Software Systems Architecture

Monolith, SOA, Micro-services

Postaru Andrei

Monolithic Architecture

Monolithic App

Monolithic Architecture

« Large Codebase
« Many Components, no clear ownership
* Long deployment cycles

Monolithic Architecture

Pros

Single codebase
— Easy to develop/debug/deploy
— Good IDE support

Easy to scale horizontally (but can only scale in an “un-
differentiated” manner)

A Central Ops team can efficiently handle

Monolithic Architecture

Monolithic App — Evolution

 As codebase Iincreases ...

— Tends to increase “tight coupling” between
components

* Just like the cars of a train

— All components have to be coded in the same
language

Monolithic Architecture

Shopping Cart

User Accounts Product Catalog

Customer Service

Evolution of a Monolithic App

Monolithic Architecture

Monolithic App - Scaling

* Scaling is “undifferentiated”

« Cant scale “ " differently from “Customer Service”

Monolithic Architecture

node-01

Ul

*---

Business Layer

When an
application is
relativelly small,
splitting it into
horizontal
layers is a good
idea. It provides
a separation
that makes
development
faster and
easier as well as
a separation
based on type
of the task code
should do.

Monolithic Architecture

Load balancer

node-01 node-02 node-03

Ul Ul Ul

v v

Business Layer Business Layer Business Layer

4 v v

DAO DAO DAO

v v v

DB DB DB

Scaling monolithic applications is very resource inefficient since everything needs to
be duplicated on multiple nodes. There is no option to detect bottlenecks and scale
or separate them from the rest of the application.

Monolithic Architecture

N e

- e

W L o

Monolithic Apps — Failure & Availability

Monolithic Architecture

Monolithic Application with Increased Number of Features

Ui
Ul feat.

Business Léy'er

Business feat.

DAO H
¥
DAQ feat.
DB :
Ui
DB feat.

node-01
Ul feat. Ul feat.
v TR v .
Business feat Business feat,
ST B Nt |
R] !
- ‘__;,_._-.--"" = AT ‘-r
T m— E—
DAO feat, DAO feat,
_E.'a__, : ‘; ; :
DB feat. DB feat.

Ul feat.

v

Business feat.

v
DAO feat,

v
DB feat.

When an
application
becomes bigger
and the number
of features
increase, initial
design based on
horizontal layers
becomes less
efficient. Tight
coupling between
separate features,
longer paths for
potentially simple
solutions,
increased
complexity,
increased
development and
testing time, and
S0 on.

Service Oriented Architecture (SOA)

Service

= Code solving a domain-specific problem

= Built by small team using a particular technology stack

= EXposes features to caller via a well-defined API contract
= Degrades gracefully when dependent services fall

= Can be upgraded independently of calling services

= Dividing a big service into smaller services is often
referred to as a microservices architecture

Service Oriented Architecture (SOA)

SOA Components and Operations

- Flight Reservation
- Car Hire

- Hotel Booking

- Mortgage Lending
- Office Supplies

Service
Consumer

Application-A Application-B
- Travel Agent - Airline/Car Rental/Hotel Chain
- Retail Bank - Mortgage Specialist/Investment Banks

- Publishing House - Office Supplies Company

How SOA Works?

H

" Tho consumer thenrequests the service
directly from the service provider. y—

1 P —————_——

s BIND: The service provider authorizes the g
| consumer o use the specific service.

Broker Design Pattern Dynamics

: Client : Client Proxy : Broker : Server Proxy : Server

register_service

start_up

method (proxy) .
locate_server assigned port |
[server port |

:Imarshal

receive_request

unmarshal

i

dispatch
method (impl.)

—lmarshal
receive result .

] unmarshal

[result |
Broker tools provide the
generation of necessary client & |1 0
server proxies from higher level Specif.
interface definitions

How did it come to SOA?

Service

., O Addsuun Oriented
—— GetStuft

00
o ER A
1Unknown E$ b ":"I
® ® OO S
AddStuft —

Procedural =] e Gm Component SR .
Oriented Oriented

& "

,

\ /

» g r
t\///

Microservices

~ MONOLITHS

Hard to deliver, even harder to test and impossible to maintain

Microservices

Microservices

1990s and earlier 2000s 20108
Coupling
Pre-SOA (monolithic) Traditional SOA Microservices
Tight coupling Looser caupling Decoupled .
@ @ ® @
@] ®)
—.‘*g“* \om‘m
e & @
o : ’Gs“ &
@)D

Microservices

' Y i
]
Ul "-“-_,__*
Microservice
Business Logic /
Data Access
Microservice Microservice Microservice
Layer

o 3 - -

b, vy b,

Monolithic Architecture Microservices Architecture

Microservices

TIPPING POINT

Organizational Growth Disverse Functionality Bottleneck in

Monolithic stack

Microservices

Characteristics

 Many smaller (fine grained), clearly scoped services
— Single Responsibility Principle
— Domain Driven Development
— Bounded Context
— Independently Managed

« Clear ownership for each service
— Typically need/adopt the “DevOps” model

Comparing Monolithic to MicroServices

Pineapples

20 20 00 Watermelons

Microservices Architecture

Load Balancer
]

API Gatewax

) 8 Catalog
DB

Concept -> Service Dependency Graph

Service X

Service L
Your

App/Service Service Y

Service M

Service Z

Why?

Faster and simpler deployments and rollbacks
— Independent Speed of Delivery (by different teams)
Right framework/tool/language for each domain

— Recommendation component using Python?,
Catalog Service in Java ..

Greater Resiliency

— Fault Isolation
Better Availability

— If architected right ©

Challenges

Challenges

Pain points

= More services means more network communication

= Decreases overall performance due to network hops & (de)serialization
= Requires more failure (timeout) recovery code

= Hard to test in isolation without dependent services
= Hard to debug/monitor across services

= New service versions must support old & new API
contracts simultaneously because client services don't
upgrade at the same time

= Developers trade short-term pain for long-term gain

Challenges

Pain points

 Distributed Systems are inherently Complex
— N/W Latency, Fault Tolerance, Retry storms ..

e QOperational Overhead
— TIP: Embrace DevOps Model

Microservices Accessing the
Shared Database

container

Each container
is full self-

container l

container

container

container

DB
v 4

DB-subset DB-subset DB-subset

sufficient except
that it uses a
subset of the
shared DB. A
single DB subset
can be accessed
only by a
dedicated
container.

DB-subset

Microservices Characteristics

« Many smaller (fine grained), clearly scoped
services

— Single Responsibility Principle
— Independently Managed
» Clear ownership for each service
— Typically need/adopt the “DevOps” model

Service Discovery

* 100s of MicroServices

* Need a Service Metadata Registry (Discovery Service)

Data Serialization Overhead

Data transformation

getMovies() getMovie() getMovieMetadata()
— > —» —>

Service A Service B Service D

{ {
"some more data" : "......", "some more data" : "......",
"id": 1", “id": 1Y,
“title": "The Silence of the Lambs", "title": "The Silence of the Lambs",
"cast": ["Jodie Foster", "Anthony Hopkins"l, "cast": ["Jodie F.ste ™, "Anthony Hopkins"],
"duration": "1 hr", "duration: "1 hr",
"yet more data" : " " "yet more data" : “."

JSON Xml|

Best Practice -> Isolation/Access

TIP: In AWS, use Security Groups to isolate/restrict access to your MicroServices

Edit inbound rules

Type | Protocol |

HTTP

Add Rule

Best Practice -> Loadbalancers

Choice
Central Loadbalancer? (H/W or S/W)

OR

2. Client based S/W Loadbalancer?

Central (Proxy) Loadbalancer

Customer Service Load

: Balancer
Account Service Load

Balancer
Customer Service
Service 1

Account Service 1 Account Service N

Reco Service

Load Balancer Customer Service
Service N

Recommendation Recommendation
Service 1 Service N

Best Practices

« Dependency Calls
— Guard your dependency calls
— Cache your dependency call results
— Consider Batching your dependency calls
— Increase throughput via Async patterns

Server Caching

Composite Caching

N
o
(@]
Q
(=]
>
@
=4
v
7
(@]
QO
w
[©)
=
(2]
w

BottleNecks/HotSpots

A/B Test Service

Service X Service Y ~ Service Z

Every User Req to App translates
to 4 reqgs to User Account Service

Tip: Pass data via Headers

A/B Test Service

Usr=XX; Wsr=XX; USr=XX;
AbCell=103

Service X . Service Y . ~ Service Z

AbCell=103

User Account
Service

Passing data (e.g. user and test cell)
via HTTP Headers
and on User Account Service

Best Practices

* Test Services for Resiliency
— Latency/Error tests
— Dependency Service Unavailability
— Network Errors

Auto Scaling

Use AWS Auto Scaling Groups to automatically scale your
microservices

RPS or CPU/LoadAverage via CloudWatch are typical metrics used
to scale

Auto Scaling Group

| ™ | | ™ 7
v ki

Desired Compute Capacity Added Only
Capacity When Needed

Homogeneity in A Polyglot Ecosystem

Platform Services

Python/
Django

2 g =

Node.js

. RoR

Microservices. Scalability

A monolithic application puts all its
functionality into a single process...

9
e
L B 4

... and scales by replicating the
monolith on multiple servers

@
oV oV

\/ \
o) ",

9 9
e We
oV oV

A microservices architecture puts ’

each element of functionality into a
separate service...

... and scales by distributing these services
across servers, replicating as needed.

0 (f® v

O <O

pd
yd

J

Docker: Containerization for Software

Docker

Virtual Machine

Container

App
#1

App
#H2

App

Bins/
Libs

Bins/
Libs

Bins/
Libs

Docker Engine

>| Container

So why Docker?

 Containers are far from new:

— Google has been using their own container technology for
years.

— Others Linux container technologies include
» Solaris Zones,
« BSD jalls, and
« LXC, which have been around for many years.
« Docker is an open-source project based on Linux
containers. It uses Linux Kernel features.

Docker Benefits

Local development environments can be set up that are
exact replicas of a live environment/server.

It simplifies collaboration by allowing anyone to work on
the same project with the same settings, irrespective of
the local host environment.

Multiple development environments can be run from the
same host each one having different configurations,
operating systems, and software.

Projects can be tested on different servers.

It gives you instant application portability. Build, ship,
and run any application as a portable container that can
run almost anywhere.

Docker Benefits

Ease of use. It allows anyone to package an application on their laptop,
which in turn can run unmodified anywhere

— The mantra is: “build once, run anywhere.”

Speed. Docker containers are very lightweight and fast. Since containers are
just sandboxed environments running on the kernel, they take up fewer
resources. You can create and run a Docker container in seconds,
compared to VMs which might take longer because they have to boot up a
full virtual operating system every time.

Docker Hub. Docker users also benefit from the increasingly rich ecosystem
of Docker Hub, which you can think of as an “app store for Docker images.”
Docker Hub has tens of thousands of public images created by the
community that are readily available for use.

Modularity and Scalability. Docker makes it easy to break out your
application’s functionality into individual containers. With Docker, it's become
easier to link containers together to create your application, making it easy to
scale or update components independently in the future.

VM vs. Docker

Startup

Integration

oo AN

