случайных величин.	2	-	
S4. Двумерные случайные векторы	2	-	
S5. Базовые понятия статистики. Несмещенные, последовательные и эффективные точечные оценки. Метод максимального правдоподобия. Доверительные интервалы.	2	-	
S6. Проверка статистических гипотез с помощью тестов Шапиро-Уилка и χ2 (хиквадрат) Пирсона	2	-	
S7. Статистическая проверка гипотез с использованием t-критерия Стьюдента и F-критерия Фишера	2	-	
S8. Регрессионный анализ. Простая линейная регрессия. Множественная линейная регрессия.	1	-	
Всего семинаров Теория вероятностей и статистика:	15	-	
Всего семинары	30	-	
Тематика практических занятий			
Тематика практических занятий Дискретная матема			
LP1. Хранение графов в памяти компьютера	4	4	
LP2. Обход графиков в глубину и ширину	2	2	
LP3. Алгоритмы Беллмана-Калабы и Форда для определения минимального и максимального путей.	4	4	
LP4. Алгоритм Форда-Фулкерсона для определения максимального потока в транспортных сетях	5	5	

Тематика учебных занятий	Количество часов	
тематика учесных занятии	очное обучение	дуальное обучение
Всего практических занятий Дискретная математика	<u>обучение</u> 15	15
Тематика практических занятий Теория вероятностей и с		13
LP1. Основные дискретные и непрерывные распределения. Реализация на языке R.	4	4
LP2. Статистический анализ данных с использованием графических функций hist(), boxplot(), qqnorm(), qqplot() на языке R.	3	3
LP3. Статистический анализ данных с использованием критерия Шапиро-Уилка и критерия Пирсона χ2 (хи-квадрат)	4	4
LP4. Статистический анализ данных с помощью теста t-Стьюдента и F-критерия Фишера	4	4
Всего практических занятий Теория вероятностей и статистика	15	15
Всего практических занятий:	30	30

6. Библиографические источники

V. 1	Библиографические источники
	1. Beşliu, V. Matematica Discretă. / Ciclu de prelegeri. Chişinău, UTM, 2002. – 143 pag.
	2. Кузнецов О.П., Адельсон-Вельский Г.М. Дискретная математика для инженера.
	3. Galina Marusic, Rodica Bulai, Gheorghe Ceban. Matematica Discretă, Indicații metodice pentru
	seminare, UTM, Chişinău, 2008.
	4. Галина Марусик, Георге Чебан, Родика Булай. Дискретная Математика, Методические
	указания к практическим занятиям, UTM, Chişinău, 200893 p.
	5. G. Marusic, N.Falico, M.Kulev. Aspecte algoritmice din teoria grafurilor privind fluxul maxim și
	drumurile minime (maxime). Indicații metodice la disciplinele Matematici speciale și Structuri de
	date și algoritmi. Chisinau, UTM, 2018 49 p.
	6. Николай Фалько, Михаил Кулев, Галина Марусик, Использование структур данных в
	алгоритмах на графах и деревьях. Методические указания и задания для лабораторных
	работ. Chisinau, UTM, 2015 50 р.
Основные	7. Акимов О.Е. Дискретная математика: логика, группы, графы, фракталы. М: Издатель
	АКИМОВА, 2005.
	8. A. Leahu, I. Pârțachi, Probabilități și Statistică (prin exemple si probleme propuse). Partea I:
	Probabilități. Curs in format electronic.
	9. A. Leahu, I. Pârțachi, Probabilități și Statistică (prin exemple si probleme propuse). Partea II:
	Elemente de Statistică Descriptivă și Matematică. Curs in format electronic.
	10. Viorel PETREHUS, Sever-Angel POPESCU. <i>Probabilitati si statistica</i> . București, 2005.
	11. E. Paradis. <i>R pentru începători</i> . Franța, 2013.
	12. W. N. Venables, D. M. Smith and the R Core Team. <i>An Introduction to R</i> . (A Programming
	Environment for Data Analysis and Graphics, Version 4.3.1), 2023.
	13. https://www.tutorialspoint.com/execute_r_online.php
	14. https://bookdown.org/sunboklee/introduction_to_r/intro.html#lets-install-rstudio-to-your-local-
	<u>computer</u>
	1. Т.Кормен, Ч.Лейзерсон, Р.Ривест, К.Штайн - Алгоритмы. Построение и анализ. Издание 3-е,
	2013.
	2. В. А. Горбатов. Фундаментальные основы дискретной математики. Москва, 2000.
	3. Р. Хаггарти. Дискретная математика для программистов. Москва: Техносфера, 2005.
	4. Гаврилов Г.П., Сапоженко А.А. Задачи и упражнения по дискретной математике. М:
Дополни-	ФИЗМАТЛИТ, 2005.
тельные	5. Ф.А. Новиков. Дискретная математика для программистов. Издательский дом «Питер»,
	2000.
	6. Jay L. Devore, <i>Probability and Statistics for Engineering and the Sciences</i> , CENGAGE Learning
	Boston, USA, Ninth ed., 2016.
	7. Зарядов И.С. Статистический пакет R: теория вероятностей и математическая
	статистика. М., 2010.
	8. Ф. Мостеллер, Р. Рурке, Дж. Томас. Вероятность. Пер. с англ.

7. Оценивание обучения

Тип оценки	Порядок проведения, минимальный допустимый уровень	Доля в конечной оценке	Общая оценка
	Очное обучение/ дуальное обучение		
Промежуточная аттестация			
ПА1	Тест на платформе Moodle, состоящий из 20 пунктов (множественный выбор, короткий ответ, структурированные вопросы, решение задач), сформулированный на основе тем 1-7.	25%	
ПА2	Тест на платформе Moodle, состоящий из 20 пунктов (множественный выбор, короткий ответ, структурированные вопросы, решение задач), сформулированный на основе тем, 8-15.	25%	60%
Текущая оценка	Активное участие в практической работе с минимальной посещаемостью 50% Активное участие в дискуссиях на занятиях с минимальной посещаемостью 50% Активное участие в дискуссиях на семинарских занятиях с минимальной посещаемостью 50%	25%	
Самостоятельная работа	Презентация/выступление на выбранную тему	25%	
Экзамен	Письменный экзамен, по вариантам. Оценка по шкале.	100%	40%