Software Systems Architecture

Introduction

Postaru Andrei

What i1s architecture?

The architecture is not the operational
software. Rather, it is a representation
that enables a software engineer to:

(1)
In meeting its stated
requirements,

(2) at
a stage when making design changes is
still relatively easy, and

(3) associated with the
construction of the software.

Why iIs Architecture Important?

for communication between all parties
(stakeholders) interested in the development of
a computer-based system.

that will have a profound impact on all
software engineering work that follows and, as
important, on the ultimate success of the system
as an operational entity.

of how the system
Is structured and how its components work
together”.

Architectural Genres

implies a specific category within the overall
software domain.

= Within each category, you encounter a number of

subcategories.
» For example, within the genre of buildings, you would
encounter the following general houses, condos,

apartment buildings, office buildings, industrial building,
warehouses, and so on.

» Within each general style, more specific styles might apply.
Each style would have a structure that can be described
using a set of predictable patterns.

Architectural Styles

Each style describes a system category that
encompasses: (1) a (e.g.,a
database, computational modules) that perform a
function required by a system, (2) a

that enable “communication,
coordination and cooperation” among components,
(3) that define how components can be
integrated to form the system, and (4)

that enable a designer to understand the

overall properties of a system by analyzing the
known properties of its constituent parts.

Data-Centered Architecture

client client
software softmare

client client

software '/‘ softwans
Cata store
[repositony or _

client - Dlackboard) client

softwars / \ software
client client
software software

—p filter || filter ——J=| filter

Data Flow Architecture

Apes P filter] filter

/A

filter f——f

"y

Yy

filter (| filter | filter —

filter -

(&) pipesand filters

— | filter g filter | ——e| filter | —— filter | ——

(k) batch sequential

Call and Return Architecture

$ M
/ fan-out
a b c
depth /\ /\
d K / m

>

- width »

Layered Architecture

Components

userinterface layer
applicaion layer

uility layver

core layer

Patterns...

« Patterns help you build on the collective
experience of skilled software engineers. »

« They capture existing, well-proven experience
In software development and help to promote
good design practice »

« Every pattern deals with a specific, recurring
problem in the design or implementation of a
software system »

« Patterns can be used to construct software
architectures with specific properties... »

Becoming a Software Designer
Master

First learn the rules

= e.g., the algorithms, data structures and languages of
software

Then learn the principles

" e.g., structured programming, modular programming,
object oriented programming, generic programming,
efc.

However, to truly master software design, one

must study the designs of other masters

= These designs contain patterns must be understood,
memorized, and applied repeatedly

There are hundreds of these patterns

Software Architecture

A software architecture is a description of the
subsystems and components of a software system
and the relationships between them.

Subsystems and components are typically
specified in different views to show the relevant
functional and non-functional properties of a
software system.

The software system is an artifact. It is the result
of the software design activity.

Component

= A component is an encapsulated part of a
software system. A component has an
interface.

« Components serve as the building blocks for
the structure of a system.

= At a programming-language level,
components may be represented as
modules, classes, objects or as a set of
related functions.

Subsystems

= A subsystem is a set of collaborating
components performing a given task. A
subsystem is considered a separate entity
within a software architecture.

= It performs its designated task by interacting
with other subsystems and components...

Architectural Patterns

= An architectural Pattern expresses a
fundamental structural organization schema
for software systems. It provides a set of
predefined subsystems, their
responsibilities, and includes rules and

guidelines for organizing the relationships
between them.

Design patterns

= A design pattern provides a scheme for
refining the subsystems or components of a
software system, or the relation ships
between them. It describes a commonly-
recurring structure of communicating
components that solves a general design
problem within a particular context.

Framework

= Aframework is a partially complete software
(sub-) system that is intended to be
iInstantiated. It defines the architecture for a
family of (sub-) systems and provides the
basic building blocks to create them. It also
defines the places where adaptations for
specific functionality should be made.

Design Patterns

» Each of us has encountered a design problem
and silently thought:

» What 1f there was a standard way of describing a
problem (so you could look it up), and an
organized method for representing the solution to
the problem?

are a codified method for
describing problems and their solution allows
the software engineering community to capture
design knowledge 1n a way that enables it to be
reused.

Design Patterns

» Fach pattern describes a problem that occurs
over and over again in our environment and
then describes the core of the solution to that
problem in such a way that you can use the
solution a million times over without ever
doing it the same way twice.

= “a three-part rule which expresses a relation
between a certain context, a problem, and a
solution.”

»

»

»

»

>

Effective Patterns

Patterns capture solutions, not just abstract
pr1n01ples or strategies.

- Patterns capture solutions with a track record,
not theories or speculation.

- Many problem-solving techniques (such as
software design paradigms or methods) try to derive solutions from
first principles. The best patterns generate a solution to a problem
indirectly--a necessary approach for the most difficult problems of
design.

Patterns don't just describe modules, but
describe deeper system structures and mechanisms.

All software serves human comfort or quality of life; the
best patterns explicitly appeal to aesthetics and utility.

Kinds of Patterns

¢ describe broad-based design problems that are
solved using a structural approach.

describe recurring data-oriented problems and the data
modeling solutions that can be used to solve them.

(also referred to as) address problems
associated with the development of subsystems and components, the
manner in which they communicate with one another, and their placement
within a larger architecture

describe common user interface problems and
their solution Wlth a system of forces that includes the specific
characteristics of end-users.
' address a problem set that is encountered when building
WebApps and often incorporates many of the other patterns categories just
mentioned.

Kinds of Patterns

Creational pai s focus on the “creation, composition, and representation
of Ob_]GCtS €. g 3

» Abstract factory pattern: centralize decision of what factory to instantiate

» Factory method pattern: centralize creation of an object of a specific type

choosing one of several implementations

Structura s focus on problems and solutions associated with how
classes and Ob_] ects are organized and integrated to build a larger structure,
e.g.,

» Adapter pattern: 'adapts' one interface for a class into one that a client expects

» Aggregate pattern: a version of the Composite pattern with methods for
aggregatlon of children
Bel s address problems associated with the assignment of
respons1b111ty between objects and the manner in which communication is
effected between objects, e.g.,

» Chain of responsibility pattern: Command objects are handled or passed on
to other objects by logic-containing processing objects

» Command pattern: Command objects encapsulate an action and its
parameters

Frameworks

= Patterns themselves may not be sufficient to develop
a complete design.

» In some cases 1t may be necessary to provide an

implementation-specific skeletal infrastructure, called a
, for design work.

» That is, you can select a “reusable mini-architecture that
provides the generic structure and behavior for a family of

software abstractions, along with a context ... which

specifies their collaboration and use within a given
domain.” [Amb98]

but rather
a skeleton with a collection of " (also
called hooks and slots) that enable it to be adapted to
a specific problem domain.

» The plug points enable you to integrate problem specific
classes or functionality within the skeleton.

Pattern-Based Design

" A software designer begins with a
requirements model (either explicit or implied)
that presents an abstract representation of the
system.

" The requirements model describes the problem
set, establishes the context, and identifies the
system of forces that hold sway.

Pattern-Based Design

Begin
pattern-based
design tasks

Design Tasks—I

Examine the requirements model and develop a
problem hierarchy.

Determine 1f a reliable pattern language has been
developed for the problem domain.

Beginning with a broad problem, determine whether
one or more architectural patterns are available for it.

Using the collaborations provided for the
architectural pattern, examine subsystem or
component level problems and search for appropriate
patterns to address them.

Repeat steps 2 through 5 until all broad problems
have been addressed.

Design Tasks—I|

» [f user interface design problems have been 1solated
(this 1s almost always the case), search the many user
interface design pattern repositories for appropriate

patterns.

= Regardless of its level of abstraction, if a pattern
language and/or patterns repository or individual
pattern shows promise, compare the problem to be
solved against the existing pattern(s) presented.

* Be certain to refine the design as it 1s derived from
patterns using design quality criteria as a guide.

Common Design Mistakes

Not enough time has been spent to understand the
underlying problem, its context and forces, and as a
consequence, you select a pattern that looks right, but
1s inappropriate for the solution required.

Once the wrong pattern 1s selected, you refuse to see
your error and force fit the pattern.

In other cases, the problem has forces that are not
considered by the pattern you've chosen, resulting in
a poor or erroneous fit.

Sometimes a pattern 1s applied too literally and the

required adaptations for your problem space are not
implemented.

Design Granularity

| This level of abstraction will typically relate to
patterns that define the overall structure of the WebApp, indicate the
relationships among different components or increments, and define the
rules for specifying relationships among the elements (pages, packages,
components, subsystems) of the architecture.

These address a specific element of the design such as an
aggregatlon of components to solve some design problem, relationships
among elements on a page, or the mechanisms for effecting component to
component communication. An example might be the Broadsheet pattern
for the layout of a WebApp homepage.

This level of abstraction relates to individual small-
scale elements of a WebApp. Examples include individual interaction
elements (e.g. radio buttons, text books), navigation items (e.g. how might
you format links?) or functional elements (e.g. specific algorithms).

