
Software Systems Architecture

Poștaru Andrei

Monolith, SOA, Micro-services



Monolithic Architecture

Load Balancer

Monolithic App

Account 

Component
Catalog

Component

Recommendation

Component

Customer Service

Component

Database



Monolithic Architecture

• Large Codebase

• Many Components, no clear ownership

• Long deployment cycles 



Monolithic Architecture

Pros
• Single codebase 

– Easy to develop/debug/deploy

– Good IDE support

• Easy to scale horizontally (but can only scale in an “un-

differentiated” manner)

• A Central Ops team can efficiently handle



Monolithic Architecture

Monolithic App – Evolution

• As codebase increases …

– Tends to increase “tight coupling” between 

components

• Just like the cars of a train 

– All components have to be coded in the same 

language



Monolithic Architecture



Monolithic Architecture



Monolithic Architecture



Monolithic Architecture



Monolithic Architecture

Monolithic Apps – Failure & Availability



Monolithic Architecture

Monolithic Application with Increased Number of Features



Service Oriented Architecture (SOA)

▪ Code solving a domain-specific problem

▪ Built by small team using a particular technology stack

▪ Exposes features to caller via a well-defined API contract

▪ Degrades gracefully when dependent services fail

▪ Can be upgraded independently of calling services

▪ Dividing a big service into smaller services is often 
referred to as a microservices architecture

Service 



Service Oriented Architecture (SOA)

SOA Components and Operations



How SOA Works?



Broker Design Pattern Dynamics



How did it come to SOA?



Microservices



Microservices



Microservices



Microservices



Microservices



Microservices

Characteristics

• Many smaller (fine grained), clearly scoped services

– Single Responsibility Principle

– Domain Driven Development

– Bounded Context

– Independently Managed

• Clear ownership for each service

– Typically need/adopt the “DevOps” model



Comparing Monolithic to MicroServices



Microservices Architecture

Load Balancer

Account 

Service
Catalog

Service

Recommendation

Service
Customer Service

Service

Catalog 

DB

API Gateway

Customer 

DB



Concept -> Service Dependency Graph

Your 

App/Service

Service X

Service Y

Service Z

Service L

Service M



Why?

• Faster and simpler deployments and rollbacks

– Independent Speed of Delivery (by different teams)

• Right framework/tool/language for each domain

– Recommendation component using Python?, 

Catalog Service in Java ..

• Greater Resiliency

– Fault Isolation

• Better Availability

– If architected right ☺



Challenges



Challenges

▪ More services means more network communication
▪ Decreases overall performance due to network hops & (de)serialization

▪ Requires more failure (timeout) recovery code

▪ Hard to test in isolation without dependent services

▪ Hard to debug/monitor across services

▪ New service versions must support old & new API 
contracts simultaneously because client services don’t 
upgrade at the same time

▪ Developers trade short-term pain for long-term gain

Pain points



Challenges

Pain points

• Distributed Systems are inherently Complex

– N/W Latency, Fault Tolerance, Retry storms ..

• Operational Overhead

– TIP: Embrace DevOps Model



Microservices Accessing the 

Shared Database



Microservices Characteristics

• Many smaller (fine grained), clearly scoped 

services

– Single Responsibility Principle

– Independently Managed

• Clear ownership for each service

– Typically need/adopt the “DevOps” model



Service Discovery



Data Serialization Overhead



Best Practice -> Isolation/Access



Best Practice -> Loadbalancers

Choice

1. Central Loadbalancer? (H/W or S/W)

OR

2.  Client based S/W Loadbalancer?



Central (Proxy) Loadbalancer



Best Practices 

• Dependency Calls
– Guard your dependency calls

– Cache your dependency call results

– Consider Batching your dependency calls

– Increase throughput via Async patterns



Server Caching



Composite Caching



BottleNecks/HotSpots



Tip: Pass data via Headers



Best Practices 

• Test Services for Resiliency
– Latency/Error tests

– Dependency Service Unavailability

– Network Errors



Auto Scaling

Use AWS Auto Scaling Groups to automatically scale your 

microservices

RPS or CPU/LoadAverage via CloudWatch are typical metrics used 

to scale



Homogeneity in A Polyglot Ecosystem



Microservices. Scalability



Docker: Containerization for Software



Docker

“Docker is an open platform for developers

and sysadmins to build, ship, and run

distributed applications”



Virtual Machine



Container



So why Docker?

• Containers are far from new; 

– Google has been using their own container technology for 

years. 

– Others Linux container technologies include 

• Solaris Zones, 

• BSD jails, and 

• LXC, which have been around for many years.

• Docker is an open-source project based on Linux 

containers. It uses Linux Kernel features.



Docker Benefits

1. Local development environments can be set up that are 
exact replicas of a live environment/server.

2. It simplifies collaboration by allowing anyone to work on 
the same project with the same settings, irrespective of 
the local host environment.

3. Multiple development environments can be run from the 
same host each one having different configurations, 
operating systems, and software.

4. Projects can be tested on different servers.

5. It gives you instant application portability. Build, ship, 
and run any application as a portable container that can 
run almost anywhere.



Docker Benefits

• Ease of use. It allows anyone to package an application on their laptop, 

which in turn can run unmodified anywhere

– The mantra is: “build once, run anywhere.”

• Speed. Docker containers are very lightweight and fast. Since containers are 

just sandboxed environments running on the kernel, they take up fewer 

resources. You can create and run a Docker container in seconds, 

compared to VMs which might take longer because they have to boot up a 

full virtual operating system every time.

• Docker Hub. Docker users also benefit from the increasingly rich ecosystem 

of Docker Hub, which you can think of as an “app store for Docker images.” 

Docker Hub has tens of thousands of public images created by the 

community that are readily available for use.

• Modularity and Scalability. Docker makes it easy to break out your 

application’s functionality into individual containers. With Docker, it’s become 

easier to link containers together to create your application, making it easy to 

scale or update components independently in the future.



VM vs. Docker


