
Software Systems Architecture

Poștaru Andrei

Event-Driven Architecure

Communication Styles

Request-driven

Event-driven

Event-driven
• Anything happened (or didnt happen).

• A change in the state.

• An event is always named in the past tense and is immutabled

• A condition that triggers a notification.

CustomerAddressChanged

InventoryUpdated

SalesOrderCreated

PurschaseOrderCreated

Characterstics of Events

• “Real-time” events as they happen at the producer

• Push notifications

• One-way “fire-and-forget”

• Immediate action at the consumers

• Informational (“someone logged in”), not commands (“audit this”)

Event-driven microservices

Messaging Patterns

Typical EDA Architecture

Traditional Archiecture- ESB

Benefits of EDA

• Supports the business demands for better service (no

batch, less waiting)

• No point-to-point integrations (fire & forget)

• Fault tolerance, scalability, versatility, and other benefits of

loose coupling.

• Powerful real-time response and analytics.

• Greater operational efficiencies

Event Backbone

Streaming Process

Event Driven (Async) in Microservices

Microservice events and Streaming processing

Domain event and event sourcing

• Domain event- In domain-driven design, domain events are described as

something that happens in the domain and is important to domain experts.

- A user has registered

- An order has been cancelled.

- The payment has been received

Domain events are relevant both within a bounded context and across bounded

contexts for implementing processes within the domain.

Best for communication between bounded context.

Domain event and event sourcing

■ Event Sourcing - Event Sourcing ensures that all changes to application state are stored as a

sequence of events. It store the events that lead to specific state and state too.

- MobileNumberProvided (MobileNumber)

- VerificationCodeGenerated (VerificationCode)

- MobileNumberValidated (no additional state)

- UserDetailsProvided (FullName, Address, …)

These events are sufficient to reconstruct the current state of the UserRegistration aggregate at any

time.

Event Sourcing is for persistent strategy. Event Sourcing makes it easier to fix inconsistencies. Event

Sourcing is local for a domain.

Kafka Streaming Platform

Kafka Overview

• Distributed publish-subscribe messaging system.

• Designed for processing of real time activity stream data (log,

metrics, collections, social media streams,…..)

• Does not use JMS API and standards

• Kafka maintains feeds of message in topics

• Initially developed at Linkedin, now part of Apache.

Benefits of Kafka
• Reliability. Kafka is distributed, partitioned, replicated, and fault

tolerant. Kafka replicates data and is able to support multiple

subscribers. Additionally, it automatically balances consumers in

the event of failure.

• Scalability. Kafka is a distributed system that scales quickly and

easily without incurring any downtime.

• Durability. Kafka uses a distributed commit log, which means

messages persists on disk as fast as possible providing intra-

cluster replication, hence it is durable.

• Performance. Kafka has high throughput for both publishing and

subscribing messages. It maintains stable performance even when

dealing with many terabytes of stored messages.

What is kafka
• Kafka is a messaging system that is designed to be fast, scalable, and

durable.

• A producer is an entity/application that publishes data to a Kafka

cluster, which is made up of brokers.

• A Broker is responsible for receiving and storing the data when a

producer publishes.

• A consumer then consumes data from a broker at a specified offset,

i.e. position.

• A Topic is a category/feed name to which records are stored and

published. Topics have partitions and order guaranteed per partitions

• All Kafka records are organized into topics. Producer applications write

data to topics and consumer applications read from topics.

Kafka Architecture

Key Concepts of Kafka

• Topic is divided in partitions.

• The message order is only guarantee inside a partition

• Consumer offsets are persisted by Kafka with a commit/auto-commit

mechanism.

• Consumers subscribes to topics

• Consumers with different group-id receives all messages of the topics

they subscribe. They consume the messages at their own speed.

• Consumers sharing the same group-id will be assigned to one (or several)

partition of the topics they subscribe. They only receive messages from

their partitions. So a constraint appears here: the number of partitions in a

topic gives the maximum number of parallel consumers.

• The assignment of partitions to consumer can be automatic and

performed by Kafka. If a consumer stops polling or is too slow, a process

call “re-balancing” is performed and the partitions are re-assigned to other

consumers.

Key Concepts of Kafka

• Kafka normally divides topic in multiply partitions.

• Each partition is an ordered, immutable sequence of messages that is

continually appended to.

• A message in a partition is identified by a sequence number called offset.

• The FIFO is only guarantee inside a partition.

• When a topic is created, the number of partitions should be given

• The producer can choose which partition will get the message or let Kafka

decides for him based on a hash of the message key (recommended). So

the message key is important and will be the used to ensure the message

order.

• Moreover, as the consumer will be assigned to one or several partition,

the key will also “group” messages to a same consumer.

Saga pattern

• The Saga pattern provides transaction management using a sequence of

local transactions.

• A local transaction is the atomic work effort performed by a saga

participant.

• Each local transaction updates the database and publishes a message or

event to trigger the next local transaction in the saga.

• If a local transaction fails, the saga executes a series of compensating

transactions that undo the changes that were made by the preceding local

transactions.

Saga pattern

Saga pattern

Benefits

•Good for simple workflows that require few participants and don't need a

coordination logic.

•Doesn't require additional service implementation and maintenance.

•Doesn't introduce a single point of failure, since the responsibilities are

distributed across the saga participants.

Drawbacks

•Workflow can become confusing when adding new steps, as it's difficult to

track which saga participants listen to which commands.

•There's a risk of cyclic dependency between saga participants because they

have to consume each other's commands.

•Integration testing is difficult because all services must be running to

simulate a transaction.

CQRS pattern

• CQRS stands for Command and Query Responsibility Segregation, a

pattern that separates read and update operations for a data store.

• Implementing CQRS in your application can maximize its performance,

scalability, and security.

• The flexibility created by migrating to CQRS allows a system to better

evolve over time and prevents update commands from causing merge

conflicts at the domain level.

CQRS pattern

CQRS pattern

CQRS separates reads and writes into different models, using commands to

update data, and queries to read data.

• Commands should be task-based, rather than data centric. ("Book hotel

room", not "set ReservationStatus to Reserved").

• Commands may be placed on a queue for asynchronous processing,

rather than being processed synchronously.

• Queries never modify the database. A query returns a DTO that does not

encapsulate any domain knowledge.

