Software Systems Architecture

Quality Attributes

Postaru Andrei

Deployability

Deployment is a process that starts with coding and ends with real users
interacting with the system in a production environment. If this process is fully
automated—that is, if there is no human intervention—then it is called
continuous deployment. If the process is automated up to the point of placing
(portions of) the system into production and human intervention is required

(perhaps due to regulations or policies) for this final step, the process is called
continuous delivery.

Continuous Deployment

To speed up releases, we need to introduce the concept of a deployment pipeline:
the sequence of tools and activities that begin when you check your code into a
version control system and end when your application has been deployed for
users to send it requests. In between those points, a series of tools integrate and
automatically test the newly committed code, test the integrated code for
functionality, and test the application for concerns such as performance under
load, security, and license compliance.

Continuous Deployment

Each stage in the deployment pipeline takes place in an environment established
to support isolation of the stage and perform the actions appropriate to that stage.
The major environments are as follows:

- Codeis developed in a development environment for a single module where it is
subject to standalone unit tests. Once it passes the tests, and after appropriate
review, the code is committed to a version control system that triggers the
build activities in the integration environment.

- An integration environment builds an executable version of your service. A

continuous integration server compiles! your new or changed code, along
with the latest compatible versions of code for other portions of your service
and constructs an executable image for your service.? Tests in the integration
environment include the unit tests from the various modules (now run
against the built system) as well as integration tests designed specifically for
the whole system. When the various tests are passed, the built service is
promoted to the staging environment.

Continuous Deployment

- A staging environment tests for various qualities of the total system. These
include performance testing, security testing, license conformance checks,
and, possibly, user testing. For embedded systems, this is where simulators of
the physical environment (feeding synthetic inputs to the system) are
brought to bear. An application that passes all staging environment tests—

which may include field testing—is deployed to the production environment,
using either a blue/green model or a rolling upgrade.

- Once in the production environment, the service is monitored closely until all
parties have some level of confidence in its quality. At that point, it is
considered a normal part of the system and receives the same amount of
attention as the other parts of the system.

Continuous Deployment

- A staging environment tests for various qualities of the total system. These
include performance testing, security testing, license conformance checks,
and, possibly, user testing. For embedded systems, this is where simulators of
the physical environment (feeding synthetic inputs to the system) are
brought to bear. An application that passes all staging environment tests—

which may include field testing—is deployed to the production environment,
using either a blue/green model or a rolling upgrade.

- Once in the production environment, the service is monitored closely until all
parties have some level of confidence in its quality. At that point, it is
considered a normal part of the system and receives the same amount of
attention as the other parts of the system.

Deployability

Deployability refers to a property of software indicating that it may be deployed—
that is, allocated to an environment for execution—within a predictable and
acceptable amount of time and effort. Moreover, if the new deployment is not
meeting its specifications, it may be rolled back, again within a predictable and
acceptable amount of time and effort. As the world moves increasingly toward
virtualization and cloud infrastructures, and as the scale of deployed software-
intensive systems inevitably increases, it is one of the architect’s responsibilities
to ensure that deployment is done in an efficient and predictable way, minimizing

overall system risk.?

Deployability

" el
Source Artifact AV
. Response VY
0 | Authentication/authorization P
Stimulus service
Environment Response
Measure
Component New release of the Production The new service is Within 40 hours and
marketplace authentication/authorization tested in-house no more than 120
service is made available and deployed to person-hours of effort
and the product owner production servers Mo defects introduced:

decides to incarporate it no SLA violated

Deployability tactics

Deployability Tactics

/\

Manage Deployment Pipeline Manage Deployed System
Scale Rollouts Manage Service Interactions
Script Deployment Commands Package Dependencies

Hollback Toggle Features

Energy Efficiency

Energy used by computers used to be free and unlimited—or at least that’s how
we behaved. Architects rarely gave much consideration to the energy
consumption of software in the past. But those days are now gone. With the
dominance of mobile devices as the primary form of computing for most people,
with the increasing adoption of the Internet of Things (IoT) in industry and
government, and with the ubiquity of cloud services as the backbone of our
computing infrastructure, energy has become an issue that architects can no
longer ignore.

Sample energy efficiency
scenario

_
Source Artifact
Response
o e System P
Stimulus
Environment Response
Measure

Manager Wants to save energy at MNon-peak period The system Maintaining worst-case
runtime by deallocating deallocates latency of 2 seconds on
unused resources at resources database queries, saving
non-peak periods on average 50% of the

total energy required

Energy efficiency tactics

Energy Efficiency Tactics

%\

Monitor Resources Allocate Resources Reduce Reslource Demand
Metering Reduce Usage Manage Event Arrival
Static Classification Discovery Limit Event Response

Dynamic Classification Schedule Resources Prioritize Events
Reduce Computational Overhead
Bound Execution Times

Increase Resource Usage Efficiency

Integrability

According to the Merriam-Webster dictionary, the adjective integrable means
“capable of being integrated.” We'll give you a moment to catch your breath and
absorb that profound insight. But for practical software systems, software
architects need to be concerned about more than just making separately
developed components cooperate; they are also concerned with the costs and
technical risks of anticipated and (to varying degrees) unanticipated future
integration tasks. These risks may be related to schedule, performance, or
technology.

Sample integrability scenario

Source

) Stimulus

Component Mew data filtering
marketplace component becomes
available

Artifact

System

Response

Environment

Development

Response
Measure
The new component 1 month, with no more
is integrated and than 1 person-month

deployed of effort

Integrability tactics

Integrability Tactics

/N

Limit Dependencies Adapt Coordinate
Encapsulate Discover Orchestrate
Use an Intermediary Tailor Interface Manage Resources

Restrict Communication Paths Configure Behavior
Adhere to Standards

Abstract Common Services

Modifiability

Study after study shows that most of the cost of the typical software system
occurs after it has been initially released. If change is the only constant in the
universe, then software change is not only constant but ubiquitous. Changes
happen to add new features, to alter or even retire old ones. Changes happen to fix
defects, tighten security, or improve performance. Changes happen to enhance
the user’s experience. Changes happen to embrace new technology, new
platforms, new protocols, new standards. Changes happen to make systems work
together, even if they were never designed to do so.

Modifiability

Modifiability is about change, and our interest in it is to lower the cost and risk of
making changes. To plan for modifiability, an architect has to consider four
questions:

- What can change? A change can occur to any aspect of a system: the functions
that the system computes, the platform (the hardware, operating system,
middleware), the environment in which the system operates (the systems
with which it must interoperate, the protocols it uses to communicate with
the rest of the world), the qualities the system exhibits (its performance, its
reliability, and even its future modifications), and its capacity (number of
users supported, number of simultaneous operations).

- What is the likelihood of the change? One cannot plan a system for all potential
changes—the system would never be done or if it was done it would be far too
expensive and would likely suffer quality attribute problems in other
dimensions. Although anything might change, the architect has to make the
tough decisions about which changes are likely, and hence which changes will
be supported and which will not.

Modifiability

- When is the change made and who makes it? Most commonly in the past, a
change was made to source code. That is, a developer had to make the change,
which was tested and then deployed in a new release. Now, however, the
guestion of when a change is made is intertwined with the question of who
malkes it. An end user changing the screen saver is clearly making a change to
one aspect of the system. Equally clear, it is not in the same category as
changing the system so that it uses a different database management system.
Changes can be made to the implementation (by modifying the source code),
during compilation (using compile-time switches), during the build (by
choice of libraries), during configuration setup (by a range of techniques,
including parameter setting), or during execution (by parameter settings,
plug-ins, allocation to hardware, and so forth). A change can also be made by a
developer, an end user, or a system administrator. Systems that learn and
adapt supply a whole different answer to the question of when a change is
made and “who” makes it—it is the system itself that is the agent for change.

- What is the cost of the change? Making a system more modifiable involves two
types of costs:

» The cost of introducing the mechanism(s) to make the system more
modifiable

« The cost of making the modification using the mechanism(s)

Sample concrete modifiability
scenario

Source Artifact A »
. Response
o - User interface P
g Stimulus
Environment Response
Measure
Developer Wants to change the Design time Change is made Less than 3 hours to
user interface make and test change;

no side effects

Modifiability tactics

Modifiability Tactics
Increase Cohesion Reduce Coupling Defer Binding
Split Module Encapsulate Component Replacement
Redistribute Responsibilities Use an Intermediary Couple-Time Parameterization

Abstract Common Services Aspects

Ristrict Dependencies Configuration-Time Binding
Resource Files
Discovery
Interpret Parameters
Shared Repositories

Polymaorphism

Performance

When events occur—interrupts, messages, requests from users or other systems,
or clock events marking the passage of time—the system, or some element of the
system, must respond to them in time. Characterizing the events that can occur

(and when they can occur) and the system’s or element’s time-based response to
those events is the essence of discussing performance.

Sample performance scenario

Source Artifact
Response
o - System P
Stimulus
Environment Response
Measure
500 users Initiate 2,000 Normal operations Processes all Average latency

requests in a requests < 2 seconds

30-second interval

Performance tactics

Performance Tactics

e

Control Resource Demand

|

Manage Work Requests

Limit Event Response

Prioritize Events

Reduce Computational Overhead
Bound Execution Times

Increase Efficiency

Manage Resources

|

Increase Resources

Introduce Concurrency

Maintain Multiple Copies of Computations
Maintain Multiple Copies of Data

Bound Queue Sizes

Schedule Resources

Safety

Safety is concerned with a system’s ability to avoid straying into states that cause
or lead to damage, injury, or loss of life to actors in its environment. These unsafe
states can be caused by a variety of factors:

- Omissions (the failure of an event to occur).

- Commission (the spurious occurrence of an undesirable event). The event
could be acceptable in some system states but undesirable in others.

- Timing. Early (the occurrence of an event before the time required) or late (the
occurrence of an event after the time required) timing can both be potentially
problematic.

- Problems with system values. These come in two categories: Coarse incorrect
values are incorrect but detectable, whereas subtle incorrect wvalues are
typically undetectable.

- Sequence omission and commission. In a sequence of events, either an event is
missing (omission) or an unexpected event is inserted (commission).

- Out of sequence. A sequence of events arrive, but not in the prescribed order.

Safety is also concerned with detecting and recovering from these unsafe states to
prevent or at least minimize resulting harm.

Sample concrete safety scenario

Source

) Stimulus

A sensor Fails to report a life-

critical value after
100 ms

*

Artifact

Patient monitoring system

Environment

MNormal operations

Response
Response
Measure
The failure is logged, a warning After no more
light is illuminated on the than 300 ms

console, and a backup (lower
fidelity) sensor is engaged, the
system monitors the patient
using the backup sensor

Safety tactics

Safety Tactics
Unsafe State Unsafe State Containment Recovery
Avoiciance Detection M\
Substitution Redundancy Limit Barrier
Predictive Model Conaedugnces
' ' '
Sanity Check Masking Rollback
Comparison Abort Reconfiguration
Timeout Degradation Repair State
Condition Monitoring
Timestamp Y Y
Replication Firewall
Analytic Redundancy Interlock

Functional Redundancy

Security

Security is a measure of the system’s ability to protect data and information from
unauth}::urized access while still providing access to people and systems that are
authorized. An attack—that is, an action taken against a computer system with
the intention of doing harm—can take a number of forms. It may be an
unauthorized attempt to access data or services or to modify data, or it may be
intended to deny services to legitimate users.

Security

The simplest approach to characterizing security focuses on three characteristics:
confidentiality, integrity, and availability (CIA):

- Confidentiality is the property that data or services are protected from
unauthorized access. For example, a hacker cannot access your income tax
returns on a government computer.

- Integrity is the property that data or services are not subject to unauthorized
manipulation. For example, your grade has not been changed since your
instructor assigned it.

- Availability is the property that the system will be available for legitimate use.
For example, a denial-of-service attack won't prevent you from ordering this
book from an online bookstore.

Sample scenario for security

Source Artifact SO A
Response V"
0 | Database
Stimulus
Environment Response
Measure
A disgruntled Attemps to Mormal operations The unauthorized Correct data is
employee at improperly modify access is detected and restored within
a remote the pay rate table the system maintains one day

location

an audit trail

Security tactics

Security Tactics

Detect Attacks Resist Attacks React to Recover from
l Attacks Attacks
Detect Intrusion Identify Actors Revoke Access Audit
Detect Service Denial Authenticate Actors Restrict Login Nonrepudiation
Verify Message Integrity Authorize Actors Inform Actors

Detect Message Delivery Anomalies Limit Access
Limit Exposure
Encrypt Data
Separate Entities
Validate Input
Change Credential Settings

Testability

Software testability refers to the ease with which software can be made to
demonstrate its faults through (typically execution-based) testing. Specifically,
testability refers to the probability, assuming that the software has at least one
fault, that it will fail on its next test execution. Intuitively, a system is testable if it
“reveals” its faults easily. If a fault is present in a system, then we want it to fail
during testing as quickly as possible. Of course, calculating this probability is not
easy and—as you will see when we discuss response measures for testability—
other measures will be used. In addition, an architecture can enhance testability
by making it easier both to replicate a bug and to narrow down the possible root
causes of the bug. We do not typically think of these activities as part of testability
per se, but in the end just revealing a bug isn't enough: You also need to find and
fix the bug!

Sample testability scenario

Source

2

Developer

Stimulus

Completes a code

unit

T
Artifact VANV,
| Response N)
Code unit
———
Environment Response
Measure
Development Performs a test 85 9% path
sequence coverage within

30 minutes

Testability tactics

TestabilityTactics

/\

Control and Observe Limit Complexity
System State l
Specialized Interfaces Limit Structural Complexity
Record/Playback Limit Nondeterminism

Localize State Storage
Abstract Data Sources
Sandbox

Executable Assertions

Usability

Usability is concerned with how easy it is for the user to accomplish a desired task
and the kind of user support that the system provides. Over the years, a focus on
usability has shown itself to be one of the cheapest and easiest ways to improve a

system’s quality (or more precisely, the user’s perception of quality) and hence
end-user satisfaction.

Usability

Usability comprises the following areas:

« Learning system features. If the user is unfamiliar with a particular system or a
particular aspect of it, what can the system do to make the task of learning
easier? This might include providing help features.

- Using a system efficiently. What can the system do to make the user more
efficient in its operation? This might include enabling the user to redirect the
system after issuing a command. For example, the user may wish to suspend
one task, perform several operations, and then resume that task.

« Minimizing the impact of user errors. What can the system do to ensure that a
user error has minimal impact? For example, the user may wish to cancel a
command issued incorrectly or undo its effects.

- Adapting the system to user needs. How can the user (or the system itself)
adapt to make the user’s task easier? For example, the system may
automatically fill in URLs based on a user’s past entries.

« Increasing confidence and satisfaction. What does the system do to give the
user confidence that the correct action is being taken? For example, providing
feedback that indicates that the system is performing a long-running task,
along with the completion percentage so far, will increase the user'’s
confidence in the system.

Sample usability scenario

P ———

o~
Source Artifact m
- Response T b
o - Existing platform
Stimulus
———
Environment Response
Measure
User Downloads a new Runtime Using it == 2 minutes of

application productively experimentation

Usability tactics

Usability Tactics

/\‘

support User Initiative support System Initiative

|

|

Cancel Maintain Task Model
Undo Maintain User Model
Pause/Resume Maintain System Model

Aggregate

