
ptg11539634

ptg11539634

Java™ Coding Guidelines

ptg11539634

The SEI Series in Software Engineering is a collaborative undertaking of the
Carnegie Mellon Software Engineering Institute (SEI) and Addison-Wesley to develop

and publish books on software engineering and related topics. The common goal of the
SEI and Addison-Wesley is to provide the most current information on these topics in a
form that is easily usable by practitioners and students.

Titles in the series describe frameworks, tools, methods, and technologies designed to
help organizations, teams, and individuals improve their technical or management capa-
bilities. Some books describe processes and practices for developing higher-quality soft-
ware, acquiring programs for complex systems, or delivering services more effectively.
Other books focus on software and system architecture and product-line development.
Still others, from the SEI’s CERT Program, describe technologies and practices needed
to manage software and network security risk. These and all titles in the series address
critical problems in software engineering for which practical solutions are available.

Visit informit.com/sei for a complete list of available publications.

The SEI Series in Software Engineering
 Software Engineering Institute of Carnegie Mellon University and Addison-Wesley

Make sure to connect with us!
informit.com/socialconnect

ptg11539634

 iii

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Java™ Coding Guidelines

75 Recommendations for
Reliable and Secure Programs

Fred Long
Dhruv Mohindra
Robert C. Seacord
Dean F. Sutherland
David Svoboda

The SEI Series in Software Engineering is a collaborative undertaking of the
Carnegie Mellon Software Engineering Institute (SEI) and Addison-Wesley to develop

and publish books on software engineering and related topics. The common goal of the
SEI and Addison-Wesley is to provide the most current information on these topics in a
form that is easily usable by practitioners and students.

Titles in the series describe frameworks, tools, methods, and technologies designed to
help organizations, teams, and individuals improve their technical or management capa-
bilities. Some books describe processes and practices for developing higher-quality soft-
ware, acquiring programs for complex systems, or delivering services more effectively.
Other books focus on software and system architecture and product-line development.
Still others, from the SEI’s CERT Program, describe technologies and practices needed
to manage software and network security risk. These and all titles in the series address
critical problems in software engineering for which practical solutions are available.

Visit informit.com/sei for a complete list of available publications.

The SEI Series in Software Engineering
 Software Engineering Institute of Carnegie Mellon University and Addison-Wesley

Make sure to connect with us!
informit.com/socialconnect

ptg11539634

The SEI Series in Software Engineering

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

CMM, CMMI, Capability Maturity Model, Capability Maturity Modeling, Carnegie Mellon, CERT, and CERT
Coordination Center are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

ATAM; Architecture Tradeoff Analysis Method; CMM Integration; COTS Usage-Risk Evaluation; CURE; EPIC;
Evolutionary Process for Integrating COTS Based Systems; Framework for Software Product Line Practice;
IDEAL; Interim Profile; OAR; OCTAVE; Operationally Critical Threat, Asset, and Vulnerability Evaluation;
Options Analysis for Reengineering; Personal Software Process; PLTP; Product Line Technical Probe; PSP;
SCAMPI; SCAMPI Lead Appraiser; SCAMPI Lead Assessor; SCE; SEI; SEPG; Team Software Process; and TSP
are service marks of Carnegie Mellon University.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Long, Fred, 1947-
 Java coding guidelines : 75 recommendations for reliable and secure programs / Fred Long, Dhruv Mohindra,
Robert C. Seacord, Dean F. Sutherland, David Svoboda.
 pages cm.—(The SEI series in software engineering)
 Includes bibliographical references and index.
 ISBN 978-0-321-93315-7 (pbk. : alk. paper)
1. Java (Computer program language) 2. Computer programming. I. Title.
QA76.73.J38L66 2014
005.2'762—dc23
 2013021384

Copyright © 2014 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. To obtain permission to use material from this work, please submit a written request to Pearson
Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-93315-7
ISBN-10: 0-321-93315-X
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, August 2013

ptg11539634

To my late wife, Ann, for all her love, help, and support over the years.
—Fred Long

To my parents, Deepak and Eta Mohindra, my grandmother
Shashi Mohindra, and our very peppy, spotted Dalmatian, Google.

—Dhruv Mohindra

To my wife, Alfie, for making this book worthwhile, and
to my parents, Bill and Lois, for making it possible.

—David Svoboda

To my wife, Rhonda, and our children, Chelsea and Jordan.
—Robert C. Seacord

For Libby, who makes everything worthwhile.
—Dean Sutherland

ptg11539634

This page intentionally left blank

ptg11539634

vii

Contents

Foreword xi

Preface xiii

Acknowledgments xix

About the Authors xxi

Chapter 1 Security 1

1. Limit the lifetime of sensitive data 2
2. Do not store unencrypted sensitive information

on the client side 5
3. Provide sensitive mutable classes with

unmodifiable wrappers 9
4. Ensure that security-sensitive methods are called with

validated arguments 11
5. Prevent arbitrary file upload 13
6. Properly encode or escape output 16
7. Prevent code injection 20
8. Prevent XPath injection 23
9. Prevent LDAP injection 27
10. Do not use the clone() method to copy untrusted

method parameters 31
11. Do not use Object.equals() to compare

cryptographic keys 34

ptg11539634

viii Contents

12. Do not use insecure or weak cryptographic algorithms 36
13. Store passwords using a hash function 37
14. Ensure that SecureRandom is properly seeded 42
15. Do not rely on methods that can be overridden

by untrusted code 44
16. Avoid granting excess privileges 50
17. Minimize privileged code 54
18. Do not expose methods that use reduced-security checks to

untrusted code 56
19. Define custom security permissions for

fine-grained security 64
20. Create a secure sandbox using a security manager 67
21. Do not let untrusted code misuse privileges of

callback methods 72

Chapter 2 Defensive Programming 79

22. Minimize the scope of variables 80
23. Minimize the scope of the @SuppressWarnings annotation 82
24. Minimize the accessibility of classes and their members 84
25. Document thread-safety and use annotations

where applicable 89
26. Always provide feedback about the resulting

value of a method 96
27. Identify files using multiple file attributes 99
28. Do not attach significance to the ordinal associated

with an enum 106
29. Be aware of numeric promotion behavior 108
30. Enable compile-time type checking of variable arity

parameter types 112
31. Do not apply public final to constants whose value

might change in later releases 115
32. Avoid cyclic dependencies between packages 118
33. Prefer user-defined exceptions over more general

exception types 121
34. Try to gracefully recover from system errors 123
35. Carefully design interfaces before releasing them 125
36. Write garbage collection–friendly code 128

Chapter 3 Reliability 131

37. Do not shadow or obscure identifiers in subscopes 132
38. Do not declare more than one variable per declaration 134

ptg11539634

Contents ix

39. Use meaningful symbolic constants to represent literal
values in program logic 138

40. Properly encode relationships in constant definitions 142
41. Return an empty array or collection instead of a null

value for methods that return an array or collection 143
42. Use exceptions only for exceptional conditions 146
43. Use a try-with-resources statement to safely handle

closeable resources 148
44. Do not use assertions to verify the absence of

runtime errors 151
45. Use the same type for the second and third operands in

conditional expressions 153
46. Do not serialize direct handles to system resources 157
47. Prefer using iterators over enumerations 159
48. Do not use direct buffers for short-lived,

infrequently used objects 162
49. Remove short-lived objects from long-lived

container objects 163

Chapter 4 Program Understandability 167

50. Be careful using visually misleading identifiers
and literals 167

51. Avoid ambiguous overloading of variable arity methods 171
52. Avoid in-band error indicators 173
53. Do not perform assignments in conditional expressions 175
54. Use braces for the body of an if, for, or

while statement 178
55. Do not place a semicolon immediately following

an if, for, or while condition 180
56. Finish every set of statements associated with a

case label with a break statement 181
57. Avoid inadvertent wrapping of loop counters 183
58. Use parentheses for precedence of operation 186
59. Do not make assumptions about file creation 189
60. Convert integers to floating-point for

floating-point operations 191
61. Ensure that the clone() method calls super.clone() 194
62. Use comments consistently and in a readable fashion 196
63. Detect and remove superfluous code and values 198
64. Strive for logical completeness 202
65. Avoid ambiguous or confusing uses of overloading 205

ptg11539634

x Contents

Chapter 5 Programmer Misconceptions 209

66. Do not assume that declaring a reference volatile
guarantees safe publication of the members of
the referenced object 209

67. Do not assume that the sleep(), yield(), or getState()
methods provide synchronization semantics 216

68. Do not assume that the remainder operator always returns
a nonnegative result for integral operands 220

69. Do not confuse abstract object equality with
reference equality 222

70. Understand the differences between bitwise and logical
operators 225

71. Understand how escape characters are interpreted when
strings are loaded 228

72. Do not use overloaded methods to differentiate between
runtime types 231

73. Never confuse the immutability of a reference with that
of the referenced object 234

74. Use the serialization methods writeUnshared() and
readUnshared() with care 239

75. Do not attempt to help the garbage collector by setting
local reference variables to null 243

Appendix A Android 245

Glossary 249

References 255

Index 263

ptg11539634

xi

Foreword
James A. Gosling

This set of Java™ Coding Guidelines, a follow-on to the earlier The CERT® Oracle®

Secure Coding Standard for Java™, is invaluable. This book could almost be retitled
Reliable Java™ Coding Guidelines. One of the things that has struck me over the
years is the interplay between reliability and security. There are all sorts of explicit
security tools—cryptography, authentication, and others—but most break-ins are
exploitations of bugs: coding that was badly done or that was insufficiently defen-
sive. Building a reliable system is, in many ways, equivalent to building a secure
system. The work you do in reliability pays off in security, and vice versa.

This book highlights the fact that security is not a feature; it is an attitude
toward taking due care at every point. It should be a continuous part of every
software engineer’s design thought process. It is organized around a list of guide-
lines. The meat of the book is the subtlety behind them. For example, “Store
passwords using a hash function” appears to be a very basic and obvious point,
and yet there are regular news articles about major data breaches just because
some software engineer wasn’t thinking. Getting it right is tricky: there are a lot of
details for the devil to hide in. This book is full of excellent guidance for dealing
with those details.

ptg11539634

This page intentionally left blank

ptg11539634

xiii

Preface

Java™ Coding Guidelines: 75 Recommendations for Reliable and Secure Programs pro-
vides specific advice to Java programmers. The application of these Java coding guide-
lines will lead to better systems that are more robust and more resistant to attack.
These guidelines cover a wide range of products coded in Java for devices such as PCs,
game players, mobile phones, tablets, home appliances, and automotive electronics.

Developers in any programming language should follow a set of guidelines to
control the structures of their programs over and above what is specified by the
programming language definition, and this is no less the case in Java.

Java programmers need more help than that provided by the Java Language
Specification (JLS) [JLS 2013] to produce reliable and secure Java programs. Java
contains language features and APIs that can easily be misused, and guidance is
needed to avoid these pitfalls.

For a program to be reliable, it must work in all situations and in the face of all
possible input. Inevitably, any nontrivial program will encounter a completely unex-
pected input or situation, and errors will occur. When such errors occur, it is impor-
tant that the impact be limited, which is best achieved by localizing the error and
dealing with it as soon as possible. Programmers can benefit from the experience of
others in anticipating unusual input or programming situations and adopting a
defensive style of programming.

Some of these guidelines may be deemed stylistic, but they are nonetheless
important for readability and maintainability of the code. For Java, Oracle provides
a set of code conventions [Conventions 2009] to help programmers produce a
consistent programming style, and these conventions are widely adopted by Java
programmers.

ptg11539634

xiv Preface

n  The CERT® Oracle® Secure Coding Standard for Java™

Java™ Coding Guidelines is written by the authors of The CERT® Oracle® Secure
 Coding Standard for Java™ [Long 2012]. That coding standard provides a set of
rules for secure coding in the Java programming language. The goal of those rules
is to eliminate insecure coding practices that can lead to exploitable vulnerabili-
ties. The Secure Coding Standard establishes normative requirements for software
systems. These software systems can then be evaluated for conformance to the
coding standard, for example, by using the Source Code Analysis Laboratory
(SCALe) [Seacord 2012]. However, there are poor Java coding practices that,
despite not warranting inclusion in a secure coding standard for Java, can lead to
unreliable or insecure programs. This book serves to document and warn against
such coding practices.

Although not included in The CERT® Oracle® Secure Coding Standard for Java™,
these guidelines should not be considered less important. Guidelines must be
excluded from a coding standard when it is not possible to form a normative
requirement. There are many reasons that a normative requirement cannot be
formed. Perhaps the most common is that the rule depends on programmer intent.
Such rules cannot be automatically enforced unless it is possible for the program-
mer’s intent to be specified, in which case a rule could require consistency between
the code and the specified intent. Forming a normative requirement also requires
that a violation of that requirement represent a defect in the code. Guidelines have
been excluded from the coding standard (but included in this book) in cases where
compliance with the guideline is always a good idea, but violating the guideline
does not always result in an error. This distinction is made because a system cannot
be cited for nonconformance without a specific defect. Consequently, coding rules
must be very narrowly defined. Coding guidelines can often have a more
 far-reaching impact on security and reliability just because they can be more
broadly defined.

Many of the guidelines refer to rules in The CERT® Oracle® Secure Coding
S tandard for Java™. These references are of the form “IDS01-J. Normalize strings
before validating them,” where the first three letters of the reference identify the
appropriate chapter of The CERT® Oracle® Secure Coding Standard for Java™. For
example, IDS refers to Chapter 2, “Input Validation and Data Sanitization (IDS).”

The Secure Coding Standard for Java rules are also available on CERT’s secure
coding wiki at www.securecoding.cert.org, where they continue to evolve. The
CERT® Oracle® Secure Coding Standard for Java™ provides the definition of the
rules for conformance testing purposes, but the wiki may contain additional
information or insights not included in the book that may help you interpret the
meaning of these rules.

Cross-references to other guidelines throughout this book are given simply by
the number and title of the guideline.

http://www.securecoding.cert.org

ptg11539634

Preface xv

n  Scope

Java™ Coding Guidelines focuses on the Java SE 7 Platform environment, and includes
guidelines that address the issue of secure coding using the Java SE 7 API. The Java
Language Specification: Java SE 7 Edition (the JLS) [JLS 2013] prescribes the behav-
ior of the Java programming language and serves as the primary reference for the
development of these guidelines.

Traditional language standards, such as those for C and C++, include unde-
fined, unspecified, and implementation-defined behaviors that can lead to vulner-
abilities when a programmer makes incorrect assumptions about the portability of
these behaviors. By contrast, the JLS more completely specifies language behav-
iors, because Java is designed to be a cross-platform language. Even then, certain
behaviors are left to the discretion of the implementer of the Java Virtual Machine
(JVM) or the Java compiler. These guidelines identify such language peculiarities,
suggest solutions to help implementers address the issues, and let programmers
appreciate and understand the limitations of the language and navigate around
them.

Focusing only on language issues does not translate to writing reliable and
secure software. Design issues in Java APIs sometimes lead to their deprecation.
At other times, the APIs or the relevant documentation may be interpreted incor-
rectly by the programming community. These guidelines identify such problematic
APIs, and highlight their correct use. Examples of commonly used faulty design pat-
terns and idioms are also included.

The Java language, its core and extension APIs, and the JVM provide several
security features, such as the security manager and access controller, cryptography,
automatic memory management, strong type checking, and bytecode verification.
These features provide sufficient security for most applications, but their proper use
is of paramount importance. These guidelines highlight the pitfalls and caveats
associated with the security architecture, and stress its correct implementation.
Adherence to these guidelines safeguards trusted programs from a plethora of
exploitable security bugs that can cause denial of service, information leaks, errone-
ous computations, and privilege escalation.

Included Libraries
Figure P–1 is a conceptual diagram of Oracle’s Java SE products.

These coding guidelines address security issues primarily applicable to the lang
and util base libraries as well as for “other base libraries.” They avoid the inclusion
of open bugs that have already been marked to be fixed or those that lack negative
ramifications. A functional bug is included only if it is likely to occur with high
 frequency, causes considerable security or reliability concerns, or affects most Java
technologies that rely on the core platform. These guidelines are not limited to secu-

ptg11539634

xvi Preface

rity issues specific to the core API, but also include important reliability and security
concerns pertaining to the standard extension APIs (javax package).

Demonstrating the full range of security features that Java offers requires study-
ing interaction of code with other components and frameworks. Occasionally, the
coding guidelines use examples from popular web and application frameworks such
as Spring and Struts and technologies such as Java Server Pages (JSP) to highlight a
security vulnerability that cannot be examined in isolation. Only when the standard
API provides no option to mitigate a vulnerability are third-party libraries and solu-
tions suggested.

Issues Not Addressed
A number of issues are not addressed by this secure coding standard.

Content
These coding guidelines apply broadly to all platforms; concerns specific to only
one Java-based platform are beyond the scope of these guidelines. For example,
 guidelines that are applicable to Android, Java Micro Edition (ME), or Java Enter-
prise Edition (EE) alone and not to Java Standard Edition (SE) are typically
excluded. In Java SE, APIs that deal with the user interface (user interface toolkits)
or the web interface for providing features such as sound, graphical rendering,

Java Language

JDK

Java Language

Tools &
Tool APIs

Deployment

User Interface
Toolkits

Integration
Libraries

Other Base
Libraries

lang and util
Base Libraries

Java Virtual Machine

JRE
Java SE

API

java javac javadoc jar javap JPDA

JConsole Java VisualVM Java DB Security Int’l RMI

IDL Deploy

Java Web Start

JavaFX

Swing Java 2D AWT Accessibility

Drag and Drop Input Methods Image I/O Print Service Sound

IDL JDBC JNDI RMI

Beans Int’l Support Input/Output JMX

JNI Math Networking Override Mechanism

Security Serialization Extension Mechanism XML JAXP

lang and util Collections Concurrency Utilities JAR

Logging Management Preferences API Ref Objects

Re�ection Regular Expressions

Java HotSpot Client and Server VM

Versioning Zip Instrumentation

RMI-IIOP Scripting

Applet / Java Plug-in

Monitoring Troubleshoot Scripting JVM TI Web Services

Figure P–1. Conceptual diagram of Oracle’s Java SE products. (From Oracle Java SE
Documentation, http://docs.oracle.com/javase/7/docs/. Copyright © 1995, 2010,
 Oracle and/or its affiliates. All rights reserved.)

http://docs.oracle.com/javase/7/docs/

ptg11539634

Preface xvii

user account access control, session management, authentication, and authoriza-
tion are beyond the scope of these guidelines. Nevertheless, the guidelines discuss
networked Java systems in light of the risks associated with improper input valida-
tion and injection flaws and suggest appropriate mitigation strategies. These
guidelines assume that the functional specification of the product correctly identi-
fies and prevents higher-level design and architectural vulnerabilities.

Coding Style
Coding style issues are subjective; it has proven impossible to develop a consensus
on appropriate style guidelines. Consequently, Java™ Coding Guidelines generally
avoids requiring enforcement of any particular coding style. Instead, we suggest that
the user define style guidelines and apply those guidelines consistently. The easiest
way to consistently apply a coding style is with the use of a code formatting tool.
Many integrated development environments (IDEs) provide such capabilities.

Tools
Many of these guidelines are not amenable to automatic detection or correction.
In some cases, tool vendors may choose to implement checkers to identify violations
of these guidelines. As a federally funded research and development center (FFRDC),
the Software Engineering Institute (SEI) is not in a position to recommend particu-
lar vendors or tools for this purpose.

Controversial Guidelines
In general, Java™ Coding Guidelines tries to avoid the inclusion of controversial
guidelines that lack a broad consensus.

Audience
Java™ Coding Guidelines is primarily intended for developers of Java language pro-
grams. Although these guidelines focus on the Java SE 7 Platform environment, they
should also be informative (although incomplete) for Java developers working with
Java ME or Java EE and other versions of the Java language.

While primarily designed for building reliable and secure systems, these guidelines
are also useful for achieving other quality attributes such as safety, dependability,
robustness, availability, and maintainability.

These guidelines may also be used by

n  Developers of analyzer tools who wish to diagnose insecure or nonconforming
Java language programs

n  Software-development managers, software acquirers, or other software-
development and acquisition specialists to establish a proscriptive set of secure
coding standards

n  Educators as a primary or secondary text for Java programming courses

ptg11539634

xviii Preface

Contents and Organization
Java™ Coding Guidelines consists of 75 guidelines organized around the following
principles.

n  Chapter 1, “Security,” presents guidelines for ensuring the security of Java
applications.

n  Chapter 2, “Defensive Programming,” contains guidelines for defensive
programming so that the programmer can write code that protects itself from
unexpected circumstances.

n  Chapter 3, “Reliability,” gives advice for improving the reliability and security
of Java applications.

n  Chapter 4, “Program Understandability,” provides advice about making
programs more readable and understandable.

n  Chapter 5, “Programmer Misconceptions,” exposes situations where Java
language and programming concepts are often misunderstood.

Appendix A, “Android,” describes the applicability of the guidelines in this
book to developing Java apps for the Android platform. The book also contains a
glossary of common terms and a list of references.

The guidelines have a consistent structure. The title and the introductory para-
graphs define the essence of the guideline. This is typically followed by one or more
pairs of noncompliant code examples and corresponding compliant solutions. Each
guideline concludes with an applicability section and bibliographical references spe-
cific to that guideline.

ptg11539634

xix

Acknowledgments

This book was only made possible through a broad community effort. First, we would
like to thank those who contributed guidelines to this book, including Ron Bandes,
Jose Sandoval Chaverri, Ryan Hall, Fei He, Ryan Hofler, Sam Kaplan, Michael Kross,
Christopher Leonavicius, Bocong Liu, Bastian Marquis, Aniket Mokashi, Jonathan
Paulson, Michael Rosenman, Tamir Sen, John Truelove, and Matthew Wiethoff.

The following people also contributed to this work, and their efforts are greatly
appreciated: James Ahlborn, Neelkamal Gaharwar, Ankur Goyal, Tim Halloran,
Sujay Jain, Pranjal Jumde, Justin Loo, Yitzhak Mandelbaum, Todd Nowacki, Vishal
Patel, Justin Pincar, Abhishek Ramani, Brendon Saulsbury, Kirk Sayre, Glenn Stroz,
Yozo Toda, and Shishir Kumar Yadav. We would also like to thank Hiroshi Kumagai
and JPCERT for their work on the Android appendix.

We would also like to thank the following reviewers: Thomas Hawtin, Dan
 Plakosh, and Steve Scholnick.

We would also like to thank SEI and CERT managers who encouraged and sup-
ported our efforts: Archie Andrews, Rich Pethia, Greg Shannon, and Bill Wilson.

Thanks also to our editor Peter Gordon and his team at Addison-Wesley: Kim
Boedigheimer, Jennifer Bortel, John Fuller, Stephane Nakib, and Julie Nahil. Thanks
also to project editor Anna Popick and copy editor Melinda Rankin.

We thank the remainder of the CERT team for their support and assistance,
without which this book could not have been completed. And last but not least, we
would like to thank our in-house editor, Carol J. Lallier, who helped make this work
possible.

ptg11539634

This page intentionally left blank

ptg11539634

xxi

About the Authors

Fred Long is a senior lecturer in the Department of Com-
puter Science at Aberystwyth University in the United
Kingdom. He lectures on formal methods; Java, C++, and
C programming; and programming-related security issues.
He is chairman of the British Computer Society’s mid-
Wales branch. Fred has been a visiting scientist at the Soft-
ware Engineering Institute since 1992. Recently, his
research has involved the investigation of vulnerabilities in
Java. Fred is a coauthor of The CERT® Oracle® Secure Cod-
ing Standard for Java™ (Addison-Wesley, 2012).

Dhruv Mohindra is a technical lead in the security prac-
tices group that is part of the CTO’s office at Persistent
Systems Limited, India, where he provides information
security consulting solutions across various technology
verticals such as cloud, collaboration, banking and
finance, telecommunications, enterprise, mobility, life
sciences, and health care. He regularly consults for senior
management and development teams of Fortune 500
companies, small and medium-sized enterprises, and

start-ups on information security best practices and embedding security in the soft-
ware-development life cycle.

ptg11539634

xxii About the Authors

Dhruv has worked for CERT at the Software Engineering Institute and continues
to collaborate to improve the state of security awareness in the programming
 community. Dhruv obtained his M.S. in information security policy and manage-
ment from Carnegie Mellon University. He holds an undergraduate degree in com-
puter engineering from Pune University, India. Dhruv is also a coauthor of The
CERT® Oracle® Secure Coding Standard for Java™ (Addison-Wesley, 2012).

Robert C. Seacord is the secure coding technical manager
in the CERT Division of Carnegie Mellon’s Software Engi-
neering Institute (SEI) in Pittsburgh, Pennsylvania. Rob-
ert is also a professor in the School of Computer Science
and the Information Networking Institute at Carnegie
 Mellon University. He is the author of The CERT® C Secure
Coding Standard (Addison-Wesley, 2009) and coauthor of
Building Systems from Commercial Components (Addison-
Wesley, 2002), Modernizing Legacy Systems (Addison-

Wesley, 2003), The CERT® Oracle® Secure Coding Standard for Java™ (Addison-Wesley,
2012), and Secure Coding in C and C++, Second Edition (Addison-Wesley, 2013). He has
also published more than sixty papers on software security, component-based software
engineering, web-based system design, legacy-system modernization, component
repositories and search engines, and user interface design and development. Robert has
been teaching Secure Coding in C and C++ to private industry, academia, and govern-
ment since 2005. He started programming professionally for IBM in 1982, working in
communications and operating system software, processor development, and software
engineering. Robert also has worked at the X Consortium, where he developed and
maintained code for the Common Desktop Environment and the X Window System.
He represents CMU at the ISO/IEC JTC1/SC22/WG14 international standardization
working group for the C programming language.

Dean F. Sutherland is a senior software security engi-
neer at CERT. Dean received his Ph.D. in software engi-
neering from Carnegie Mellon in 2008. Before his return
to academia, he spent 14 years working as a professional
software engineer at Tartan, Inc. He spent the last six of
those years as a senior member of the technical staff and
a technical lead for compiler backend technology. He
was the primary active member of the corporate R&D
group, was a key instigator of the design and deploy-
ment of a new software-development process for Tartan,

led R&D projects, and provided both technical and project leadership for the
 12-person compiler backend group. Dean is a coauthor of The CERT® Oracle® Secure
Coding Standard for Java™ (Addison-Wesley, 2012).

ptg11539634

About the Authors xxiii

David Svoboda is a software security engineer at CERT/
SEI and a coauthor of The CERT® Oracle® Secure Coding
Standard for Java™. He also maintains the CERT secure
coding standard web sites for Java, as well as C, C++, and
Perl. David has been the primary developer on a diverse
set of software-development projects at Carnegie Mellon
since 1991, ranging from hierarchical chip modeling and
social organization simulation to automated machine
translation (AMT). His KANTOO AMT software, devel-
oped in 1996, is still in production use at Caterpillar. He

has more than thirteen years of Java development experience, starting with Java 2,
and his Java projects include Tomcat servlets and Eclipse plug-ins. He has taught
Secure Coding in C and C++ all over the world to various groups in the military, gov-
ernment, and banking industries. David is also an active participant in the ISO/IEC
JTC1/SC22/WG14 working group for the C programming language and the ISO/IEC
JTC1/SC22/WG21 working group for C++.

ptg11539634

This page intentionally left blank

ptg11539634

Chapter

 1

Security

The Java programming language and runtime system were designed with security in
mind. For example, pointer manipulation is implicit and hidden from the
 programmer, and any attempt to reference a null pointer results in an exception
being thrown. Similarly, an exception results from any attempt to access an array or a
string outside of its bounds. Java is a strongly typed language, and all implicit type
conversions are well defined and platform independent, as are the arithmetic types
and conversions. The Java Virtual Machine (JVM) has a built-in bytecode verifier to
ensure that the bytecode being run conforms to the Java Language Specification:
Java SE 7 Edition (JLS) so that all the checks defined in the language are in place and
cannot be circumvented.

The Java class loader mechanism identifies classes as they are loaded into the JVM,
and can distinguish between trusted system classes and other classes that may not be
trusted. Classes from external sources can be given privileges by digitally signing them;
these digital signatures can also be examined by the class loader, and contribute to the
class’s identification. Java also provides an extensible fine-grained security mechanism
that enables the programmer to control access to resources such as system informa-
tion, files, sockets, and any other security-sensitive resources that the programmer
wishes to use. This security mechanism can require that a runtime security manager be
in place to enforce a security policy. A security manager and its security policy are
 usually specified by command-line arguments, but they may be installed programmat-
ically, provided that such an action is not already disallowed by an existing security
policy. Privileges to access resources may be extended to nonsystem Java classes by
relying on the identification provided by the class loader mechanism.

1

ptg11539634

2 Chapter 1 n Security

Enterprise Java applications are susceptible to attacks because they accept
untrusted input and interact with complex subsystems. Injection attacks (such as
cross-site scripting [XSS], XPath, and LDAP injection) are possible when the
 components susceptible to these attacks are used in the application. An effective
mitigation strategy is to whitelist input, and encode or escape output before it is
 processed for rendering.

This chapter contains guidelines that are concerned specifically with ensuring
the security of Java-based applications. Guidelines dealing with the following secu-
rity nuances are articulated.

1. Dealing with sensitive data

2. Avoiding common injection attacks

3. Language features that can be misused to compromise security

4. Details of Java’s fine-grained security mechanism

n  1. Limit the lifetime of sensitive data

Sensitive data in memory can be vulnerable to compromise. An adversary who can
execute code on the same system as an application may be able to access such data if
the application

n  Uses objects to store sensitive data whose contents are not cleared or garbage-
collected after use

n  Has memory pages that can be swapped out to disk as required by the operating
system (for example, to perform memory management tasks or to support
hibernation)

n  Holds sensitive data in a buffer (such as BufferedReader) that retains copies of
the data in the OS cache or in memory

n  Bases its control flow on reflection that allows countermeasures to circumvent
the limiting of the lifetime of sensitive variables

n  Reveals sensitive data in debugging messages, log files, environment variables,
or through thread and core dumps

Sensitive data leaks become more likely if the memory containing the data is not
cleared after using the data. To limit the risk of exposure, programs must minimize
the lifetime of sensitive data.

Complete mitigation (that is, foolproof protection of data in memory) requires
support from the underlying operating system and Java Virtual Machine. For exam-
ple, if swapping sensitive data out to disk is an issue, a secure operating system that
disables swapping and hibernation is required.

ptg11539634

1. Limit the lifetime of sensitive data 3

Noncompliant Code Example
This noncompliant code example reads user name and password information from
the console and stores the password as a String object. The credentials remain
exposed until the garbage collector reclaims the memory associated with this String.

class Password {
 public static void main (String args[]) throws IOException {
 Console c = System.console();
 if (c == null) {
 System.err.println("No console.");
 System.exit(1);
 }

 String username = c.readLine("Enter your user name: ");
 String password = c.readLine("Enter your password: ");

 if (!verify(username, password)) {
 throw new SecurityException("Invalid Credentials");
 }

 // ...
 }

 // Dummy verify method, always returns true
 private static final boolean verify(String username,
 String password) {
 return true;
 }
}

Compliant Solution
This compliant solution uses the Console.readPassword() method to obtain the
password from the console.

class Password {
 public static void main (String args[]) throws IOException {
 Console c = System.console();

 if (c == null) {
 System.err.println("No console.");
 System.exit(1);
 }

 String username = c.readLine("Enter your user name: ");
 char[] password = c.readPassword("Enter your password: ");

ptg11539634

4 Chapter 1 n Security

The Console.readPassword() method allows the password to be returned as a
sequence of characters rather than as a String object. Consequently, the program-
mer can clear the password from the array immediately after use. This method also
disables echoing of the password to the console.

Noncompliant Code Example
This noncompliant code example uses a BufferedReader to wrap an InputStream-
Reader object so that sensitive data can be read from a file:

void readData() throws IOException{
 BufferedReader br = new BufferedReader(new InputStreamReader(
 new FileInputStream("file")));
 // Read from the file
 String data = br.readLine();
}

 if (!verify(username, password)) {
 throw new SecurityException("Invalid Credentials");
 }

 // Clear the password
 Arrays.fill(password, ' ');
 }

 // Dummy verify method, always returns true
 private static final boolean verify(String username,
 char[] password) {
 return true;
 }
}

The BufferedReader.readLine() method returns the sensitive data as a String
object, which can persist long after the data is no longer needed. The BufferedReader
.read(char[], int, int) method can read and populate a char array. However, it
requires the programmer to manually clear the sensitive data in the array after use.
Alternatively, even if the BufferedReader were to wrap a FileReader object, it would
suffer from the same pitfalls.

Compliant Solution
This compliant solution uses a directly allocated NIO (new I/O) buffer to read sensi-
tive data from the file. The data can be cleared immediately after use and is not
cached or buffered in multiple locations. It exists only in the system memory.

ptg11539634

2. Do not store unencrypted sensitive information on the client side 5

void readData(){
 ByteBuffer buffer = ByteBuffer.allocateDirect(16 * 1024);
 try (FileChannel rdr =
 (new FileInputStream("file")).getChannel()) {
 while (rdr.read(buffer) > 0) {
 // Do something with the buffer
 buffer.clear();
 }
 } catch (Throwable e) {
 // Handle error
 }
}

[API 2013] Class ByteBuffer

[Oracle 2013b] “Reading ASCII Passwords from an InputStream Example” from the
Java Cryptography Architecture [JCA] Reference Guide

[Tutorials 2013] I/O from the Command Line

Note that manual clearing of the buffer data is mandatory because direct buffers
are not garbage collected.

Applicability
Failure to limit the lifetime of sensitive data can lead to information leaks.

Bibliography

n  2. Do not store unencrypted sensitive information on the
client side

When building an application that uses a client–server model, storing sensitive
information, such as user credentials, on the client side may result in its unauthor-
ized disclosure if the client is vulnerable to attack.

For web applications, the most common mitigation to this problem is to
 provide the client with a cookie and store the sensitive information on the server.
Cookies are created by a web server, and are stored for a period of time on the client.
When the client reconnects to the server, it provides the cookie, which identifies
the client to the server, and the server then provides the sensitive information.

Cookies do not protect sensitive information against cross-site scripting (XSS)
attacks. An attacker who is able to obtain a cookie either through an XSS attack, or
directly by attacking the client, can obtain the sensitive information from the server

ptg11539634

6 Chapter 1 n Security

using the cookie. This risk is timeboxed if the server invalidates the session after a
limited time has elapsed, such as 15 minutes.

A cookie is typically a short string. If it contains sensitive information, that
information should be encrypted. Sensitive information includes user names, pass-
words, credit card numbers, social security numbers, and any other personally iden-
tifiable information about the user. For more details about managing passwords, see
Guideline 13, “Store passwords using a hash function.” For more information about
securing the memory that holds sensitive information, see Guideline 1, “Limit the
lifetime of sensitive data.”

Noncompliant Code Example
In this noncompliant code example, the login servlet stores the user name and pass-
word in the cookie to identify the user for subsequent requests:

protected void doPost(HttpServletRequest request,
 HttpServletResponse response) {

 // Validate input (omitted)

 String username = request.getParameter("username");
 char[] password =
 request.getParameter("password").toCharArray();
 boolean rememberMe =
 Boolean.valueOf(request.getParameter("rememberme"));

 LoginService loginService = new LoginServiceImpl();

 if (rememberMe) {
 if (request.getCookies()[0] != null &&
 request.getCookies()[0].getValue() != null) {
 String[] value =
 request.getCookies()[0].getValue().split(";");

 if (!loginService.isUserValid(value[0],
 value[1].toCharArray())) {
 // Set error and return
 } else {
 // Forward to welcome page
 }
 } else {
 boolean validated =
 loginService.isUserValid(username, password);

ptg11539634

2. Do not store unencrypted sensitive information on the client side 7

However, the attempt to implement the remember-me functionality is insecure
because an attacker with access to the client machine can obtain this information
directly on the client. This code also violates Guideline 13, “Store passwords using a
hash function.”

Compliant Solution (Session)
This compliant solution implements the remember-me functionality by storing the
user name and a secure random string in the cookie. It also maintains state in the
 session using HttpSession:

 if (validated) {
 Cookie loginCookie = new Cookie("rememberme", username +
 ";" + new String(password));
 response.addCookie(loginCookie);
 // ... forward to welcome page
 } else {
 // Set error and return
 }
 }
 } else {
 // No remember-me functionality selected
 // Proceed with regular authentication;
 // if it fails set error and return
 }

 Arrays.fill(password, ' ');
}

protected void doPost(HttpServletRequest request,
 HttpServletResponse response) {

 // Validate input (omitted)

 String username = request.getParameter("username");
 char[] password =
 request.getParameter("password").toCharArray();
 boolean rememberMe =
 Boolean.valueOf(request.getParameter("rememberme"));
 LoginService loginService = new LoginServiceImpl();
 boolean validated = false;
 if (rememberMe) {
 if (request.getCookies()[0] != null &&
 request.getCookies()[0].getValue() != null) {

ptg11539634

8 Chapter 1 n Security

 String[] value =
 request.getCookies()[0].getValue().split(";");

 if (value.length != 2) {
 // Set error and return
 }

 if (!loginService.mappingExists(value[0], value[1])) {
 // (username, random) pair is checked
 // Set error and return
 }
 } else {
 validated = loginService.isUserValid(username, password);

 if (!validated) {
 // Set error and return
 }
 }

 String newRandom = loginService.getRandomString();
 // Reset the random every time
 loginService.mapUserForRememberMe(username, newRandom);
 HttpSession session = request.getSession();
 session.invalidate();
 session = request.getSession(true);
 // Set session timeout to 15 minutes
 session.setMaxInactiveInterval(60 * 15);
 // Store user attribute and a random attribute
 // in session scope
 session.setAttribute("user", loginService.getUsername());
 Cookie loginCookie =
 new Cookie("rememberme", username + ";" + newRandom);
 response.addCookie(loginCookie);
 //... forward to welcome page
 } else { // No remember-me functionality selected
 //... authenticate using isUserValid(),
 // and if failed, set error
 }
 Arrays.fill(password, ' ');
}

The server maintains a mapping between user names and secure random strings.
When a user selects “Remember me,” the doPost() method checks whether the
 supplied cookie contains a valid user name and random string pair. If the mapping
contains a matching pair, the server authenticates the user and forwards him or her to
the welcome page. If not, the server returns an error to the client. If the user selects

ptg11539634

3. Provide sensitive mutable classes with unmodifiable wrappers 9

class Mutable {
 private int[] array = new int[10];

 public int[] getArray() {
 return array;
 }

“Remember me” but the client fails to supply a valid cookie, the server requires the
user to authenticate using his or her credentials. If the authentication is successful, the
server issues a new cookie with remember-me characteristics.

This solution avoids session-fixation attacks by invalidating the current session
and creating a new session. It also reduces the window during which an attacker
could perform a session-hijacking attack by setting the session timeout to 15 minutes
between client accesses.

Applicability
Storing unencrypted sensitive information on the client makes this information
available to anyone who can attack the client.

Bibliography
[Oracle 2011c] Package javax.servlet.http

[OWASP 2009] Session Fixation in Java

[OWASP 2011] Cross-Site Scripting (XSS)

[W3C 2003] The World Wide Web Security FAQ

n  3. Provide sensitive mutable classes with unmodifiable
wrappers

Immutability of fields prevents inadvertent modification as well as malicious
 tampering so that defensive copying while accepting input or returning values is
unnecessary. However, some sensitive classes cannot be immutable. Fortunately,
read-only access to mutable classes can be granted to untrusted code using unmodi-
fiable wrappers. For example, the Collection classes include a set of wrappers that
allow clients to observe an unmodifiable view of a Collection object.

Noncompliant Code Example
This noncompliant code example consists of class Mutable, which allows the inter-
nal array object to be modified:

ptg11539634

10 Chapter 1 n Security

An untrusted invoker may call the mutator method setArray(), and violate the
object’s immutability property. Invoking the getter method getArray() also allows
modification of the private internal state of the class. This class also violates The
CERT® Oracle® Secure Coding Standard for Java™ [Long 2012], “OBJ05-J. Defensively
copy private mutable class members before returning their references.”

Noncompliant Code Example
This noncompliant code example extends the Mutable class with a MutableProtec-
tor subclass:

class MutableProtector extends Mutable {
 @Override
 public int[] getArray() {
 return super.getArray().clone();
 }
}
// ...
private Mutable mutable = new MutableProtector();
// May be safely invoked by untrusted caller having read ability
public Mutable getMutable() {return mutable;}

In this class, invoking the getter method getArray() does not allow modifica-
tion of the private internal state of the class, in accordance with “OBJ05-J.
 Defensively copy private mutable class members before returning their references”
[Long 2012]. However, an untrusted invoker may call the method setArray() and
modify the Mutable object.

Compliant Solution
In general, sensitive classes can be transformed into safe-view objects by providing
appropriate wrappers for all methods defined by the core interface, including the
mutator methods. The wrappers for the mutator methods must throw an Unsup-
portedOperationException so that clients cannot perform operations that affect
the immutability property of the object.

 public void setArray(int[] i) {
 array = i;
 }
}

//...
private Mutable mutable = new Mutable();
public Mutable getMutable() {return mutable;}

ptg11539634

4. Ensure that security-sensitive methods are called with validated arguments 11

class MutableProtector extends Mutable {
 @Override
 public int[] getArray() {
 return super.getArray().clone();
 }

 @Override
 public void setArray(int[] i) {
 throw new UnsupportedOperationException();
 }
}

// ...
private Mutable mutable = new MutableProtector();
// May be safely invoked by untrusted caller having read ability
public Mutable getMutable() {return mutable; }

[Long 2012] OBJ05-J. Defensively copy private mutable class members before
returning their references

[Tutorials 2013] Unmodifiable Wrappers

This compliant solution adds a setArray() method that overrides the Mutable
.setArray() method and prevents mutation of the Mutable object:

The MutableProtector wrapper class overrides the getArray() method and
clones the array. Although the calling code gets a copy of the mutable object’s array,
the original array remains unchanged and inaccessible. The overriding setArray()
method throws an exception if the caller attempts to use this method on the returned
object. This object can be passed to untrusted code when read access to the data is
permissible.

Applicability
Failure to provide an unmodifiable, safe view of a sensitive mutable object to
untrusted code can lead to malicious tampering and corruption of the object.

Bibliography

n  4. Ensure that security-sensitive methods are called with
validated arguments

Application code that calls security-sensitive methods must validate the arguments
being passed to the methods. In particular, null values may be interpreted as
benign by certain security-sensitive methods but may override default settings.

ptg11539634

12 Chapter 1 n Security

AccessController.doPrivileged(
 new PrivilegedAction<Void>() {
 public Void run() {
 // ...
 }
 }, accessControlContext);

Applicability
Security-sensitive methods must be thoroughly understood and their parameters
 validated to prevent corner cases with unexpected argument values (such as null

Although security-sensitive methods should be coded defensively, the client code
must validate arguments that the method might otherwise accept as valid. Failure
to do so can result in privilege escalation and execution of arbitrary code.

Noncompliant Code Example
This noncompliant code example shows the two-argument doPrivileged() method
that takes an access control context as the second argument. This code restores privi-
leges from a previously saved context.

if (accessControlContext == null) {
 throw new SecurityException("Missing AccessControlContext");
}
AccessController.doPrivileged(
 new PrivilegedAction<Void>() {
 public Void run() {
 // ...
 }
 }, accessControlContext);

When passed a null access control context, the two-argument doPrivileged()
method fails to reduce the current privileges to those of the previously saved context.
Consequently, this code can grant excess privileges when the accessControlContext
argument is null. Programmers who intend to call AccessController.doPrivileged()
with a null access control context should explicitly pass the null constant or use the
one-argument version of AccessController.doPrivileged().

Compliant Solution
This compliant solution prevents granting of excess privileges by ensuring that
accessControlContext is non-null:

ptg11539634

5. Prevent arbitrary file upload 13

[API 2013] AccessController.doPrivileged(), System.setSecurityManager()

<s:form action="doUpload" method="POST"
 enctype="multipart/form-data">
 <s:file name="uploadFile" label="Choose File" size="40" />
 <s:submit value="Upload" name="submit" />
</s:form>

arguments). If unexpected argument values are passed to security-sensitive
 methods, arbitrary code execution becomes possible, and privilege escalation
becomes likely.

Bibliography

n  5. Prevent arbitrary file upload

Java applications, including web applications, that accept file uploads must ensure
that an attacker cannot upload or transfer malicious files. If a restricted file containing
code is executed by the target system, it can compromise application-layer defenses.
For example, an application that permits HTML files to be uploaded could allow mali-
cious code to be executed—an attacker can submit a valid HTML file with a cross-site
scripting (XSS) payload that will execute in the absence of an output-escaping rou-
tine. For this reason, many applications restrict the type of files that can be uploaded.

It may also be possible to upload files with dangerous extensions such as .exe
and .sh that could cause arbitrary code execution on server-side applications. An
application that restricts only the Content-Type field in the HTTP header could be
vulnerable to such an attack.

To support file upload, a typical Java Server Pages (JSP) page consists of code
such as the following:

Many Java enterprise frameworks provide configuration settings intended to be
used as a defense against arbitrary file upload. Unfortunately, most of them fail to
provide adequate protection. Mitigation of this vulnerability involves checking file
size, content type, and file contents, among other metadata attributes.

Noncompliant Code Example
This noncompliant code example shows XML code from the upload action of a
Struts 2 application. The interceptor code is responsible for allowing file uploads.

ptg11539634

14 Chapter 1 n Security

public class UploadAction extends ActionSupport {
 private File uploadedFile;
 // setter and getter for uploadedFile

 public String execute() {
 try {
 // File path and file name are hardcoded for illustration
 File fileToCreate = new File("filepath", "filename");
 // Copy temporary file content to this file
 FileUtils.copyFile(uploadedFile, fileToCreate);
 return "SUCCESS";
 } catch (Throwable e) {
 addActionError(e.getMessage());
 return "ERROR";
 }
 }
}

<action name="doUpload" class="com.example.UploadAction">
 <interceptor-ref name="fileUpload">
 <param name="maximumSize"> 10240 </param>
 <param name="allowedTypes">
 text/plain,image/JPEG,text/html
 </param>
 </interceptor-ref>
</action>

The code for file upload appears in the UploadAction class:

The value of the parameter type maximumSize ensures that a particular Action
 cannot receive a very large file. The allowedTypes parameter defines the type of files
that are accepted. However, this approach fails to ensure that the uploaded file conforms
to the security requirements because interceptor checks can be trivially bypassed. If an
attacker were to use a proxy tool to change the content type in the raw HTTP request in
transit, the framework would fail to prevent the file’s upload. Consequently, an attacker
could upload a malicious file that has a .exe extension, for example.

Compliant Solution
The file upload must succeed only when the content type matches the actual con-
tent of the file. For example, a file with an image header must contain only an image
and must not contain executable code. This compliant solution uses the Apache
Tika library [Apache 2013] to detect and extract metadata and structured text

ptg11539634

5. Prevent arbitrary file upload 15

public class UploadAction extends ActionSupport {
 private File uploadedFile;
 // setter and getter for uploadedFile

 public String execute() {
 try {
 // File path and file name are hardcoded for illustration
 File fileToCreate = new File("filepath", "filename");

 boolean textPlain = checkMetaData(uploadedFile,
 "text/plain");
 boolean img = checkMetaData(uploadedFile, "image/JPEG");
 boolean textHtml = checkMetaData(uploadedFile,
 "text/html");

 if (!textPlain || !img || !textHtml) {
 return "ERROR";
 }

 // Copy temporary file content to this file
 FileUtils.copyFile(uploadedFile, fileToCreate);
 return "SUCCESS";
 } catch (Throwable e) {
 addActionError(e.getMessage());
 return "ERROR";
 }
 }

 public static boolean checkMetaData(
 File f, String getContentType) {
 try (InputStream is = new FileInputStream(f)) {
 ContentHandler contenthandler = new BodyContentHandler();
 Metadata metadata = new Metadata();
 metadata.set(Metadata.RESOURCE_NAME_KEY, f.getName());
 Parser parser = new AutoDetectParser();
 try {
 parser.parse(is, contenthandler,
 metadata, new ParseContext());
 } catch (SAXException | TikaException e) {
 // Handle error
 return false;
 }

content from documents using existing parser libraries. The checkMetaData()
method must be called before invoking code in execute() that is responsible for
uploading the file.

ptg11539634

16 Chapter 1 n Security

The AutoDetectParser selects the best available parser on the basis of the
 content type of the file to be parsed.

Applicability
An arbitrary file upload vulnerability could result in privilege escalation and the
 execution of arbitrary code.

Bibliography
[Apache 2013] Apache Tika: A Content Analysis Toolkit

n  6. Properly encode or escape output

Proper input sanitization can prevent insertion of malicious data into a subsystem
such as a database. However, different subsystems require different types of sanitiza-
tion. Fortunately, it is usually obvious which subsystems will eventually receive
which inputs, and consequently what type of sanitization is required.

Several subsystems exist for the purpose of outputting data. An HTML renderer
is one common subsystem for displaying output. Data sent to an output subsystem
may appear to originate from a trusted source. However, it is dangerous to assume
that output sanitization is unnecessary, because such data may indirectly originate
from an untrusted source and may include malicious content. Failure to properly
sanitize data passed to an output subsystem can allow several types of attacks. For
example, HTML renderers are prone to HTML injection and cross-site scripting
(XSS) attacks [OWASP 2011]. Output sanitization to prevent such attacks is as vital
as input sanitization.

As with input validation, data should be normalized before sanitizing it for mali-
cious characters. Properly encode all output characters other than those known to

 if (metadata.get(Metadata.CONTENT_TYPE).equalsIgnoreCase(
 getContentType)) {
 return true;
 } else {
 return false;
 }
 } catch (IOException e) {
 // Handle error
 return false;
 }
 }
}

ptg11539634

6. Properly encode or escape output 17

@RequestMapping("/getnotifications.htm")
public ModelAndView getNotifications(
 HttpServletRequest request, HttpServletResponse response) {
 ModelAndView mv = new ModelAndView();
 try {
 UserInfo userDetails = getUserInfo();
 List<Map<String,Object>> list =
 new ArrayList<Map<String, Object>>();
 List<Notification> notificationList =
 NotificationService.getNotificationsForUserId(
 userDetails.getPersonId());

 for (Notification notification: notificationList) {
 Map<String,Object> map = new HashMap<String, Object>();
 map.put("id", notification.getId());
 map.put("message", notification.getMessage());
 list.add(map);
 }

 mv.addObject("Notifications", list);
 } catch (Throwable t) {
 // Log to file and handle
 }

 return mv;
}

be safe to avoid vulnerabilities caused by data that bypasses validation. See The
CERT® Oracle® Secure Coding Standard for Java™ [Long 2012], “IDS01-J. Normalize
strings before validating them,” for more information.

Noncompliant Code Example
This noncompliant code example uses the model–view–controller (MVC) concept
of the Java EE–based Spring Framework to display data to the user without encoding
or escaping it. Because the data is sent to a web browser, the code is subject to both
HTML injection and XSS attacks.

Compliant Solution
This compliant solution defines a ValidateOutput class that normalizes the output
to a known character set, performs output sanitization using a whitelist, and encodes
any unspecified data values to enforce a double-checking mechanism. Note that the
required whitelisting patterns will vary according to the specific needs of different
fields [OWASP 2013].

ptg11539634

18 Chapter 1 n Security

public class ValidateOutput {
 // Allows only alphanumeric characters and spaces
 private static final Pattern pattern =
 Pattern.compile("^[a-zA-Z0-9\\s]{0,20}$");

 // Validates and encodes the input field based on a whitelist
 public String validate(String name, String input)
 throws ValidationException {
 String canonical = normalize(input);

 if (!pattern.matcher(canonical).matches()) {
 throw new ValidationException("Improper format in " +
 name + " field");
 }

 // Performs output encoding for nonvalid characters
 canonical = HTMLEntityEncode(canonical);
 return canonical;
 }

 // Normalizes to known instances
 private String normalize(String input) {
 String canonical =
 java.text.Normalizer.normalize(input,
 Normalizer.Form.NFKC);
 return canonical;
 }

 // Encodes nonvalid data
 private static String HTMLEntityEncode(String input) {
 StringBuffer sb = new StringBuffer();

 for (int i = 0; i < input.length(); i++) {
 char ch = input.charAt(i);
 if (Character.isLetterOrDigit(ch) ||
 Character.isWhitespace(ch)) {
 sb.append(ch);
 } else {
 sb.append("&#" + (int)ch + ";");
 }
 }
 return sb.toString();
 }
}

ptg11539634

6. Properly encode or escape output 19

// ...

@RequestMapping("/getnotifications.htm")
public ModelAndView getNotifications(HttpServletRequest request,
 HttpServletResponse response) {
 ValidateOutput vo = new ValidateOutput();

 ModelAndView mv = new ModelAndView();
 try {
 UserInfo userDetails = getUserInfo();
 List<Map<String,Object>> list =
 new ArrayList<Map<String,Object>>();
 List<Notification> notificationList =
 NotificationService.getNotificationsForUserId(
 serDetails.getPersonId());

 for (Notification notification: notificationList) {
 Map<String,Object> map = new HashMap<String,Object>();
 map.put("id", vo.validate("id" ,notification.getId()));
 map.put("message",
 vo.validate("message", notification.getMessage()));
 list.add(map);
 }

 mv.addObject("Notifications", list);
 }
 catch (Throwable t) {
 // Log to file and handle
 }

 return mv;
}

Output encoding and escaping is mandatory when accepting dangerous charac-
ters such as double quotes and angle braces. Even when input is whitelisted to disal-
low such characters, output escaping is recommended because it provides a second
level of defense. Note that the exact escape sequence can vary depending on where
the output is embedded. For example, untrusted output may occur in an HTML value
attribute, CSS, URL, or script; the output encoding routine will be different in each
case. It is also impossible to securely use untrusted data in some contexts. Consult the
OWASP XSS (Cross-Site Scripting) Prevention Cheat Sheet for more information on
preventing XSS attacks (www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet).

http://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet

ptg11539634

20 Chapter 1 n Security

Applicability
Failure to encode or escape output before it is displayed or passed across a trust
boundary can result in the execution of arbitrary code.

Related Vulnerabilities
The Apache GERONIMO-1474 vulnerability, reported in January 2006, allowed
attackers to submit URLs containing JavaScript. The Web Access Log Viewer failed
to sanitize the data it forwarded to the administrator console, thereby enabling a
classic XSS attack.

Bibliography
[Long 2012] IDS01-J. Normalize strings before validating them

[OWASP 2011] Cross-Site Scripting (XSS)

[OWASP 2013] How to Add Validation Logic to HttpServletRequest
XSS (Cross-Site Scripting) Prevention Cheat Sheet

n  7. Prevent code injection

Code injection can occur when untrusted input is injected into dynamically
 constructed code. One obvious source of potential vulnerabilities is the use of
JavaScript from Java code. The javax.script package consists of interfaces and
classes that define Java scripting engines and a framework for the use of those inter-
faces and classes in Java code. Misuse of the javax.script API permits an attacker
to execute arbitrary code on the target system.

This guideline is a specific instance of The CERT® Oracle® Secure Coding Standard
for Java™ [Long 2012], “IDS00-J. Sanitize untrusted data passed across a trust
boundary.”

Noncompliant Code Example
This noncompliant code example incorporates untrusted user input into a JavaScript
statement that is responsible for printing the input:

private static void evalScript(String firstName)
 throws ScriptException {
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("javascript");
 engine.eval("print('"+ firstName + "')");
}

ptg11539634

7. Prevent code injection 21

An attacker can enter a specially crafted argument in an attempt to inject
 malicious JavaScript. This example shows a malicious string that contains JavaScript
code that can create or overwrite an existing file on a vulnerable system.

private static void evalScript(String firstName)
 throws ScriptException {
 // Allow only alphanumeric and underscore chars in firstName
 // (modify if firstName may also include special characters)
 if (!firstName.matches("[\\w]*")) {
 // String does not match whitelisted characters
 throw new IllegalArgumentException();
 }

 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("javascript");
 engine.eval("print('"+ firstName + "')");
}

The script in this example prints “dummy” and then writes “some text” to a con-
figuration file called config.cfg. An actual exploit can execute arbitrary code.

Compliant Solution (Whitelisting)
The best defense against code injection vulnerabilities is to prevent the inclusion of
executable user input in code. User input used in dynamic code must be sanitized,
for example, to ensure that it contains only valid, whitelisted characters. Santization
is best performed immediately after the data has been input, using methods from the
data abstraction used to store and process the data. Refer to “IDS00-J. Sanitize
untrusted data passed across a trust boundary” [Long 2012] for more details. If spe-
cial characters must be permitted in the name, they must be normalized before com-
parison with their equivalent forms for the purpose of input validation. This
compliant solution uses whitelisting to prevent unsanitized input from being inter-
preted by the scripting engine.

dummy\');
var bw = new JavaImporter(java.io.BufferedWriter);
var fw = new JavaImporter(java.io.FileWriter);
with(fw) with(bw) {
 bwr = new BufferedWriter(new FileWriter(\"config.cfg\"));
 bwr.write(\"some text\"); bwr.close();
}
// ;

ptg11539634

22 Chapter 1 n Security

Compliant Solution (Secure Sandbox)
An alternative approach is to create a secure sandbox using a security manager (see
Guideline 20, “Create a secure sandbox using a security manager”). The application
should prevent the script from executing arbitrary commands, such as querying the
local file system. The two-argument form of doPrivileged() can be used to lower priv-
ileges when the application must operate with higher privileges, but the scripting engine
must not. The RestrictedAccessControlContext reduces the permissions granted in
the default policy file to those of the newly created protection domain. The effective
permissions are the intersection of the permissions of the newly created protection
domain and the systemwide security policy. Refer to Guideline 16, “Avoid granting
excess privileges,” for more details on the two-argument form of doPrivileged().

This compliant solution illustrates the use of an AccessControlContext in the
two-argument form of doPrivileged().

class ACC {
 private static class RestrictedAccessControlContext {
 private static final AccessControlContext INSTANCE;

 static {
 INSTANCE =
 new AccessControlContext(
 new ProtectionDomain[] {
 new ProtectionDomain(null, null) // No permissions
 });
 }
 }

 private static void evalScript(final String firstName)
 throws ScriptException {
 ScriptEngineManager manager = new ScriptEngineManager();
 final ScriptEngine engine =
 manager.getEngineByName("javascript");
 // Restrict permission using the two-argument
 // form of doPrivileged()
 try {
 AccessController.doPrivileged(
 new PrivilegedExceptionAction<Object>() {

 public Object run() throws ScriptException {
 engine.eval("print('" + firstName + "')");
 return null;
 }
 },
 // From nested class
 RestrictedAccessControlContext.INSTANCE);

ptg11539634

8. Prevent XPath injection 23

[API 2013] Package javax.script

[Long 2012] IDS00-J. Sanitize untrusted data passed across a trust boundary

[OWASP 2013] Code Injection in Java

<users>
 <user>
 <username>Utah</username>
 <password>e90205372a3b89e2</password>
 </user>
 <user>

This approach can be combined with whitelisting for additional security.

Applicability
Failure to prevent code injection can result in the execution of arbitrary code.

Bibliography

n  8. Prevent XPath injection

Extensible Markup Language (XML) can be used for data storage in a manner similar
to a relational database. Data is frequently retrieved from such an XML document
using XPaths. XPath injection can occur when data supplied to an XPath retrieval rou-
tine to retrieve data from an XML document is used without proper sanitization. This
attack is similar to SQL injection or XML injection (see The CERT® Oracle® Secure
Coding Standard for Java™ [Long 2012], “IDS00-J. Sanitize untrusted data passed
across a trust boundary”). An attacker can enter valid SQL or XML constructs in the
data fields of the query in use. In typical attacks, the conditional field of the query
resolves to a tautology or otherwise gives the attacker access to privileged
information.

This guideline is a specific example of the broadly scoped Guideline 7, “Prevent
code injection.”

XML Path Injection Example
Consider the following XML schema.

 } catch (PrivilegedActionException pae) {
 // Handle error
 }
 }
}

ptg11539634

24 Chapter 1 n Security

The passwords are hashed in compliance with Guideline 13, “Store passwords
using a hash function.” MD5 hashes are shown here for illustrative purposes; in
practice, you should use a safer algorithm such as SHA-256.

Untrusted code may attempt to retrieve user details from this file with an XPath
statement constructed dynamically from user input.

//users/user[username/text()='&LOGIN&' and
 password/text()='&PASSWORD&']

If an attacker knows that Utah is a valid user name, he or she can specify an
input such as

Utah' or '1'='1

This yields the following query string.

//users/user[username/text()='Utah' or '1'='1'
 and password/text()='xxxx']

Because the '1'='1' is automatically true, the password is never validated.
 Consequently, the attacker is inappropriately authenticated as user Utah without
knowing Utah’s password.

Noncompliant Code Example
This noncompliant code example reads a user name and password from the user and
uses them to construct the query string. The password is passed as a char array and
then hashed. This example is vulnerable to the attack described earlier. If the attack
string described earlier is passed to evaluate(), the method call returns the corre-
sponding node in the XML file, causing the doLogin() method to return true and
bypass any authorization.

private boolean doLogin(String userName, char[] password)
 throws ParserConfigurationException, SAXException,
 IOException, XPathExpressionException {

 <username>Bohdi</username>
 <password>6c16b22029df4ec6</password>
 </user>
 <user>
 <username>Busey</username>
 <password>ad39b3c2a4dabc98</password>
 </user>
</users>

ptg11539634

8. Prevent XPath injection 25

Compliant Solution (XQuery)
XPath injection can be prevented by adopting defenses similar to those used to
 prevent SQL injection.

n  Treat all user input as untrusted, and perform appropriate sanitization.

n  When sanitizing user input, verify the correctness of the data type, length,
format, and content. For example, use a regular expression that checks for
XML tags and special characters in user input. This practice corresponds to
input sanitization. See Guideline 7, “Prevent code injection,” for additional
details.

n  In a client–server application, perform validation at both the client and the
server sides.

n  Extensively test applications that supply, propagate, or accept user input.

 DocumentBuilderFactory domFactory =
 DocumentBuilderFactory.newInstance();
 domFactory.setNamespaceAware(true);
 DocumentBuilder builder = domFactory.newDocumentBuilder();
 Document doc = builder.parse("users.xml");
 String pwd = hashPassword(password);

 XPathFactory factory = XPathFactory.newInstance();
 XPath xpath = factory.newXPath();
 XPathExpression expr =
 xpath.compile("//users/user[username/text()='" +
 userName + "' and password/text()='" + pwd + "']");
 Object result = expr.evaluate(doc, XPathConstants.NODESET);
 NodeList nodes = (NodeList) result;

 // Print first names to the console
 for (int i = 0; i < nodes.getLength(); i++) {
 Node node =
 nodes.item(i).getChildNodes().item(1).
 getChildNodes().item(0);
 System.out.println(
 "Authenticated: " + node.getNodeValue()
);
 }

 return (nodes.getLength() >= 1);
}

ptg11539634

26 Chapter 1 n Security

An effective technique for preventing the related issue of SQL injection is
 parameterization. Parameterization ensures that user-specified data is passed to
an API as a parameter such that the data is never interpreted as executable con-
tent. Unfortunately, Java SE currently lacks an analogous interface for XPath
queries. However, an XPath analog to SQL parameterization can be emulated by
using an interface such as XQuery that supports specifying a query statement in a
separate file supplied at runtime.

Input File: login.xq

declare variable $userName as xs:string external;
declare variable $password as xs:string external;
//users/user[@userName=$userName and @password=$password]

This compliant solution uses a query specified in a text file by reading the file in
the required format and then inserting values for the user name and password in a
Map. The XQuery library constructs the XML query from these inputs.

private boolean doLogin(String userName, String pwd)
 throws ParserConfigurationException, SAXException,
 IOException, XPathExpressionException {

 DocumentBuilderFactory domFactory =
 DocumentBuilderFactory.newInstance();
 domFactory.setNamespaceAware(true);
 DocumentBuilder builder = domFactory.newDocumentBuilder();
 Document doc = builder.parse("users.xml");

 XQuery xquery =
 new XQueryFactory().createXQuery(new File("login.xq"));
 Map queryVars = new HashMap();
 queryVars.put("userName", userName);
 queryVars.put("password", pwd);
 NodeList nodes =
 xquery.execute(doc, null, queryVars).toNodes();

 // Print first names to the console
 for (int i = 0; i < nodes.getLength(); i++) {
 Node node =
 nodes.item(i).getChildNodes().item(1).
 getChildNodes().item(0);
 System.out.println(node.getNodeValue());
 }

ptg11539634

9. Prevent LDAP injection 27

Using this method, the data specified in the userName and password fields
 cannot be interpreted as executable content at runtime.

Applicability
Failure to validate user input may result in information disclosure and execution of
unprivileged code.

According to OWASP [OWASP 2013],

[Prevention of XPath injection] requires the following characters to be removed
(that is, prohibited) or properly escaped.

n  < > / ' = " to prevent straight parameter injection.
n  XPath queries should not contain any meta characters (such as ' = * ? // or

similar).
n  XSLT expansions should not contain any user input, or if they do, [you

should] comprehensively test the existence of the file, and ensure that the files
are within the bounds set by the Java 2 Security Policy.

Bibliography
[Fortify 2013] “Input Validation and Representation: XML Injection”

[Long 2012] IDS00-J. Sanitize untrusted data passed across a trust boundary

[OWASP 2013] Testing for XPath Injection

[Sen 2007] Avoid the Dangers of XPath Injection

[Oracle 2011b] Ensure Data Security

n  9. Prevent LDAP injection

The Lightweight Directory Access Protocol (LDAP) allows an application to
remotely perform operations such as searching and modifying records in directories.
LDAP injection results from inadequate input sanitization and validation, and allows
malicious users to glean restricted information using the directory service.

A whitelist can be used to restrict input to a list of valid characters. Characters
and character sequences that must be excluded from whitelists—including Java
Naming and Directory Interface (JNDI) metacharacters and LDAP special
 characters—are listed in Table 1–1.

 return (nodes.getLength() >= 1);
}

ptg11539634

28 Chapter 1 n Security

LDAP Injection Example
Consider an LDAP Data Interchange Format (LDIF) file that contains records in the
following format:

dn: dc=example,dc=com
objectclass: dcobject
objectClass: organization
o: Some Name
dc: example

dn: ou=People,dc=example,dc=com
ou: People
objectClass: dcobject
objectClass: organizationalUnit
dc: example

dn: cn=Manager,ou=People,dc=example,dc=com
cn: Manager
sn: John Watson
Several objectClass definitions here (omitted)
userPassword: secret1
mail: john@holmesassociates.com

dn: cn=Senior Manager,ou=People,dc=example,dc=com
cn: Senior Manager
sn: Sherlock Holmes
Several objectClass definitions here (omitted)
userPassword: secret2
mail: sherlock@holmesassociates.com

Character Name

' and " Single and double quote

/ and \ Forward slash and backslash

\ \ Double slashes*

space Space character at beginning or end of string

Hash character at the beginning of the string

< and > Angle brackets

, and ; Comma and semicolon

+ and * Addition and multiplication operators

(and) Round braces

\u0000 Unicode NULL character

*This is a character sequence

Table 1–1. Characters and sequences to exclude from whitelists

ptg11539634

9. Prevent LDAP injection 29

A search for a valid user name and password often takes the form

(&(sn=<USERSN>)(userPassword=<USERPASSWORD>))

However, an attacker could bypass authentication by using S* for the USERSN
field and * for the USERPASSWORD field. Such input would yield every record whose
USERSN field began with S.

An authentication routine that permitted LDAP injection would allow unau-
thorized users to log in. Likewise, a search routine would allow an attacker to dis-
cover part or all of the data in the directory.

Noncompliant Code Example
This noncompliant code example allows a caller of the method searchRecord() to
search for a record in the directory using the LDAP protocol. The string filter is
used to filter the result set for those entries that match a user name and password
supplied by the caller.

// String userSN = "S*"; // Invalid
// String userPassword = "*"; // Invalid
public class LDAPInjection {
 private void searchRecord(String userSN, String userPassword)
 throws NamingException {
 Hashtable<String, String> env =
 new Hashtable<String, String>();
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.ldap.LdapCtxFactory");
 try {
 DirContext dctx = new InitialDirContext(env);

 SearchControls sc = new SearchControls();
 String[] attributeFilter = {"cn", "mail"};
 sc.setReturningAttributes(attributeFilter);
 sc.setSearchScope(SearchControls.SUBTREE_SCOPE);
 String base = "dc=example,dc=com";

 // The following resolves to (&(sn=S*)(userPassword=*))
 String filter = "(&(sn=" + userSN + ")(userPassword=" +
 userPassword + "))";
 NamingEnumeration<?> results =
 dctx.search(base, filter, sc);
 while (results.hasMore()) {
 SearchResult sr = (SearchResult) results.next();
 Attributes attrs = (Attributes) sr.getAttributes();
 Attribute attr = (Attribute) attrs.get("cn");

ptg11539634

30 Chapter 1 n Security

When a database field such as a password must include special characters, it is
critical to ensure that the authentic data is stored in sanitized form in the database
and also that any user input is normalized before the validation or comparison takes
place. Using characters that have special meanings in JNDI and LDAP in the absence
of a comprehensive normalization and whitelisting-based routine is discouraged.

When a malicious user enters specially crafted input, as outlined previously, this
elementary authentication scheme fails to confine the output of the search query to
the information for which the user has access privileges.

Compliant Solution
This compliant solution uses a whitelist to sanitize user input so that the filter
string contains only valid characters. In this code, userSN may contain only letters
and spaces, whereas a password may contain only alphanumeric characters.

// String userSN = "Sherlock Holmes"; // Valid
// String userPassword = "secret2"; // Valid

// ... beginning of LDAPInjection.searchRecord() ...
sc.setSearchScope(SearchControls.SUBTREE_SCOPE);
String base = "dc=example,dc=com";

if (!userSN.matches("[\\w\\s]*") ||
 !userPassword.matches("[\\w]*")) {
 throw new IllegalArgumentException("Invalid input");
}

String filter = "(&(sn = " + userSN + ")(userPassword=" +
 userPassword + "))";

// ... remainder of LDAPInjection.searchRecord() ...

 System.out.println(attr);
 attr = (Attribute) attrs.get("mail");
 System.out.println(attr);
 }
 dctx.close();
 } catch (NamingException e) {
 // Forward to handler
 }
 }
}

ptg11539634

10. Do not use the clone() method to copy untrusted method parameters 31

Special characters must be transformed to sanitized, safe values before they are
added to the whitelist expression against which input will be validated. Likewise,
normalization of user input should occur before the validation step.

Applicability
Failure to sanitize untrusted input can result in information disclosure and privilege
escalation.

Bibliography

private Boolean validateValue(long time) {
 // Perform validation
 return true; // If the time is valid
}

private void storeDateInDB(java.util.Date date)
 throws SQLException {

[OWASP 2013] Preventing LDAP Injection in Java

n  10. Do not use the clone() method to copy untrusted
method parameters

Making defensive copies of mutable method parameters mitigates against a variety
of security vulnerabilities; see The CERT® Oracle® Secure Coding Standard for Java™
[Long 2012], “OBJ06-J. Defensively copy mutable inputs and mutable internal com-
ponents,” for additional information. However, inappropriate use of the clone()
method can allow an attacker to exploit vulnerabilities by providing arguments that
appear normal but subsequently return unexpected values. Such objects may conse-
quently bypass validation and security checks. When such a class might be passed as
an argument to a method, treat the argument as untrusted, and do not use the
clone() method provided by the class. Also, do not use the clone() method of non-
final classes to make defensive copies.

This guideline is a specific instance of Guideline 15, “Do not rely on methods
that can be overridden by untrusted code.”

Noncompliant Code Example
This noncompliant code example defines a validateValue() method that validates
a time value:

ptg11539634

32 Chapter 1 n Security

If, however, the attacker can only provide a malicious date with lessened privi-
leges, the attacker can bypass validation but still confound the remainder of the pro-
gram. Consider this example:

The storeDateInDB() method accepts an untrusted date argument and
attempts to make a defensive copy using its clone() method. This allows an
attacker to take control of the program by creating a malicious date class that
extends Date. If the attacker’s code runs with the same privileges as store-
DateInDB(), the attacker merely embeds malicious code inside their clone()
method:

public class MaliciousDate extends java.util.Date {
 private static int count = 0;

 @Override
 public long getTime() {
 java.util.Date d = new java.util.Date();
 return (count++ == 1) ? d.getTime() : d.getTime() - 1000;
 }
}

 final java.util.Date copy = (java.util.Date)date.clone();
 if (validateValue(copy.getTime())) {
 Connection con =
 DriverManager.getConnection(
 "jdbc:microsoft:sqlserver://<HOST>:1433",
 "<UID>", "<PWD>"
);
 PreparedStatement pstmt =
 con.prepareStatement("UPDATE ACCESSDB SET TIME = ?");
 pstmt.setLong(1, copy.getTime());
 // ...
 }
}

class MaliciousDate extends java.util.Date {
 @Override
 public MaliciousDate clone() {
 // malicious code goes here
 }
}

ptg11539634

This malicious date will appear to be a benign date object the first time that
getTime() is invoked. This allows it to bypass validation in the storeDateInDB()
method. However, the time that is actually stored in the database will be incorrect.

Compliant Solution
This compliant solution avoids using the clone() method. Instead, it creates a new
java.util.Date object that is subsequently used for access control checks and
insertion into the database.

private void storeDateInDB(java.util.Date date)
 throws SQLException {
 final java.util.Date copy = new java.util.Date(date.getTime());
 if (validateValue(copy.getTime())) {
 Connection con =
 DriverManager.getConnection(
 "jdbc:microsoft:sqlserver://<HOST>:1433",
 "<UID>", "<PWD>"
);
 PreparedStatement pstmt =
 con.prepareStatement("UPDATE ACCESSDB SET TIME = ?");
 pstmt.setLong(1, copy.getTime());
 // ...
 }
}

public AtomicReferenceArray(E[] array) {
 // Visibility guaranteed by final field guarantees
 this.array = array.clone();
}

Noncompliant Code Example (CVE-2012-0507)
This noncompliant code example shows a constructor of the Java core class
AtomicReferenceArray present in the Java 1.7.0 update 2:

This code was subsequently invoked by the Flashback exploit that infected
600,000 Macintosh computers in April 2012.1

1. “Exploiting Java Vulnerability CVE-2012-0507 Using Metasploit” is shared by user BreakTheSec on

Slideshare.net (July 14, 2012); see www.slideshare.net/BreakTheSec/exploiting-java-vulnerability.

10. Do not use the clone() method to copy untrusted method parameters 33

http://www.slideshare.net/BreakTheSec/exploiting-java-vulnerability

ptg11539634

34 Chapter 1 n Security

Applicability
Using the clone() method to copy untrusted arguments affords attackers the
 opportunity to execute arbitrary code.

Bibliography

Compliant Solution (CVE-2012-0507)
In Java 1.7.0 update 3, the constructor was modified to use the Arrays.copyOf()
method instead of the clone() method as follows:

private static boolean keysEqual(Key key1, Key key2) {
 if (key1.equals(key2)) {
 return true;
 }
 return false;
}

public AtomicReferenceArray(E[] array) {
 // Visibility guaranteed by final field guarantees
 this.array = Arrays.copyOf(
 array, array.length, Object[].class);
}

[Long 2012] OBJ06-J. Defensively copy mutable inputs and mutable internal components

[Sterbenz 2006] Secure Coding Antipatterns: Avoiding Vulnerabilities

n  11. Do not use Object.equals() to compare
cryptographic keys

The method java.lang.Object.equals(), by default, is unable to compare
 composite objects such as cryptographic keys. Most Key classes fail to provide an
equals() implementation that overrides Object.equals(). In such cases, the com-
ponents of the composite object must be compared individually to ensure correctness.

Noncompliant Code Example
This noncompliant code example compares two keys using the equals() method.
The keys may compare as unequal even when they represent the same value.

ptg11539634

11. Do not use Object.equals() to compare cryptographic keys 35

Compliant Solution
This compliant solution uses the equals() method as a first test, and then compares
the encoded version of the keys to facilitate provider-independent behavior. It
checks whether an RSAPrivateKey and an RSAPrivateCrtKey represent equivalent
private keys [Oracle 2011b].

private static boolean keysEqual(Key key1, Key key2) {
 if (key1.equals(key2)) {
 return true;
 }

 if (Arrays.equals(key1.getEncoded(), key2.getEncoded())) {
 return true;
 }

 // More code for different types of keys here
 // For example, the following code can check whether
 // an RSAPrivateKey and an RSAPrivateCrtKey are equal
 if ((key1 instanceof RSAPrivateKey) &&
 (key2 instanceof RSAPrivateKey)) {

 if ((((RSAKey) key1).getModulus().equals(
 ((RSAKey) key2).getModulus())) &&
 (((RSAPrivateKey) key1).getPrivateExponent().equals(
 ((RSAPrivateKey) key2).getPrivateExponent()))) {
 return true;
 }
 }
 return false;
}

[API 2013] java.lang.Object.equals(), Object.equals()

[Oracle 2011b] Determining If Two Keys Are Equal (JCA Reference Guide)

Automated Detection
Using Object.equals() to compare cryptographic keys may yield unexpected
results.

Bibliography

ptg11539634

36 Chapter 1 n Security

Cipher cipher = Cipher.getInstance("AES");
KeyGenerator kgen = KeyGenerator.getInstance("AES");
kgen.init(128); // 192 and 256 bits may be unavailable

SecretKey skey = kgen.generateKey();
byte[] raw = skey.getEncoded();

SecretKeySpec skeySpec = new SecretKeySpec(raw, "AES");
cipher.init(Cipher.ENCRYPT_MODE, skeySpec);

// Encode bytes as UTF8; strToBeEncrypted contains the
// input string that is to be encrypted
byte[] encoded = strToBeEncrypted.getBytes("UTF8");

Compliant Solution
This compliant solution uses the more secure Advanced Encryption Standard (AES)
algorithm to perform the encryption.

n  12. Do not use insecure or weak cryptographic algorithms

Security-intensive applications must avoid use of insecure or weak cryptographic
primitives. The computational capacity of modern computers permits circumven-
tion of such cryptography via brute-force attacks. For example, the Data Encryption
Standard (DES) encryption algorithm is considered highly insecure; mes-
sages encrypted using DES have been decrypted by brute force within a single day
by machines such as the Electronic Frontier Foundation’s (EFF) Deep Crack.

Noncompliant Code Example
This noncompliant code example encrypts a String input using a weak crypto-
graphic algorithm (DES):

SecretKey key = KeyGenerator.getInstance("DES").generateKey();
Cipher cipher = Cipher.getInstance("DES");
cipher.init(Cipher.ENCRYPT_MODE, key);

// Encode bytes as UTF8; strToBeEncrypted contains
// the input string that is to be encrypted
byte[] encoded = strToBeEncrypted.getBytes("UTF8");

// Perform encryption
byte[] encrypted = cipher.doFinal(encoded);

ptg11539634

13. Store passwords using a hash function 37

Applicability
Use of mathematically and computationally insecure cryptographic algorithms can
result in the disclosure of sensitive information.

Weak cryptographic algorithms can be disabled in Java SE 7; see the Java™ PKI
Programmer’s Guide, Appendix D, “Disabling Cryptographic Algorithms” [Oracle
2011a].

Weak cryptographic algorithms may be used in scenarios that specifically call
for a breakable cipher. For example, the ROT13 cipher is commonly used on bulletin
boards and web sites when the purpose of encryption is to protect people from infor-
mation, rather than to protect information from people.

Bibliography
[Oracle 2011a] Appendix D, “Disabling Cryptographic Algorithms”

[Oracle 2013b] Java Cryptography Architecture (JCA) Reference Guide

// Perform encryption
byte[] encrypted = cipher.doFinal(encoded);

n  13. Store passwords using a hash function

Programs that store passwords as cleartext (unencrypted text data) risk exposure of
those passwords in a variety of ways. Although programs generally receive pass-
words from users as cleartext, they should ensure that the passwords are not stored
as cleartext.

An acceptable technique for limiting the exposure of passwords is the use of
hash functions, which allow programs to indirectly compare an input password to the
original password string without storing a cleartext or decryptable version of the
password. This approach minimizes the exposure of the password without present-
ing any practical disadvantages.

Cryptographic Hash Functions
The value produced by a hash function is the hash value or message digest. Hash func-
tions are computationally feasible functions whose inverses are computationally
infeasible. In practice, a password can be encoded to a hash value, but decoding
remains infeasible. The equality of the passwords can be tested through the equality
of their hash values.

ptg11539634

38 Chapter 1 n Security

A good practice is to always append a salt to the password being hashed. A salt is
a unique (often sequential) or randomly generated piece of data that is stored along
with the hash value. The use of a salt helps prevent brute-force attacks against the
hash value, provided that the salt is long enough to generate sufficient entropy
(shorter salt values cannot significantly slow down a brute-force attack). Each pass-
word should have its own salt associated with it. If a single salt were used for more
than one password, two users would be able to see whether their passwords are the
same.

The choice of hash function and salt length presents a trade-off between security
and performance. Increasing the effort required for effective brute-force attacks by
choosing a stronger hash function can also increase the time required to validate a
password. Increasing the length of the salt makes brute-force attacks more difficult
but requires additional storage space.

Java’s MessageDigest class provides implementations of various cryptographic
hash functions. Avoid defective functions such as the Message-Digest Algorithm
(MD5). Hash functions such as Secure Hash Algorithm (SHA)-1 and SHA-2 are
maintained by the National Security Agency, and are currently considered safe. In
practice, many applications use SHA-256 because this hash function has reasonable
performance while still being considered secure.

Noncompliant Code Example
This noncompliant code example encrypts and decrypts the password stored in
password.bin using a symmetric key algorithm.

public final class Password {
 private void setPassword(byte[] pass) throws Exception {
 // Arbitrary encryption scheme
 bytes[] encrypted = encrypt(pass);
 clearArray(pass);
 // Encrypted password to password.bin
 saveBytes(encrypted,"password.bin");
 clearArray(encrypted);
 }

 boolean checkPassword(byte[] pass) throws Exception {
 // Load the encrypted password
 byte[] encrypted = loadBytes("password.bin");
 byte[] decrypted = decrypt(encrypted);
 boolean arraysEqual = Arrays.equal(decrypted, pass);
 clearArray(decrypted);
 clearArray(pass);

ptg11539634

13. Store passwords using a hash function 39

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

public final class Password {
 private void setPassword(String pass) throws Exception {
 byte[] salt = generateSalt(12);
 MessageDigest msgDigest = MessageDigest.getInstance("SHA-256");
 // Encode the string and salt
 byte[] hashVal = msgDigest.digest((pass+salt).getBytes());
 saveBytes(salt, "salt.bin");
 // Save the hash value to password.bin
 saveBytes(hashVal,"password.bin");
}

 boolean checkPassword(String pass) throws Exception {
 byte[] salt = loadBytes("salt.bin");
 MessageDigest msgDigest = MessageDigest.getInstance("SHA-256");
 // Encode the string and salt
 byte[] hashVal1 = msgDigest.digest((pass+salt).getBytes());
 // Load the hash value stored in password.bin

 return arraysEqual;
 }

 private void clearArray(byte[] a) {
 for (int i = 0; i < a.length; i++) {
 a[i] = 0;
 }
 }
}

An attacker could potentially decrypt this file to discover the password,
particularly when the attacker has knowledge of the key and encryption scheme
used by the program. Passwords should be protected even from system adminis-
trators and privileged users. Consequently, using encryption is only partly effec-
tive in mitigating password disclosure threats.

Noncompliant Code Example
This noncompliant code example uses the SHA-256 hash function through the
MessageDigest class to compare hash values instead of cleartext strings, but it
uses a String to store the password:

ptg11539634

40 Chapter 1 n Security

Even when an attacker knows that the program stores passwords using SHA-256
and a 12-byte salt, he or she will be unable to retrieve the actual password from
password.bin and salt.bin.

Although this approach solves the decryption problem from the previous non-
compliant code example, this program may inadvertently store the passwords as
cleartext in memory. Java String objects are immutable, and can be copied and inter-
nally stored by the Java Virtual Machine. Consequently, Java lacks a mechanism to
securely erase a password once it has been stored in a String. See Guideline 1, “Limit
the lifetime of sensitive data,” for more information.

Compliant Solution
This compliant solution addresses the problems from the previous noncompliant
code example by using a byte array to store the password:

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

public final class Password {

 private void setPassword(byte[] pass) throws Exception {
 byte[] salt = generateSalt(12);
 byte[] input = appendArrays(pass, salt);
 MessageDigest msgDigest = MessageDigest.getInstance("SHA-256");
 // Encode the string and salt
 byte[] hashVal = msgDigest.digest(input);
 clearArray(pass);
 clearArray(input);
 saveBytes(salt, "salt.bin");
 // Save the hash value to password.bin
 saveBytes(hashVal,"password.bin");

 byte[] hashVal2 = loadBytes("password.bin");
 return Arrays.equals(hashVal1, hashVal2);
 }

 private byte[] generateSalt(int n) {
 // Generate a random byte array of length n
 }
}

ptg11539634

13. Store passwords using a hash function 41

In both the setPassword() and checkPassword() methods, the cleartext repre-
sentation of the password is erased immediately after it is converted into a hash
value. Consequently, attackers must work harder to retrieve the cleartext password
after the erasure. Providing guaranteed erasure is extremely challenging, is likely to
be platform specific, and may even be impossible because of copying garbage collec-
tors, dynamic paging, and other platform features that operate below the level of the
Java language.

 clearArray(salt);
 clearArray(hashVal);
 }

 boolean checkPassword(byte[] pass) throws Exception {
 byte[] salt = loadBytes("salt.bin");
 byte[] input = appendArrays(pass, salt);
 MessageDigest msgDigest = MessageDigest.getInstance("SHA-256");
 // Encode the string and salt
 byte[] hashVal1 = msgDigest.digest(input);
 clearArray(pass);
 clearArray(input);
 // Load the hash value stored in password.bin
 byte[] hashVal2 = loadBytes("password.bin");
 boolean arraysEqual = Arrays.equals(hashVal1, hashVal2);
 clearArray(hashVal1);
 clearArray(hashVal2);
 return arraysEqual;
 }

 private byte[] generateSalt(int n) {
 // Generate a random byte array of length n
 }

 private byte[] appendArrays(byte[] a, byte[] b) {
 // Return a new array of a[] appended to b[]
 }

 private void clearArray(byte[] a) {
 for (int i = 0; i < a.length; i++) {
 a[i] = 0;
 }
 }
}

ptg11539634

42 Chapter 1 n Security

n  14. Ensure that SecureRandom is properly seeded

Random number generation depends on a source of entropy such as signals, devices,
or hardware inputs. Secure random number generation is also addressed by The
CERT® Oracle® Secure Coding Standard for Java™ [Long 2012], “MSC02-J. Generate
strong random numbers.”

The java.security.SecureRandom class is widely used for generating crypto-
graphically strong random numbers. According to the java.security file present in
the Java Runtime Environment’s lib/security folder [API 2013]:

Select the source of seed data for SecureRandom. By default an attempt is made to use
the entropy gathering device specified by the securerandom.source property. If an
exception occurs when accessing the URL then the traditional system/thread activity
algorithm is used.

On Solaris and Linux systems, if file:/dev/urandom is specified and it exists,
a special SecureRandom implementation is activated by default. This “NativePRNG”
reads random bytes directly from /dev/urandom. On Windows systems, the URLs
file:/dev/random and file:/dev/urandom enables use of the Microsoft
CryptoAPI seed functionality.

An adversary should not be able to determine the original seed given several
samples of random numbers. If this restriction is violated, all future random num-
bers may be successfully predicted by the adversary.

Applicability
Passwords stored without a secure hash can be exposed to malicious users. Violations
of this guideline generally have a clear exploit associated with them.

Applications such as password managers may need to retrieve the original
 password to enter it into a third-party application. This is permitted even though it
violates this guideline. The password manager is accessed by a single user, and
always has the user’s permission to store his or her passwords and to display those
passwords on command. Consequently, the limiting factor to safety and security is
the user’s competence rather than the program’s operation.

Bibliography
[API 2013] Class MessageDigest

Class String

[Hirondelle 2013] Passwords Never Clear in Text

[OWASP 2012] “Why Add Salt?”

[Paar 2010] Chapter 11, “Hash Functions”

ptg11539634

14. Ensure that SecureRandom is properly seeded 43

Noncompliant Code Example
This noncompliant code example constructs a secure random number generator
that is seeded with the specified seed bytes.

SecureRandom random = new SecureRandom(
 String.valueOf(new Date().getTime()).getBytes()
);

byte[] randomBytes = new byte[128];
SecureRandom random = new SecureRandom();
random.nextBytes(randomBytes);

This constructor searches a registry of security providers and returns the first
provider that supports secure random number generation. If no such provider
exists, an implementation-specific default is selected. Furthermore, the default
system-provided seed is overridden by a seed provided by the programmer. Using
the current system time as the seed is predictable, and can result in the generation
of random numbers with insufficient entropy.

Compliant Solution
Prefer the no-argument constructor of SecureRandom that uses the system-specified
seed value to generate a 128-byte-long random number.

[API 2013] SecureRandom

[Sethi 2009] Proper Use of Java’s SecureRandom

[Long 2012] MSC02-J. Generate strong random numbers

It is also good practice to specify the exact random number generator and
provider for better portability.

Applicability
Insufficiently secure random numbers enable attackers to gain specific information
about the context in which they are used.

Insecure random numbers are useful in some contexts that do not require
security. These are addressed in the exceptions to “MSC02-J. Generate strong
random numbers” [Long 2012].

Bibliography

ptg11539634

44 Chapter 1 n Security

n  15. Do not rely on methods that can be overridden by
untrusted code

Untrusted code can misuse APIs provided by trusted code to override methods such
as Object.equals(), Object.hashCode(), and Thread.run(). These methods are
valuable targets because they are commonly used behind the scenes and may inter-
act with components in a way that is not easily discernible.

By providing overridden implementations, an attacker can use untrusted code to
glean sensitive information, run arbitrary code, or launch a denial of service attack.

See Guideline 10, “Do not use the clone() method to copy untrusted method
parameters,” for more specific details regarding overriding the Object.clone()
method.

Noncompliant Code Example (hashCode)
This noncompliant code example shows a LicenseManager class that maintains a
licenseMap. The map stores a LicenseType and license value pair.

public class LicenseManager {
 Map<LicenseType, String> licenseMap =
 new HashMap<LicenseType, String>();

 public LicenseManager() {
 LicenseType type = new LicenseType();
 type.setType("demo-license-key");
 licenseMap.put(type, "ABC-DEF-PQR-XYZ");
 }
 public Object getLicenseKey(LicenseType licenseType) {
 return licenseMap.get(licenseType);
 }
 public void setLicenseKey(LicenseType licenseType,
 String licenseKey) {
 licenseMap.put(licenseType, licenseKey);
 }
}

class LicenseType {
 private String type;
 public String getType() {
 return type;
 }
 public void setType(String type) {
 this.type = type;
 }

ptg11539634

15. Do not rely on methods that can be overridden by untrusted code 45

public class CraftedLicenseType extends LicenseType {
 private static int guessedHashCode = 0;
 @Override
 public int hashCode() {
 // Returns a new hashCode to test every time get() is called
 guessedHashCode++;
 return guessedHashCode;
 }
 @Override
 public boolean equals(Object arg) {
 // Always returns true
 return true;
 }
}

 @Override
 public int hashCode() {
 int res = 17;
 res = res * 31 + type == null ? 0 : type.hashCode();
 return res;
 }
 @Override
 public boolean equals(Object arg) {
 if (arg == null || !(arg instanceof LicenseType)) {
 return false;
 }
 if (type.equals(((LicenseType) arg).getType())) {
 return true;
 }
 return false;
 }
}

The constructor for LicenseManager initializes licenseMap with a demo license
key that must remain secret. The license key is hard-coded for illustrative purposes;
it should ideally be read from an external configuration file that stores an encrypted
version of the key. The LicenseType class provides overridden implementations of
equals() and hashCode() methods.

This implementation is vulnerable to an attacker who extends the LicenseType
class and overrides the equals() and hashCode() methods:

The following is the malicious client program.

ptg11539634

46 Chapter 1 n Security

public class DemoClient {
 public static void main(String[] args) {
 LicenseManager licenseManager = new LicenseManager();
 for (int i = 0; i <= Integer.MAX_VALUE; i++) {
 Object guessed =
 licenseManager.getLicenseKey(new CraftedLicenseType());
 if (guessed != null) {
 // prints ABC-DEF-PQR-XYZ
 System.out.println(guessed);
 }
 }
 }
}

The client program runs through the sequence of all possible hash codes using
CraftedLicenseType until it successfully matches the hash code of the demo license
key object stored in the LicenseManager class. Consequently, the attacker can discover
the sensitive data present within the licenseMap in only a few minutes. The attack
operates by discovering at least one hash collision with respect to the key of the map.

Compliant Solution (IdentityHashMap)
This compliant solution uses an IdentityHashMap rather than a HashMap to store the
license information:

public class LicenseManager {
 Map<LicenseType, String> licenseMap =
 new IdentityHashMap<LicenseType, String>();

 // ...
}

According to the Java API class IdentityHashMap documentation [API 2006],

This class implements the Map interface with a hash table, using reference-equality
in place of object-equality when comparing keys (and values). In other words, in an
IdentityHashMap, two keys k1 and k2 are considered equal if and only if (k1==k2).
(In normal Map implementations (like HashMap) two keys k1 and k2 are considered
equal if and only if (k1==null ? k2==null : k1.equals(k2)).)

Consequently, the overridden methods cannot expose internal class details. The
client program can continue to add license keys, and can even retrieve the added
key–value pairs, as demonstrated by the following client code.

ptg11539634

15. Do not rely on methods that can be overridden by untrusted code 47

Compliant Solution (final Class)
This compliant solution declares the LicenseType class final so that its methods
 cannot be overridden:

public class DemoClient {
 public static void main(String[] args) {
 LicenseManager licenseManager = new LicenseManager();
 LicenseType type = new LicenseType();
 type.setType("custom-license-key");
 licenseManager.setLicenseKey(type, "CUS-TOM-LIC-KEY");
 Object licenseKeyValue = licenseManager.getLicenseKey(type);
 // Prints CUS-TOM-LIC-KEY
 System.out.println(licenseKeyValue);
 }
}

final class LicenseType {
 // ...
}

public class Widget {
 private int noOfComponents;

 public Widget(int noOfComponents) {
 this.noOfComponents = noOfComponents;
 }
 public int getNoOfComponents() {
 return noOfComponents;
 }
 public final void setNoOfComponents(int noOfComponents) {
 this.noOfComponents = noOfComponents;
 }
 public boolean equals(Object o) {
 if (o == null || !(o instanceof Widget)) {
 return false;
 }
 Widget widget = (Widget) o;
 return this.noOfComponents == widget.getNoOfComponents();
 }

Noncompliant Code Example
This noncompliant code example consists of a Widget class and a LayoutManager
class containing a set of widgets:

ptg11539634

48 Chapter 1 n Security

An attacker can extend the Widget class as a Navigator widget, and override the
hashCode() method:

The client code follows:

 @Override
 public int hashCode() {
 int res = 31;
 res = res * 17 + noOfComponents;
 return res;
 }
}
public class LayoutManager {
 private Set<Widget> layouts = new HashSet<Widget>();
 public void addWidget(Widget widget) {
 if (!layouts.contains(widget)) {
 layouts.add(widget);
 }
 }
 public int getLayoutSize() {
 return layouts.size();
 }
}

public class Navigator extends Widget {
 public Navigator(int noOfComponents) {
 super(noOfComponents);
 }
 @Override
 public int hashCode() {
 int res = 31;
 res = res * 17;
 return res;
 }
}

Widget nav = new Navigator(1);
Widget widget = new Widget(1);
LayoutManager manager = new LayoutManager();
manager.addWidget(nav);
manager.addWidget(widget);
System.out.println(manager.getLayoutSize()); // Prints 2

ptg11539634

15. Do not rely on methods that can be overridden by untrusted code 49

public final class Widget {
 // ...
}

public class Worker implements Runnable {
 Worker() { }
 public void startThread(String name) {
 new Thread(this, name).start();
 }
 @Override
 public void run() {
 System.out.println("Parent");
 }
}

public class SubWorker extends Worker {
 @Override
 public void startThread(String name) {
 super.startThread(name);
 new Thread(this, name).start();
 }
 @Override
 public void run() {
 System.out.println("Child");
 }
}

The set layouts is expected to contain just one item because the number of
components for both the navigator and the widget being added is 1. However, the
getLayoutSize() method returns 2.

The reason for this discrepancy is that the hashCode() method of Widget is used
only once when the widget is added to the set. When the navigator is added, the
hashCode() method provided by the Navigator class is used. Consequently, the set
contains two different object instances.

Compliant Solution (final class)
This compliant solution declares the Widget class final so that its methods cannot be
overridden:

Noncompliant Code Example (run())
In this noncompliant code example, class Worker and its subclass SubWorker each
contain a startThread() method intended to start a thread.

ptg11539634

50 Chapter 1 n Security

If a client runs the following code:

Worker w = new SubWorker();
w.startThread("thread");

public class SubWorker extends Worker {
 @Override
 public void startThread(String name) {
 new Thread(this, name).start();
 }
 // ...
}

Worker w1 = new Worker();
w1.startThread("parent-thread");
Worker w2 = new SubWorker();
w2.startThread("child-thread");

Bibliography
[API 2013] Class IdentityHashMap

[Hawtin 2006] [drlvm][kernel_classes] ThreadLocal vulnerability

the client may expect Parent and Child to be printed. However, Child is printed
twice because the overridden method run() is invoked both times that a new thread
is started.

Compliant Solution
This compliant solution modifies the SubWorker class and removes the call to super
.startThread():

The client code is also modified to start the parent and child threads separately.
This program produces the expected output:

n  16. Avoid granting excess privileges

A Java security policy grants permissions to code to allow access to specific system
resources. A code source (an object of type CodeSource), to which a permission is
granted, consists of the code location (URL) and a reference to the certificate(s)

ptg11539634

16. Avoid granting excess privileges 51

private FileInputStream openFile() {
 final FileInputStream f[] = { null };

 AccessController.doPrivileged(new PrivilegedAction() {
 public Object run() {
 try {
 f[0] = new FileInputStream("file");
 } catch(FileNotFoundException fnf) {
 // Forward to handler
 }
 return null;
 }
 });

containing the public key(s) corresponding to the private key(s) used to digitally
sign the code. Reference to the certificate(s) is pertinent only if the code was digitally
signed. A protection domain encompasses a CodeSource and the permissions granted
to code from that CodeSource, as determined by the security policy currently in
effect. Consequently, classes signed by the same key and originating from the same
URL are placed in the same protection domain. A class belongs to one and only one
protection domain. Classes that have the same permissions but are from different
code sources belong to different domains.

Each Java class runs in its appropriate domain, as determined by its code
source. For any code running under a security manager to perform a secured action
such as reading or writing a file, the code must be granted permission to perform
that particular action. Privileged code can access privileged resources on behalf of
an unprivileged caller by using the AccessController.doPrivileged() method.
This is necessary, for example, when a system utility needs to open a font file on
behalf of the user to display a document, but the application lacks permission to
do so. To perform this action, the system utility uses its full privileges for obtaining
the fonts, ignoring the privileges of the caller. Privileged code runs with all the
privileges of the protection domain associated with the code source. These privi-
leges often exceed those required to perform the privileged operation. Ideally, code
should be granted only the minimum set of privileges required to complete its
operation.

Guideline 19, “Define custom security permissions for fine-grained security,”
describes another approach to eliminating excess privileges.

Noncompliant Code Example
This noncompliant code example shows a library method that allows callers to
perform a privileged operation (reading a file) using the wrapper method
 performActionOnFile():

ptg11539634

52 Chapter 1 n Security

In this example, the trusted code grants privileges beyond those required to read
a file, even though read access to the file was the only permission needed by the
doPrivileged() block. Consequently, this code violates the principle of least privi-
lege by providing the code block with superfluous privileges.

Compliant Solution
The two-argument form of doPrivileged() accepts an AccessControlContext
object from the caller and restricts the privileges of the contained code to the inter-
section of the privileges of the protection domain and those of the context passed as
the second argument. Consequently, a caller that wishes to grant only permission to
read the file can provide a context that has only file-reading permissions.

An AccessControlContext that grants the appropriate file-reading permissions
can be created as an inner class:

private FileInputStream openFile(AccessControlContext context) {
 if (context == null) {
 throw new SecurityException("Missing AccessControlContext");
 }

 final FileInputStream f[] = { null };
 AccessController.doPrivileged(
 new PrivilegedAction() {
 public Object run() {
 try {
 f[0] = new FileInputStream("file");
 } catch (FileNotFoundException fnf) {
 // Forward to handler
 }
 return null;
 }
 },

 return f[0];
}

// Wrapper method
public void performActionOnFile() {
 try (FileInputStream f = openFile()){
 // Perform operation
 } catch (Throwable t) {
 // Handle exception
 }
}

ptg11539634

16. Avoid granting excess privileges 53

[API 2013] Class AccessController

[Oracle 2013a] API for Privileged Blocks

 // Restrict the privileges by passing the context argument
 context);
 return f[0];
}

private static class FileAccessControlContext {
 public static final AccessControlContext INSTANCE;
 static {
 Permission perm = new java.io.FilePermission("file", "read");
 PermissionCollection perms = perm.newPermissionCollection();
 perms.add(perm);
 INSTANCE = new AccessControlContext(new ProtectionDomain[] {
 new ProtectionDomain(null, perms)});
 }
}

// Wrapper method
public void performActionOnFile() {
 try (final FileInputStream f =
 // Grant only open-for-reading privileges
 openFile(FileAccessControlContext.INSTANCE)){
 // Perform action
 } catch (Throwable t) {
 // Handle exception
 }
}

Callers that lack permission to create an appropriate AccessControlContext
can request one using AccessController.getContext() to create the instance.

Applicability
Failure to follow the principle of least privilege can result in untrusted, unprivileged
code performing unintended privileged operations. However, carefully restricting
privileges adds complexity. This added complexity and the associated reduction of
maintainability must be traded off against any security improvement.

Bibliography

ptg11539634

54 Chapter 1 n Security

n  17. Minimize privileged code

Programs must comply with the principle of least privilege not only by providing
privileged blocks with the minimum permissions required for correct operation
(see Guideline 16, “Avoid granting excess privileges”), but also by ensuring that
privileged code contains only those operations that require increased privileges.
Superfluous code contained within a privileged block must operate with the privi-
leges of that block, increasing the attack surface.

Noncompliant Code Example
This noncompliant code example contains a changePassword() method that
attempts to open a password file within a doPrivileged block and performs opera-
tions using that file. The doPrivileged block also contains a superfluous System
.loadLibrary() call that loads the authentication library.

This example violates the principle of least privilege because an unprivileged
caller could also cause the authentication library to be loaded. An unprivileged caller
cannot invoke the System.loadLibrary() method directly, because this could
expose native methods to the unprivileged code [SCG 2010]. Furthermore, the Sys-
tem.loadLibrary() method checks only the privileges of its immediate caller, so it

public void changePassword(String currentPassword,
 String newPassword) {
 final FileInputStream f[] = { null };

 AccessController.doPrivileged(new PrivilegedAction() {
 public Object run() {
 try {
 String passwordFile = System.getProperty("user.dir") +
 File.separator + "PasswordFileName";
 f[0] = new FileInputStream(passwordFile);
 // Check whether oldPassword matches the one in the file
 // If not, throw an exception
 System.loadLibrary("authentication");
 } catch (FileNotFoundException cnf) {
 // Forward to handler
 }
 return null;
 }
 }); // End of doPrivileged()
}

ptg11539634

17. Minimize privileged code 55

should be used only with great care. For more information, see Guideline 18, “Do
not expose methods that use reduced-security checks to untrusted code.”

Compliant Solution
This compliant solution moves the call to System.loadLibrary() outside the
do Privileged() block. Doing so allows unprivileged code to perform preliminary
password-reset checks using the file, but prevents it from loading the authentication
library.

public void changePassword(String currentPassword,
 String newPassword) {
 final FileInputStream f[] = { null };

 AccessController.doPrivileged(new PrivilegedAction() {
 public Object run() {
 try {
 String passwordFile = System.getProperty("user.dir") +
 File.separator + "PasswordFileName";
 f[0] = new FileInputStream(passwordFile);
 // Check whether oldPassword matches the one in the file
 // If not, throw an exception
 } catch (FileNotFoundException cnf) {
 // Forward to handler
 }
 return null;
 }
 }); // End of doPrivileged()

 System.loadLibrary("authentication");
}

[API 2013] Class AccessController

The loadLibrary() invocation could also occur before preliminary password
reset checks are performed; in this example, it is deferred for performance reasons.

Applicability
Minimizing privileged code reduces the attack surface of an application and simpli-
fies the task of auditing privileged code.

Bibliography

ptg11539634

56 Chapter 1 n Security

n  18. Do not expose methods that use reduced-security checks
to untrusted code

Most methods lack security manager checks because they do not provide access to
sensitive parts of the system, such as the file system. Most methods that do provide
security manager checks verify that every class and method in the call stack is
authorized before they proceed. This security model allows restricted programs,
such as Java applets, to have full access to the core Java library. It also prevents a sen-
sitive method from acting on behalf of a malicious method that hides behind trusted
methods in the call stack.

However, certain methods use a reduced-security check that checks only that
the calling method is authorized rather than checking every method in the call stack.
Any code that invokes these methods must guarantee that they cannot be invoked
on behalf of untrusted code. These methods are listed in Table 1–2.

Because the java.lang.reflect.Field.setAccessible() and getAccessible()
methods are used to instruct the Java Virtual Machine (JVM) to override the language
access checks, they perform standard (and more restrictive) security manager checks,
and consequently lack the vulnerability described by this guideline. Nevertheless,
these methods should also be used with extreme caution. The remaining set* and
get* field reflection methods perform only the language access checks and are conse-
quently vulnerable.

Class Loaders
Class loaders allow a Java application to be dynamically extended at runtime by
loading additional classes. For each class that is loaded, the JVM tracks the class
loader that was used to load the class. When a loaded class first refers to another
class, the virtual machine requests that the referenced class be loaded by the same
class loader that was used to load the referencing class. Java’s class loader

java.lang.Class.newInstance

java.lang.reflect.Constructor.newInstance

java.lang.reflect.Field.get*

java.lang.reflect.Field.set*

java.lang.reflect.Method.invoke

java.util.concurrent.atomic.AtomicIntegerFieldUpdater.newUpdater

java.util.concurrent.atomic.AtomicLongFieldUpdater.newUpdater

java.util.concurrent.atomic.AtomicReferenceFieldUpdater.newUpdater

Table 1–2. Methods that check the calling method only

ptg11539634

18. Do not expose methods that use reduced-security checks to untrusted code 57

architecture controls interaction between code loaded from different sources by
allowing the use of different class loaders. This separation of class loaders is funda-
mental to the separation of code: it prevents malicious code from gaining access to
and subverting trusted code.

Several methods which are charged with loading classes delegate their work
to the class loader of the class of the method that called them. The security checks
associated with loading classes are performed by the class loaders. Consequently,
any method that invokes one of these class loading methods must guarantee that
these methods cannot act on behalf of untrusted code. These methods are listed
in Table 1–3.

With the exception of the loadLibrary() and load() methods, the tabulated
methods do not perform any security manager checks; they delegate security checks
to the appropriate class loader.

In practice, the trusted code’s class loader frequently allows these methods to be
invoked, whereas the untrusted code’s class loader may lack these privileges. How-
ever, when the untrusted code’s class loader delegates to the trusted code’s class
loader, the untrusted code gains visibility to the trusted code. In the absence of such
a delegation relationship, the class loaders would ensure namespace separation;
consequently, the untrusted code would be unable to observe members or to invoke
methods belonging to the trusted code.

The class loader delegation model is fundamental to many Java implementations
and frameworks. Avoid exposing the methods listed in Tables 1–2 and 1–3 to untrusted
code. Consider, for exam ple, an attack scenario where untrusted code is attempting to

java.lang.Class.forName

java.lang.Package.getPackage

java.lang.Package.getPackages

java.lang.Runtime.load

java.lang.Runtime.loadLibrary

java.lang.System.load

java.lang.System.loadLibrary

java.sql.DriverManager.getConnection

java.sql.DriverManager.getDriver

java.sql.DriverManager.getDrivers

java.sql.DriverManager.deregisterDriver

java.util.ResourceBundle.getBundle

Table 1–3. Methods that use the calling method’s class loader

ptg11539634

58 Chapter 1 n Security

load a privileged class. If its class loader lacks permission to load the requested privileged
class on its own, but the class loader is permitted to delegate the class loading to a trusted
class’s class loader, privilege escalation can occur. Furthermore, if the trusted code accepts
tainted inputs, the trusted code’s class loader could be persuaded to load privileged, mali-
cious classes on behalf of the untrusted code.

Classes that have the same defining class loader will exist in the same name-
space, but they can have different privileges depending on the security policy.
 Security vulnerabilities can arise when privileged code coexists with unprivileged
code (or less privileged code) that was loaded by the same class loader. In this
case, the less privileged code can freely access members of the privileged code
according to the privileged code’s declared accessibility. When the privileged
code uses any of the tabulated APIs, it bypasses security manager checks (with the
exception of l oadLibrary() and load()).

This guideline is similar to The CERT® Oracle® Secure Coding Standard for Java™
[Long 2012], “SEC03-J. Do not load trusted classes after allowing untrusted code to
load arbitrary classes.” Many examples also violate “SEC00-J. Do not allow privileged
blocks to leak sensitive information across a trust boundary.”

Noncompliant Code Example
In this noncompliant code example, a call to System.loadLibrary() is embedded in
a doPrivileged block.

public void load(String libName) {
 AccessController.doPrivileged(new PrivilegedAction() {
 public Object run() {
 System.loadLibrary(libName);
 return null;
 }
 });
}

This code is insecure because it could be used to load a library on behalf of
untrusted code. In essence, the untrusted code’s class loader may be able to use this
code to load a library even though it lacks sufficient permissions to do so directly.
After loading the library, the untrusted code can call native methods from the library,
if those methods are accessible, because the doPrivileged block prevents any secu-
rity manager checks from being applied to callers further up the execution stack.

Nonnative library code can also be susceptible to related security flaws. Suppose
there exists a library that contains a vulnerability that is not directly exposed,

ptg11539634

18. Do not expose methods that use reduced-security checks to untrusted code 59

perhaps because it lies in an unused method. Loading this library may not directly
expose a vulnerability. However, an attacker could then load an additional library
that exploits the first library’s vulnerability. Moreover, nonnative libraries often use
doPrivileged blocks, making them attractive targets.

Compliant Solution
This compliant solution hard codes the name of the library to prevent the possibility
of tainted values. It also reduces the accessibility of the load() method from public to
private. Consequently, untrusted callers are prohibited from loading the awt library.

private void load() {
 AccessController.doPrivileged(new PrivilegedAction() {
 public Object run() {
 System.loadLibrary("awt");
 return null;
 }
 });
}

public Connection getConnection(String url, String username,
 String password) {
 // ...
 return DriverManager.getConnection(url, username, password);
}

Noncompliant Code Example
This noncompliant code example returns an instance of java.sql.Connection from
trusted code to untrusted code.

Untrusted code that lacks the permissions required to create a SQL connection
can bypass these restrictions by using the acquired instance directly. The getCon-
nection() method is unsafe because it uses the url argument to indicate a class to
be loaded; this class serves as the database driver.

Compliant Solution
This compliant solution prevents malicious users from supplying their own URL to
the database connection, thereby limiting their ability to load untrusted drivers.

ptg11539634

60 Chapter 1 n Security

Noncompliant Code Example (CERT Vulnerability 636312)
CERT Vulnerability Note VU#636312 describes a vulnerability in Java 1.7.0 update 6
that was widely exploited in August 2012. The exploit actually used two vulnerabili-
ties; the other one is described in The CERT® Oracle® Secure Coding Standard for Java™
[Long 2012], “SEC05-J. Do not use reflection to increase accessibility of classes,
methods, or fields.”

The exploit runs as a Java applet. The applet class loader ensures that an applet
cannot directly invoke methods of classes present in the com.sun.* package. A normal
security manager check ensures that specific actions are allowed or denied depending
on the privileges of all of the caller methods on the call stack (the privileges are associ-
ated with the code source that encompasses the class).

The first goal of the exploit code was to access the private sun.awt.SunToolkit
class. However, invoking class.forName() directly on the name of this class would
cause a SecurityException to be thrown. Consequently, the exploit code used the
following method to access any class, bypassing the security manager:

private Class GetClass(String paramString)
 throws Throwable {
 Object arrayOfObject[] = new Object[1];
 arrayOfObject[0] = paramString;
 Expression localExpression =
 new Expression(Class.class, "forName", arrayOfObject);
 localExpression.execute();
 return (Class)localExpression.getValue();
}

private String url = // Hardwired value

public Connection getConnection(String username,
 String password) {
 // ...
 return DriverManager.getConnection(this.url,
 username, password);
}

The java.beans.Expression.execute() method delegates its work to the
following method:

private Object invokeInternal() throws Exception {
 Object target = getTarget();
 String methodName = getMethodName();

ptg11539634

18. Do not expose methods that use reduced-security checks to untrusted code 61

public static Class<?> findClass(String name)
 throws ClassNotFoundException {
 try {
 ClassLoader loader =
 Thread.currentThread().getContextClassLoader();
 if (loader == null) {
 loader = ClassLoader.getSystemClassLoader();
 }
 if (loader != null) {
 return Class.forName(name, false, loader);
 }
 } catch (ClassNotFoundException exception) {
 // Use current class loader instead
 } catch (SecurityException exception) {
 // Use current class loader instead
 }
 return Class.forName(name);
}

 if (target == null || methodName == null) {
 throw new NullPointerException(
 (target == null ? "target" : "methodName") +
 " should not be null");
 }

 Object[] arguments = getArguments();
 if (arguments == null) {
 arguments = emptyArray;
 }
 // Class.forName() won't load classes outside
 // of core from a class inside core, so it
 // is handled as a special case.
 if (target == Class.class && methodName.equals("forName")) {
 return ClassFinder.resolveClass((String)arguments[0],
 this.loader);
 }

// ...

The com.sun.beans.finder.ClassFinder.resolveClass() method delegates
its work to its findClass() method:

Although this method is called in the context of an applet, it uses Class.forName()
to obtain the requested class. Class.forName() delegates the search to the calling meth-
od’s class loader. In this case, the calling class (com.sun.beans.finder.ClassFinder) is
part of core Java, so the trusted class loader is used in place of the more restrictive applet

ptg11539634

62 Chapter 1 n Security

Noncompliant Code Example (CVE-2013-0422)
Java 1.7.0 update 10 was widely exploited in January 2013 because of several vulner-
abilities. One such vulnerability in the com.sun.jmx.mbeanserver.MBeanInstan-
tiator class granted unprivileged code the ability to access any class regardless of
the current security policy or accessibility rules. The MBeanInstantiator.findClass()
method could be invoked with any string and would attempt to return the Class
object named after the string. This method delegated its work to the MBeanInstan-
tiator.loadClass() method, whose source code is shown here:

class loader, and the trusted class loader loads the class, unaware that it is acting on
behalf of malicious code.

Compliant Solution (CVE-2012-4681)
Oracle mitigated this vulnerability in Java 1.7.0 update 7 by patching the com.sun
.beans.finder.ClassFinder.findClass() method. The checkPackageAccess()
method checks the entire call stack to ensure that Class.forName(), in this instance
only, fetches classes only on behalf of trusted methods.

public static Class<?> findClass(String name)
 throws ClassNotFoundException {
 checkPackageAccess(name);
 try {
 ClassLoader loader =
 Thread.currentThread().getContextClassLoader();
 if (loader == null) {
 // Can be null in IE (see 6204697)
 loader = ClassLoader.getSystemClassLoader();
 }
 if (loader != null) {
 return Class.forName(name, false, loader);
 }

 } catch (ClassNotFoundException exception) {
 // Use current class loader instead
 } catch (SecurityException exception) {
 // Use current class loader instead
 }
 return Class.forName(name);
}

/**
 * Load a class with the specified loader, or with this object
 * class loader if the specified loader is null.
 **/

ptg11539634

18. Do not expose methods that use reduced-security checks to untrusted code 63

static Class<?> loadClass(String className, ClassLoader loader)
 throws ReflectionException {
 Class<?> theClass;
 if (className == null) {
 throw new RuntimeOperationsException(
 new IllegalArgumentException(
 "The class name cannot be null"),
 "Exception occurred during object instantiation");
 } try {
 if (loader == null) {
 loader = MBeanInstantiator.class.getClassLoader();
 }
 if (loader != null) {
 theClass = Class.forName(className, false, loader);
 } else {
 theClass = Class.forName(className);
 }
 } catch (ClassNotFoundException e) {
 throw new ReflectionException(
 e, "The MBean class could not be loaded");
 }
 return theClass;
}

This method delegates the task of dynamically loading the specified class to the
Class.forName() method, which delegates the work to its calling method’s class
loader. Because the calling method is MBeanInstantiator.loadClass(), the core
class loader is used, which provides no security checks.

Compliant Solution (CVE-2013-0422)
Oracle mitigated this vulnerability in Java 1.7.0 update 11 by adding an access check
to the MBeanInstantiator.loadClass() method. This access check ensures that the
caller is permitted to access the class being sought:

// ...
 if (className == null) {
 throw new RuntimeOperationsException(
 new IllegalArgumentException(
 "The class name cannot be null"),
 "Exception occurred during object instantiation");
 }
 ReflectUtil.checkPackageAccess(className);
 try {
 if (loader == null)
// ...

ptg11539634

64 Chapter 1 n Security

Applicability
Allowing untrusted code to invoke methods with reduced-security checks can result
in privilege escalation. Likewise, allowing untrusted code to perform actions using
the immediate caller’s class loader may allow the untrusted code to execute with the
same privileges as the immediate caller.

Methods that avoid using the immediate caller’s class loader instance fall outside
the scope of this guideline. For example, the three-argument java.lang.Class
.forName() method requires an explicit argument that specifies the class loader
instance to use.

public static Class forName(String name, boolean initialize,
 ClassLoader loader) throws ClassNotFoundException

Do not use the immediate caller’s class loader as the third argument when
instances must be returned to untrusted code.

Bibliography
[API 2013] Class ClassLoader

[Chan 1998] java.lang.reflect AccessibleObject

[Guillardoy 2012] Java 0Day Analysis (CVE-2012-4681)

[Long 2012] SEC00-J. Do not allow privileged blocks to leak sensitive information
across a trust boundary

SEC03-J. Do not load trusted classes after allowing untrusted code to
load arbitrary classes

SEC05-J. Do not use reflection to increase accessibility of classes,
methods, or fields

[Manion 2013] “Anatomy of Java Exploits”

[Oracle 2013d] Oracle Security Alert for CVE-2013-0422

n  19. Define custom security permissions for fine-grained
security

The default SecurityManager checks whether the caller of a particular method has
sufficient permissions to proceed with an action. An action is defined in Java’s secu-
rity architecture as a level of access, and requires certain permissions before it can
be performed. For example, the actions for java.io.FilePermission are read,
write, execute, and delete [API 2013]. The “Permission Descriptions and Risks”
guide [Oracle 2011d] enumerates the default permissions and the risks associated
with granting these permissions to Java code.

ptg11539634

19. Define custom security permissions for fine-grained security 65

Sometimes, stronger restrictions than those provided by the default security
manager are necessary. Failure to provide custom permissions when no correspond-
ing default permissions exist can lead to privilege escalation vulnerabilities that ena-
ble untrusted callers to execute restricted operations or actions.

This guideline addresses the problem of excess privileges. See Guideline 16,
“Avoid granting excess privileges,” for another approach to solving this problem.

Noncompliant Code Example
This noncompliant code example contains a privileged block that is used to perform
two sensitive operations: loading a library and setting the default exception handler.

class LoadLibrary {
 private void loadLibrary() {
 AccessController.doPrivileged(
 new PrivilegedAction() {
 public Object run() {
 // Privileged code
 System.loadLibrary("myLib.so");
 // Perform some sensitive operation like
 // setting the default exception handler
 MyExceptionReporter.setExceptionReporter(reporter);
 return null;
 }
 });
 }
}

When used, the default security manager forbids the loading of the library unless
the RuntimePermission loadLibrary.myLib is granted in the policy file. However,
the security manager does not automatically guard a caller from performing the sec-
ond sensitive operation of setting the default exception handler because the permis-
sion for this operation is nondefault and, consequently, unavailable. This security
weakness can be exploited, for example, by programming and installing an excep-
tion handler that reveals information that a legitimate handler would filter out.

Compliant Solution
This compliant solution defines a custom permission ExceptionReporterPermission
with the target exc.reporter to prohibit illegitimate callers from setting the default
exception handler. This can be achieved by subclassing BasicPermission, which
allows binary-style permissions (either allow or disallow). The compliant solution then
uses a security manager to check whether the caller has the requisite permission to set
the handler. The code throws a SecurityException if the check fails. The custom

ptg11539634

66 Chapter 1 n Security

permission class ExceptionReporterPermission is also defined with the two required
constructors.

class LoadLibrary {
 private void loadLibrary() {
 AccessController.doPrivileged(
 new PrivilegedAction() {
 public Object run() {
 // Privileged code
 System.loadLibrary("myLib.so");

 // Perform some sensitive operation like
 // setting the default exception handler
 MyExceptionReporter.setExceptionReporter(reporter);
 return null;
 }
 });
 }
}

final class MyExceptionReporter extends ExceptionReporter {
 public void setExceptionReporter(ExceptionReporter reporter) {
 SecurityManager sm = System.getSecurityManager();
 if(sm != null) {
 sm.checkPermission(
 new ExceptionReporterPermission("exc.reporter"));
 }

 // Proceed to set the exception reporter
 }

 // ... Other methods of MyExceptionReporter
}

final class ExceptionReporterPermission extends BasicPermission {
 public ExceptionReporterPermission(String permName) {
 super(permName);
 }

 // Even though the actions parameter is ignored,
 // this constructor has to be defined
 public ExceptionReporterPermission(String permName,
 String actions) {
 super(permName, actions);
 }
}

The policy file needs to grant two permissions: ExceptionReporterPermission
exc.reporter and RuntimePermission loadlibrary.myLib. The following policy

ptg11539634

20. Create a secure sandbox using a security manager 67

file assumes that the preceding sources reside in the c:\package directory on a
 Windows-based system.

grant codeBase "file:/c:/package" {
 // For *nix, file:${user.home}/package/
 permission ExceptionReporterPermission "exc.reporter";
 permission java.lang.RuntimePermission "loadLibrary.myLib";
};

[API 2013] Class FilePermission

Class SecurityManager

[Oaks 2001] “Permissions” subsection of Chapter 5, “The Access Controller,”

[Oracle 2011d] Permissions in the Java™ SE 6 Development Kit (JDK)

[Oracle 2013c] Java Platform Standard Edition 7 Documentation

[Policy 2010] “Permission Descriptions and Risks”

By default, permissions cannot be defined to support actions using Basic-
Permission, but the actions can be freely implemented in the subclass Exception-
ReporterPermission if required. BasicPermission is abstract even though it
 contains no abstract methods; it defines all the methods that it extends from the
 Permission class. The custom-defined subclass of the BasicPermission class must
define two constructors to call the most appropriate (one- or two-argument)
 superclass constructor (because the superclass lacks a default constructor). The
 two-argument constructor also accepts an action, even though a basic permission
does not use it. This behavior is required for constructing permission objects from
the policy file. Note that the custom-defined subclass of the BasicPermission class
is declared to be final.

Applicability
Running Java code without defining custom permissions where default permissions
are inapplicable can leave an application open to privilege escalation vulnerabilities.

Bibliography

n  20. Create a secure sandbox using a security manager

According to the Java API Class SecurityManager documentation [API 2013],

The security manager is a class that allows applications to implement a security
policy. It allows an application to determine, before performing a possibly unsafe or

ptg11539634

68 Chapter 1 n Security

sensitive operation, what the operation is and whether it is being attempted in a
security context that allows the operation to be performed. The application can
allow or disallow the operation.

A security manager may be associated with any Java code.
The applet security manager denies applets all but the most essential privileges. It

is designed to protect against inadvertent system modification, information leakage,
and user impersonation. The use of security managers is not limited to client-side
protection. Web servers, such as Tomcat and WebSphere, use this facility to isolate
trojan servlets and malicious Java Server Pages (JSP) as well as to protect sensitive
system resources from inadvertent access.

Java applications that run from the command line can set a default or custom
security manager using a command-line flag. Alternatively, it is possible to install a
security manager programmatically. Installing a security manager programmatically
helps create a default sandbox that allows or denies sensitive actions on the basis of
the security policy in effect.

From Java 2 SE Platform onward, SecurityManager is a nonabstract class. As a
result, there is no explicit requirement to override its methods. To create and use a
security manager programmatically, the code must have the runtime permissions
createSecurityManager (to instantiate SecurityManager) and setSecurityManager
(to install it). These permissions are checked only if a security manager is already
installed. This is useful for situations in which a default security manager is in place,
such as on a virtual host, and individual hosts must be denied the requisite permis-
sions for overriding the default security manager with a custom one.

The security manager is closely tied to the AccessController class. The former
is used as a hub for access control, whereas the latter provides the actual implemen-
tation of the access control algorithm. The security manager supports

n  Providing backward compatibility: Legacy code often contains custom imple-
mentations of the security manager class because it was originally abstract.

n  Defining custom policies: Subclassing the security manager permits definition
of custom security policies (for example, multilevel, coarse, or fine grain).

Regarding the implementation and use of custom security managers as opposed to
default ones, the Java security architecture specification [SecuritySpec 2010] states:

We encourage the use of AccessController in application code, while customization
of a security manager (via subclassing) should be the last resort and should be done
with extreme care. Moreover, a customized security manager, such as one that always
checks the time of the day before invoking standard security checks, could and should
utilize the algorithm provided by AccessController whenever appropriate.

Many of the Java SE APIs perform security manager checks by default before
performing sensitive operations. For example, the constructor of class java.io

ptg11539634

20. Create a secure sandbox using a security manager 69

.FileInputStream throws a SecurityException if the caller does not have the
permission to read a file. Because SecurityException is a subclass of RuntimeEx-
ception, the declarations of some API methods (for example, those of the java
.io.FileReader class) may lack a throws clause that lists the SecurityException.
Avoid depending on the presence or absence of security manager checks that are not
specified in the API method’s documentation.

Noncompliant Code Example (Command-Line Installation)
This noncompliant code example fails to install any security manager from the com-
mand line. Consequently, the program runs with all permissions enabled; that is,
there is no security manager to prevent any nefarious actions the program might
perform.

java LocalJavaApp

Compliant Solution (Default Policy File)
Any Java program can attempt to install a SecurityManager programmatically,
although the currently active security manager may forbid this operation. Applica-
tions designed to run locally can specify a default security manager by use of a flag
on the command line at invocation.

The command-line option is preferred when applications must be prohibited
from installing custom security managers programmatically, and are required to
abide by the default security policy under all circumstances. This compliant solu-
tion installs the default security manager using the appropriate command-line flags.
The security policy file grants permissions to the application for its intended
actions.

java -Djava.security.manager -Djava.security.policy=policyURL \
 LocalJavaApp

The command-line flag can specify a custom security manager whose policies
are enforced globally. Use the -Djava.security.manager flag, as follows:

java -Djava.security.manager=my.security.CustomManager ...

If the current security policy enforced by the current security manager forbids
replacements (by omitting the RuntimePermission("setSecurityManager")), any
attempt to invoke setSecurityManager() will throw a SecurityException.

The default security policy file java.policy—found in the /path/to/java
.home/lib/security directory on UNIX-like systems and its equivalent on Microsoft
Windows systems—grants a few permissions (reading system properties, binding to
unprivileged ports, and so forth). A user-specific policy file may also be located in the

ptg11539634

70 Chapter 1 n Security

user’s home directory. The union of these policy files specifies the permissions
granted to a program. The java.security file can specify which policy files are used.
If either of the systemwide java.policy or java.security files is deleted, no permis-
sions are granted to the executing Java program.

Compliant Solution (Custom Policy File)
Use double equals (==) instead of the single equals (=) when overriding the global
Java security policy file with a custom policy file:

java -Djava.security.manager \
 -Djava.security.policy==policyURL \
 LocalJavaApp

Compliant Solution (Additional Policy Files)
The appletviewer automatically installs a security manager with the standard pol-
icy file. To specify additional policy files, use the -J flag.

appletviewer -J-Djava.security.manager \
 -J-Djava.security.policy==policyURL LocalJavaApp

Note that the policy file specified in the argument is ignored when the policy
.allowSystemProperty property in the security properties file (java.security) is
set to false; the default value of this property is true. Default Policy Implementa-
tion and Policy File Syntax [Policy 2010] discusses in depth the issues and syntax
for writing policy files.

Noncompliant Code Example (Programmatic Installation)
A SecurityManager can also be activated using the static System.setSecurity-
Manager() method. Only one SecurityManager may be active at a time. This method
replaces the currently active SecurityManager with the SecurityManager provided
in its argument, or no SecurityManager if its argument is null.

This noncompliant code example deactivates any current SecurityManager but
does not install another SecurityManager in its place. Consequently, subsequent
code will run with all permissions enabled; there will be no restrictions on any nefar-
ious action the program might perform.

try {
 System.setSecurityManager(null);
} catch (SecurityException se) {
 // Cannot set security manager, log to file
}

ptg11539634

20. Create a secure sandbox using a security manager 71

An active SecurityManager that enforces a sensible security policy will prevent
the system from deactivating it, causing this code to throw a SecurityException.

Compliant Solution (Default Security Manager)
This compliant solution instantiates and sets the default security manager.

try {
 System.setSecurityManager(new SecurityManager());
} catch (SecurityException se) {
 // Cannot set security manager, log appropriately
}

char password[] = /* initialize */
try {
 System.setSecurityManager(
 new CustomSecurityManager("password here")
);
} catch (SecurityException se) {
 // Cannot set security manager, log appropriately
}

Compliant Solution (Custom Security Manager)
This compliant solution demonstrates how to instantiate a custom Security-
Manager class called CustomSecurityManager by invoking its constructor with a
password; this custom security manager is then installed as the active security
manager.

After this code executes, APIs that perform security checks will use the cus-
tom security manager. As noted earlier, custom security managers should be
installed only when the default security manager lacks the required functionality.

Applicability
Java security fundamentally depends on the existence of a security manager. In its
absence, sensitive actions can execute without restriction.

Programmatic detection of the presence or absence of a SecurityManager at
runtime is straightforward. Static analysis can address the presence or absence of
code that would attempt to install a SecurityManager if the code were executed.
Checking whether the SecurityManager is installed early enough, whether it

ptg11539634

72 Chapter 1 n Security

specifies the desired properties, or whether it is guaranteed to be installed may be
possible in some special cases, but is generally undecidable.

Invocation of the setSecurityManager() method may be omitted in controlled
environments in which it is known that a global-default security manager is always
installed from the command line. This is difficult to enforce, and can result in vul-
nerabilities if the environment is incorrectly configured.

Bibliography
[API 2013] Class SecurityManager

Class AccessControlContext

Class AccessController

[Gong 2003] §6.1, “Security Manager”

[Pistoia 2004] §7.4, “The Security Manager”

[Policy 2010] Default Policy Implementation and Policy File Syntax

[SecuritySpec 2010] §6.2, “SecurityManager versus AccessController”

n  21. Do not let untrusted code misuse privileges of callback
methods

Callbacks provide a means to register a method to be invoked (or called back) when
an interesting event occurs. Java uses callbacks for applet and servlet life-cycle
events, AWT and Swing event notifications such as button clicks, asynchronous
reads and writes to storage, and even in Runnable.run() wherein a new thread auto-
matically executes the specified run() method.

In Java, callbacks are typically implemented using interfaces. The general
structure of a callback is as follows:

public interface CallBack {
 void callMethod();
}

class CallBackImpl implements CallBack {
 public void callMethod() {
 System.out.println("CallBack invoked");
 }
}

class CallBackAction {
 private CallBack callback;

ptg11539634

21. Do not let untrusted code misuse privileges of callback methods 73

 public CallBackAction(CallBack callback) {
 this.callback = callback;
 }

 public void perform() {
 callback.callMethod();
 }
}

class Client {
 public static void main(String[] args) {
 CallBackAction action =
 new CallBackAction(new CallBackImpl());
 // ...
 action.perform(); // Prints "CallBack invoked"
 }
}

Callback methods are often invoked without changes in privileges, which means
that they may be executed in a context that has more privileges than the context in
which they are declared. If these callback methods accept data from untrusted code,
privilege escalation may occur.

According to Oracle’s secure coding guidelines [SCG 2010],

Callback methods are generally invoked from the system with full permissions. It
seems reasonable to expect that malicious code needs to be on the stack in order to
perform an operation, but that is not the case. Malicious code may set up objects
that bridge the callback to a security checked operation. For instance, a file chooser
dialog box that can manipulate the filesystem from user actions, may have events
posted from malicious code. Alternatively, malicious code can disguise a file chooser
as something benign while redirecting user events.

This guideline is an instance of Guideline 17, “Minimize privileged code,” and is
related to The CERT® Oracle® Secure Coding Standard for Java™ [Long 2012], “SEC01-J.
Do not allow tainted variables in privileged blocks.”

Noncompliant Code Example
This noncompliant code example uses a UserLookupCallBack class that implements
the CallBack interface to look up a user’s name given the user’s ID. This lookup code
assumes that this information lives in the /etc/passwd file, which requires elevated
privileges to open. Consequently, the Client class invokes all callbacks with ele-
vated privileges (within a doPrivileged block).

ptg11539634

74 Chapter 1 n Security

This code could be safely used by a client, as follows:

public interface CallBack {
 void callMethod();
}

class UserLookupCallBack implements CallBack {
 private int uid;
 private String name;

 public UserLookupCallBack(int uid) {
 this.uid = uid;
 }

 public String getName() {
 return name;
 }

 public void callMethod() {
 try (InputStream fis = new FileInputStream("/etc/passwd")) {
 // Look up uid & assign to name
 } catch (IOException x) {
 name = null;
 }
 }
}

final class CallBackAction {
 private CallBack callback;

 public CallBackAction(CallBack callback) {
 this.callback = callback;
 }

 public void perform() {
 AccessController.doPrivileged(new PrivilegedAction<Void>() {
 public Void run() {
 callback.callMethod();
 return null;
 }
 });
 }
}

public static void main(String[] args) {
 int uid = Integer.parseInt(args[0]);

ptg11539634

21. Do not let untrusted code misuse privileges of callback methods 75

class MaliciousCallBack implements CallBack {
 public void callMethod() {
 // Code here gets executed with elevated privileges
 }
}

// Client code
public static void main(String[] args) {
 CallBack callBack = new MaliciousCallBack();
 CallBackAction action = new CallBackAction(callBack);
 action.perform(); // Executes malicious code
}

However, an attacker can use CallBackAction to execute malicious code with
elevated privileges by registering a MaliciousCallBack instance:

Compliant Solution (Callback-Local doPrivileged Block)
According to Oracle’s secure coding guidelines [SCG 2010],

By convention, instances of PrivilegedAction and PrivilegedExceptionAction
may be made available to untrusted code, but doPrivileged must not be invoked
with caller-provided actions.

This compliant solution moves the invocation of doPrivileged() out of the
CallBackAction code and into the callback itself.

public interface CallBack {
 void callMethod();
}

class UserLookupCallBack implements CallBack {
 private int uid;
 private String name;

 CallBack callBack = new UserLookupCallBack(uid);
 CallBackAction action = new CallBackAction(callBack);

 // ...
 action.perform(); // Looks up user name
 System.out.println("User " + uid + " is named " +
 callBack.getName());
}

ptg11539634

76 Chapter 1 n Security

This code behaves the same as before, but an attacker can no longer execute
malicious callback code with elevated privileges. Even though an attacker can pass a
malicious callback instance using the constructor of class CallBackAction, the code
is not executed with elevated privileges because the malicious instance must contain
a doPrivileged block that cannot have the same privileges as trusted code. Addi-
tionally, class CallBackAction cannot be subclassed to override the perform()
method as it is declared final.

 public UserLookupCallBack(int uid) {
 this.uid = uid;
 }

 public String getName() {
 return name;
 }

 public final void callMethod() {
 AccessController.doPrivileged(new PrivilegedAction<Void>() {
 public Void run() {
 try (InputStream fis =
 new FileInputStream("/etc/passwd")) {
 // Look up userid and assign to
 // UserLookupCallBack.this.name
 } catch (IOException x) {
 UserLookupCallBack.this.name = null;
 }
 return null;
 }
 });
 }
}

final class CallBackAction {
 private CallBack callback;

 public CallBackAction(CallBack callback) {
 this.callback = callback;
 }

 public void perform() {
 callback.callMethod();
 }
}

ptg11539634

21. Do not let untrusted code misuse privileges of callback methods 77

final class UserLookupCallBack implements CallBack {
 // ...
}

// Remaining code is unchanged

Compliant Solution (Declare Callback Final)
This compliant solution declares the UserLookupCallBack class final to prevent
overriding of callMethod().

[API 2013] AccessController.doPrivileged()

[Long 2012] SEC01-J. Do not allow tainted variables in privileged blocks

[SCG 2010] Guideline 9-2: Beware of callback methods

Guideline 9-3: Safely invoke java.security.AccessCon-
troller.doPrivileged

Bibliography

Applicability
Exposing sensitive methods through callbacks can result in misuse of privileges
and arbitrary code execution.

ptg11539634

This page intentionally left blank

ptg11539634

Chapter

 79

Defensive Programming

Defensive programming is carefully guarded programming that helps you to construct
reliable software by designing each component to protect itself as much as possible:
for example, by checking that undocumented assumptions remain valid [Goodliffe
2007]. The guidelines in this chapter address areas of the Java language that can help
to constrain the effect of an error or help to recover from an error.

Java language mechanisms should be used to limit the scope, lifetime, and
 accessibility of program resources. Also, Java annotations can be used to document
the program, aiding readability and maintenance. Java programmers should be
aware of implicit behaviors and avoid unwarranted assumptions about how the
s ystem behaves.

A good overall principle for defensive programming is simplicity. A complicated
system is difficult to understand, difficult to maintain, and difficult to get right in the
first place. If a construct turns out to be complicated to implement, consider rede-
signing or refactoring it to reduce the complexity.

Finally, the program should be designed to be as robust as possible. Wherever
possible, the program should help the Java runtime system by limiting the resources
it uses and by releasing acquired resources when they are no longer needed. Again,
this can often be achieved by limiting the lifetime and accessibility of objects and
other programming constructs. Not all eventualities can be anticipated, so a strategy
should be developed to provide a graceful exit of last resort.

2

ptg11539634

80 Chapter 2 n Defensive Programming

n  22. Minimize the scope of variables

Scope minimization helps developers avoid common programming errors, improves
code readability by connecting the declaration and actual use of a variable, and
improves maintainability because unused variables are more easily detected and
removed. It may also allow objects to be recovered by the garbage collector more
quickly, and it prevents violations of Guideline 37, “Do not shadow or obscure iden-
tifiers in subscopes.”

Noncompliant Code Example
This noncompliant code example shows a variable that is declared outside the
for loop.

public class Scope {
 public static void main(String[] args) {
 int i = 0;
 for (i = 0; i < 10; i++) {
 // Do operations
 }
 }
}

public class Scope {
 public static void main(String[] args) {
 for (int i = 0; i < 10; i++) { // Contains declaration
 // Do operations
 }
 }
}

This code is noncompliant because, even though variable i is not intention-
ally used outside the for loop, it is declared in method scope. One of the few sce-
narios where variable i needs to be declared in method scope is when the loop
contains a break statement, and the value of i must be inspected after conclusion
of the loop.

Compliant Solution
Minimize the scope of variables where possible. For example, declare loop indices
within the for statement:

ptg11539634

22. Minimize the scope of variables 81

Noncompliant Code Example
This noncompliant code example shows a variable count that is declared outside the
counter() method, although the variable is not used outside the counter() method.

public class Foo {
 private int count;
 private static final int MAX_COUNT = 10;

 public void counter() {
 count = 0;
 while (condition()) {
 /* ... */
 if (count++ > MAX_COUNT) {
 return;
 }
 }
 }

 private boolean condition() {/* ... */}
 // No other method references count
 // but several other methods reference MAX_COUNT
}

The reusability of the method is reduced because if the method were copied to
another class, then the count variable would also need to be redefined in the new con-
text. Furthermore, the analyzability of the counter method would be reduced, as whole
program data flow analysis would be necessary to determine possible values for count.

Compliant Solution
In this compliant solution, the count field is declared local to the counter() method:

public class Foo {
 private static final int MAX_COUNT = 10;

 public void counter() {
 int count = 0;
 while (condition()) {
 /* ... */
 if (count++ > MAX_COUNT) {
 return;
 }
 }
 }

ptg11539634

82 Chapter 2 n Defensive Programming

Applicability
Detecting local variables that are declared in a larger scope than is required by the
code as written is straightforward and can eliminate the possibility of false
positives.

Detecting multiple for statements that use the same index variable is straight-
forward; it produces false positives only in the unusual case where the value of the
index variable is intended to persist between loops.

Bibliography
[Bloch 2001] Item 29, “Minimize the Scope of Local Variables”

[JLS 2013] §14.4, “Local Variable Declaration Statements”

n  23. Minimize the scope of the @SuppressWarnings
annotation

When the compiler detects potential type-safety issues arising from mixing raw
types with generic code, it issues unchecked warnings, including unchecked cast
warnings, unchecked method invocation warnings, unchecked generic array creation
warnings, and unchecked conversion warnings [Bloch 2008]. It is permissible to use
the @SuppressWarnings("unchecked") annotation to suppress unchecked warn-
ings when, and only when, the warning-emitting code is guaranteed to be type safe.
A common use case is mixing legacy code with new client code. The perils of ignor-
ing unchecked warnings are discussed extensively in The CERT® Oracle® Secure
Coding Standard for Java™ [Long 2012], “OBJ03-J. Do not mix generic with non-
generic raw types in new code.”

According to the Java API Annotation Type SuppressWarnings documentation
[API 2013],

As a matter of style, programmers should always use this annotation on the most
deeply nested element where it is effective. If you want to suppress a warning in a
particular method, you should annotate that method rather than its class.

The @SuppressWarnings annotation can be used in the declaration of variables
and methods as well as an entire class. It is, however, important to narrow its scope
so that only those warnings that occur in the narrower scope are suppressed.

 private boolean condition() {/* ... */}
 // No other method references count
 // but several other methods reference MAX_COUNT
}

ptg11539634

23. Minimize the scope of the @SuppressWarnings annotation 83

Noncompliant Code Example
In this noncompliant code example, the @SuppressWarnings annotation’s scope
encompasses the whole class:

@SuppressWarnings("unchecked")
class Legacy {
 Set s = new HashSet();
 public final void doLogic(int a, char c) {
 s.add(a);
 s.add(c); // Type-unsafe operation, ignored
 }
}

class Legacy {
 @SuppressWarnings("unchecked")
 Set s = new HashSet();
 public final void doLogic(int a, char c) {
 s.add(a); // Produces unchecked warning
 s.add(c); // Produces unchecked warning
 }
}

This code is dangerous because all unchecked warnings within the class are sup-
pressed. Oversights of this nature can result in a ClassCastException at runtime.

Compliant Solution
Limit the scope of the @SuppressWarnings annotation to the nearest code that gener-
ates a warning. In this case, it may be used in the declaration for the Set:

Noncompliant Code Example (ArrayList)
This noncompliant code example is from an old implementation of java.util
.ArrayList:

@SuppressWarnings("unchecked")
public <T> T[] toArray(T[] a) {
 if (a.length < size) {
 // Produces unchecked warning
 return (T[]) Arrays.copyOf(elements, size, a.getClass());
 }
 // ...
}

ptg11539634

84 Chapter 2 n Defensive Programming

n  24. Minimize the accessibility of classes and their members

Classes and class members (classes, interfaces, fields, and methods) are access-
controlled in Java. Access is indicated by an access modifier (public, protected, or
private) or by the absence of an access modifier (the default access, also called
package-private access).

When the class is compiled, it emits an unchecked cast warning:

// Unchecked cast warning
ArrayList.java:305: warning: [unchecked] unchecked cast found :
 Object[], required: T[]
return (T[]) Arrays.copyOf(elements, size, a.getClass());

// ...
@SuppressWarnings("unchecked")
T[] result = (T[]) Arrays.copyOf(elements, size, a.getClass());
return result;
// ...

This warning cannot be suppressed for just the return statement because it is
not a declaration [JLS 2013]. As a result, the programmer suppresses warnings for
the entire method. This can cause issues when functionality that performs type-
unsafe operations is added to the method at a later date [Bloch 2008].

Compliant Solution (ArrayList)
When it is impossible to use the @SuppressWarnings annotation in an appropriate
scope, as in the preceding noncompliant code example, declare a new variable to
hold the return value and adorn it with the @SuppressWarnings annotation.

Applicability
Failure to reduce the scope of the @SuppressWarnings annotation can lead to run-
time exceptions and break type-safety guarantees.

This rule cannot be statically enforced in full generality; however, static analysis
can be used for some special cases.

Bibliography
[API 2013] Annotation Type SuppressWarnings

[Bloch 2008] Item 24, “Eliminate Unchecked Warnings”

[Long 2012] OBJ03-J. Do not mix generic with nongeneric raw types in new code

ptg11539634

24. Minimize the accessibility of classes and their members 85

Access Specifier Class Package Subclass World

private x

None x x x*

protected x x x**

public x x x x

Table 2–1. Access control rules

*Subclasses within the same package can also access members that lack access specifiers (default or package-private
visibility). An additional requirement for access is that the subclasses must be loaded by the class loader that loaded
the class containing the package-private members. Subclasses in a different package cannot access such package-
private members.
**To reference a protected member, the accessing code must be contained in either the class that defines the protected
member or in a subclass of that defining class. Subclass access is permitted without regard to the package location of
the subclass.

Table 2–1 presents a simplified view of the access control rules. An x indicates
that the particular access is permitted from within that domain. For example, an x in
the class column means that the class member is accessible to code present within the
same class in which it is declared. Similarly, the package column indicates that the
member is accessible from any class (or subclass) defined in the same package,
 provided that the class (or subclass) is loaded by the class loader that loaded the
class containing the member. The same class loader condition applies only to
 package-private member access.

Classes and class members must be given the minimum possible access so
that malicious code has the least opportunity to compromise security. As far as
possible, classes should avoid exposing methods that contain (or invoke)
 sensitive code through interfaces; interfaces allow only publicly accessible
 methods, and such methods are part of the public application programming
i nterface (API) of the class. (Note that this is the opposite of Joshua Bloch’s
r ecommendation to prefer interfaces for APIs [Bloch 2008, Item 16].) One
e xception to this is implementing an unmodifiable interface that exposes a public
immutable view of a mutable object. (See The CERT® Oracle® Secure Coding
Standard for Java™ [Long 2012], “OBJ04-J. Provide mutable classes with copy
f unctionality to safely allow passing instances to untrusted code.”) Note that even
if a nonfinal class’s visibility is default, it can be susceptible to misuse if it contains
public methods. Methods that perform all necessary security checks and sanitize
all inputs may be exposed through interfaces.

Protected accessibility is invalid for non-nested classes, but nested classes may
be declared protected. Fields of nonfinal public classes should rarely be declared

ptg11539634

86 Chapter 2 n Defensive Programming

Even though this example complies with “OBJ01-J. Declare data members as pri-
vate and provide accessible wrapper methods” [Long 2012], untrusted code could
instantiate Point and invoke the public getPoint() method to obtain the
coordinates.

Compliant Solution (Final Classes with Public Methods)
This compliant solution declares the Point class as package-private in accordance
with its status as not part of any public API:

public final class Point {
 private final int x;
 private final int y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

 public void getPoint() {
 System.out.println("(" + x + "," + y + ")");
 }
}

protected; untrusted code in another package can subclass the class, and access the
member. Furthermore, protected members are part of the API of the class, and
consequently require continued support. When this rule is followed, declaring
fields as protected is unnecessary. “OBJ01-J. Declare data members as private and
provide accessible wrapper methods” [Long 2012] recommends declaring fields as
private.

If a class, interface, method, or field is part of a published API, such as a web
 service endpoint, it may be declared public. Other classes and members should be
declared either package-private or private. For example, non-security-critical classes
are encouraged to provide public static factories to implement instance control with
a private constructor.

Noncompliant Code Example (Public Class)
This noncompliant code example defines a class that is internal to a system and not
part of any public API. Nonetheless, this class is declared public.

ptg11539634

24. Minimize the accessibility of classes and their members 87

final class Point {
 private final int x;
 private final int y;

 Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

 public void getPoint() {
 System.out.println("(" + x + "," + y + ")");
 }
}

class Point {
 private final int x;
 private final int y;

 Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

A top-level class, such as Point, cannot be declared private. Package-private
 accessibility is acceptable, provided package insertion attacks are avoided.
(See “ENV01-J. Place all security-sensitive code in a single JAR and sign and seal it”
[Long 2012].) A package insertion attack occurs when, at runtime, any protected or
package-private members of a class can be called directly by a class that is maliciously
inserted into the same package. However, this attack is difficult to carry out in practice
because, in addition to the requirement of infiltrating the package, the target and the
untrusted class must be loaded by the same class loader. Untrusted code is typically
deprived of such levels of access.

Because the class is final, the getPoint() method can be declared public. A pub-
lic subclass that violates this rule cannot override the method and expose it to
untrusted code, so its accessibility is irrelevant. For nonfinal classes, reducing the
accessibility of methods to private or package-private eliminates this threat.

Compliant Solution (Nonfinal Classes with Nonpublic Methods)
This compliant solution declares the Point class and its getPoint() method as
package-private, which allows the Point class to be nonfinal and allows getPoint()
to be invoked by classes present within the same package and loaded by a common
class loader:

ptg11539634

88 Chapter 2 n Defensive Programming

This example also complies with “OBJ01-J. Declare data members as private and
provide accessible wrapper methods” [Long 2012], untrusted code could access
Point and invoke the public static getPoint() to obtain the default coordinates. The
attempt to implement instance control using a private constructor is futile because
the public static method exposes internal class contents.

Compliant Solution (Package-Private Class)
This compliant solution reduces the accessibility of the class to package-private.

public final class Point {
 private static final int x = 1;
 private static final int y = 2;

 private Point(int x, int y) {}

 public static void getPoint() {
 System.out.println("(" + x + "," + y + ")");
 }
}

 void getPoint() {
 System.out.println("(" + x + "," + y + ")");
 }
}

Noncompliant Code Example (Public Class with Public
Static Method)
This noncompliant code example again defines a class that is internal to a system
and not part of any public API. Nonetheless, this class is declared public.

final class Point {
 private static final int x = 1;
 private static final int y = 2;

 private Point(int x, int y) {}

 public static void getPoint() {
 System.out.println("(" + x + "," + y + ")");
 }
}

ptg11539634

25. Document thread-safety and use annotations where applicable 89

Access to the getPoint() method is restricted to classes located within the same
package. Untrusted code is prevented from invoking getPoint() and obtaining the
coordinates.

Applicability
Granting excessive access breaks encapsulation and weakens the security of Java
applications.

A system with an API designed for use (and possibly extended) by third-party
code must expose the API through a public interface. The demands of such an API
override this guideline.

For any given piece of code, the minimum accessibility for each class and
 member can be computed so as to avoid introducing compilation errors. A limitation
is that the result of this computation may lack any resemblance to what the program-
mer intended when the code was written. For example, unused members can obvi-
ously be declared private. However, such members could be unused only because
the particular body of code examined coincidentally lacks references to the mem-
bers. Nevertheless, this computation can provide a useful starting point for a
 programmer who wishes to minimize the accessibility of classes and their members.

Bibliography
[Bloch 2008] Item 13, “Minimize the Accessibility of Classes and Members”

Item 16, “Prefer Interfaces to Abstract Classes”

[Campione 1996] Access Control

[JLS 2013] §6.6, “Access Control”

[Long 2012] ENV01-J. Place all security-sensitive code in a single JAR and sign
and seal it

OBJ01-J. Declare data members as private and provide accessible
wrapper methods

OBJ04-J. Provide mutable classes with copy functionality to safely
allow passing instances to untrusted code

[McGraw 1999] Chapter 3, “Java Language Security Constructs”

n  25. Document thread-safety and use annotations where
applicable

The Java language annotation facility is useful for documenting design intent. Source
code annotation is a mechanism for associating metadata with a program element
and making it available to the compiler, analyzers, debuggers, or Java Virtual

ptg11539634

90 Chapter 2 n Defensive Programming

Machine (JVM) for examination. Several annotations are available for documenting
thread-safety or the lack thereof.

Obtaining Concurrency Annotations
Two sets of concurrency annotations are freely available and licensed for use in any
code. The first set consists of four annotations described in Java Concurrency in
Practice (JCIP) [Goetz 2006], which can be downloaded from http://jcip.net. The
JCIP annotations are released under the Creative Commons Attribution License.

The second, larger set of concurrency annotations is available from and supported
by SureLogic. These annotations are released under the Apache Software License,
Version 2.0, and can be downloaded at www.surelogic.com. The annotations can be veri-
fied by the SureLogic JSure tool, and they remain useful for documenting code even
when the tool is unavailable. These annotations include the JCIP annotations because
they are supported by the JSure tool. (JSure also supports use of the JCIP JAR file.)

To use the annotations, download and add one or both of the aforementioned
JAR files to the code’s build path. The use of these annotations to document thread-
safety is described in the following sections.

Documenting Intended Thread-Safety
JCIP provides three class-level annotations to describe the programmer’s design
intent with respect to thread-safety.

The @ThreadSafe annotation is applied to a class to indicate that it is thread-safe.
This means that no sequences of accesses (reads and writes to public fields, calls to
public methods) can leave the object in an inconsistent state, regardless of the inter-
leaving of these accesses by the runtime or any external synchronization or coordi-
nation on the part of the caller.

For example, the following Aircraft class specifies that it is thread-safe as part
of its locking policy documentation. This class protects the x and y fields using a
reentrant lock.

@ThreadSafe
@Region("private AircraftState")
@RegionLock("StateLock is stateLock protects AircraftState")
public final class Aircraft {
 private final Lock stateLock = new ReentrantLock();
 // ...
 @InRegion("AircraftState")
 private long x, y;
 // ...

http://www.surelogic.com
http://jcip.net

ptg11539634

25. Document thread-safety and use annotations where applicable 91

 public void setPosition(long x, long y) {
 stateLock.lock();
 try {
 this.x = x;
 this.y = y;
 } finally {
 stateLock.unlock();
 }
 }
 // ...
}

@Immutable
public final class Point {
 private final int f_x;
 private final int f_y;

 public Point(int x, int y) {
 f_x = x;
 f_y = y;
 }

 public int getX() {
 return f_x;
 }

 public int getY() {
 return f_y;
 }
}

The @Region and @RegionLock annotations document the locking policy upon
which the promise of thread-safety is predicated.

Even when one or more @RegionLock or @GuardedBy annotations have been
used to document the locking policy of a class, the @ThreadSafe annotation provides
an intuitive way for reviewers to learn that the class is thread-safe.

The @Immutable annotation is applied to immutable classes. Immutable objects
are inherently thread-safe; once they are fully constructed, they may be published
via a reference and shared safely among multiple threads.

The following example shows an immutable Point class:

ptg11539634

92 Chapter 2 n Defensive Programming

According to Joshua Bloch [Bloch 2008],

It is not necessary to document the immutability of enum types. Unless it is obvious
from the return type, static factories must document the thread safety of the returned
object, as demonstrated by Collections.synchronizedMap.

The @NotThreadSafe annotation is applied to classes that are not thread-safe. Many
classes fail to document whether they are safe for multithreaded use. Consequently, a
programmer has no easy way to determine whether the class is thread-safe. This
 annotation provides clear indication of the class’s lack of thread-safety.

For example, most of the collection implementations provided in java.util are
not thread-safe. The class java.util.ArrayList could document this as follows:

Documenting Locking Policies
It is important to document all the locks that are being used to protect shared state.
According to Brian Goetz and colleagues [Goetz 2006],

For each mutable state variable that may be accessed by more than one thread, all
accesses to that variable must be performed with the same lock held. In this case, we
say that the variable is guarded by that lock. (p. 28)

JCIP provides the @GuardedBy annotation for this purpose, and SureLogic pro-
vides the @RegionLock annotation. The field or method to which the @GuardedBy
annotation is applied can be accessed only when holding a particular lock. It may be
an intrinsic lock or a dynamic lock such as java.util.c oncurrent.Lock.

For example, the following MovablePoint class implements a movable point
that can remember its past locations using the memo array list:

package java.util.ArrayList;

@NotThreadSafe
public class ArrayList<E> extends ... {
 // ...
}

@ThreadSafe
public final class MovablePoint {

 @GuardedBy("this")
 double xPos = 1.0;

ptg11539634

25. Document thread-safety and use annotations where applicable 93

 @GuardedBy("this")
 double yPos = 1.0;
 @GuardedBy("itself")
 static final List<MovablePoint> memo
 = new ArrayList<MovablePoint>();

 public void move(double slope, double distance) {
 synchronized (this) {
 rememberPoint(this);
 xPos += (1 / slope) * distance;
 yPos += slope * distance;
 }
 }

 public static void rememberPoint(MovablePoint value) {
 synchronized (memo) {
 memo.add(value);
 }
 }
}

@RegionLock("SimpleLock is this protects Instance")
class Simple { ... }

The @GuardedBy annotations on the xPos and yPos fields indicate that access
to these fields is protected by holding a lock on this. The move() method also syn-
chronizes on this, which modifies these fields. The @GuardedBy annotation on the
memo list indicates that a lock on the ArrayList object protects its contents. The
rememberPoint() method also synchronizes on the memo list.

One issue with the @GuardedBy annotation is that it fails to indicate when there
is a relationship between the fields of a class. This limitation can be overcome by
using the SureLogic @RegionLock annotation, which declares a new region lock for
the class to which this annotation is applied. This declaration creates a new named
lock that associates a particular lock object with a region of the class. The region may
be accessed only when the lock is held. For example, the SimpleLock locking policy
indicates that synchronizing on the instance protects all of its state:

Unlike @GuardedBy, the @RegionLock annotation allows the programmer to give
an explicit, and hopefully meaningful, name to the locking policy.

ptg11539634

94 Chapter 2 n Defensive Programming

In addition to naming the locking policy, the @Region annotation allows a name
to be given to the region of the state that is being protected. That name makes it clear
that the state and locking policy belong together, as demonstrated in the following
example:

In this example, a locking policy named StateLock is used to indicate that lock-
ing on stateLock protects the named AircraftPosition region, which includes the
mutable state used to represent the position of the aircraft.

Construction of Mutable Objects
Typically, object construction is considered an exception to the locking policy
because objects are thread-confined when they are first created. An object is confined
to the thread that uses the new operator to create its instance. After creation, the object
can be published to other threads safely. However, the object is not shared until the
thread that created the instance allows it to be shared. Safe publication approaches
discussed in The CERT® Oracle® Secure Coding Standard for Java™ [Long 2012],
“TSM01-J. Do not let the this reference escape during object construction,” can be
expressed succinctly with the @Unique("return") annotation.

@Region("private AircraftPosition")
@RegionLock("StateLock is stateLock protects AircraftPosition")
public final class Aircraft {
 private final Lock stateLock = new ReentrantLock();

 @InRegion("AircraftPosition")
 private long x, y;

 @InRegion("AircraftPosition")
 private long altitude;
 // ...
 public void setPosition(long x, long y) {
 stateLock.lock();
 try {
 this.x = x;
 this.y = y;
 } finally {
 stateLock.unlock();
 }
 }
 // ...
}

ptg11539634

25. Document thread-safety and use annotations where applicable 95

@RegionLock("Lock is this protects Instance")
public final class Example {
 private int x = 1;
 private int y;

 @Unique("return")
 public Example(int y) {
 this.y = y;
 }
 // ...
}

@ThreadRole AWT, Compute
@IncompatibleThreadRoles AWT, Compute
@MaxRoleCount AWT 1

For example, in the following code, the @Unique("return") annotation
 documents that the object returned from the constructor is a unique reference:

Documenting Thread-Confinement Policies
Dean Sutherland and William Scherlis propose annotations that can document
thread-confinement policies. Their approach allows verification of the annotations
against as-written code [Sutherland 2010].

For example, the following annotations express the design intent that a program
has, at most, one Abstract Window Toolkit (AWT) event dispatch thread and several
compute threads, and that the compute threads are forbidden to handle AWT data
structures or events:

Documenting Wait–Notify Protocols
According to Goetz and colleagues [Goetz 2006],

A state-dependent class should either fully expose (and document) its waiting and
notification protocols to subclasses, or prevent subclasses from participating in them
at all. (This is an extension of “design and document for inheritance, or else prohibit
it” [EJ Item 15].) At the very least, designing a state-dependent class for inheritance
requires exposing the condition queues and locks and documenting the condition
predicates and synchronization policy; it may also require exposing the underlying
state variables. (The worst thing a state-dependent class can do is expose its state to
subclasses but not document its protocols for waiting and notification; this is like a
class exposing its state variables but not documenting its invariants.) (p. 395)

ptg11539634

96 Chapter 2 n Defensive Programming

Wait–notify protocols should be documented adequately. Currently, we are not
aware of any annotations for this purpose.

Applicability
Annotating concurrent code helps document the design intent and can be used to
automate the detection and prevention of race conditions and data races.

Bibliography
[Bloch 2008] Item 70, “Document Thread Safety”

[Goetz 2006] Java Concurrency in Practice

[Long 2012] TSM01-J. Do not let the this reference escape during object construction

[Sutherland 2010] “Composable Thread Coloring”

n  26. Always provide feedback about the resulting value
of a method

Methods should be designed to return a value that allows the developer to learn
about the current state of the object and/or the result of an operation. This advice is
consistent with The CERT® Oracle® Secure Coding Standard for Java™ [Long 2012],
“EXP00-J. Do not ignore values returned by methods.” The returned value should be
representative of the last known state and should be chosen keeping in mind the per-
ceptions and mental model of the developer.

Feedback can also be provided by throwing either standard or custom exception
objects derived from the Exception class. With this approach, the developer can still
get precise information about the outcome of the method and proceed to take the
necessary actions. To do so, the exception should provide a detailed account of the
abnormal condition at the appropriate abstraction level.

APIs should use a combination of these approaches, both to help clients distin-
guish correct results from incorrect ones and to encourage careful handling of any
incorrect results. In cases where there is a commonly accepted error value that can-
not be misinterpreted as a valid return value for the method, that error value should
be returned; and in other cases an exception should be thrown. A method must not
return a value that can hold both valid return data and an error code; see Guideline 52,
“Avoid in-band error indicators,” for more details.

Alternatively, an object can provide a state-testing method [Bloch 2008] that
checks whether the object is in a consistent state. This approach is useful only in cases
where the object’s state cannot be modified by external threads. This prevents a

ptg11539634

26. Always provide feedback about the resulting value of a method 97

public void updateNode(int id, int newValue) {
 Node current = root;
 while (current != null) {
 if (current.getId() == id) {
 current.setValue(newValue);
 break;
 }
 current = current.next;
 }
}

public boolean updateNode(int id, int newValue) {
 Node current = root;
 while (current != null) {
 if (current.getId() == id) {
 current.setValue(newValue);
 return true; // Node successfully updated
 }
 current = current.next;
 }
 return false;
}

time-of-check, time-of-use (TOCTOU) race condition between invocation of the
object’s state-testing method and the call to a method that depends on the object’s state.
During this interval, the object’s state could change unexpectedly or even maliciously.

Method return values and/or error codes must accurately specify the object’s
state at an appropriate level of abstraction. Clients must be able to rely on the value
for performing critical actions.

Noncompliant Code Example
The updateNode() method in this noncompliant code example modifies a node if it
can find it in a linked list and does nothing if the node is not found.

This method fails to indicate whether it modified any node. Consequently, a
caller cannot determine that the method succeeded or failed silently.

Compliant Solution (Boolean)
This compliant solution returns the result of the operation as true if it modified a
node and false if it did not.

ptg11539634

98 Chapter 2 n Defensive Programming

Compliant Solution (Exception)
This compliant solution returns the modified Node when one is found and throws a
NodeNotFoundException when the node is not available in the list.

public Node updateNode(int id, int newValue)
 throws NodeNotFoundException {
 Node current = root;
 while (current != null) {
 if (current.getId() == id) {
 current.setValue(newValue);
 return current;
 }
 current = current.next;
 }
 throw new NodeNotFoundException();
}

Using exceptions to indicate failure can be a good design choice, but throwing
exceptions is not always appropriate. In general, a method should throw an excep-
tion only when it is expected to succeed but an unrecoverable situation occurs or
when it expects a method higher up in the call hierarchy to initiate recovery.

Compliant Solution (Null Return Value)
This compliant solution returns the updated Node so that the developer can simply
check for a null return value if the operation fails.

public Node updateNode(int id, int newValue) {
 Node current = root;
 while (current != null) {
 if (current.getId() == id) {
 current.setValue(newValue);
 return current;
 }
 current = current.next;
 }
 return null;
}

A return value that might be null is an in-band error indicator, which is discussed
more thoroughly in Guideline 52, “Avoid in-band error indicators.” This design is

ptg11539634

27. Identify files using multiple file attributes 99

permitted but is considered inferior to other designs, such as those shown in the
other compliant solutions in this guideline.

Applicability
Failure to provide appropriate feedback through a combination of return values,
error codes, and exceptions can lead to inconsistent object state and unexpected
program behavior.

Bibliography
[Bloch 2008] Item 59. Avoid unnecessary use of checked exceptions

[Long 2012] EXP00-J. Do not ignore values returned by methods

[Ware 2008] Writing Secure Java Code

n  27. Identify files using multiple file attributes

Many file-related security vulnerabilities result from a program accessing an unin-
tended file object. This often happens because file names are only loosely bound
to underlying file objects. File names provide no information regarding the nature
of the file object itself. Furthermore, the binding of a file name to a file object is
reevaluated each time the file name is used in an operation. This reevaluation can
introduce a time-of-check, time-of-use (TOCTOU) race condition into an applica-
tion. Objects of type java.io.File and of type java.nio.file.Path are bound to
underlying file objects by the operating system only when the file is accessed.

The java.io.File constructors and the java.io.File methods renameTo()
and delete() rely solely on file names for file identification. The same holds for the
java.nio.file.Path.get() methods for creating Path objects and the move() and
delete() methods of java.nio.file.Files. Use all of these methods with caution.

Fortunately, files can often be identified by other attributes in addition to the
file name—for example, by comparing file creation times or modification times.
Information about a file that has been created and closed can be stored and then
used to validate the identity of the file if it must be reopened. Comparing multiple
attributes of the file increases the likelihood that the reopened file is the same file
that was previously opened.

File identification is less crucial for applications that maintain their files in
secure directories where they can be accessed only by the owner of the file and (pos-
sibly) by a system administrator (see The CERT® Oracle® Secure Coding Standard for
Java™ [Long 2012], “FIO00-J. Do not operate on files in shared directories”).

ptg11539634

100 Chapter 2 n Defensive Programming

Noncompliant Code Example
In this noncompliant code example, the file identified by the string filename is
opened, processed, closed, and then reopened for reading:

public void processFile(String filename){
 // Identify a file by its path
 Path file1 = Paths.get(filename);

 // Open the file for writing
 try (BufferedWriter bw = new BufferedWriter(new
 OutputStreamWriter(Files.newOutputStream(file1)))) {
 // Write to file...
 } catch (IOException e) {
 // Handle error
 }

 // Close the file

 /*
 * A race condition here allows an attacker to switch
 * out the file for another
 */

 // Reopen the file for reading
 Path file2 = Paths.get(filename);

 try (BufferedReader br = new BufferedReader(new
 InputStreamReader(Files.newInputStream(file2)))) {
 String line;
 while ((line = br.readLine()) != null) {
 System.out.println(line);
 }
 } catch (IOException e) {
 // Handle error
 }
}

Because the binding between the file name and the underlying file object is
reevaluated when the BufferedReader is created, this code cannot guarantee that
the file opened for reading is the same file that was previously opened for writing. An
attacker might have replaced the original file (with a symbolic link, for example)
between the first call to close() and the subsequent creation of the BufferedReader.

ptg11539634

27. Identify files using multiple file attributes 101

public void processFile(String filename){
 // Identify a file by its path
 Path file1 = Paths.get(filename);

 // Open the file for writing
 try (BufferedWriter bw = new BufferedWriter(new
 OutputStreamWriter(Files.newOutputStream(file1)))) {
 // Write to file
 } catch (IOException e) {
 // Handle error
 }

 // ...
 // Reopen the file for reading
 Path file2 = Paths.get(filename);
 if (!Files.isSameFile(file1, file2)) {
 // File was tampered with, handle error
 }

 try (BufferedReader br = new BufferedReader(new
 InputStreamReader(Files.newInputStream(file2)))) {
 String line;
 while ((line = br.readLine()) != null) {
 System.out.println(line);
 }
 } catch (IOException e) {
 // Handle error
 }
}

Noncompliant Code Example (Files.isSameFile())
In this noncompliant code example, the programmer attempts to ensure that the file
opened for reading is the same as the file previously opened for writing by calling the
method Files.isSameFile():

Unfortunately, the Java API lacks any guarantee that the isSameFile() method
actually checks whether the files are the same file. The Java 7 API for isSameFile()
[API 2013] says:

If both Path objects are equal then this method returns true without checking if the
file exists.

ptg11539634

102 Chapter 2 n Defensive Programming

That is, isSameFile() may simply check that the paths to the two files are the
same and cannot detect if the file at that path had been replaced by a different file
between the two open operations.

Compliant Solution (Multiple Attributes)
This compliant solution checks the creation and last-modified times of the files to
increase the likelihood that the file opened for reading is the same file that was written:

public void processFile(String filename) throws IOException{
 // Identify a file by its path
 Path file1 = Paths.get(filename);
 BasicFileAttributes attr1 =
 Files.readAttributes(file1, BasicFileAttributes.class);
 FileTime creation1 = attr1.creationTime();
 FileTime modified1 = attr1.lastModifiedTime();

 // Open the file for writing
 try (BufferedWriter bw = new BufferedWriter(new
 OutputStreamWriter(Files.newOutputStream(file1)))) {
 // Write to file...
 } catch (IOException e) {
 // Handle error
 }

 // Reopen the file for reading
 Path file2 = Paths.get(filename);
 BasicFileAttributes attr2 =
 Files.readAttributes(file2, BasicFileAttributes.class);
 FileTime creation2 = attr2.creationTime();
 FileTime modified2 = attr2.lastModifiedTime();
 if ((!creation1.equals(creation2)) ||
 (!modified1.equals(modified2))) {
 // File was tampered with, handle error
 }

 try (BufferedReader br = new BufferedReader(new
 InputStreamReader(Files.newInputStream(file2)))){
 String line;
 while ((line = br.readLine()) != null) {
 System.out.println(line);
 }
 } catch (IOException e) {
 // Handle error
 }
}

ptg11539634

27. Identify files using multiple file attributes 103

public void processFile(String filename) throws IOException{
 // Identify a file by its path
 Path file1 = Paths.get(filename);
 BasicFileAttributes attr1 =
 Files.readAttributes(file1, BasicFileAttributes.class);
 Object key1 = attr1.fileKey();
 // Open the file for writing
 try (BufferedWriter bw =
 new BufferedWriter(
 new OutputStreamWriter(Files.newOutputStream(file1)))) {
 // Write to file
 } catch (IOException e) {
 // Handle error
 }

 // Reopen the file for reading
 Path file2 = Paths.get(filename);
 BasicFileAttributes attr2 =
 Files.readAttributes(file2, BasicFileAttributes.class);
 Object key2 = attr2.fileKey();

 if (!key1.equals(key2)) {
 System.out.println("File tampered with");
 // File was tampered with, handle error
 }

 try (BufferedReader br =
 new BufferedReader(
 new InputStreamReader(Files.newInputStream(file2)))) {
 String line;
 while ((line = br.readLine()) != null) {
 System.out.println(line);
 }
 } catch (IOException e) {
 // Handle error
 }
}

Although this solution is reasonably secure, a determined attacker could create a
symbolic link with the same creation and last-modified times as the original file.
Also, a TOCTOU race condition occurs between the time the file’s attributes are first
read and the time the file is first opened. Likewise, another TOCTOU condition
occurs the second time the attributes are read and the file is reopened.

Compliant Solution (POSIX fileKey Attribute)
In environments that support the fileKey attribute, a more reliable approach is to check
that the fileKey attributes of the two files are the same. The fileKey attribute is an object
that “uniquely identifies the file” [API 2013], as shown in this compliant solution:

ptg11539634

104 Chapter 2 n Defensive Programming

This approach will not work on all platforms. For example, on Windows 7
Enterprise Edition, all fileKey attributes are null.

The file key returned by the fileKey() method is guaranteed to be unique only
if the file system and files remain static. A file system may reuse an identifier, for
example, after a file is deleted. Like the previous compliant solution, there is a
TOCTOU race window between the time the file’s attributes are first read and the
time the file is first opened. Another TOCTOU condition occurs the second time the
attributes are read and the file is reopened.

Compliant Solution (RandomAccessFile)
A better approach is to avoid reopening files. The following compliant solution dem-
onstrates use of a RandomAccessFile, which can be opened for both reading and writ-
ing. Because the file is only closed automatically by the try-with-resources statement,
no race condition can occur. Note that this compliant solution and others use the
readLine() method for illustrative purposes, but see “MSC05-J. Do not exhaust heap
space” [Long 2012] for more information about possible weaknesses of this method.

public void processFile(String filename) throws IOException{
 // Identify a file by its path
 try (RandomAccessFile file = new

RandomAccessFile(filename, "rw")) {

 // Write to file...

 // Go back to beginning and read contents
 file.seek(0);
 String line;
 while ((line = file.readLine()) != null) {
 System.out.println(line);
 }
 }
}

static long goodSize = 1024;

public void doSomethingWithFile(String filename) {
 long size = new File(filename).length();
 if (size != goodSize) {

Noncompliant Code Example (File Size)
This noncompliant code example tries to ensure that the file it opens contains
exactly 1024 bytes:

ptg11539634

27. Identify files using multiple file attributes 105

 System.out.println("File has wrong size!");
 return;
 }

 try (BufferedReader br = new BufferedReader(new
 InputStreamReader(new FileInputStream(filename)))) {
 // ... Work with file
 } catch (IOException e) {
 // Handle error
 }
}

static long goodSize = 1024;

public void doSomethingWithFile(String filename) {
 try (FileInputStream in = new FileInputStream(filename);
 BufferedReader br = new BufferedReader(
 new InputStreamReader(in))) {
 long size = in.getChannel().size();
 if (size != goodSize) {
 System.out.println("File has wrong size!");
 return;
 }

 String line;
 while ((line = br.readLine()) != null) {
 System.out.println(line);
 }
 } catch (IOException e) {
 // Handle error
 }
}

This code is subject to a TOCTOU race condition between when the file size is
checked and when the file is opened. If an attacker replaces a 1024-byte file with
another file during this race window, they can cause this program to open any file,
defeating the check.

Compliant Solution (File Size)
This compliant solution uses the FileChannel.size() method to obtain the file
size. Because this method is applied to the FileInputStream only after the file has
been opened, this solution eliminates the race window.

ptg11539634

106 Chapter 2 n Defensive Programming

Applicability
Attackers frequently exploit file-related vulnerabilities to cause programs to access
an unintended file. Proper file identification is necessary to prevent exploitation.

Bibliography
[API 2013] Class java.io.File

Interface java.nio.file.Path

Class java.nio.file.Files

Interface java.nio.file.attribute.BasicFileAttributes

[Long 2012] FIO00-J. Do not operate on files in shared directories

n  28. Do not attach significance to the ordinal associated
with an enum

Java language enumeration types have an ordinal() method that returns the numer-
ical position of each enumeration constant in its class declaration.

According to the Java API, Class Enum<E extends Enum<E>> [API 2013], public
final int ordinal()

returns the ordinal of the enumeration constant (its position in its enum declara-
tion, where the initial constant is assigned an ordinal of zero). Most programmers
will have no use for this method. It is designed for use by sophisticated enum-based
data structures, such as EnumSet and EnumMap.

The Java Language Specification (JLS), §8.9, “Enums” [JLS 2013], does not
specify the use of ordinal() in programs. However, attaching external significance
to the ordinal() value of an enum constant is error prone and should be avoided for
 defensive programming.

Noncompliant Code Example
This noncompliant code example declares enum Hydrocarbon and uses its ordinal()
method to provide the result of the getNumberOfCarbons() method:

enum Hydrocarbon {
 METHANE, ETHANE, PROPANE, BUTANE, PENTANE,
 HEXANE, HEPTANE, OCTANE, NONANE, DECANE;

 public int getNumberOfCarbons() {
 return ordinal() + 1;
 }
}

ptg11539634

28. Do not attach significance to the ordinal associated with an enum 107

enum Hydrocarbon {
 METHANE(1), ETHANE(2), PROPANE(3), BUTANE(4), PENTANE(5),
 HEXANE(6), BENZENE(6), HEPTANE(7), OCTANE(8), NONANE(9),
 DECANE(10);

 private final int numberOfCarbons;

 Hydrocarbon(int carbons) { this.numberOfCarbons = carbons; }

 public int getNumberOfCarbons() {
 return numberOfCarbons;
 }
}

Although this noncompliant code example behaves as expected, its mainte-
nance is likely to be problematic. If the enum constants were reordered, the getNum-
berOfCarbons() method would return incorrect values. Furthermore, adding an
additional BENZENE constant to the model would break the invariant assumed by the
getNumberOfCarbons() method, because benzene has six carbons, but the ordinal
value six is already taken by hexane.

Compliant Solution
In this compliant solution, enum constants are explicitly associated with the corre-
sponding integer values for the number of carbon atoms they contain:

The getNumberOfCarbons() method no longer uses the ordinal() to discover the
number of carbon atoms for each value. Different enum constants may be associated
with the same value, as shown for HEXANE and BENZENE. Furthermore, this solution
lacks any dependence on the order of the enumeration; the getNumberOfCarbons()
method would continue to work correctly even if the enumeration were reordered.

Applicability
It is acceptable to use the ordinals associated with an enumerated type when the
order of the enumeration constants is standard and extra constants cannot be added.
For example, the use of ordinals is permitted with the following enumerated type:

public enum Day { SUNDAY, MONDAY, TUESDAY, WEDNESDAY,
 THURSDAY, FRIDAY, SATURDAY }

In general, the use of ordinals to derive integer values reduces the program’s
maintainability and can lead to errors in the program.

ptg11539634

108 Chapter 2 n Defensive Programming

Bibliography
[API 2013] Class Enum<E extends Enum<E>>

[Bloch 2008] Item 31, “Use Instance Fields Instead of Ordinals”

[JLS 2013] §8.9, “Enums”

n  29. Be aware of numeric promotion behavior

Numeric promotions are used to convert the operands of a numeric operator to a
common type so that an operation can be performed. When using arithmetic opera-
tors with mixed operand sizes, narrower operands are promoted to the type of the
wider operand.

Promotion Rules
The JLS, §5.6, “Numeric Promotions” [JLS 2013], describes numeric promotion as
the following:

1. If any of the operands is of a reference type, unboxing conversion is performed.

2. If either operand is of type double, the other is converted to double.

3. Otherwise, if either operand is of type float, the other is converted to float.

4. Otherwise, if either operand is of type long, the other is converted to long.

5. Otherwise, both operands are converted to type int.

Widening conversions, resulting from integer promotions, preserve the overall
magnitude of the number. However, promotions in which the operands are con-
verted from an int to a float or from a long to a double can cause a loss of precision.
(See The CERT® Oracle® Secure Coding Standard for Java™ [Long 2012], “NUM13-J.
Avoid loss of precision when converting primitive integers to floating-point,” for
more details.)

These conversions can occur when using multiplicative operators (%, *, /), addi-
tive operators (+, -), comparison operators (<, >, <=, >=), equality operators (==, !=),
and integer bitwise operators (&, |, ̂).

Examples

In the following example, a is promoted to a double before the + operator is applied:

int a = some_value;
double b = some_other_value;
double c = a + b;

ptg11539634

29. Be aware of numeric promotion behavior 109

int a = some_value;
char b = some_character;

if ((a + b) > 1.1f) {
 // Do something
}

int big = 1999999999;
float one = 1.0f;
// Binary operation, loses precision because of implicit cast
System.out.println(big * one);

In the following program fragment, b is first converted to int so that the + opera-
tor can be applied to operands of the same type:

The result of (a+b) is then converted to a float, and the comparison operator is
finally applied.

Compound Operators
Type coercion may occur when compound expressions are used with mixed operand
types. Examples of compound assignment operators are +=, -=, *=, /=, &=, ^=, %=,
<<=, >>=, >>>=, and |=.

According to the JLS §15.26.2, “Compound Assignment Operators” [JLS 2013],

A compound assignment expression of the form E1 op= E2 is equivalent to E1 =
(T)((E1) op (E2)), where T is the type of E1, except that E1 is evaluated only
once.

That is, the compound assignment expression implicitly casts the resulting
computation to the type of the left-hand operand.

When the operands are different types, multiple conversions can occur. For
example, when E1 is an int, and E2 is either a long, a float, or a double, then E1 is
widened from type int to the type of E2 (before the “op”), followed by a narrowing
conversion from the type of E2 back to type int (after the “op,” but before the
assignment).

Noncompliant Code Example (Multiplication)
In this noncompliant code example, a variable of type int (big) is multiplied by a
value of type float (one).

ptg11539634

110 Chapter 2 n Defensive Programming

In this case, numeric promotions require that big be promoted to the type float
before the multiplication occurs, resulting in loss of precision. (See “NUM13-J.
Avoid loss of precision when converting primitive integers to floating-point” [Long
2012].) This code outputs 2.0E9 rather than 1.999999999E9.

Compliant Solution (Multiplication)
This compliant solution uses the double type, instead of float, as a safer means of
handling the widening primitive conversion resulting from integer promotion:

int big = 1999999999;
double one = 1.0d; // Double instead of float
System.out.println(big * one);

byte[] b = new byte[4];
int result = 0;
for (int i = 0; i < 4; i++) {
 result = (result << 8) | b[i];
}

This solution produces the expected output of 1.999999999E9, which is the
value obtained when an int is assigned (implicitly cast) to a double.

See also Guideline 60, “Convert integers to floating-point for floating-point
operations,” for more information about mixing integer and floating-point
arithmetic.

Noncompliant Code Example (Left Shift)
This noncompliant code example shows integer promotion resulting from the use of
the bitwise OR operator.

Each byte array element is sign-extended to 32 bits before it is used as an oper-
and. If it originally contained the value 0xff, it would contain 0xffffffff [FindBugs
2008]. This causes result to contain a value other than the concatenation of the
four array elements.

Compliant Solution (Left Shift)
This compliant solution masks off the upper 24 bits of the byte array element to
achieve the intended result:

ptg11539634

29. Be aware of numeric promotion behavior 111

Unfortunately, the value of i remains the same. The value of i is first promoted
to an int. This is a widening primitive conversion, so no data is lost. As a short, -1 is

byte[] b = new byte[4];
int result = 0;
for (int i = 0; i < 4; i++) {
 result = (result << 8) | (b[i] & 0xff);
}

int x = 2147483642; // 0x7ffffffa
x += 1.0f; // x contains 2147483647 (0x7fffffff)
 // after the computation

double x = 2147483642; // 0x7ffffffa
x += 1.0; // x contains 2147483643.0 (0x7ffffffb.0) as expected

Noncompliant Code Example (Compound Addition and
Assignment)
This noncompliant code example performs a compound assignment operation.

The compound operation involves an int value that contains too many signifi-
cant bits to fit in the 23-bit mantissa of a Java float, causing the widening conversion
from int to float to lose precision. The resulting value is frequently unexpected.

Compliant Solution (Compound Addition and Assignment)
For defensive programming purposes, avoid using any of the compound assignment
operators on variables of type byte, short, or char. Also, refrain from using a wider
operand on the right-hand side. In this compliant solution, all operands are of the
Java type double.

Noncompliant Code Example (Compound Bit Shift and Assignment)
This noncompliant code example uses a compound right-shift operator for shifting
the value of i by one bit.

short i = -1;
i >>>= 1;

ptg11539634

112 Chapter 2 n Defensive Programming

Bibliography
[Bloch 2005] Puzzle 9, “Tweedledum”

Puzzle 31, “Ghost of Looper”

[Findbugs 2008] “BIT: Bitwise OR of Signed Byte Value”

[JLS 2013] §4.2.2, “Integer Operations”

§5.6, “Numeric Promotions”

§15.26.2, “Compound Assignment Operators”

[Long 2012] NUM13-J. Avoid loss of precision when converting primitive
integers to floating-point

n  30. Enable compile-time type checking of variable arity
parameter types

A variable arity (aka varargs) method is a method that can take a variable number of
arguments. The method must contain at least one fixed argument. When processing
a variable arity method call, the Java compiler checks the types of all arguments, and
all of the variable actual arguments must match the variable formal argument type.
However, compile-time type checking is ineffective when Object or generic param-
eter types are used [Bloch 2008]. The presence of initial parameters of specific types
is irrelevant; the compiler will remain unable to check Object or generic variable

represented as 0xffff. The conversion to int results in the value 0xffffffff, which
is right-shifted by 1 bit to yield 0x7fffffff. To store the value back into the short
variable i, Java performs an implicit narrowing conversion, discarding the 16 higher-
order bits. The final result is again 0xffff, or -1.

Compliant Solution (Compound Bit Shift and Assignment)
This compliant solution applies the compound assignment operator to an int,
which does not require widening and subsequent narrowing. Consequently, i gets
the value 0x7fffffff.

int i = -1;
i >>>= 1;

Applicability
Failing to consider integer promotions when dealing with floating-point and integer
operands can result in loss of precision.

ptg11539634

30. Enable compile-time type checking of variable arity parameter types 113

double sum(Object... args) {
 double result = 0.0;
 for (Object arg : args) {
 if (arg instanceof Byte) {
 result += ((Byte) arg).byteValue();
 } else if (arg instanceof Short) {
 result += ((Short) arg).shortValue();
 } else if (arg instanceof Integer) {
 result += ((Integer) arg).intValue();
 } else if (arg instanceof Long) {
 result += ((Long) arg).longValue();
 } else if (arg instanceof Float) {
 result += ((Float) arg).floatValue();
 } else if (arg instanceof Double) {
 result += ((Double) arg).doubleValue();
 } else {
 throw new ClassCastException();
 }
 }
 return result;
}

parameter types. Enable strong compile-time type checking of variable arity meth-
ods by using the most specific type possible for the method parameter.

Noncompliant Code Example (Object)
This noncompliant code example sums a set of numbers using a variable arity
method that uses Object as the variable arity type. Consequently, this method
accepts an arbitrary mix of parameters of any object type. Legitimate uses of such
declarations are rare (but see the “Applicability” section of this guideline).

Compliant Solution (Number)
This compliant solution defines the same method, but uses the Number type. This
abstract class is general enough to encompass all numeric types, yet specific enough
to exclude nonnumeric types.

double sum(Number... args) {
 // ...
}

ptg11539634

114 Chapter 2 n Defensive Programming

Noncompliant Code Example (Generic Type)
This noncompliant code example declares the same variable arity method using a
generic type parameter. It accepts a variable number of parameters that are all of the
same object type; however, it may be any object type. Again, legitimate uses of such
declarations are rare.

Compliant Solution (Generic Type)
This compliant solution defines the same generic method using the Number type.

<T> double sum(T... args) {
 // ...
}

<T extends Number> double sum(T... args) {
 // ...
}

Be as specific as possible when declaring parameter types; avoid Object and
imprecise generic types in variable arity methods. Retrofitting old methods
 containing final array parameters with generically typed variable arity parameters
is not always a good idea. For example, given a method that does not accept an
argument of a particular type, it could be possible to override the compile-time
checking—through the use of generic variable arity parameters—so that the
method would compile cleanly rather than correctly, causing a runtime error
[Bloch 2008].

Also, note that autoboxing prevents strong compile-time type checking of
 primitive types and their corresponding wrapper classes. For example, this compli-
ant solution produces the following warning, but works as expected:

Java.java:10: warning: [unchecked] Possible heap pollution from
parameterized vararg type T
 <T extends Number> double sum(T... args) {

This particular compiler warning can be safely ignored.

Applicability
Injudicious use of variable arity parameter types prevents strong compile-time type
checking, creates ambiguity, and diminishes code readability.

ptg11539634

31. Do not apply public final to constants whose value might change in later releases 115

<T> Collection<T> assembleCollection(T... args) {
 return new HashSet<T>(Arrays.asList(args));
}

Variable arity signatures using Object and imprecise generic types are accepta-
ble when the body of the method lacks both casts and autoboxing, and it also com-
piles without error. Consider the following example, which operates correctly for all
object types and type-checks successfully:

In some circumstances, it is necessary to use a variable arity parameter of type
Object. A good example is the method java.util.Formatter.format(String for-
mat, Object... args), which can format objects of any type.

Automated detection is straightforward.

Bibliography
[Bloch 2008] Item 42, “Use Varargs Judiciously”

[Steinberg 2008] Using the Varargs Language Feature

[Oracle 2011b] Varargs

n  31. Do not apply public final to constants whose value might
change in later releases

The final keyword can be used to specify constant values (that is, values that can-
not change during program execution). However, constants that can change over
the lifetime of a program should not be declared public final. The JLS [JLS 2013]
allows implementations to insert the value of any public final field inline in any
compilation unit that reads the field. Consequently, if the declaring class is edited
so that the new version gives a different value for the field, compilation units that
read the public final field could still see the old value until they are recompiled.
This problem may occur, for example, when a third-party library is updated to the
latest version, but the referencing code is not recompiled.

A related error can arise when a programmer declares a static final reference
to a mutable object; see Guideline 73, “Never confuse the immutability of a reference
with that of the referenced object,” for additional information.

ptg11539634

116 Chapter 2 n Defensive Programming

The field is subsequently accessed by class Bar from a separate compilation unit
(Bar.java):

Noncompliant Code Example
In this noncompliant code example, class Foo in Foo.java declares a field whose
value represents the version of the software:

class Foo {
 public static final int VERSION = 1;
 // ...
}

class Bar {
 public static void main(String[] args) {
 System.out.println("You are using version " + Foo.VERSION);
 }
}

When compiled and run, the software correctly prints

You are using version 1

But if a developer were to change the value of VERSION to 2 by modifying Foo
.java and subsequently recompile Foo.java, while failing to recompile Bar.java,
the software would incorrectly print

You are using version 1

Although recompiling Bar.java solves this problem, a better solution is available.

Compliant Solution
According to §13.4.9, “final Fields and Constants,” of the JLS [JLS 2013],

Other than for true mathematical constants, we recommend that source code make
very sparing use of class variables that are declared static and final. If the read-
only nature of final is required, a better choice is to declare a private static
variable and a suitable accessor method to get its value.

In this compliant solution, the version field in Foo.java is declared private
static and accessed by the getVersion() method:

ptg11539634

31. Do not apply public final to constants whose value might change in later releases 117

The Bar class in Bar.java is modified to invoke the getVersion() accessor
method to retrieve the version field from Foo.java:

class Foo {
 private static int version = 1;
 public static final int getVersion() {
 return version;
 }

 // ...
}

class Bar {
 public static void main(String[] args) {
 System.out.println(
 "You are using version " + Foo.getVersion()
);
 }
}

In this solution, the private version value cannot be copied into the Bar class
when it is compiled, consequently preventing the bug. Note that this transformation
imposes little or no performance penalty because most just-in-time (JIT) code gen-
erators can inline the getVersion() method at runtime.

Applicability
Declaring a value that changes over the lifetime of the software as final may lead to
unexpected results.

According to §9.3, “Field (Constant) Declarations,” of the JLS [JLS 2013],
“Every field declaration in the body of an interface is implicitly public, static, and
final. It is permitted to redundantly specify any or all of these modifiers for such
fields.” Therefore, this guideline does not apply to fields defined in interfaces.
Clearly, if the value of a field in an interface changes, every class that implements or
uses the interface must be recompiled. See Guideline 35, “Carefully design inter-
faces before releasing them,” for more information.

Constants declared using the enum type are permitted to violate this guideline.
Constants whose value never changes throughout the entire lifetime of the soft-

ware may be declared as final. For example, the JLS recommends that mathematical
constants be declared final.

ptg11539634

118 Chapter 2 n Defensive Programming

Bibliography

[JLS 2013] §4.12.4, “final Variables”

§8.3.1.1, “static Fields”

§9.3, “Field (Constant) Declarations”

§13.4.9, “final Fields and Constants”

n  32. Avoid cyclic dependencies between packages

Both The Elements of Java™ Style [Allen 2000] and the JPL Java Coding Standard
[Havelund 2009] require that the dependency structure of a package must never
contain cycles; that is, it must be representable as a directed acyclic graph (DAG).

Eliminating cycles between packages has several advantages.

n  Testing and maintainability. Cyclic dependencies magnify the repercussions of
changes or patches to source code. Reducing the repercussions of changes
simplifies testing and improves maintainability. Inability to perform adequate
testing because of cyclic dependencies is a frequent source of security vulner-
abilities.

n  Reusability. Cyclic dependencies between packages require that the packages be
released and upgraded in lockstep. This requirement reduces reusability.

n  Releases and builds. Avoiding cycles also helps to steer the development toward
an environment that fosters modularization.

n  Deployment. Avoiding cyclic dependencies between packages reduces coupling
between packages. Reduced coupling reduces the frequency of runtime errors
such as ClassNotFoundError. This, in turn, simplifies deployment.

Noncompliant Code Example
This noncompliant code example contains packages named account and user that
consist of the classes AccountHolder, User, and UserDetails, respectively. The class
UserDetails extends from AccountHolder because a user is a kind of account
holder. The class AccountHolder depends on a non-static utility method defined in
the User class. Likewise, UserDetails depends on AccountHolder by extending it.

package account;
import user.User;
public class AccountHolder {

ptg11539634

32. Avoid cyclic dependencies between packages 119

 private User user;
 public void setUser(User newUser) {user = newUser;}

 synchronized void depositFunds(String username,
 double amount) {
 // Use a utility method of User to check whether
 // username exists
 if (user.exists(username)) {
 // Deposit the amount
 }
 }

 protected double getBalance(String accountNumber) {
 // Return the account balance
 return 1.0;
 }
}
package user;
import account.AccountHolder;
public class UserDetails extends AccountHolder {
 public synchronized
 double getUserBalance(String accountNumber) {
 // Use a method of AccountHolder to get the account balance
 return getBalance(accountNumber);
 }
}

public class User {
 public boolean exists(String username) {
 // Check whether user exists
 return true; // Exists
 }
}

Compliant Solution
The tight coupling between the classes in the two packages can be weakened by
introducing an interface called BankApplication in a third package, bank. The cyclic
package dependency is eliminated by ensuring that the AccountHolder does not
depend on User, but instead relies on the interface by importing the bank package
(and not by implementing the interface).

In this compliant solution, such functionality is achieved by adding a parameter
of the interface type BankApplication to the depositFunds() method. This solution
gives the AccountHolder a solid contract to bank on. Additionally, UserDetails

ptg11539634

120 Chapter 2 n Defensive Programming

implements the interface and provides concrete implementations of the methods
while at the same time inheriting the other methods from AccountHolder.

package bank;
public interface BankApplication {
 void depositFunds(BankApplication ba, String username,
 double amount);
 double getBalance(String accountNumber);
 double getUserBalance(String accountNumber);
 boolean exists(String username);
}
package account;
import bank.BankApplication; // Import from a third package
class AccountHolder {
 private BankApplication ba;
 public void setBankApplication(BankApplication newBA) {
 ba = newBA;
 }

 public synchronized void depositFunds(BankApplication ba,
 String username, double amount) {
 // Use a utility method of UserDetails to
 // check whether username exists
 if (ba.exists(username)) {
 // Deposit the amount
 }
 }
 public double getBalance(String accountNumber) {
 // Return the account balance
 return 1.0;
 }
}

package user;
import account.AccountHolder; // One-way dependency
import bank.BankApplication; // Import from a third package
public class UserDetails extends AccountHolder
 implements BankApplication {
 public synchronized double getUserBalance(
 String accountNumber) {
 // Use a method of AccountHolder to get the account balance
 return getBalance(accountNumber);
 }
 public boolean exists(String username) {
 // Check whether user exists
 return true;
 }
}

ptg11539634

33. Prefer user-defined exceptions over more general exception types 121

The interface BankApplication appears to contain superfluous methods such as
depositFunds() and getBalance(). These methods are present so that if the sub-
class overrides them, the superclass retains the capability of internally invoking the
subclass’s methods polymorphically (for example, calling ba.getBalance() with an
overridden implementation of the method in UserDetails). One consequence of
this solution is that methods declared in the interface are required to be public in the
classes that define them.

Applicability
Cyclic dependencies between packages can result in fragile builds. A security vul-
nerability in a package can easily percolate to other packages.

Bibliography

[Allen 2000] The Elements of Java™ Style

[Havelund 2009] JPL Coding Standard, Version 1.1

[Knoernschild 2002] Chapter 1, “OO Principles and Patterns”

n  33. Prefer user-defined exceptions over more general
exception types

Because an exception is caught by its type, it is better to define exceptions for spe-
cific purposes than to use general exception types for multiple purposes. Throwing
general exception types makes code hard to understand and maintain, and defeats
much of the advantage of the Java exception-handling mechanism.

Noncompliant Code Example
This noncompliant code example attempts to distinguish between different excep-
tional behaviors by looking at the exception’s message:

If doSomething() throws an exception or error whose type is a subclass of
Throwable, the switch statement allows selection of a specific case to execute. For

try {
 doSomething();
} catch (Throwable e) {
 String msg = e.getMessage();
 switch (msg) {
 case "file not found":

ptg11539634

122 Chapter 2 n Defensive Programming

example, if the exception message is “file not found,” the appropriate action is taken
in the exception-handling code.

However, any change to the exception message literals involved will break the
code. For example, suppose this code is executed:

throw new Exception("cannot find file");

This exception should be handled by the first case clause, but it will instead be
rethrown because the string does not match any case clause.

Furthermore, exceptions may be thrown without a message.
This noncompliant code example falls under ERR08-EX0 of The CERT®

Oracle® Secure Coding Standard for Java™ [Long 2012], “ERR08-J. Do not catch
NullPointerException or any of its ancestors,” because it catches general excep-
tions but rethrows them.

Compliant Solution
This compliant solution uses specific exception types and defines new special-
purpose exception types where required.

public class TimeoutException extends Exception {
 TimeoutException () {
 super();
 }
 TimeoutException (String msg) {
 super(msg);
 }
}

 // Handle error
 break;
 case "connection timeout":
 // Handle error
 break;
 case "security violation":
 // Handle error
 break;
 default: throw e;
 }
}

ptg11539634

34. Try to gracefully recover from system errors 123

Applicability
Exceptions are used to handle exceptional conditions. If an exception is not caught,
the program will be terminated. An exception that is incorrectly caught or is caught
at the wrong level of recovery will often cause incorrect behavior.

Bibliography
[JLS 2013] Chapter 11, “Exceptions”

[Long 2012] ERR08-J. Do not catch NullPointerException or any of its ancestors

n  34. Try to gracefully recover from system errors

According to the JLS, §11.1.1, “The Kinds of Exceptions” [JLS 2013],

The unchecked exceptions classes are the class RuntimeException and its
 subclasses, and the class Error and its subclasses. All other exception classes are
checked exception classes.

Unchecked exception classes are not subject to compile-time checking because
it is tedious to account for all exceptional conditions and because recovery is often
difficult or impossible. However, even when recovery is impossible, the Java Virtual
Machine (JVM) allows a graceful exit and a chance to at least log the error. This is
made possible by using a try-catch block that catches Throwable. Also, when code
must avoid leaking potentially sensitive information, catching Throwable is permit-
ted. In all other cases, catching Throwable is not recommended because it makes
handling specific exceptions difficult. Where cleanup operations such as releasing
system resources can be performed, code should use a finally block to release the
resources or a try-with-resources statement.

// ...

try {
 doSomething();
} catch (FileNotFoundException e) {
 // Handle error
} catch (TimeoutException te) {
 // Handle error
} catch (SecurityException se) {
 // Handle error
}

ptg11539634

124 Chapter 2 n Defensive Programming

Catching Throwable is disallowed in general by The CERT® Oracle® Secure
Coding Standard for Java™ [Long 2012], “ERR08-J. Do not catch NullPointer-
Exception or any of its ancestors,” but it is permitted when filtering exception traces
by the exception ERR08-EX0 in that rule.

Noncompliant Code Example
This noncompliant code example generates a StackOverflowError as a result of
infinite recursion. It exhausts the available stack space and may result in denial of
service.

public class StackOverflow {
 public static void main(String[] args) {
 try {
 infiniteRun();
 } catch (Throwable t) {
 // Forward to handler
 } finally {
 // Free cache, release resources
 }
 // ...
 }

 private static void infiniteRun() {
 infiniteRun();
 }
}

public class StackOverflow {
 public static void main(String[] args) {
 infiniteRun();
 // ...
 }

 private static void infiniteRun() {
 infiniteRun();
 }
}

Compliant Solution
This compliant solution shows a try-catch block that can be used to capture java
.lang.Error or java.lang.Throwable. A log entry can be made at this point, fol-
lowed by attempts to free key system resources in the finally block.

ptg11539634

35. Carefully design interfaces before releasing them 125

Note that the Forward to handler code must operate correctly in constrained
memory conditions because the stack or heap may be nearly exhausted. In such a
scenario, one useful technique is for the program to initially reserve memory specifi-
cally to be used by an out-of-memory exception handler.

Note that this solution catches Throwable in an attempt to handle the error; it
falls under exception ERR08-EX2 in “ERR08-J. Do not catch NullPointerException
or any of its ancestors” [Long 2012].

Applicability
Allowing a system error to abruptly terminate a Java program may result in a denial-
of-service vulnerability.

In the event of actually running out of memory, it is likely that some program data
will be in an inconsistent state. Consequently, it might be best to restart the process. If
an attempt is made to carry on, reducing the number of threads may be an effective
workaround. This measure can help in such scenarios because threads often leak mem-
ory, and their continued existence can increase the memory footprint of the program.

The methods Thread.setUncaughtExceptionHandler() and ThreadGroup.un-
caughtException() can be used to help deal with an OutOfMemoryError in threads.

Bibliography
[JLS 2013] §11.2, “Compile-Time Checking of Exceptions”

[Kalinovsky 2004] Chapter 16, “Intercepting Control Flow: Intercepting System Errors”

[Long 2012] ERR08-J. Do not catch NullPointerException or any of its
ancestors

n  35. Carefully design interfaces before releasing them

Interfaces are used to group all the methods that a class promises to publicly expose.
The implementing classes are obliged to provide concrete implementations for all of
these methods. Interfaces are a necessary ingredient of most public APIs; once
released, flaws can be hard to fix without breaking any code that implements the
older version. The repercussions include the following.

n  Interface changes resulting from fixes can severely impair the contracts of the
implementing classes. For example, a fix introduced in a later version may be
accompanied by modifications to an unrelated interface that must now be imple-
mented by the client. The client may be prevented from implementing the fix
because the new interface may impose additional implementation burden on it.

n  Implementers can provide default or skeletal implementations of interface
methods for their clients to extend; however, such code can adversely affect the
behavior of the subclasses. Conversely, when such default implementations are

ptg11539634

126 Chapter 2 n Defensive Programming

absent, the subclasses must provide dummy implementations. Such implemen-
tations foster an environment where comments such as “ignore this code, does
nothing” occur incessantly. Such code may never even get tested.

n  If there is a security flaw in a public API (see, for example, the discussion of
ThreadGroup methods in The CERT® Oracle® Secure Coding Standard for Java™
[Long 2012], “THI01-J. Do not invoke ThreadGroup methods”), it will persist
throughout the lifetime of the API, affecting the security of any application or
library that uses it. Even after the security flaw is mitigated, applications and
libraries may continue using the insecure version until they are also updated.

Noncompliant Code Example
In this noncompliant code example, an interface User is frozen with two methods:
authenticate() and subscribe(). Sometime later, the providers release a free ser-
vice that does not rely on authentication.

public interface User {
 boolean authenticate(String username, char[] password);
 void subscribe(int noOfDays);
 // Introduced after the class is publicly released
 void freeService();
}

The addition of the freeService() method, unfortunately, breaks all the client
code that implements the interface. Moreover, the implementers who wish to use
only freeService() have to face the onus of also providing the other two methods,
which pollute the API, for reasons discussed earlier.

Noncompliant Code Example
An alternative idea is to prefer abstract classes for dealing with constant evolution,
but that comes at the cost of flexibility that interfaces offer (a class may implement
multiple interfaces, but extend only one class). One notable pattern is for the pro-
vider to distribute an abstract skeletal class that implements the evolving interface.
The skeletal class can selectively implement a few methods, and force the extending
classes to provide concrete implementations of the others. If a new method is added
to the interface, the skeletal class can provide a non-abstract default implementation
that the extending class can optionally override. This noncompliant code example
shows such a skeletal class.

ptg11539634

35. Carefully design interfaces before releasing them 127

public interface User {
 boolean authenticate(String username, char[] password);
 void subscribe(int noOfDays);
 void freeService(); // Introduced after API is
 // publicly released
}

abstract class SkeletalUser implements User {
 public abstract boolean authenticate(String username,
 char[] password);
 public abstract void subscribe(int noOfDays);
 public void freeService() {
 // Added later, provide implementation and re-release class
 }
}

class Client extends SkeletalUser {
 // Implements authenticate() and subscribe(), not freeService()
}

Although useful, this pattern may be insecure because a provider who is una-
ware of the extending class’s code may choose an implementation that introduces
security weaknesses in the client API.

Compliant Solution (Modularize)
A better design strategy is to anticipate the future evolution of the service. The core
functionality should be implemented in the User interface; in this case, only the pre-
mium service may be required to extend from it. To make use of the new free service,
an existing class may then choose to implement the new interface FreeUser, or it
may just completely ignore it.

public interface User {
 boolean authenticate(String username, char[] password);
}

public interface PremiumUser extends User {
 void subscribe(int noOfDays);
}

public interface FreeUser {
 void freeService();
}

ptg11539634

128 Chapter 2 n Defensive Programming

Compliant Solution (Make New Method Unusable)
Another compliant solution is to throw an exception from within the new freeSer-
vice() method defined in the implementing subclass.

class Client implements User {
 public void freeService() {
 throw new AbstractMethodError();
 }
}

abstract class Client implements User {
 public abstract void freeService();
 // Delegate implementation of new method to subclasses
 // Other concrete implementations
}

Compliant Solution (Delegate Implementation to Subclasses)
Although allowable, a less flexible compliant solution is to delegate the implementa-
tion of the method to subclasses of the client’s core interface-implementing class.

Applicability
Failing to publish stable, flaw-free interfaces can break the contracts of the imple-
menting classes, pollute the client API, and possibly introduce security weaknesses
in the implementing classes.

Bibliography
[Bloch 2008] Item 18, “Prefer Interfaces to Abstract Classes”

[Long 2012] THI01-J. Do not invoke ThreadGroup methods

n  36. Write garbage collection–friendly code

Java’s garbage-collection feature provides significant benefits over non-garbage-
collected languages. The garbage collector (GC) is designed to automatically reclaim
unreachable memory, and to avoid memory leaks. Although the GC is quite adept at
performing this task, a malicious attacker can nevertheless launch a denial-of-service
(DoS) attack against the GC, such as by inducing abnormal heap memory allocation

ptg11539634

36. Write garbage collection–friendly code 129

or abnormally prolonged object retention. For example, some versions of the GC
could need to halt all executing threads to keep up with incoming allocation requests
that trigger increased heap management activity. System throughput rapidly
diminishes in this scenario.

Real-time systems, in particular, are vulnerable to a more subtle slow-heap-
exhaustion DoS attack, perpetrated by stealing CPU cycles. An attacker can perform
memory allocations in a way that increases the consumption of resources (such as
CPU, battery power, and memory) without triggering an OutOfMemoryError. Writing
garbage collection–friendly code restricts many attack avenues.

Use Short-Lived Immutable Objects
Beginning with JDK 1.2, the generational GC has reduced memory allocation costs,
in many cases to levels lower than in C or C++. Generational garbage collection
reduces garbage collection costs by grouping objects into generations. The younger
generation consists of short-lived objects. The GC performs a minor collection on
the younger generation when it fills up with dead objects [Oracle 2010a]. Improved
garbage collection algorithms have reduced the cost of garbage collection so that it is
proportional to the number of live objects in the younger generation, rather than to
the number of objects allocated since the last garbage collection.

Note that objects in the younger generation that persist for longer durations are
tenured and are moved to the tenured generation. Few younger-generation objects
continue to live through to the next garbage-collection cycle. The rest become ready
to be collected in the impending collection cycle [Oracle 2010a].

With generational GCs, use of short-lived immutable objects is generally more
efficient than use of long-lived mutable objects, such as object pools. Avoiding object
pools improves the GC’s efficiency. Object pools bring additional costs and risks:
they can create synchronization problems and can require explicit management of
deallocations, possibly creating problems with dangling pointers. Further, deter-
mining the correct amount of memory to reserve for an object pool can be difficult,
especially for mission-critical code. Use of long-lived mutable objects remains
appropriate when allocation of objects is particularly expensive (for example, when
performing multiple joins across databases). Similarly, object pools are an appropri-
ate design choice when the objects represent scarce resources, such as thread pools
and database connections.

Avoid Large Objects
The allocation of large objects is expensive, in part because the cost to initialize their
fields is proportional to their size. Additionally, frequent allocation of large objects of
different sizes can cause fragmentation issues or compacting collect operations.

ptg11539634

130 Chapter 2 n Defensive Programming

Do Not Explicitly Invoke the Garbage Collector
The GC can be explicitly invoked by calling the System.gc() method. Even though
the documentation says that it “runs the garbage collector,” there is no guarantee as
to when or whether the GC will actually run. In fact, the call merely suggests that the
GC should subsequently execute; the JVM is free to ignore this suggestion.

Irresponsible use of this feature can severely degrade system performance by trig-
gering garbage collection at inopportune moments, rather than waiting until ripe
periods when it is safe to garbage-collect without significant interruption of the pro-
gram’s execution.

In the Java Hotspot VM (default since JDK 1.2), System.gc() forces an explicit
garbage collection. Such calls can be buried deep within libraries, so they may be diffi-
cult to trace. To ignore the call in such cases, use the flag -XX:+DisableExplicitGC. To
avoid long pauses while performing a full garbage collection, a less demanding concur-
rent cycle may be invoked by specifying the flag -XX:ExplicitGCInvokedConcurrent.

Applicability
Misusing garbage-collection utilities can cause severe performance degradation,
which can be exploited to cause a DoS attack. The Apache Geronimo and Tomcat vul-
nerability GERONIMO-4574, reported in March 2009, resulted from PolicyContext
handler data objects being set in a thread and never released, causing these data
objects to remain in memory longer than necessary.

When an application goes through several phases, such as an initialization and a
ready phase, it could require heap compaction between phases. The System.gc()
method may be invoked in such cases, provided a suitable uneventful period occurs
between phases.

Bibliography
[API 2013] Class System

[Bloch 2008] Item 6, “Eliminate Obsolete Object References”

[Coomes 2007] “Garbage Collection Concepts and Programming Tips”

[Goetz 2004] Java Theory and Practice: Garbage Collection and Performance

[Lo 2005] “Security Issues in Garbage Collection”

[Long 2012] OBJ05-J. Defensively copy private mutable class members before return-
ing their references

OBJ06-J. Defensively copy mutable inputs and mutable internal
components

[Oracle 2010a] Java SE 6 HotSpot™ Virtual Machine Garbage Collection Tuning

ptg11539634

Chapter

 131

Reliability

ISO/IEC/IEEE 24765:2010, Systems and software engineering—Vocabulary, defines
reliability as the ability of a system or component to perform its required functions
under stated conditions for a specified period of time [ISO/IEC/IEEE 24765:2010].
ISO/IEC 9126-1:2001, Software engineering—Product quality—Part 1: Quality model,
provides a similar definition of reliability as the capability of the software product to
maintain a specified level of performance when used under specified conditions
[ISO/IEC 9126-1:2001].

Software reliability is an important factor affecting system reliability. It differs
from hardware reliability in that it reflects design perfection, rather than manufac-
turing perfection. Wear or aging does not occur in software. Limitations in reliability
are the results of faults in requirements, design, and implementation. Failures result-
ing from these faults depend on the way the software product is used and the pro-
gram options selected rather than on elapsed time.

ISO/IEC/IEEE 24765:2010 defines software reliability as the probability that
software will not cause the failure of a system for a specified time under specified
conditions [ISO/IEC/IEEE 24765:2010]. The probability is a function not only of
the inputs to and use of the system, but also of the existence of faults in the software.
The inputs to the system determine whether existing faults, if any, are encountered.
The high complexity of software is the major contributing factor to software reliabil-
ity problems.

These guidelines deal with Java language features that can easily be misused by
the unwary. The Java language allows a great deal of flexibility in the ways in which it
is used, but some of these uses can lead to obscure techniques and code that is diffi-
cult to understand and maintain. By following these guidelines, programmers will
produce code that is less prone to bugs and runtime failure.

3

ptg11539634

132 Chapter 3 n Reliability

This chapter includes guidelines that

1. Help reduce errors, and are consequently important for developing reliable
 Java code

2. Contain specific Java coding recommendations to improve software reliability

n  37. Do not shadow or obscure identifiers in subscopes

Reuse of identifier names in subscopes leads to obscuration or shadowing. Reused
identifiers in the current scope can render those defined elsewhere inaccessible.
Although the Java Language Specification (JLS) [JLS 2013] clearly resolves any syn-
tactic ambiguity arising from obscuring or shadowing, such ambiguity burdens
source code maintainers and auditors, especially when code requires access to both
the original named entity and the inaccessible one. The problem is exacerbated when
the reused name is defined in a different package.

According to §6.4.2, “Obscuring,” of the JLS [JLS 2013],

A simple name may occur in contexts where it may potentially be interpreted as the
name of a variable, a type, or a package. In these situations, the rules of §6.5 specify
that a variable will be chosen in preference to a type, and that a type will be chosen
in preference to a package.

This implies that a variable can obscure a type or a package, and a type can
obscure a package name. Shadowing, on the other hand, refers to one variable ren-
dering another variable inaccessible in a containing scope. One type can also shadow
another type.

No identifier should obscure or shadow another identifier in a containing scope.
For example, a local variable should not reuse the name of a class field or method or
a class name or package name. Similarly, an inner class name should not reuse the
name of an outer class or package.

Both overriding and shadowing differ from hiding, in which an accessible mem-
ber (typically non-private) that should have been inherited by a subclass is replaced
by a locally declared subclass member that assumes the same name but has a differ-
ent, incompatible method signature.

Noncompliant Code Example (Field Shadowing)
This noncompliant code example reuses the name of the val instance field in the
scope of an instance method.

ptg11539634

37. Do not shadow or obscure identifiers in subscopes 133

The resulting behavior can be classified as shadowing; the method variable ren-
ders the class variable inaccessible within the scope of the method. For example,
assigning to this.val from within the method does not affect the value of the class
variable.

Compliant Solution (Field Shadowing)
This compliant solution eliminates shadowing by changing the name of the varia-
ble defined in the method scope from val to newValue:

class MyVector {
 private int val = 1;
 private void doLogic() {
 int val;
 //...
 }
}

class MyVector {
 private int val = 1;
 private void doLogic() {
 int newValue;
 //...
 }
}

class MyVector {
 private int i = 0;
 private void doLogic() {
 for (i = 0; i < 10; i++) {/* ... */}
 for (int i = 0; i < 20; i++) {/* ... */}
 }
}

Noncompliant Code Example (Variable Shadowing)
This example is noncompliant because the variable i defined in the scope of the
second for loop block shadows the definition of the instance variable i defined in
the MyVector class:

ptg11539634

134 Chapter 3 n Reliability

Compliant Solution (Variable Shadowing)
In this compliant solution, the loop counter i is only defined in the scope of each for
loop block:

class MyVector {
 private void doLogic() {
 for (int i = 0; i < 10; i++) {/* ... */}
 for (int i = 0; i < 20; i++) {/* ... */}
 }
}

Applicability
Name reuse makes code more difficult to read and maintain, which can result in
security weaknesses. An automated tool can easily detect the reuse of identifiers in
containing scopes.

Bibliography
[Bloch 2005] Puzzle 67, “All Strung Out”

[Bloch 2008] Item 16, “Prefer Interfaces to Abstract Classes”

[Conventions 2009] §6.3, “Placement”

[FindBugs 2008] DLS, “Dead store to local variable that shadows field”

[JLS 2013] §6.4.1, “Shadowing”

§6.4.2, “Obscuring”

§7.5.2, “Type-Import-on-Demand Declarations”

n  38. Do not declare more than one variable per declaration

Declaring multiple variables in a single declaration could cause confusion about the
types of variables and their initial values. In particular, do not declare any of the fol-
lowing in a single declaration:

n  Variables of different types

n  A mixture of initialized and uninitialized variables

In general, you should declare each variable on its own line with an explanatory
comment regarding its role. While not required for conformance with this guideline,

ptg11539634

38. Do not declare more than one variable per declaration 135

this practice is also recommended in the Code Conventions for the Java Programming
Language, §6.1, “Number Per Line” [Conventions 2009].

This guideline applies to

n  Local variable declaration statements [JLS 2013, §14.4]

n  Field declarations [JLS 2013, §8.3]

n  Field (constant) declarations [JLS 2013, §9.3]

Noncompliant Code Example (Initialization)
This noncompliant code example might lead a programmer or reviewer to mis-
takenly believe that both i and j are initialized to 1. In fact, only j is initialized,
while i remains uninitialized:

int i, j = 1;

Compliant Solution (Initialization)
In this compliant solution, it is readily apparent that both i and j are initialized to 1:

int i = 1; // Purpose of i...
int j = 1; // Purpose of j...

Compliant Solution (Initialization)
In this compliant solution, it is readily apparent that both i and j are initialized to 1:

int i = 1, j = 1;

Declaring each variable on a separate line is the preferred method. However,
multiple variables on one line are acceptable when they are trivial temporary varia-
bles such as array indices.

Noncompliant Code Example (Different Types)
In this noncompliant code example, the programmer declares multiple variables,
including an array, on the same line. All instances of the type T have access to meth-
ods of the Object class. However, it is easy to forget that arrays require special treat-
ment when some of these methods are overridden.

ptg11539634

136 Chapter 3 n Reliability

When an Object method, such as toString(), is overridden, a programmer
could accidentally provide an implementation for type T that fails to consider that c
is an array of T rather than a reference to an object of type T.

However, the programmer’s intent could have been to invoke toString() on
each individual element of the array c.

Compliant Solution (Different Types)
This compliant solution places each declaration on its own line and uses the pre-
ferred notation for array declaration:

public class Example<T> {
 private T a, b, c[], d;

 public Example(T in) {
 a = in;
 b = in;
 c = (T[]) new Object[10];
 d = in;
 }
}

public String toString() {
 return a.toString() + b.toString() +
 c.toString() + d.toString();
}

// Correct functional implementation
public String toString() {
 String s = a.toString() + b.toString();
 for (int i = 0; i < c.length; i++){
 s += c[i].toString();
 }
 s += d.toString();
 return s;
}

public class Example<T> {
 private T a; // Purpose of a...
 private T b; // Purpose of b...
 private T[] c; // Purpose of c[]...
 private T d; // Purpose of d...

ptg11539634

38. Do not declare more than one variable per declaration 137

Applicability
Declaration of multiple variables per line can reduce code readability and lead to
programmer confusion.

When more than one variable is declared in a single declaration, ensure that
both the type and the initial value of each variable are self-evident.

Declarations of loop indices should be included within a for statement, even
when this results in variable declarations that lack a comment about the purpose of
the variable:

Such declarations are not required to be on a separate line, and the explanatory
comment may be omitted.

Bibliography
[Conventions 2009] §6.1, “Number Per Line”

[ESA 2005] Rule 9, Put Single Variable Definitions in Separate Lines

[JLS 2013] §4.3.2, “The class Object”

§6.1, “Declarations”

§8.3, “Field Declarations”

§9.3, “Field (Constant) Declarations”

§14.4, “Local Variable Declaration Statements”

public class Example {
 void function() {
 int mx = 100; // Some max value

 for (int i = 0; i < mx; ++i) {
 /* ... */
 }

 }
}

 public Example(T in){
 a = in;
 b = in;
 c = (T[]) new Object[10];
 d = in;
 }
}

ptg11539634

138 Chapter 3 n Reliability

n  39. Use meaningful symbolic constants to represent literal
values in program logic

Java supports the use of various types of literals, such as integers (5, 2), floating-
point numbers (2.5, 6.022e+23), characters ('a', '\n'), Booleans (true, false),
and strings ("Hello\n"). Extensive use of literals in a program can lead to two prob-
lems. First, the meaning of the literal is often obscured or unclear from the context.
Second, changing a frequently used literal requires searching the entire program
source for that literal and distinguishing the uses that must be modified from those
that should remain unmodified.

Avoid these problems by declaring class variables with meaningfully named con-
stants, setting their values to the desired literals, and referencing the constants instead
of the literals throughout the program. This approach clearly indicates the meaning
or intended use of each literal. Furthermore, should the constant require modifica-
tion, the change is limited to the declaration; searching the code is unnecessary.

Constants should be declared as static and final. However, constants should
not be declared public and final if their values might change (see Guideline 31,
“Do not apply public final to constants whose value might change in later releases,”
for more details). For example,

private static final int SIZE = 25;

Although final can be used to specify immutable constants, there is a caveat
when dealing with composite objects. See Guideline 73, "Never confuse the immu-
tability of a reference with that of the referenced object," for more details.

Noncompliant Code Example
This noncompliant code example calculates approximate dimensions of a sphere,
given its radius:

double area(double radius) {
 return 3.14 * radius * radius;
}

double volume(double radius) {
 return 4.19 * radius * radius * radius;
}

double greatCircleCircumference(double radius) {
 return 6.28 * radius;
}

ptg11539634

39. Use meaningful symbolic constants to represent literal values in program logic 139

The methods use the seemingly arbitrary literals 3.14, 4.19, and 6.28 to represent
various scaling factors used to calculate these dimensions. A developer or maintainer
reading this code would have little idea about how they were generated or what they
mean and consequently would not understand the function of this code.

Noncompliant Code Example
This noncompliant code example attempts to avoid the problem by explicitly calcu-
lating the required constants:

double area(double radius) {
 return 3.14 * radius * radius;
}

double volume(double radius) {
 return 4.0 / 3.0 * 3.14 * radius * radius * radius;
}

double greatCircleCircumference(double radius) {
 return 2 * 3.14 * radius;
}

The code uses the literal 3.14 to represent the value π. Although it removes
some of the ambiguity from the literals, it complicates code maintenance. If the pro-
grammer were to decide that a more precise value of π is desired, all occurrences of
3.14 in the code would have to be found and replaced.

Compliant Solution (Constants)
In this compliant solution, a constant PI is declared and initialized to 3.14. Thereafter,
it is referenced in the code whenever the value of π is needed.

private static final double PI = 3.14;

double area(double radius) {
 return PI * radius * radius;
}

double volume(double radius) {
 return 4.0/3.0 * PI * radius * radius * radius;
}

double greatCircleCircumference(double radius) {
 return 2 * PI * radius;
}

ptg11539634

140 Chapter 3 n Reliability

This technique reduces clutter and promotes maintainability. If a more precise
approximation of the value of π is required, the programmer can simply redefine the
constant. The use of the literals 4.0, 3.0, and 2 does not violate this guideline, for
reasons explained in the “Applicability” section of this guideline.

Compliant Solution (Predefined Constants)
Use predefined constants when they are available. The class java.lang.Math defines
a large group of numeric constants, including PI and the exponential constant E.

double area(double radius) {
 return Math.PI * radius * radius;
}

double volume(double radius) {
 return 4.0/3.0 * Math.PI * radius * radius * radius;
}

double greatCircleCircumference(double radius) {
 return 2 * Math.PI * radius;
}

private static final int BUFSIZE = 512;

// ...

public void shiftBlock() {
 int nblocks = 1 + ((nbytes - 1) >> 9); // BUFSIZE = 512 = 2^9
 // ...
}

Noncompliant Code Example
This noncompliant code example defines a constant BUFSIZE, but then defeats the
purpose of defining BUFSIZE as a constant by assuming a specific value for BUFSIZE
in the following expression:

The programmer has assumed that BUFSIZE is 512, and right-shifting 9 bits is
the same (for positive numbers) as dividing by 512. However, if BUFSIZE changes to
1024 in the future, modifications will be difficult and error prone.

This code also fails to conform to The CERT® Oracle® Secure Coding Standard for
Java™ [Long 2012], “NUM01-J. Do not perform bitwise and arithmetic operations

ptg11539634

39. Use meaningful symbolic constants to represent literal values in program logic 141

on the same data.” Replacing a division operation with a right shift is considered a
premature optimization. Normally, the compiler will do a better job of determining
when this optimization should be performed.

Compliant Solution
This compliant solution uses the identifier assigned to the constant value in the
expression:

private static final int BUFSIZE = 512;

// ...

public void shiftBlock(int nbytes) {
 int nblocks = 1 + (nbytes - 1) / BUFSIZE;
 // ...
}

Applicability
Using numeric literals makes code more difficult to read, understand, and edit.

The use of symbolic constants should be restricted to cases in which they
improve the readability and maintainability of the code. When the intent of the lit-
eral is obvious, or where the literal is not likely to change, using symbolic constants
can impair code readability. The following code example obscures the meaning of
the code by using too many symbolic constants.

private static final double FOUR = 4.0;
private static final double THREE = 3.0;

double volume(double radius) {
 return FOUR / THREE * Math.PI * radius * radius * radius;
}

The values 4.0 and 3.0 in the volume calculation are clearly scaling factors used
to calculate the sphere’s volume and are not subject to change (unlike the approxi-
mate value for π), so they can be represented exactly. There is no reason to change
them to increase precision because replacing them with symbolic constants actually
impairs the readability of the code.

ptg11539634

142 Chapter 3 n Reliability

Bibliography
[Core Java 2003]

[Long 2012] NUM01-J. Do not perform bitwise and arithmetic operations on the
same data

n  40. Properly encode relationships in constant definitions

The definitions of constant expressions should be related exactly when the values
they express are also related.

Noncompliant Code Example
In this noncompliant code example, OUT_STR_LEN must always be exactly two greater
than IN_STR_LEN. These definitions fail to reflect this requirement:

public static final int IN_STR_LEN = 18;
public static final int OUT_STR_LEN = 20;

public static final int IN_STR_LEN = 18;
public static final int OUT_STR_LEN = IN_STR_LEN + 2;

public static final int VOTING_AGE = 18;
public static final int ALCOHOL_AGE = VOTING_AGE + 3;

Compliant Solution
In this compliant solution, the relationship between the two values is represented in
the definitions:

Noncompliant Code Example
In this noncompliant code example, there appears to be an underlying relationship
between the two constants where none exists:

A programmer performing routine maintenance may modify the definition
for VOTING_AGE, but fail to recognize the resulting change in the definition for
ALCOHOL_AGE.

ptg11539634

Compliant Solution
In this compliant solution, the definitions reflect the independence of the two constants:

public static final int VOTING_AGE = 18;
public static final int ALCOHOL_AGE = 21;

Bibliography
[JLS 2013] §4.12.4, “final Variables”

n  41. Return an empty array or collection instead of a null
value for methods that return an array or collection

Some APIs intentionally return a null reference to indicate that instances are
 unavailable. This practice can lead to denial-of-service vulnerabilities when the client
code fails to explicitly handle the null return value case. A null return value is an
example of an in-band error indicator, which is discouraged by Guideline 52, “Avoid
in-band error indicators.” For methods that return a set of values using an array or col-
lection, returning an empty array or collection is an excellent alternative to returning a
null value, as most callers are better equipped to handle an empty set than a null value.

Noncompliant Code Example
This noncompliant code example returns a null ArrayList when the size of the Array-
List is 0. The class Inventory contains a getStock() method that constructs a list of
items that have 0 inventory and returns the list of items to the caller.

class Inventory {
 private final Hashtable<String, Integer> items;
 public Inventory() {
 items = new Hashtable<String, Integer>();
 }

 public List<String> getStock() {
 List<String> stock = new ArrayList<String>();
 Enumeration itemKeys = items.keys();
 while (itemKeys.hasMoreElements()) {
 Object value = itemKeys.nextElement();
 if ((items.get(value)) == 0) {
 stock.add((String)value);

41. Return an empty array or collection instead of a null value 143

ptg11539634

144 Chapter 3 n Reliability

When the size of this list is 0, a null value is returned with the assumption that
the client will install the necessary checks. In this code example, the client lacks any
null value check, causing a NullPointerException at runtime.

Compliant Solution
Instead of returning a null value, this compliant solution simply returns the List,
even when it is empty.

class Inventory {
 private final Hashtable<String, Integer> items;
 public Inventory() {
 items = new Hashtable<String, Integer>();
 }

 public List<String> getStock() {
 List<String> stock = new ArrayList<String>();
 Integer noOfItems; // Number of items left in the inventory
 Enumeration itemKeys = items.keys();
 while (itemKeys.hasMoreElements()) {
 Object value = itemKeys.nextElement();

 if ((noOfItems = items.get(value)) == 0) {
 stock.add((String)value);

 }
 }

 if (items.size() == 0) {
 return null;
 } else {
 return stock;
 }
 }
}

public class Client {
 public static void main(String[] args) {
 Inventory inv = new Inventory();
 List<String> items = inv.getStock();
 System.out.println(items.size());
 }
}

ptg11539634

41. Return an empty array or collection instead of a null value 145

The client can handle this situation effectively without being interrupted by
runtime exceptions. When returning arrays rather than collections, ensure that the
client avoids attempts to access individual elements of a zero-length array. This pre-
vents an ArrayIndexOutOfBoundsException from being thrown.

Compliant Solution
This compliant solution returns an explicit empty list, which is an equivalent per-
missible technique.

 }
 }
 return stock; // Return list (possibly zero-length)
 }
}

public class Client {
 public static void main(String[] args) {
 Inventory inv = new Inventory();
 List<String> items = inv.getStock();
 System.out.println(items.size());
 }
}

public List<String> getStock() {
 List<String> stock = new ArrayList<String>();
 Integer noOfItems; // Number of items left in the inventory
 Enumeration itemKeys = items.keys();
 while (itemKeys.hasMoreElements()) {
 Object value = itemKeys.nextElement();

 if ((noOfItems = items.get(value)) == 0) {
 stock.add((String)value);
 }
 }

 if (l.isEmpty()) {
 return Collections.EMPTY_LIST; // Always zero-length
 } else {
 return stock; // Return list
 }
}

// Class Client ...

ptg11539634

146 Chapter 3 n Reliability

Applicability
Returning a null value rather than a zero-length array or collection may lead to
denial-of-service vulnerabilities when the client code fails to handle null return
values properly.

Automatic detection is straightforward; fixing the problem typically requires
programmer intervention.

Bibliography
[Bloch 2008] Item 43, “Return Empty Arrays or Collections, Not Nulls”

n  42. Use exceptions only for exceptional conditions

Exceptions should be used only to denote exceptional conditions; they should not be
used for ordinary control flow purposes. Catching a generic object such as Throwable
is likely to catch unexpected errors; see The CERT® Oracle® Secure Coding Standard
for Java™ [Long 2012] ERR08-J, “Do not catch NullPointerException or any of its
ancestors,” for examples. When a program catches a specific type of exception, it
does not always know from where that exception was thrown. Using a catch clause
to handle an exception that occurs in a distant known location is a poor solution; it is
preferable to handle the error as soon as it occurs or to prevent it, if possible.

The nonlocality of throw statements and corresponding catch statements can
also impede optimizers from improving code that relies on exception handling. Rely-
ing on catching exceptions for control flow also complicates debugging, because
exceptions indicate a jump in control flow from the throw statement to the catch
clause. Finally, exceptions need not be highly optimized as it is assumed that they are
thrown only in exceptional circumstances. Throwing and catching an exception fre-
quently has worse performance than handling the error with some other mechanism.

Noncompliant Code Example
This noncompliant code example attempts to concatenate the processed elements of
the strings array:

public String processSingleString(String string) {
 // ...
 return string;
}
public String processStrings(String[] strings) {
 String result = “”;

public String processSingleString(String string) {
 // ...
 return string;
}
public String processStrings(String[] strings) {
 String result = “”;

ptg11539634

42. Use exceptions only for exceptional conditions 147

This code uses an ArrayIndexOutOfBoundsException to detect the end of the
array. Unfortunately, because ArrayIndexOutOfBoundsException is a RuntimeEx-
ception, it could be thrown by processSingleString() without being declared in a
throws clause. So it is possible for processStrings() to terminate prematurely
before processing all of the strings.

Compliant Solution
This compliant solution uses a standard for loop to concatenate the strings.

 int i = 0;
 try {
 while (true) {
 result = result.concat(processSingleString(strings[i]));
 i++;
 }
 } catch (ArrayIndexOutOfBoundsException e) {
 // Ignore, we're done
 }
 return result;
}

public String processStrings(String[] strings) {
 String result = “”;
 for (int i = 0; i < strings.length; i++) {
 result = result.concat(processSingleString(strings[i]));
 }
 return result;
}

This code need not catch ArrayIndexOutOfBoundsException because it is a
runtime exception, and such exceptions indicate programmer errors, which are best
resolved by fixing the defect.

Applicability
Use of exceptions for any purpose other than detecting and handling exceptional
conditions complicates program analysis and debugging, degrades performance,
and can increase maintenance costs.

ptg11539634

148 Chapter 3 n Reliability

Bibliography
[Bloch 2001] Item 39, “Use Exceptions Only for Exceptional Conditions”

[JLS 2013] Chapter 11, “Exceptions”

[Long 2012] ERR08-J. Do not catch NullPointerException or any of its ancestors

n  43. Use a try-with-resources statement to safely handle
closeable resources

The Java Development Kit 1.7 (JDK 1.7) introduced the try-with-resources state-
ment (see the JLS, §14.20.3, “try-with-resources” [JLS 2013]), which simplifies cor-
rect use of resources that implement the java.lang.AutoCloseable interface,
including those that implement the java.io.Closeable interface.

Using the try-with-resources statement prevents problems that can arise when
closing resources with an ordinary try-catch-finally block, such as failing to close
a resource because an exception is thrown as a result of closing another resource, or
masking an important exception when a resource is closed.

Use of the try-with-resources statement is also illustrated in The CERT® Oracle®
Secure Coding Standard for Java™ [Long 2012], “ERR05-J. Do not let checked excep-
tions escape from a finally block,” “FIO03-J. Remove temporary files before termi-
nation,” and “FIO04-J. Close resources when they are no longer needed.”

Noncompliant Code Example
This noncompliant code example uses an ordinary try-catch-finally block in an
attempt to close two resources.

public void processFile(String inPath, String outPath)
 throws IOException{
 BufferedReader br = null;
 BufferedWriter bw = null;
 try {
 br = new BufferedReader(new FileReader(inPath));
 bw = new BufferedWriter(new FileWriter(outPath));
 // Process the input and produce the output
 } finally {
 try {
 if (br != null) {
 br.close();
 }

ptg11539634

43. Use a try-with-resources statement to safely handle closeable resources 149

However, if an exception is thrown when the BufferedReader br is closed, then
the BufferedWriter bw will not be closed.

Compliant Solution (Second finally Block)
This compliant solution uses a second finally block to guarantee that bw is properly
closed even when an exception is thrown while closing br.

 if (bw != null) {
 bw.close();
 }
 } catch (IOException x) {
 // Handle error
 }
 }
}

public void processFile(String inPath, String outPath)
 throws IOException {
 BufferedReader br = null;
 BufferedWriter bw = null;
 try {
 br = new BufferedReader(new FileReader(inPath));
 bw = new BufferedWriter(new FileWriter(outPath));
 // Process the input and produce the output
 } finally {
 if (br != null) {
 try {
 br.close();
 } catch (IOException x) {
 // Handle error
 } finally {
 if (bw != null) {
 try {
 bw.close();
 } catch (IOException x) {
 // Handle error
 }
 }
 }
 }
 }
}

ptg11539634

150 Chapter 3 n Reliability

Compliant Solution (try-with-resources)
This compliant solution uses a try-with-resources statement to manage both br
and bw:

public void processFile(String inPath, String outPath)
 throws IOException{
 try (BufferedReader br =
 new BufferedReader(new FileReader(inPath));
 BufferedWriter bw =
 new BufferedWriter(new FileWriter(outPath));) {
 // Process the input and produce the output
 } catch (IOException ex) {
 // Print out all exceptions, including suppressed ones
 System.err.println("thrown exception: " + ex.toString());
 Throwable[] suppressed = ex.getSuppressed();
 for (int i = 0; i < suppressed.length; i++) {
 System.err.println("suppressed exception: " +
 suppressed[i].toString());
 }
 }
}

This solution preserves any exceptions thrown during the processing of the
input while still guaranteeing that both br and bw are properly closed, regardless of
what exceptions occur. Finally, this code demonstrates how to access every excep-
tion that may be produced from the try-with-resources block.

If only one exception is thrown, during opening, processing, or closing of the
files, the exception will be printed after "thrown exception:". If an exception is
thrown during processing, and a second exception is thrown while trying to close
either file, the second exception will be printed after "thrown exception:", and the
first exception will be printed after "suppressed exception:".

Applicability
Failing to correctly handle all failure cases when working with closeable resources
may result in some resources not being closed or in important exceptions being
masked, possibly resulting in a denial of service. Note that failure to use a try-with-
resources statement cannot be considered a security vulnerability in and of itself,
because it is possible to write a correctly structured group of nested try-catch-
finally blocks guarding the resources that are in use (see “ERR05-J. Do not let
checked exceptions escape from a finally block” [Long 2012]). That said, failure to
correctly handle such error cases is a common source of vulnerabilities. Use of a
try-with-resources statement mitigates this issue by guaranteeing that the resources
are managed correctly and that exceptions are never masked.

ptg11539634

44. Do not use assertions to verify the absence of runtime errors 151

Bibliography
[JLS 2013] §14.20.3, “try-with-resources”

[Long 2012] ERR05-J. Do not let checked exceptions escape from a finally block

FIO03-J. Remove temporary files before termination

FIO04-J. Close resources when they are no longer needed

[Tutorials 2013] The try-with-resources Statement

n  44. Do not use assertions to verify the absence of
runtime errors

Diagnostic tests can be incorporated into programs by using the assert statement.
Assertions are primarily intended for use during debugging and are often turned off
before code is deployed by using the -disableassertions (or -da) Java runtime
switch. Consequently, assertions should be used to protect against incorrect pro-
grammer assumptions, and not for runtime error checking.

Assertions should never be used to verify the absence of runtime (as opposed to
logic) errors, such as

n  Invalid user input (including command-line arguments and environment
variables)

n  File errors (for example, errors opening, reading, or writing files)

n  Network errors (including network protocol errors)

n  Out-of-memory conditions (when the Java Virtual Machine cannot allocate
space for a new object, and the garbage collector cannot make sufficient space
available)

n  System resource exhaustion (for example, out-of-file descriptors, processes,
threads)

n  System call errors (for example, errors executing files or locking or unlocking
mutexes)

n  Invalid permissions (for example, file, memory, user)

Code that protects against an I/O error, for example, cannot be implemented as
an assertion because it must be present in the deployed executable.

Assertions are generally unsuitable for server programs or embedded systems in
deployment. A failed assertion can lead to a denial-of-service (DoS) attack if trig-
gered by a malicious user. In such situations, a soft failure mode, such as writing to a
log file, is more appropriate.

ptg11539634

152 Chapter 3 n Reliability

Noncompliant Code Example
This noncompliant code example uses the assert statement to verify that input was
available:

BufferedReader br;

// Set up the BufferedReader br

String line;

// ...

line = br.readLine();

assert line != null;

BufferedReader br;

// Set up the BufferedReader br

String line;

// ...

line = br.readLine();

if (line == null) {
 // Handle error
}

Because input availability depends on the user and can be exhausted at any point
during program execution, a robust program must be prepared to gracefully handle
and recover from the unavailability of input. However, using the assert statement to
verify that some significant input was available is inappropriate because it might
lead to an abrupt termination of the process, resulting in a denial of service.

Compliant Solution
This compliant solution demonstrates the recommended way to detect and handle
unavailability of input:

Applicability
Assertions are a valuable diagnostic tool for finding and eliminating software defects
that may result in vulnerabilities. The absence of assertions, however, does not mean
that code is bug-free.

ptg11539634

45. Use the same type for the second and third operands in conditional expressions 153

In general, the misuse of the assert statement for runtime checking rather than
checking for logical errors cannot be detected automatically.

Bibliography
[JLS 2013] §14.10, “The assert Statement”

n  45. Use the same type for the second and third operands in
conditional expressions

The conditional operator ?: uses the boolean value of its first operand to decide
which of the other two expressions will be evaluated. (See §15.25, “Conditional
Operator ? :,” of the JLS [JLS 2013].)

The general form of a Java conditional expression is operand1 ? operand2 :
operand3.

n  If the value of the first operand (operand1) is true, then the second operand
expression (operand2) is chosen.

n  If the value of the first operand is false, then the third operand expression
(operand3) is chosen.

The conditional operator is syntactically right-associative. For example,
a?b:c?d:e?f:g is equivalent to a?b:(c?d:(e?f:g)).

The JLS rules for determining the result type of a conditional expression (see
Table 3–1) are complicated; programmers could be surprised by the type conver-
sions required for expressions they have written.

Result type determination begins from the top of the table; the compiler applies
the first matching rule. The Operand 2 and Operand 3 columns refer to operand2
and operand3 (from the previous definition) respectively. In the table, constant int
refers to constant expressions of type int (such as '0' or variables declared final).

For the final table row, S1 and S2 are the types of the second and third operands,
respectively. T1 is the type that results from applying boxing conversion to S1, and
T2 is the type that results from applying boxing conversion to S2. The type of the
conditional expression is the result of applying capture conversion to the least upper
bound of T1 and T2. See §5.1.7, “Boxing Conversion,” §5.1.10, “Capture Conver-
sion,” and §15.12.2.7, “Inferring Type Arguments Based on Actual Arguments” of
the JLS for additional information [JLS 2013].

The complexity of the rules that determine the result type of a conditional
expression can result in unintended type conversions. Consequently, the second and
third operands of each conditional expression should have identical types. This rec-
ommendation also applies to boxed primitives.

ptg11539634

154 Chapter 3 n Reliability

Rule Operand 2 Operand 3 Resultant Type

1 Type T Type T Type T

2 boolean Boolean boolean

3 Boolean boolean boolean

4 null reference reference

5 reference null reference

6 byte or Byte short or Short short

7 short or Short byte or Byte short

8 byte, short, char,
Byte, Short,
Character

constant int byte, short, char if value of
int is representable

9 constant int byte, short, char,
Byte, Short, Character

byte, short, char if value of
int is representable

10 Other numeric Other numeric Promoted type of the second
and third operands

11 T1 = boxing
conversion(S1)

T2 = boxing
conversion(S2)

Apply capture conversion to
the least upper bound of T1
and T2

Table 3–1. Determining the result type of a conditional expression

Noncompliant Code Example
In this noncompliant code example, the programmer expects that both print state-
ments will print the value of alpha as a char:

public class Expr {
 public static void main(String[] args) {
 char alpha = 'A';
 int i = 0;
 // Other code. Value of i may change
 boolean trueExp = true; // Expression that evaluates to true
 System.out.print(trueExp ? alpha : 0); // Prints A
 System.out.print(trueExp ? alpha : i); // Prints 65
 }
}

The first print statement prints A because the compiler applies rule 8 from the
result type determination table to determine that the second and third operands of the

ptg11539634

45. Use the same type for the second and third operands in conditional expressions 155

conditional expression are, or are converted to, type char. However, the second print
statement prints 65—the value of alpha as an int. The first matching rule from the
table is rule 10. Consequently, the compiler promotes the value of alpha to type int.

Compliant Solution
This compliant solution uses identical types for the second and third operands of
each conditional expression; the explicit casts specify the type expected by the
programmer:

public class Expr {
 public static void main(String[] args) {
 char alpha = 'A';
 int i = 0;
 boolean trueExp = true; // Expression that evaluates to true
 System.out.print(trueExp ? alpha : 0); // Prints A
 // Deliberate narrowing cast of i; possible truncation OK
 System.out.print(trueExp ? alpha : ((char) i)); // Prints A
 }
}

When the value of i in the second conditional expression falls outside the range
that can be represented as a char, the explicit cast will truncate its value. This usage
complies with exception NUM12-EX0 of NUM12-J, “Ensure conversions of numeric
types to narrower types do not result in lost or misinterpreted data” in The CERT®
Oracle® Secure Coding Standard for Java™ [Long 2012].

Noncompliant Code Example
This noncompliant code example prints 100 as the size of the HashSet rather than
the expected result (some value between 0 and 50):

public class ShortSet {
 public static void main(String[] args) {
 HashSet<Short> s = new HashSet<Short>();
 for (short i = 0; i < 100; i++) {
 s.add(i);
 // Cast of i-1 is safe,
 // because value is always representable
 Short workingVal = (short) (i-1);
 // ... Other code may update workingVal

ptg11539634

156 Chapter 3 n Reliability

The combination of values of types short and int in the second argument of the
conditional expression (the operation i-1) causes the result to be an int, as speci-
fied by the integer promotion rules. Consequently, the Short object in the third argu-
ment is unboxed into a short, which is then promoted to an int. The result of the
conditional expression is then autoboxed into an object of type Integer. Because the
HashSet contains only values of type Short, the call to HashSet.remove() has no
effect.

Compliant Solution
This compliant solution casts the second operand to type short, then explicitly
invokes the Short.valueOf() method to create a Short instance whose value is i-1:

public class ShortSet {
 public static void main(String[] args) {
 HashSet<Short> s = new HashSet<Short>();
 for (short i = 0; i < 100; i++) {
 s.add(i);
 // Cast of i-1 is safe, because the
 // resulting value is always representable
 Short workingVal = (short) (i-1);
 // ... other code may update workingVal

 // Cast of i-1 is safe, because the
 // resulting value is always representable
 s.remove(((i % 2) == 1) ? Short.valueOf((short) (i-1)) :
 workingVal);
 }
 System.out.println(s.size());
 }
}

 s.remove(((i % 2) == 1) ? i-1 : workingVal);
 }
 System.out.println(s.size());
 }
}

As a result of the cast, the second and third operands of the conditional expression
both have type Short, and the remove() call has the expected result.

Writing the conditional expression as ((i % 2) == 1) ? (short) (i-1)) :
workingVal also complies with this guideline because both the second and third

ptg11539634

46. Do not serialize direct handles to system resources 157

operands in this form have type short. However, this alternative is less efficient
because it forces unboxing of workingVal on each even iteration of the loop and
autoboxing of the result of the conditional expression (from short to Short) on
every iteration of the loop.

Applicability
When the second and third operands of a conditional expression have different
types, they can be subject to unexpected type conversions.

Automated detection of condition expressions whose second and third operands
are of different types is straightforward.

Bibliography
[Bloch 2005] Puzzle 8, “Dos Equis”

[Findbugs 2008] “Bx: Primitive Value Is Unboxed and Coerced for Ternary Operator”

[JLS 2013] §15.25, “Conditional Operator ? :”

[Long 2012] NUM12-J. Ensure conversions of numeric types to narrower types do
not result in lost or misinterpreted data

n  46. Do not serialize direct handles to system resources

Serialized objects can be altered outside of any Java program unless they are pro-
tected using mechanisms such as sealing and signing. (See The CERT® Oracle® Secure
Coding Standard for Java™ [Long 2012], “ENV01-J. Place all security-sensitive code
in a single JAR and sign and seal it.”) If an object referring to a system resource
becomes serialized, and an attacker can alter the serialized form of the object, it
becomes possible to modify the system resource that the serialized handle refers to.
For example, an attacker may modify a serialized file handle to refer to an arbitrary
file on the system. In the absence of a security manager, any operations that use the
file handle will be carried out using the attacker-supplied file path and file name.

Noncompliant Code Example
This noncompliant code example declares a serializable File object in the class Ser:

final class Ser implements Serializable {
 File f;
 public Ser() throws FileNotFoundException {
 f = new File("c:\\filepath\\filename");
 }
}

ptg11539634

158 Chapter 3 n Reliability

The serialized form of the object exposes the file path, which can be altered.
When the object is deserialized, the operations are performed using the altered path,
which can cause the wrong file to be read or modified.

Compliant Solution (Not Implementing Serializable)
This compliant solution shows a final class Ser that does not implement java
.io.Serializable. Consequently, the File object cannot be serialized.

final class Ser {
 File f;
 public Ser() throws FileNotFoundException {
 f = new File("c:\\filepath\\filename");
 }
}

final class Ser implements Serializable {
 transient File f;
 public Ser() throws FileNotFoundException {
 f = new File("c:\\filepath\\filename");
 }
}

Compliant Solution (Object Marked Transient)
This compliant solution declares the File object transient. The file path is not seri-
alized with the rest of the class, and is consequently not exposed to attackers.

Applicability
Deserializing direct handles to system resources can allow the modification of the
resources being referred to.

Bibliography
[Long 2012] ENV01-J. Place all security-sensitive code in a single JAR and sign

and seal it

[Oracle 2013c] Java Platform Standard Edition 7 Documentation

ptg11539634

47. Prefer using iterators over enumerations 159

n  47. Prefer using iterators over enumerations

According to the Java API Interface Enumeration<E> documentation [API 2013],

An object that implements the Enumeration interface generates a series of ele-
ments, one at a time. Successive calls to the nextElement method return successive
elements of the series.

As an example, the following code uses an Enumeration to display the contents
of a Vector:

for (Enumeration e = vector.elements(); e.hasMoreElements();) {
 System.out.println(e.nextElement());
}

The Java API [API 2013] recommends, “New implementations should consider
using Iterator in preference to Enumeration.” Iterators are superior to enumera-
tions because they use simpler method names, and, unlike enumerations, iterators
have well-defined semantics when elements in a collection are removed while iterat-
ing over the collection. Consequently, iterators rather than enumerators should be
preferred when examining iterable collections.

Noncompliant Code Example
This noncompliant code example implements a BankOperations class with a
removeAccounts() method used to terminate all the accounts of a particular account
holder, as identified by the name. Names can be repeated in the vector if a person has
more than one account. The remove() method attempts to iterate through all the
vector entries, comparing each entry with the name “Harry.”

class BankOperations {
 private static void removeAccounts(Vector v, String name) {
 Enumeration e = v.elements();

 while (e.hasMoreElements()) {
 String s = (String) e.nextElement();
 if (s.equals(name)) {
 v.remove(name); // Second Harry is not removed

ptg11539634

160 Chapter 3 n Reliability

Upon encountering the first “Harry,” it successfully removes the entry, and the
size of the vector diminishes to three. However, the index of the Enumeration
remains unchanged, causing the program to perform the next (now final) compari-
son with “Tom.” Consequently, the second “Harry” remains in the vector unscathed,
having shifted to the second position in the vector.

Compliant Solution
According to the Java API Interface Iterator<E> documentation [API 2013],

Iterator takes the place of Enumeration in the Java collections framework. Itera-
tors differ from enumerations in two ways:

n  Iterators allow the caller to remove elements from the underlying collection
during the iteration with well-defined semantics.

n  Method names have been improved.

This compliant solution remedies the problem described in the noncompliant
code example and demonstrates the advantages of using an Iterator over an
Enumeration:

 }
 }

 // Display current account holders
 System.out.println("The names are:");
 e = v.elements();
 while (e.hasMoreElements()) {
 // Prints Dick, Harry, Tom
 System.out.println(e.nextElement());
 }
 }

 public static void main(String args[]) {
 // List contains a sorted array of account holder names
 // Repeats are admissible
 List list = new ArrayList(Arrays.asList(
 new String[] {"Dick", "Harry", "Harry", "Tom"}));
 Vector v = new Vector(list);
 removeAccount(v, "Harry");
 }
}

ptg11539634

47. Prefer using iterators over enumerations 161

Applicability
Using Enumeration when performing remove operations on an iterable Collection
may cause unexpected program behavior.

Bibliography
[API 2013] Interface Enumeration<E>

Interface Iterator<E>

[Daconta 2003] Item 21, “Use Iteration over Enumeration”

class BankOperations {
 private static void removeAccounts(Vector v, String name) {
 Iterator i = v.iterator();

 while (i.hasNext()) {
 String s = (String) i.next();
 if (s.equals(name)) {
 i.remove(); // Correctly removes all instances
 // of the name Harry
 }
 }

 // Display current account holders
 System.out.println("The names are:");
 i = v.iterator();
 while (i.hasNext()) {
 System.out.println(i.next()); // Prints Dick, Tom only
 }
 }

 public static void main(String args[]) {
 List list = new ArrayList(Arrays.asList(
 new String[] {"Dick", "Harry", "Harry", "Tom"}));
 Vector v = new Vector(list);
 remove(v, "Harry");
 }
}

ptg11539634

162 Chapter 3 n Reliability

n  48. Do not use direct buffers for short-lived, infrequently
used objects

The new I/O (NIO) classes in java.nio allow the creation and use of direct buffers.
These buffers tremendously increase throughput for repeated I/O activities. However,
their creation and reclamation is more expensive than the creation and reclamation of
heap-based non-direct buffers because direct buffers are managed using OS-specific
native code. This added management cost makes direct buffers a poor choice for single-
use or infrequently used cases. Direct buffers are also outside the scope of Java’s garbage
collector; consequently, injudicious use of direct buffers can cause memory leaks.
Finally, frequent allocation of large direct buffers can cause an OutOfMemoryError.

Noncompliant Code Example
This noncompliant code example uses both a short-lived local object, rarelyUsed-
Buffer, and a long-lived, heavily used object, heavilyUsedBuffer. Both are allo-
cated in non-heap memory; neither is garbage collected.

ByteBuffer rarelyUsedBuffer = ByteBuffer.allocateDirect(8192);
// Use rarelyUsedBuffer once

ByteBuffer heavilyUsedBuffer = ByteBuffer.allocateDirect(8192);
// Use heavilyUsedBuffer many times

ByteBuffer rarelyUsedBuffer = ByteBuffer.allocate(8192);
// Use rarelyUsedBuffer once

ByteBuffer heavilyUsedBuffer = ByteBuffer.allocateDirect(8192);
// Use heavilyUsedBuffer many times

Compliant Solution
This compliant solution uses an indirect buffer to allocate the short-lived, infre-
quently used object. The heavily used buffer appropriately continues to use a non-
heap, non-garbage-collected direct buffer.

Applicability
Direct buffers are beyond the scope of Java’s garbage collector and can cause memory
leaks if they are used injudiciously. In general, direct buffers should be allocated only
when their use provides a significant gain in performance.

ptg11539634

49. Remove short-lived objects from long-lived container objects 163

Bibliography
[API 2013] Class ByteBuffer

n  49. Remove short-lived objects from long-lived container
objects

Always remove short-lived objects from long-lived container objects when the task
is over. For example, objects attached to a java.nio.channels.SelectionKey object
must be removed when they are no longer needed. Doing so reduces the likelihood
of memory leaks. Similarly, use of array-based data structures such as ArrayList can
introduce a requirement to indicate the absence of an entry by explicitly setting
ArrayList’s individual array element to null.

This guideline specifically addresses objects referred to from containers. For an
example where nulling out objects does not aid garbage collection, see Guideline 75, “Do
not attempt to help the garbage collector by setting local reference variables to null.”

Noncompliant Code Example (Removing Short-Lived Objects)
In this noncompliant code example, a long-lived ArrayList contains references to
both long- and short-lived elements. The programmer marks elements that have
become irrelevant by setting a “dead” flag in the object.

class DataElement {
 private boolean dead = false;
 // Other fields

 public boolean isDead() { return dead; }
 public void killMe() { dead = true; }
}

// ... Elsewhere

List<DataElement> longLivedList = new ArrayList<DataElement>();

// Processing that renders an element irrelevant

// Kill the element that is now irrelevant
longLivedList.get(someIndex).killMe();

The garbage collector cannot collect the dead DataElement object until it
becomes unreferenced. Note that all methods that operate on objects of class
DataElement must also check whether the instance in hand is dead.

ptg11539634

164 Chapter 3 n Reliability

Compliant Solution (Set Reference to null)
In this compliant solution, rather than use a dead flag, the programmer assigns null
to ArrayList elements that have become irrelevant:

class DataElement {
 // Dead flag removed
 // Other fields
}

// Elsewhere
List<DataElement> longLivedList = new ArrayList<DataElement>();

// Processing that renders an element irrelevant

// Set the reference to the irrelevant DataElement to null
longLivedList.set(someIndex, null);

class DataElement {
 public static final DataElement NULL = createSentinel();
 // Dead flag removed
 // Other fields

 private static final DataElement createSentinel() {
 // Allocate a sentinel object, setting all its fields
 // to carefully chosen "do nothing" values
 }
}

// Elsewhere
List<DataElement> longLivedList = new ArrayList<DataElement>();

Note that all code that operates on the longLivedList must now check for list
entries that are null.

Compliant Solution (Use Null Object Pattern)
This compliant solution avoids the problems associated with intentionally null ref-
erences by using a singleton sentinel object. This technique is known as the Null
Object pattern (also known as the Sentinel pattern).

ptg11539634

49. Remove short-lived objects from long-lived container objects 165

When feasible, programmers should choose this design pattern over the explicit
null reference values, as described in Guideline 41, “Return an empty array or collec-
tion instead of a null value for methods that return an array or collection.”

When using this pattern, the null object must be a singleton and must be final. It
may be either public or private, depending on the overall design of the DataElement
class. The state of the null object should be immutable after creation; immutability
can be enforced either by using final fields or by explicit code in the methods of the
DataElement class. See Chapter 8, “Behavioral Patterns, the Null Object,” of Patterns
in Java, Volume 1, Second Edition [Grand 2002], for additional information on this
design pattern, and also The CERT® Oracle® Secure Coding Standard for Java™ [Long
2012], “ERR08-J. Do not catch NullPointerException or any of its ancestors.”

Applicability
Leaving short-lived objects in long-lived container objects may consume memory
that cannot be recovered by the garbage collector, leading to memory exhaustion
and possible denial of service attacks.

Bibliography
[Grand 2002] Chapter 8, “Behavioral Patterns, the Null Object”

[Long 2012] ERR08-J. Do not catch NullPointerException or any of its
ancestors

// Processing that renders an element irrelevant
// Set the reference to the irrelevant DataElement to
// the NULL object
longLivedList.set(someIndex, DataElement.NULL);

ptg11539634

This page intentionally left blank

ptg11539634

Chapter

 167

Program Understandability

Program understandability is the ease with which the program can be understood—
that is, the ability to determine what a program does and how it works by reading its
source code and accompanying documentation [Grubb 2003]. Understandable code
is easier to maintain because software maintainers are less likely to introduce defects
into code that is clear and comprehensible. Understandability helps in manual
 analysis of source code because it allows the auditor to more easily spot defects and
vulnerabilities.

Some guidelines in this chapter are stylistic in nature; they will help a Java pro-
grammer to write clearer, more readable code. Failure to follow these guidelines
could result in obscure code and design defects.

n  50. Be careful using visually misleading identifiers and
literals

Use visually distinct identifiers that are unlikely to be misread during development
and review of code. Depending on the fonts used, certain characters are visually sim-
ilar or even identical and can be misinterpreted. Consider the examples in Table 4–1.

The Java Language Specification (JLS) mandates that program source code be
written using the Unicode character encoding [Unicode 2013]. Some distinct Unicode
characters share identical glyph representation when displayed in many common
fonts. For example, the Greek and Coptic characters (Unicode Range 0370–03FF) are
frequently indistinguishable from the Greek-character subset of the Mathematical
Alphanumeric Symbols (Unicode Range 1D400–1D7FF).

4

ptg11539634

168 Chapter 4 n Program Understandability

Avoid defining identifiers that include Unicode characters with overloaded
glyphs. One straightforward approach is to use only ASCII or Latin-1 characters in
identifiers. Note that the ASCII character set is a subset of Unicode.

Do not use multiple identifiers that vary only by one or more visually similar char-
acters. Also, make the initial portions of long identifiers distinct to aid recognition.

According to the JLS, §3.10.1, “Integer Literals” [JLS 2013],

An integer literal is of type long if it is suffixed with an ASCII letter L or l (ell);
 otherwise, it is of type int. The suffix L is preferred because the letter l (ell) is often
hard to distinguish from the digit 1 (one).

Consequently, use L, not l, to clarify programmer intent when indicating that an
integer literal is of type long.

Integer literals with leading zeros, in actuality, denote octal values not decimal
values. According to §3.10.1, “Integer Literals,” of the JLS [JLS 2013],

An octal numeral consists of an ASCII digit 0 followed by one or more of the ASCII
digits 0 through 7 interspersed with underscores, and can represent a positive, zero,
or negative integer.

This misinterpretation may result in programming errors and is more likely to
occur while declaring multiple constants and trying to enhance the formatting with
zero padding.

Intended Character Could Be Mistaken for This Character, and Vice Versa

0 (zero) O (capital o)

D (capital d)

1 (one) I (capital i)

l (lowercase L)

2 (two) Z (capital z)

5 (five) S (capital s)

8 (eight) B (capital b)

n (lowercase N) h (lowercase H)

rn (lowercase R, lowercase N) m (lowercase M)

Table 4–1. Misleading characters

ptg11539634

50. Be careful using visually misleading identifiers and literals 169

Noncompliant Code Example
This noncompliant code example has two variables, stem and stern, within the
same scope that can be easily confused and accidentally interchanged:

int stem; // Position near the front of the boat
/* ... */
int stern; // Position near the back of the boat

int bow; // Position near the front of the boat
/* ... */
int stern; // Position near the back of the boat

public class Visual {
 public static void main(String[] args) {
 System.out.println(11111 + 1111l);
 }
}

Compliant Solution
This compliant solution eliminates the confusion by assigning visually distinct iden-
tifiers to the variables:

Noncompliant Code Example
This noncompliant code example prints the result of adding an int and a long value,
even though it may appear that two integers (11111) are being added:

Compliant Solution
This compliant solution uses an uppercase L (long) instead of lowercase l to disam-
biguate the visual appearance of the second integer. Its behavior is the same as that of
the noncompliant code example, but the programmer’s intent is clear:

public class Visual {
 public static void main(String[] args) {
 System.out.println(11111 + 1111L);
 }
}

ptg11539634

170 Chapter 4 n Program Understandability

Noncompliant Code Example
This noncompliant code example mixes decimal values and octal values while
storing them in an array:

int[] array = new int[3];

void exampleFunction() {
 array[0] = 2719;
 array[1] = 4435;
 array[2] = 0042;
 // ...
}

int[] array = new int[3];

void exampleFunction() {
 array[0] = 2719;
 array[1] = 4435;
 array[2] = 42;
 // ...
}

It appears that the third element in array is intended to hold the decimal value 42.
However, the decimal value 34 (corresponding to the octal value 42) gets assigned.

Compliant Solution
When integer literals are intended to represent a decimal value, avoid padding with
leading zeros. Use another technique instead, such as padding with whitespace, to
preserve digit alignment.

Applicability
Failing to use visually distinct identifiers could result in the use of the wrong identi-
fier and lead to unexpected program behavior.

Heuristic detection of identifiers with visually similar names is straightforward.
Confusing a lowercase letter l with a digit 1 when indicating that an integer denotation
is a long value can result in incorrect computations. Automated detection is trivial.

Mixing decimal and octal values can result in improper initialization or assignment.
Detection of integer literals that have a leading zero is trivial. However, deter-

mining whether the programmer intended to use an octal literal or a decimal literal

ptg11539634

51. Avoid ambiguous overloading of variable arity methods 171

is infeasible. Accordingly, sound automated detection is also infeasible. Heuristic
checks may be useful.

Bibliography
[Bloch 2005] Puzzle 4, “It’s Elementary”

[JLS 2013] §3.10.1, “Integer Literals”

[Seacord 2009] DCL02-C. Use visually distinct identifiers

[Unicode 2013]

n  51. Avoid ambiguous overloading of variable arity methods

The variable arity (varargs) feature was introduced in JDK v1.5.0 to support methods
that accept a variable number of arguments.

According to the Java SE 6 Documentation [Oracle 2011b],

As an API designer, you should use [variable arity methods] sparingly, only when the
benefit is truly compelling. Generally speaking, you should not overload a varargs
method, or it will be difficult for programmers to figure out which overloading gets
called.

Noncompliant Code Example
In this noncompliant code example, overloading variable arity methods makes it
unclear which definition of displayBooleans() is invoked:

class Varargs {
 private static void displayBooleans(boolean... bool) {
 System.out.print("Number of arguments: "
 + bool.length + ", Contents: ");

 for (boolean b : bool) {
 System.out.print("[" + b + "]");
 }
 }
 private static void displayBooleans(boolean bool1,
 boolean bool2) {
 System.out.println("Overloaded method invoked");
 }
 public static void main(String[] args) {
 displayBooleans(true, false);
 }
}

ptg11539634

172 Chapter 4 n Program Understandability

When run, this program outputs

Overloaded method invoked

because the nonvariable arity definition is more specific and consequently a better
fit for the provided arguments. However, this complexity is best avoided.

Compliant Solution
To avoid overloading variable arity methods, use distinct method names to ensure
that the intended method is invoked, as shown in this compliant solution:

class Varargs {
 private static void displayManyBooleans(boolean... bool) {
 System.out.print("Number of arguments: "
 + bool.length + ", Contents: ");

 for (boolean b : bool) {
 System.out.print("[" + b + "]");
 }
 }
 private static void displayTwoBooleans(boolean bool1,
 boolean bool2) {
 System.out.println("Overloaded method invoked");
 System.out.println("Contents: ["
 + bool1 + "], [" + bool2 + "]");
 }
 public static void main(String[] args) {
 displayManyBooleans(true, false);
 }
}

public void foo() { }
public void foo(int a1) { }
public void foo(int a1, int a2, int... rest) { }

Applicability
Injudicious use of overloaded variable arity methods may create ambiguity and
diminish code readability.

It may be desirable to violate this rule for performance reasons. One such reason
would be to avoid the cost of creating an array instance and initializing it on every
invocation of a method [Bloch 2008].

ptg11539634

52. Avoid in-band error indicators 173

When overloading variable arity methods, it is important to avoid any ambiguity
regarding which method should be invoked. The preceding code sample avoids the
possibility of incorrect method selection by using unambiguous method signatures.

Automated detection is straightforward.

Bibliography
[Bloch 2008] Item 42, “Use Varargs Judiciously”

[Steinberg 2008] Using the Varargs Language Feature

[Oracle 2011b] Varargs

n  52. Avoid in-band error indicators

An in-band error indicator is a value returned by a method that indicates either a
legitimate return value or an illegitimate value that denotes an error. Some common
examples of in-band error indicators include

n  A valid object or a null reference.

n  An integer indicating a positive value, or −1 to indicate that an error occurred.

n  An array of valid objects or a null reference indicating the absence of valid
objects. (This topic is further addressed in Guideline 41, “Return an empty
array or collection instead of a null value for methods that return an array or
collection.”)

In-band error indicators require the caller to check for the error; however, this
checking is often overlooked. Failure to check for such error conditions not only
violates The CERT® Oracle® Secure Coding Standard for Java™ [Long 2012], “EXP00-J.
Do not ignore values returned by methods,” but also has the unfortunate effect of
propagating invalid values that may subsequently be treated as valid in later
computations.

Avoid the use of in-band error indicators. They are much less common in Java’s
core library than in some other programming languages; nevertheless, they are used in
the read(byte[] b, int off, int len) and read(char[] cbuf, int off, int len)
families of methods in java.io.

In Java, the best way to indicate an exceptional situation is by throwing an
exception rather than by returning an error code. Exceptions are propagated across
scopes and cannot be ignored as easily as error codes can. When using exceptions,
the error-detection and error-handling code is kept separate from the main flow of
control.

ptg11539634

174 Chapter 4 n Program Understandability

Noncompliant Code Example
This noncompliant code example attempts to read into an array of characters and to
add an extra character into the buffer immediately after the characters that are read.

static final int MAX = 21;
static final int MAX_READ = MAX - 1;
static final char TERMINATOR = '\\';
int read;
char [] chBuff = new char[MAX];
BufferedReader buffRdr;

// Set up buffRdr

read = buffRdr.read(chBuff, 0, MAX_READ);
chBuff[read] = TERMINATOR;

public static int readSafe(BufferedReader buffer, char[] cbuf,
 int off, int len) throws IOException {
 int read = buffer.read(cbuf, off, len);
 if (read == -1) {
 throw new EOFException();
 } else {
 return read;
 }
}

// ...

BufferedReader buffRdr;

// Set up buffRdr

However, if the input buffer is initially at end-of-file, the read() method will
return −1, and the attempt to place the terminator character will throw an Array-
IndexOutOfBoundsException.

Compliant Solution (Wrapping)
This compliant solution defines a readSafe() method that wraps the original read()
method and throws an exception if end-of-file is detected:

ptg11539634

53. Do not perform assignments in conditional expressions 175

Applicability
Using in-band error indicators may result in programmers either failing to check
status codes or using incorrect return values, leading to unexpected behavior.

Given the comparatively rare occurrence of in-band error indicators in Java, it
may be possible to compile a list of all standard library methods that use them and to
automatically detect their use. However, detecting the safe use of in-band error indi-
cators is not feasible in the general case.

Returning an object that might be null on failure or a valid object on success is a
common example of an in-band error indicator. Although better method designs are
often available, returning an object that may be null can be acceptable under some
circumstances. See Guideline 26, “Always provide feedback about the resulting
value of a method,” for an example.

Bibliography
[API 2013] Class Reader

[JLS 2013] Chapter 11, “Exceptions”

[Long 2012] EXP00-J. Do not ignore values returned by methods

n  53. Do not perform assignments in conditional expressions

Using the assignment operator in conditional expressions frequently indicates pro-
grammer error and can result in unexpected behavior. The assignment operator
should not be used in the following contexts:

n  if (controlling expression)

n  while (controlling expression)

n  do ... while (controlling expression)

n  for (second operand)

try {
 read = readSafe(buffRdr, chBuff, 0, MAX_READ);
 chBuff[read] = TERMINATOR;
} catch (EOFException eof) {
 chBuff[0] = TERMINATOR;
}

ptg11539634

176 Chapter 4 n Program Understandability

n  switch (controlling expression)

n  ?: (first operand)

n  && (either operand)

n  || (either operand)

n  ?: (second or third operands) where the ternary expression is used in any of
these contexts

Noncompliant Code Example
In this noncompliant code example, the controlling expression in the if statement is
an assignment expression.

public void f(boolean a, boolean b) {
 if (a = b) {
 /* ... */
 }
}

public void f(boolean a, boolean b) {
 if (a == b) {
 /* ... */
 }
}

public void f(boolean a, boolean b) {
 if ((a = b) == true) {

Although the programmer’s intent could have been to assign b to a and test the
value of the result, this usage frequently occurs when the programmer mistakenly
uses the assignment operator = rather than the equality operator ==.

Compliant Solution
The conditional block shown in this compliant solution only executes when a is
equal to b.

Unintended assignment of b to a cannot occur.

Compliant Solution
When the assignment is intentional, this compliant solution clarifies the program-
mer’s intent:

ptg11539634

53. Do not perform assignments in conditional expressions 177

Compliant Solution
It is clearer to express the logic as an explicit assignment followed by the if
 condition:

public void f(boolean a, boolean b) {
 a = b;
 if (a) {
 /* ... */
 }
}

Noncompliant Code Example
In this noncompliant code example, an assignment expression appears as an
operand of the && operator:

public void f(boolean a, boolean b, boolean flag) {
 while ((a = b) && flag) {
 /* ... */
 }
}

Because && is not a comparison operator, assignment is an illegal operand.
Again, this is frequently a case of the programmer mistakenly using the assignment
operator = instead of the equals operator ==.

Compliant Solution
When the assignment of b to a is unintentional, this conditional block is now exe-
cuted only when a is equal to b and flag is true:

public void f(boolean a, boolean b, boolean flag) {
 while ((a == b) && flag) {
 /* ... */
 }
}

 /* ... */
 }
}

ptg11539634

178 Chapter 4 n Program Understandability

Applicability
The use of the assignment operator in controlling conditional expressions frequently
indicates programmer error and can result in unexpected behavior.

As an exception to this guideline, it is permitted to use the assignment operator in
conditional expressions when the assignment is not the controlling expression (that
is, the assignment is a subexpression), as shown in the following compliant solution.

public void assignNocontrol(BufferedReader reader)
 throws IOException {
 String line;
 while ((line = reader.readLine()) != null) {
 // ... Work with line
 }
}

int login;

if (invalid_login())
 login = 0;
else
 login = 1;

Bibliography
[Hatton 1995] §2.7.2, “Errors of Omission and Addition”

n  54. Use braces for the body of an if, for, or while statement

Use opening and closing braces for if, for, and while statements even when the
body contains only a single statement. Braces improve the uniformity and readabil-
ity of code.

More important, it is easy to forget to add braces when inserting additional
statements into a body containing only a single statement, because the conventional
program indentation gives strong (but misleading) guidance to the structure.

Noncompliant Code Example
This noncompliant code example authenticates a user with an if statement that
lacks braces.

ptg11539634

54. Use braces for the body of an if, for, or while statement 179

This program behaves as expected. However, a maintainer might subsequently
add a debug statement or other logic but forget to add opening and closing braces:

int login;

if (invalid_login())
 login = 0;
else
 // Debug line added below
 System.out.println("Login is valid\n");
 // The next line is always executed
 login = 1;

The code’s indentation disguises the functionality of the program, potentially
leading to a security vulnerability.

Compliant Solution
This compliant solution uses opening and closing braces even though the if and
else bodies of the if statement are single statements:

int login;

if (invalid_login()) {
 login = 0;
} else {
 login = 1;
}

Noncompliant Code Example
This noncompliant code example nests an if statement within another if state-
ment, without braces around the if and else bodies:

int privileges;

if (invalid_login())
 if (allow_guests())
 privileges = GUEST;
else
 privileges = ADMINISTRATOR;

ptg11539634

180 Chapter 4 n Program Understandability

The indentation might lead the programmer to believe users are granted
administrator privileges only when their login is valid. However, the else statement
actually binds to the inner if statement:

int privileges;

if (invalid_login())
 if (allow_guests())
 privileges = GUEST;
 else
 privileges = ADMINISTRATOR;

int privileges;

if (invalid_login()) {
 if (allow_guests()) {
 privileges = GUEST;
 }
} else {
 privileges = ADMINISTRATOR;
}

Consequently, this defect allows unauthorized users to obtain administrator
privileges.

Compliant Solution
This compliant solution uses braces to eliminate the ambiguity, consequently ensur-
ing that privileges are correctly assigned:

Applicability
Failure to enclose the bodies of if, for, or while statements in braces makes code
error prone and increases maintenance costs.

Bibliography
[GNU 2013] §5.3, “Clean Use of C Constructs”

n  55. Do not place a semicolon immediately following an if,
for, or while condition

Do not use a semicolon after an if, for, or while condition because it typically
indicates programmer error and can result in unexpected behavior.

ptg11539634

56. Finish every set of statements associated with a case label with a break statement 181

Noncompliant Code Example
In this noncompliant code example, a semicolon is used immediately following an
if condition.

if (a == b); {
 /* ... */
}

if (a == b) {
 /* ... */
}

The statements in the apparent body of the if statement are always evaluated,
regardless of the result of the condition expression.

Compliant Solution
This compliant solution eliminates the semicolon and ensures that the body of the
if statement is executed only when the condition expression is true:

Applicability
Placing a semicolon immediately following an if, for, or while condition may result
in unexpected behavior.

Bibliography
[Hatton 1995] §2.7.2, “Errors of Omission and Addition”

n  56. Finish every set of statements associated with a case
label with a break statement

A switch block comprises several case labels and an optional but highly recom-
mended default label. Statements that follow each case label must end with a break
statement, which is responsible for transferring the control to the end of the switch
block. When omitted, the statements in the subsequent case label are executed.
Because the break statement is optional, omitting it produces no compiler warnings.
When this behavior is unintentional, it can cause unexpected control flow.

Noncompliant Code Example
In this noncompliant code example, the case where the card is 11 lacks a break
statement. As a result, execution continues with the statements for card = 12.

ptg11539634

182 Chapter 4 n Program Understandability

Compliant Solution
This compliant solution terminates each case with a break statement.

int card = 11;

switch (card) {
 /* ... */
 case 11:
 System.out.println("Jack");
 case 12:
 System.out.println("Queen");
 break;
 case 13:
 System.out.println("King");
 break;
 default:
 System.out.println("Invalid Card");
 break;
}

int card = 11;

switch (card) {
 /* ... */
 case 11:
 System.out.println("Jack");
 break;
 case 12:
 System.out.println("Queen");
 break;
 case 13:
 System.out.println("King");
 break;
 default:
 System.out.println("Invalid Card");
 break;
}

Applicability
Failure to include break statements can cause unexpected control flow.

The break statement at the end of the final case in a switch statement may be
omitted. By convention, this is the default label. The break statement serves to
transfer control to the end of the switch block. Fall-through behavior also causes

ptg11539634

57. Avoid inadvertent wrapping of loop counters 183

control to arrive at the end of the switch block. Consequently, control transfers to
the statements following the switch block without regard to the presence or absence
of the break statement. Nevertheless, the final case in a switch statement should end
with a break statement in accordance with good programming style [Allen 2000].

Exceptionally, when multiple cases require execution of identical code, break
statements may be omitted from all cases except the last one. Similarly, when pro-
cessing for one case is a proper prefix of processing for one or more other cases, the
break statement may be omitted from the prefix case. This should be clearly indi-
cated with a comment. For example:

int card = 11;
int value;

// Cases 11,12,13 fall through to the same case
switch (card) {
 // Processing for this case requires a prefix
 // of the actions for the following three
 case 10:
 do_something(card);
 // Intentional fall-through
 // These three cases are treated identically
 case 11: // Break not required
 case 12: // Break not required
 case 13:
 value = 10;
 break; // Break required
 default:
 // Handle error condition
}

Also, when a case ends with a return or throw statement or nonreturning
method such as System.exit(), the break statement may be omitted.

Bibliography
[JLS 2013] §14.11, “The switch Statement”

n  57. Avoid inadvertent wrapping of loop counters

Unless coded properly, a while or for loop may execute forever, or until the counter
wraps around and reaches its final value. (See The CERT® Oracle® Secure Coding
Standard for Java™ [Long 2012], “NUM00-J. Detect or prevent integer overflow.”)
This problem may result from incrementing or decrementing a loop counter by more

ptg11539634

184 Chapter 4 n Program Understandability

than one and then testing for equality to a specified value to terminate the loop. In
this case, it is possible that the loop counter will leapfrog the specified value and
execute either forever, or until the counter wraps around and reaches its final value.
This problem may also be caused by naïve testing against limits; for example, loop-
ing while a counter is less than or equal to Integer.MAX_VALUE or greater than or
equal to Integer.MIN_VALUE.

Noncompliant Code Example
This noncompliant code example appears to iterate five times.

for (i = 1; i != 10; i += 2) {
 // ...
}

for (i = 1; i != 10; i += 5) {
 // ...
}

However, the loop never terminates. Successive values of i are 1, 3, 5, 7, 9, 11,
and so on; the comparison with 10 never evaluates to true. The value reaches the
maximum representable positive number (Integer.MAX_VALUE), then wraps to the
second lowest negative number (Integer.MIN_VALUE + 1). It then works its way up
to −1, then 1, and proceeds as described earlier.

Noncompliant Code Example
This noncompliant code example terminates but performs many more iterations
than expected:

Successive values of i are 1, 6, and 11, skipping 10. The value of i then wraps
from near the maximum positive value to near the lowest negative value and works
its way up toward 0. It then assumes 2, 7, and 12, skipping 10 again. After the value
wraps from the high positive to the low negative side three more times, it finally
reaches 0, 5, and 10, terminating the loop.

Compliant Solution
One solution is to simply ensure the loop termination condition is reached before
the counter inadvertently wraps.

for (i = 1; i == 11; i += 2) {
 // ...
}

ptg11539634

57. Avoid inadvertent wrapping of loop counters 185

for (i = 1; i <= 10; i += 2) {
 // ...
}

for (i = 1; i <= Integer.MAX_VALUE; i++) {
 // ...
}

This latter solution can be more robust in the event of changes to the iteration
conditions. However, this approach should never replace careful consideration
regarding the intended and actual number of iterations.

Noncompliant Code Example
A loop expression that tests whether a counter is less than or equal to Integer.MAX_
VALUE or greater or equal to Integer.MIN_VALUE will never terminate because the
expression will always evaluate to true. For example, the following loop will never
terminate because i can never be greater than Integer.MAX_VALUE:

Compliant Solution
The loop in this compliant solution terminates when i is equal to Integer.MAX_VALUE:

for (i = 1; i < Integer.MAX_VALUE; i++) {
 // ...
}

This solution can be fragile when one or more of the conditions affecting the
iteration must be changed. A better solution is to use a numerical comparison
 operator (that is, <, <=, >, or >=) to terminate the loop.

If the loop is meant to iterate for every value of i greater than 0, including Integer
.MAX_VALUE, it can be implemented as follows:

i = 0;
do {
 i++
 // ...
} while (i != Integer.MAX_VALUE);

Noncompliant Code Example
This noncompliant code example initializes the loop counter i to 0 and then incre-
ments it by two on each iteration, basically enumerating all the even, positive values.

ptg11539634

186 Chapter 4 n Program Understandability

The loop is expected to terminate when i is greater than Integer.MAX_VALUE − 1, an
even value. In this case, the loop fails to terminate because the counter wraps around
before becoming greater than Integer.MAX_VALUE − 1.

for (i = 0; i <= Integer.MAX_VALUE - 1; i += 2) {
 // ...
}

Compliant Solution
The loop in this compliant solution terminates when the counter i is greater than
Integer.MAX_VALUE minus the step value as the loop-terminating condition.

for (i = 0; i <= Integer.MAX_VALUE - 2; i += 2) {
 // ...
}

Applicability
Incorrect termination of loops may result in infinite loops, poor performance, incor-
rect results, and other problems. If any of the conditions used to terminate a loop can
be influenced by an attacker, these errors can be exploited to cause a denial of service
or other attack.

Bibliography
[JLS 2013] §15.20.1, “Numerical Comparison Operators <, <=, >, and >=”

[Long 2012] NUM00-J. Detect or prevent integer overflow

n  58. Use parentheses for precedence of operation

Programmers frequently make errors regarding the precedence of operators because
of the unintuitive low precedence levels of &, |, ̂ , <<, and >>. Avoid mistakes regard-
ing precedence through the suitable use of parentheses, which also improves code
readability. The precedence of operations by the order of the subclauses is listed in
the Java™ Tutorials [Tutorials 2013].

Although it advises against depending on parentheses for specifying evaluation
order, The CERT® Oracle® Secure Coding Standard for Java™ [Long 2012], “EXP05-J.
Do not write more than once to the same variable within an expression,” applies
only to expressions that contain side effects.

ptg11539634

58. Use parentheses for precedence of operation 187

Noncompliant Code Example
The intent of the expression in this noncompliant code example is to add the varia-
ble OFFSET to the result of the bitwise logical AND between x and MASK.

public static final int MASK = 1337;
public static final int OFFSET = -1337;

public static int computeCode(int x) {
 return x & MASK + OFFSET;
}

According to the operator precedence guidelines, the expression is parsed as

x & (MASK + OFFSET)

This expression is evaluated as follows, resulting in the value 0:

x & (1337 - 1337)

Compliant Solution
This compliant solution uses parentheses to ensure that the expression is evaluated
as intended:

public static final int MASK = 1337;
public static final int OFFSET = -1337;

public static int computeCode(int x) {
 return (x & MASK) + OFFSET;
}

Noncompliant Code Example
In this noncompliant code example, the intent is to append either "0" or "1" to the
string "value=".

public class PrintValue {
 public static void main(String[] args) {
 String s = null;
 // Prints "1"
 System.out.println("value=" + s == null ? 0 : 1);
 }
}

ptg11539634

188 Chapter 4 n Program Understandability

However, the precedence rules result in the expression to be printed being
parsed as ("value=" + s) == null ? 0 : 1.

Compliant Solution
This compliant solution uses parentheses to ensure that the expression evaluates as
intended.

public class PrintValue {
 public static void main(String[] args) {
 String s = null;
 // Prints "value=0" as expected
 System.out.println("value=" + (s == null ? 0 : 1));
 }
}

Applicability
Mistakes concerning precedence rules can cause an expression to be evaluated in an
unintended way, which can result in unexpected and abnormal program behavior.

Parentheses may be omitted from mathematical expressions that follow the
algebraic precedence rules. For example, consider the following expression:

x + y * z

By mathematical convention, multiplication is performed before addition;
parentheses are redundant in this case:

x + (y * z)

Detection of all expressions using low-precedence operators without parenthe-
ses is straightforward. Determining the correctness of such uses is infeasible in the
general case, although heuristic warnings could be useful.

Bibliography
[ESA 2005] Rule 65, Use parentheses to explicitly indicate the order of execution of

numerical operators

[Long 2012] EXP05-J. Do not write more than once to the same variable within an
expression

[Tutorials 2013] Expressions, Statements, and Blocks

ptg11539634

59. Do not make assumptions about file creation 189

n  59. Do not make assumptions about file creation

Although creating a file is usually accomplished with a single method call, this single
action raises multiple security-related questions. What should be done if the file can-
not be created? What should be done if the file already exists? What should be the
file’s initial attributes, such as permissions?

Java provides several generations of file-handling facilities. The original input/
output facilities, which included basic file handling, are in the package java.io.
More comprehensive facilities were included in JDK 1.4 with the New I/O package
java.nio (see New I/O APIs [Oracle 2010b]). Still more comprehensive facilities
were included in JDK 1.7 with the New I/O 2 package java.nio.file. Both packages
introduced a number of methods to support finer-grained control over file creation.

The CERT® Oracle® Secure Coding Standard for Java™ [Long 2012], “FIO01-J.
Create files with appropriate access permissions,” explains how to specify the per-
missions of a newly created file.

Noncompliant Code Example
This noncompliant code example tries to open a file for writing:

public void createFile(String filename)
 throws FileNotFoundException{
 OutputStream out = new FileOutputStream(filename);
 // Work with file
}

If the file exists before being opened, its former contents will be overwritten
with the contents provided by the program.

Noncompliant Code Example (TOCTOU)
This noncompliant code example tries to avoid altering an existing file by creating
an empty file using java.io.File.createNewFile(). If a file with the given name
already exists, then createNewFile() will return false without destroying the
named file’s contents.

public void createFile(String filename)
 throws FileNotFoundException{
 OutputStream out = new FileOutputStream(filename, true);
 if (!new File(filename).createNewFile()) {

ptg11539634

190 Chapter 4 n Program Understandability

Unfortunately, this solution is subject to a TOCTOU (time-of-check, time-of-use)
race condition. It is possible for an attacker to modify the file system after the empty
file is created but before the file is opened, such that the file that is opened is distinct
from the file that was created.

Compliant Solution (Files)
This compliant solution uses the java.nio.file.Files.newOutputStream()
method to atomically create the file, and throw an exception if the file already exists:

 // File cannot be created...handle error
 } else {
 out = new FileOutputStream(filename);
 // Work with file
 }
}

public void createFile(String filename)
 throws FileNotFoundException{
 try (OutputStream out = new BufferedOutputStream(
 Files.newOutputStream(Paths.get(filename),
 StandardOpenOption.CREATE_NEW))) {
 // Work with out
 } catch (IOException x) {
 // File not writable...Handle error
 }
}

Applicability
The ability to determine whether an existing file has been opened or a new file has
been created provides greater assurance that only the intended file is opened or
overwritten and that other files remain unaffected.

Bibliography
[API 2013] Class java.io.File

Class java.nio.file.Files

[Long 2012] FIO01-J. Create files with appropriate access permissions

[Oracle 2010b] New I/O APIs

ptg11539634

60. Convert integers to floating-point for floating-point operations 191

n  60. Convert integers to floating-point for floating-point
operations

Incautious use of integer arithmetic to calculate a value for assignment to a floating-
point variable can result in loss of information. For example, integer arithmetic
always produces integral results, discarding information about any possible frac-
tional remainder. Furthermore, there can be loss of precision when converting inte-
gers to floating-point values. See The CERT® Oracle® Secure Coding Standard for Java™
[Long 2012], “NUM13-J. Avoid loss of precision when converting primitive integers
to floating-point,” for additional information. Correct programming of expressions
that combine integer and floating-point values requires careful consideration.

Operations that could suffer from integer overflow or loss of a fractional remain-
der should be performed on floating-point values, rather than integral values.

Noncompliant Code Example
In this noncompliant code example, the division and multiplication operations are
performed on integral values; the results of these operations are then converted to
floating-point.

short a = 533;
int b = 6789;
long c = 4664382371590123456L;

float d = a / 7; // d is 76.0 (truncated)
double e = b / 30; // e is 226.0 (truncated)
double f = c * 2; // f is -9.1179793305293046E18
 // because of integer overflow

The results of the integral operations are truncated to the nearest integer and can
also overflow. As a result, the floating-point variables d, e, and f are initialized incor-
rectly because the truncation and overflow take place before the conversion to
 floating-point.

Note that the calculation for c also violates “NUM00-J. Detect or prevent integer
overflow” [Long 2012].

Compliant Solution (Floating-Point Literal)
The following compliant solution performs the multiplication and division opera-
tions on floating-point values, avoiding both the truncation and the overflow seen in

ptg11539634

192 Chapter 4 n Program Understandability

the noncompliant code example. In every operation, at least one of the operands is of
a floating-point type, forcing floating-point multiplication and division, and avoid-
ing truncation and overflow:

short a = 533;
int b = 6789;
long c = 4664382371590123456L;

float d = a / 7.0f; // d is 76.14286
double e = b / 30.; // e is 226.3
double f = (double)c * 2; // f is 9.328764743180247E18

Another compliant solution is to eliminate the truncation and overflow errors by
storing the integers in the floating-point variables before performing the arithmetic
operations:

short a = 533;
int b = 6789;
long c = 4664382371590123456L;

float d = a;
double e = b;
double f = c;

d /= 7; // d is 76.14286
e /= 30; // e is 226.3
f *= 2; // f is 9.328764743180247E18

As in the previous compliant solution, this practice ensures that at least one of
the operands of each operation is a floating-point number. Consequently, the opera-
tions are performed on floating-point values.

In both compliant solutions, the original value of c cannot be represented
exactly as a double. The representation of type double has only 48 mantissa bits, but
a precise representation of the value of c would require 56 mantissa bits. Conse-
quently, the value of c is rounded to the nearest value that can be represented by type
double, and the computed value of f (9.328764743180247E18) differs from the
exact mathematical result (9328564743180246912). This loss of precision is one of
the many reasons correct programming of expressions that mix integer and floating-
point operations or values requires careful consideration. See “NUM13-J. Avoid loss
of precision when converting primitive integers to floating-point” [Long 2012], for
more information about integer-to-floating-point conversion. Even with this loss of

ptg11539634

60. Convert integers to floating-point for floating-point operations 193

precision, however, the computed value of f is far more accurate than that produced
in the noncompliant code example.

Noncompliant Code Example
This noncompliant code example attempts to compute the whole number greater
than the ratio of two integers. The result of the computation is 1.0 rather than the
intended 2.0.

int a = 60070;
int b = 57750;

double value = Math.ceil(a/b);

int a = 60070;
int b = 57750;

double value = Math.ceil(a/((double) b));

As a consequence of Java’s numeric promotion rules, the division operation per-
formed is an integer division whose result is truncated to 1. This result is then pro-
moted to double before being passed to the Math.ceil() method.

Compliant Solution
This compliant solution casts one of the operands to double before the division is
performed.

As a result of the cast, the other operand is automatically promoted to double.
The division operation becomes a double divide, and value is assigned the correct
result of 2.0. As in previous compliant solutions, this practice ensures that at least
one of the operands of each operation is a floating-point number.

Applicability
Improper conversions between integers and floating-point values can yield unex-
pected results, especially from precision loss. In some cases, these unexpected results
can involve overflow or other exceptional conditions.

It is acceptable to perform operations using a mix of integer and floating-point
values when deliberately exploiting the properties of integer arithmetic before con-
version to floating-point. For example, use of integer arithmetic eliminates the need
to use the floor() method. Any such code must be clearly documented to help
future maintainers understand that this behavior is intentional.

ptg11539634

194 Chapter 4 n Program Understandability

Bibliography
[JLS 2013] §5.1.2, “Widening Primitive Conversion”

[Long 2012] NUM13-J. Avoid loss of precision when converting primitive integers
to floating-point

NUM00-J. Detect or prevent integer overflow

n  61. Ensure that the clone() method calls super.clone()

Cloning a subclass of a nonfinal class which defines a clone() method that fails to
call super.clone() will produce an object of the wrong class.

The Java API [API 2013] for the clone() method says:

By convention, the returned object should be obtained by calling super.clone. If a
class and all of its superclasses (except Object) obey this convention, it will be the
case that x.clone().getClass() == x.getClass().

Noncompliant Code Example
In this noncompliant code example, the clone() method in the class Base fails to
call super.clone():

class Base implements Cloneable {
 public Object clone() throws CloneNotSupportedException {
 return new Base();
 }
 protected void doLogic() {
 System.out.println("Superclass doLogic");
 }
}

class Derived extends Base {
 public Object clone() throws CloneNotSupportedException {
 return super.clone();
 }
 protected void doLogic() {
 System.out.println("Subclass doLogic");
 }
 public static void main(String[] args) {
 Derived dev = new Derived();
 try {
 Base devClone = (Base)dev.clone(); // Has type Base
 // instead of Derived

ptg11539634

61. Ensure that the clone() method calls super.clone() 195

Consequently, the object devClone ends up being of type Base instead of
Derived, and the doLogic() method is incorrectly applied.

Compliant Solution
This compliant solution correctly calls super.clone() in the Base class’s clone()
method.

 devClone.doLogic(); // Prints "Superclass doLogic"
 // instead of "Subclass doLogic"
 } catch (CloneNotSupportedException e) { /* ... */ }
 }
}

class Base implements Cloneable {
 public Object clone() throws CloneNotSupportedException {
 return super.clone();
 }
 protected void doLogic() {
 System.out.println("Superclass doLogic");
 }
}

class Derived extends Base {
 public Object clone() throws CloneNotSupportedException {
 return super.clone();
 }
 protected void doLogic() {
 System.out.println("Subclass doLogic");
 }
 public static void main(String[] args) {
 Derived dev = new Derived();
 try {
 // Has type Derived, as expected
 Base devClone = (Base)dev.clone();
 devClone.doLogic(); // Prints "Subclass doLogic"
 // as expected
 } catch (CloneNotSupportedException e) { /* ... */ }
 }
}

Applicability
Failing to call super.clone() may cause a cloned object to have the wrong type.

ptg11539634

196 Chapter 4 n Program Understandability

Bibliography
[API 2013] Class Object

n  62. Use comments consistently and in a readable fashion

Mixing the use of traditional or block comments (starting with /* and ending with
*/) and end-of-line comments (from // to the end of the line) can lead to misleading
and confusing code, which may result in errors.

Noncompliant Code Example
The following noncompliant code examples show mixed comments that may be
misunderstood.

// */ /* Comment, not syntax error */

f = g/**//h; /* Equivalent to f = g / h; */

/*//*/ l(); /* Equivalent to l(); */

m = n//**/o
+ p; /* Equivalent to m = n + p; */

a = b //*divisor:*/c
+ d; /* Equivalent to a = b + d; */

Compliant Solution
Use a consistent style of commenting.

// Nice simple comment

int i; // Counter

Noncompliant Code Example
There are other misuses of comments that should be avoided. This noncompliant
code example uses the character sequence /* to begin a comment, but neglects to
use the delimiter */ to end the comment. Consequently, the call to the security-
critical method is not executed. A reviewer examining this page could incorrectly
assume that the code is executed.

ptg11539634

62. Use comments consistently and in a readable fashion 197

Using an editor that provides syntax highlighting or that formats the code to
identify issues such as missing end comment delimiters can help detect accidental
omissions.

Because missing end delimiters are error prone and often viewed as a mistake,
this approach is not recommended for commenting out code.

Compliant Solution
This compliant solution demonstrates the recommended way to mark code as
“dead.” It also takes advantage of the compiler’s ability to remove unreachable (dead)
code. The code inside the if block must be syntactically correct. If other parts of the
program later change in a way that would cause syntax errors, the unexecuted code
must be brought up to date to correct the problem. Then, if it is needed again in the
future, the programmer need only remove the surrounding if statement and the
NOTREACHED comment.

The NOTREACHED comment could tell some compilers and static analysis tools
not to complain about this unreachable code. It also serves as documentation.

/* Comment with end comment marker unintentionally omitted
security_critical_method();
/* Some other comment */

if (false) { /* Use of critical security method no
 * longer necessary, for now */
 /* NOTREACHED */
 security_critical_method();
 /* Some other comment */
}

This is an example of an exceptional situation described in Guideline 63, “Detect
and remove superfluous code and values.”

Applicability
Confusion over which instructions are executed and which are not can result in seri-
ous programming errors and vulnerabilities, including denial of service, abnormal
program termination, and data integrity violation. This problem is mitigated by the
use of interactive development environments (IDEs) and editors that use fonts,
colors, or other mechanisms to differentiate between comments and code. However,
the problem can still manifest, for example, when reviewing source code printed on
a black-and-white printer.

ptg11539634

198 Chapter 4 n Program Understandability

Nested block comments and inconsistent use of comments can be detected by
suitable static analysis tools.

Bibliography
[JLS 2013] §3.7, “Comments”

n  63. Detect and remove superfluous code and values

Superfluous code and values may occur in the form of dead code, code that has no
effect, and unused values in program logic.

Code that is never executed is known as dead code. Typically, the presence of
dead code indicates that a logic error has occurred as a result of changes to a program
or to the program’s environment. Dead code is often optimized out of a program dur-
ing compilation. However, to improve readability and ensure that logic errors are
resolved, dead code should be identified, understood, and removed.

Code that is executed but fails to perform any action, or that has an unintended
effect, most likely results from a coding error and can cause unexpected behavior.
Statements or expressions that have no effect should be identified and removed from
code. Most modern compilers can warn about code that has no effect.

The presence of unused values in code may indicate significant logic errors. To
prevent such errors, unused values should be identified and removed from code.

Noncompliant Code Example (Dead Code)
This noncompliant code example demonstrates how dead code can be introduced
into a program [Fortify 2013]:

public int func(boolean condition) {
 int x = 0;
 if (condition) {
 x = foo();
 /* Process x */
 return x;
 }
 /* ... */
 if (x != 0) {
 /* This code is never executed */
 }
 return x;
}

ptg11539634

63. Detect and remove superfluous code and values 199

The condition in the second if statement, (x != 0), will never evaluate to true
because the only path where x can be assigned a nonzero value ends with a return
statement.

Compliant Solution
Remediation of dead code requires the programmer to determine not only why the
code is never executed, but also whether the code should have been executed, and
then to resolve that situation appropriately. This compliant solution assumes that
the dead code should have executed, and consequently the body of the first condi-
tional statement no longer ends with a return.

int func(boolean condition) {
 int x = 0;
 if (condition) {
 x = foo();
 /* Process x */
 }
 /* ... */
 if (x != 0) {
 /* This code is now executed */
 }
 return 0;
}

Noncompliant Code Example (Dead Code)
In this example, the length() function is used to limit the number of times the func-
tion string_loop() iterates. The condition of the if statement inside the loop eval-
uates to true when the current index is the length of str. However, because i is
always strictly less than str.length(), that can never happen.

public int string_loop(String str) {
 for (int i=0; i < str.length(); i++) {
 /* ... */
 if (i == str.length()) {
 /* This code is never executed */
 }
 }
 return 0;
}

ptg11539634

200 Chapter 4 n Program Understandability

Compliant Solution
Proper remediation of the dead code depends on the intent of the programmer. Assum-
ing the intent is to do something special with the last character in str, the conditional
statement is adjusted to check whether i refers to the index of the last character in str.

public int string_loop(String str) {
 for (int i=0; i < str.length(); i++) {
 /* ... */
 if (i == str.length()-1) {
 /* This code is now executed */
 }
 }
 return 0;
}

Noncompliant Code Example (Code with No Effect)
In this noncompliant code example, the comparison of s to t has no effect:

String s;
String t;

// ...

s.equals(t);

This error is probably the result of the programmer intending to do something
with the comparison, but failing to complete the code.

Compliant Solution
In this compliant solution, the result of the comparison is printed out:

String s;
String t;

// ...

if (s.equals(t)) {
 System.out.println("Strings equal");
} else {
 System.out.println("Strings unequal");
}

ptg11539634

63. Detect and remove superfluous code and values 201

Noncompliant Code Example (Unused Values)
In this example, p2 is assigned the value returned by bar(), but that value is never used:

int p1 = foo();
int p2 = bar();

if (baz()) {
 return p1;
} else {
 p2 = p1;
}
return p2;

Compliant Solution
This example can be corrected in many different ways depending on the intent of the
programmer. In this compliant solution, p2 is found to be extraneous. The calls to
bar() and baz() could also be removed if they do not produce any side effects.

int p1 = foo();

bar(); /* Removable if bar() lacks side effects */
baz(); /* Removable if baz() lacks side effects */

return p1;

Applicability
The presence of dead code may indicate logic errors that can lead to unintended pro-
gram behavior. The ways in which dead code can be introduced into a program and
the effort required to remove it can be complex. As a result, resolving dead code can
be an in-depth process requiring significant analysis.

In exceptional situations, dead code may make software resilient to future
changes. An example is the presence of a default case in a switch statement even
though all possible switch labels are specified (see Guideline 64, “Strive for logical
completeness,” for an illustration of this example).

It is also permissible to temporarily retain dead code that may be needed later.
Such cases should be clearly indicated with an appropriate comment.

The presence of code that has no effect can indicate logic errors that may result
in unexpected behavior and vulnerabilities. Unused values in code may indicate sig-
nificant logic errors.

Code and values that have no effect can be detected by suitable static analysis.

ptg11539634

202 Chapter 4 n Program Understandability

Bibliography
[Fortify 2013] Code Quality: Dead Code

[Coverity 2007] Coverity Prevent™ User’s Manual (3.3.0)

n  64. Strive for logical completeness

Software vulnerabilities can result when a programmer fails to consider all possible
data states.

Noncompliant Code Example (if Chain)
This noncompliant code example fails to test for conditions in which a is neither b
nor c. This may be the correct behavior in this case, but failure to account for all the
values of a can result in logic errors if a unexpectedly assumes a different value.

if (a == b) {
 /* ... */
}
else if (a == c) {
 /* ... */
}

Compliant Solution (if Chain)
This compliant solution explicitly checks for the unexpected condition and handles
it appropriately:

if (a == b) {
 /* ... */
}
else if (a == c) {
 /* ... */
}
else {
 /* Handle error condition */
}

Noncompliant Code Example (switch)
Even though x is supposed to represent a bit (0 or 1) in this noncompliant code
example, some previous error may have allowed x to assume a different value.

ptg11539634

64. Strive for logical completeness 203

Detecting and dealing with that inconsistent state sooner rather than later makes the
error easier to find.

switch (x) {
 case 0: foo(); break;
 case 1: bar(); break;
}

switch (x) {
 case 0: foo(); break;
 case 1: bar(); break;
 default: /* Handle error */ break;
}

Compliant Solution (switch)
This compliant solution provides the default label to handle all possible values of
type int:

Noncompliant Code Example (Zune 30)
This noncompliant code example is adapted from C code that appeared in the
Zune 30 media player, causing many players to lock up on December 30, 2008, at
midnight PST. It contains incomplete logic that causes a denial of service when
converting dates.

final static int ORIGIN_YEAR = 1980;
/* Number of days since January 1, 1980 */
public void convertDays(long days){
 int year = ORIGIN_YEAR;
 /* ... */
 while (days > 365) {
 if (IsLeapYear(year)) {
 if (days > 366) {
 days -= 366;
 year += 1;
 }
 } else {
 days -= 365;
 year += 1;
 }
 }
}

ptg11539634

204 Chapter 4 n Program Understandability

The original ConvertDays() C function in the real-time clock (RTC) routines
for the MC13783 PMIC RTC takes the number of days since January 1, 1980, and
computes the correct year and number of days since January 1 of the correct year.

The flaw in the code occurs when days has the value 366 because the loop never
terminates. This bug manifested itself on the 366th day of 2008, which was the first
leap year in which this code was active.

Compliant Solution (Zune 30)
This proposed rewrite is provided by “A Lesson on Infinite Loops” by Bryant Zadegan
[Zadegan 2009]. The loop is guaranteed to exit, as days decreases for each iteration
of the loop, unless the while condition fails, in which case the loop terminates.

final static int ORIGIN_YEAR = 1980;
/* Number of days since January 1, 1980 */
public void convertDays(long days){
 int year = ORIGIN_YEAR;
 /* ... */
 int daysThisYear = (IsLeapYear(year) ? 366 : 365);
 while (days > daysThisYear) {
 days -= daysThisYear;
 year += 1;
 daysThisYear = (IsLeapYear(year) ? 366 : 365);
 }
}

This compliant solution is for illustrative purposes and may differ from the solu-
tion implemented by Microsoft.

Applicability
Failing to take into account all possibilities within a logic statement can lead to a
corrupted running state, potentially resulting in unintentional information disclo-
sure or abnormal program termination.

Bibliography
[Hatton 1995] §2.7.2, “Errors of Omission and Addition”

[Viega 2005] §5.2.17, “Failure to Account for Default Case in Switch”

[Zadegan 2009] A Lesson on Infinite Loops

ptg11539634

65. Avoid ambiguous or confusing uses of overloading 205

n  65. Avoid ambiguous or confusing uses of overloading

Method and constructor overloading allows declaration of methods or constructors
with the same name but with different parameter lists. The compiler inspects each
call to an overloaded method or constructor and uses the declared types of the
method parameters to decide which method to invoke. In some cases, however, con-
fusion may arise because of the presence of relatively new language features such as
autoboxing and generics.

Furthermore, methods or constructors with the same parameter types that differ
only in their declaration order are typically not flagged by Java compilers. Errors can
result when a developer fails to consult the documentation at each use of a method or
constructor. A related pitfall is to associate different semantics with each of the over-
loaded methods or constructors. Defining different semantics sometimes necessitates
different orderings of the same method parameters, creating a vicious circle. Consider,
for example, an overloaded getDistance() method in which one overloaded method
returns the distance traveled from the source while another (with reordered parame-
ters) returns the remaining distance to the destination. Implementers may fail to realize
the difference unless they consult the documentation at each use.

Noncompliant Code Example (Constructor)
Constructors cannot be overridden and can only be overloaded. This noncompliant
code example shows the class Con with three overloaded constructors:

class Con {
 public Con(int i, String s) {
 // Initialization Sequence #1
 }
 public Con(String s, int i) {
 // Initialization Sequence #2
 }
 public Con(Integer i, String s) {
 // Initialization Sequence #3
 }
}

Failure to exercise caution while passing arguments to these constructors can
create confusion because calls to these constructors contain the same number of simi-
larly typed actual parameters. Overloading must also be avoided when the overloaded

ptg11539634

206 Chapter 4 n Program Understandability

constructors or methods provide distinct semantics for formal parameters of the same
types, differing solely in their declaration order.

Compliant Solution (Constructor)
This compliant solution avoids overloading by declaring public static factory meth-
ods that have distinct names in place of the public class constructors:

public static Con createCon1(int i, String s) {
 /* Initialization Sequence #1 */
}
public static Con createCon2(String s, int i) {
 /* Initialization Sequence #2 */
}
public static Con createCon3(Integer i, String s) {
 /* Initialization Sequence #3 */
}

Noncompliant Code Example (Method)
In this noncompliant code example, the OverLoader class holds a HashMap instance
and has overloaded getData() methods. One getData() method chooses the record
to return on the basis of its key value in the map; the other chooses on the basis of the
actual mapped value.

class OverLoader extends HashMap<Integer,Integer> {
 HashMap<Integer,Integer> hm;
 public OverLoader() {
 hm = new HashMap<Integer, Integer>();
 // SSN records
 hm.put(1, 111990000);
 hm.put(2, 222990000);
 hm.put(3, 333990000);
 }

 public String getData(Integer i) { // Overloading sequence #1
 String s = get(i).toString(); // Get a particular record
 return (s.substring(0, 3) + "-" + s.substring(3, 5) + "-" +
 s.substring(5, 9));
 }

 public Integer getData(int i) { // Overloading sequence #2
 return hm.get(i); // Get record at position 'i'
 }

ptg11539634

65. Avoid ambiguous or confusing uses of overloading 207

For purposes of overload resolution, the signatures of the getData() methods
differ only in the static type of their formal parameters. The OverLoader class inher-
its from java.util.HashMap and overrides its get() method to provide the checking
functionality. This implementation can be extremely confusing to the client who
expects both getData() methods to behave in a similar fashion and not depend on
whether an index of the record or the value to be retrieved is specified.

Although the client programmer might eventually deduce such behavior, other
cases, such as with the List interface, may go unnoticed, as Joshua Bloch [Bloch
2008] describes:

The List<E> interface has two overloadings of the remove method: remove(E) and

remove(int). Prior to release 1.5 when it was “generified,” the List interface had a

remove(Object) method in place of remove(E), and the corresponding parameter
types, Object and int, were radically different. But in the presence of generics and
autoboxing, the two parameter types are no longer radically different.

Consequently, a programmer may fail to realize that the wrong element has been
removed from the list.

A further problem is that in the presence of autoboxing, adding a new over-
loaded method definition can break previously working client code. This can hap-
pen when a new overloaded method with a more specific type is added to an API
whose methods used less specific types in earlier versions. For example, if an ear-
lier version of the OverLoader class provided only the getData(Integer) method,

 // Checks whether the ssn exists
 @Override public Integer get(Object data) {
 // SecurityManagerCheck()

 for (Map.Entry<Integer, Integer> entry : hm.entrySet()) {
 if (entry.getValue().equals(data)) {
 return entry.getValue(); // Exists
 }
 }
 return null;
 }

 public static void main(String[] args) {
 OverLoader bo = new OverLoader();
 // Get record at index '3'
 System.out.println(bo.getData(3));
 // Get record containing data '111990000'
 System.out.println(bo.getData((Integer)111990000));
 }
}

ptg11539634

208 Chapter 4 n Program Understandability

Applicability
Ambiguous or confusing uses of overloading can lead to unexpected results.

Bibliography
[API 2013] Interface Collection<E>

[Bloch 2008] Item 41, “Use Overloading Judiciously”

the client could correctly invoke this method by passing a parameter of type int;
the result would be selected on the basis of its value because the int parameter
would be autoboxed to Integer. Subsequently, when the getData(int) method is
added, the compiler resolves all calls whose parameter is of type int to invoke the
new getData(int) method, thereby changing their semantics and potentially
breaking previously correct code. The compiler is entirely correct in such cases;
the actual problem is an incompatible change to the API.

Compliant Solution (Method)
Naming the two related methods differently eliminates both the overloading and the
confusion:

public Integer getDataByIndex(int i) {
 // No longer overloaded
}

public String getDataByValue(Integer i) {
 // No longer overloaded
}

ptg11539634

Chapter

 209

Programmer
Misconceptions

The guidelines in this chapter address areas where developers often make unwarranted
assumptions about Java language and library behaviors, or where ambiguities can
 easily be introduced. Failure to follow these guidelines can result in programs that pro-
duce counterintuitive results.

This chapter contains guidelines that address

1. Misconceptions about Java APIs and language features

2. Assumptions and ambiguity-laced programs

3. Situations in which the programmer wanted to do one thing but ended up
doing another

n  66. Do not assume that declaring a reference volatile
guarantees safe publication of the members of the
referenced object

According to the Java Language Specification (JLS), §8.3.1.4, “volatile Fields”
[JLS 2013],

A field may be declared volatile, in which case the Java Memory Model ensures
that all threads see a consistent value for the variable (§17.4).

5

ptg11539634

210 Chapter 5 n Programmer Misconceptions

This safe publication guarantee applies only to primitive fields and object
references. Programmers commonly use imprecise terminology and speak about
“member objects.” For the purposes of this visibility guarantee, the actual member is
the object reference; the objects referred to (aka, referents) by volatile object
references are beyond the scope of this safe publication guarantee. Conse-
quently, declaring an object reference to be volatile is insufficient to guarantee that
changes to the members of the referent are published to other threads. A thread may
fail to observe a recent write from another thread to a member field of such an object
referent.

Furthermore, when the referent is mutable and lacks thread-safety, other
threads might see a partially constructed object or an object in a (temporarily)
inconsistent state [Goetz 2007]. However, when the referent is immutable, declar-
ing the reference volatile suffices to guarantee safe publication of the members of
the referent. Programmers cannot use the volatile keyword to guarantee safe pub-
lication of mutable objects. Use of the volatile keyword can only guarantee safe
publication of primitive fields, object references, or fields of immutable object
 referents.

Confusing a volatile object with the volatility of its member objects is a similar
error to the one described in Guideline 73, “Never confuse the immutability of a ref-
erence with that of the referenced object.”

Noncompliant Code Example (Arrays)
This noncompliant code example declares a volatile reference to an array object:

final class Foo {
 private volatile int[] arr = new int[20];

 public int getFirst() {
 return arr[0];
 }

 public void setFirst(int n) {
 arr[0] = n;
 }

 // ...
}

Values assigned to an array element by one thread—for example, by calling
setFirst()—might not be visible to another thread calling getFirst(), because
the volatile keyword guarantees safe publication only for the array reference; it
makes no guarantee regarding the actual data contained within the array.

ptg11539634

66. Do not assume that declaring a reference volatile guarantees safe publication 211

This problem arises when the thread that calls setFirst() and the thread that
calls getFirst() lack a happens-before relationship. A happens-before relationship
exists between a thread that writes to a volatile variable and a thread that subsequently
reads it. However, setFirst() and getFirst() each read from a volatile variable—
the volatile reference to the array. Neither method writes to the volatile variable.

Compliant Solution (AtomicIntegerArray)
To ensure that the writes to array elements are atomic and that the resulting values
are visible to other threads, this compliant solution uses the AtomicIntegerArray
class defined in java.util.concurrent.atomic:

final class Foo {
 private final AtomicIntegerArray atomicArray =
 new AtomicIntegerArray(20);

 public int getFirst() {
 return atomicArray.get(0);
 }

 public void setFirst(int n) {
 atomicArray.set(0, 10);
 }

 // ...
}

AtomicIntegerArray guarantees a happens-before relationship between a thread
that calls atomicArray.set() and a thread that subsequently calls atomicArray.get().

Compliant Solution (Synchronization)
To ensure visibility, accessor methods must synchronize access while performing
operations on nonvolatile elements of an array, whether the array is referred to by a
volatile or a nonvolatile reference. Note that the code is thread-safe, even though the
array reference is not volatile.

final class Foo {
 private int[] arr = new int[20];

 public synchronized int getFirst() {
 return arr[0];
 }

ptg11539634

212 Chapter 5 n Programmer Misconceptions

Synchronization establishes a happens-before relationship between threads that
synchronize on the same lock. In this case, the thread that calls setFirst() and the
thread that subsequently calls getFirst() on the same object instance both syn-
chronize on that instance, so safe publication is guaranteed.

Noncompliant Code Example (Mutable Object)
This noncompliant code example declares the Map instance field volatile. The
instance of the Map object is mutable because of its put() method.

final class Foo {
 private volatile Map<String, String> map;

 public Foo() {
 map = new HashMap<String, String>();
 // Load some useful values into map
 }

 public String get(String s) {
 return map.get(s);
 }

 public void put(String key, String value) {
 // Validate the values before inserting
 if (!value.matches("[\\w]*")) {
 throw new IllegalArgumentException();
 }
 map.put(key, value);
 }
}

 public synchronized void setFirst(int n) {
 arr[0] = n;
 }
}

Interleaved calls to get() and put() may result in the retrieval of internally
inconsistent values from the Map object because put() modifies its state. Declaring
the object reference volatile is insufficient to eliminate this data race.

Noncompliant Code Example (Volatile-Read, Synchronized-Write)
This noncompliant code example attempts to use the volatile-read, synchronized-
write technique described in Java Theory and Practice [Goetz 2007]. The map field

ptg11539634

66. Do not assume that declaring a reference volatile guarantees safe publication 213

is declared volatile to synchronize its reads and writes. The put() method is also
synchronized to ensure it is executed atomically.

final class Foo {
 private volatile Map<String, String> map;

 public Foo() {
 map = new HashMap<String, String>();
 // Load some useful values into map
 }
 public String get(String s) {
 return map.get(s);
 }
 public synchronized void put(String key, String value) {
 // Validate the values before inserting
 if (!value.matches("[\\w]*")) {
 throw new IllegalArgumentException();
 }
 map.put(key, value);
 }
}

The volatile-read, synchronized-write technique uses synchronization to preserve
atomicity of compound operations, such as increment, and provides faster access times
for atomic reads. However, it fails for mutable objects because the safe publication guar-
antee provided by volatile extends only to the field itself (the primitive value or object
reference); the referent is excluded from the guarantee, as are the referent’s members. In
effect, a write and a subsequent read of the map lack a happens-before relationship.

This technique is also discussed in The CERT® Oracle® Secure Coding Standard
for Java™ [Long 2012], “VNA02-J. Ensure that compound operations on shared
variables are atomic.”

Compliant Solution (Synchronized)
This compliant solution uses method synchronization to guarantee visibility:

final class Foo {
 private final Map<String, String> map;
 public Foo() {
 map = new HashMap<String, String>();
 // Load some useful values into map
 }
 public synchronized String get(String s) {

ptg11539634

214 Chapter 5 n Programmer Misconceptions

It is unnecessary to declare the map field volatile because the accessor methods
are synchronized. The field is declared final to prevent publication of its reference
when the referent is in a partially initialized state (see “TSM03-J. Do not publish par-
tially initialized objects,” for more information [Long 2012]).

Noncompliant Code Example (Mutable Subobject)
In this noncompliant code example, the volatile format field stores a reference to a
mutable object, java.text.DateFormat:

final class DateHandler {
 private static volatile DateFormat format =
 DateFormat.getDateInstance(DateFormat.MEDIUM);

 public static java.util.Date parse(String str)
 throws ParseException {
 return format.parse(str);
 }
}

final class DateHandler {
 public static java.util.Date parse(String str)
 throws ParseException {

 return map.get(s);
 }
 public synchronized void put(String key, String value) {
 // Validate the values before inserting
 if (!value.matches("[\\w]*")) {
 throw new IllegalArgumentException();
 }
 map.put(key, value);
 }
}

Because DateFormat is not thread-safe [API 2013], the value for Date returned
by the parse() method may not correspond to the str argument.

Compliant Solution (Instance per Call/Defensive Copying)
This compliant solution creates and returns a new DateFormat instance for each
invocation of the parse() method [API 2013]:

ptg11539634

66. Do not assume that declaring a reference volatile guarantees safe publication 215

Compliant Solution (Synchronization)
This compliant solution makes DateHandler thread-safe by synchronizing state-
ments within the parse() method [API 2013]:

final class DateHandler {
 private static DateFormat format =
 DateFormat.getDateInstance(DateFormat.MEDIUM);

 public static java.util.Date parse(String str)
 throws ParseException {
 synchronized (format) {
 return format.parse(str);
 }
 }
}

 return DateFormat.getDateInstance(
 DateFormat.MEDIUM).parse(str);
 }
}

Compliant Solution (ThreadLocal Storage)
This compliant solution uses a ThreadLocal object to create a separate DateFormat
instance per thread:

final class DateHandler {
 private static final ThreadLocal<DateFormat> format =
 new ThreadLocal<DateFormat>() {
 @Override protected DateFormat initialValue() {
 return DateFormat.getDateInstance(DateFormat.MEDIUM);
 }
 };
 // ...
}

Applicability
Incorrectly assuming that declaring a field volatile guarantees safe publication of a refer-
enced object’s members can cause threads to observe stale or inconsistent values.

ptg11539634

216 Chapter 5 n Programmer Misconceptions

Technically, strict immutability of the referent is a stronger condition than is
fundamentally required for safe publication. When it can be determined that a refer-
ent is thread-safe by design, the field that holds its reference may be declared vola-
tile. However, this approach to using volatile decreases maintainability and should
be avoided.

Bibliography
[API 2013] Class DateFormat

[Goetz 2007] Pattern 2, “One-Time Safe Publication”

[JLS 2013] §8.3.1.4, “volatile Fields”

[Long 2012] OBJ05-J. Defensively copy private mutable class members before
returning their references

TSM03-J. Do not publish partially initialized objects

VNA02-J. Ensure that compound operations on shared variables
are atomic

[Miller 2009] “Mutable Statics”

n  67. Do not assume that the sleep(), yield(), or getState()
methods provide synchronization semantics

According to the JLS, §17.3, “Sleep and Yield” [JLS 2013],

It is important to note that neither Thread.sleep nor Thread.yield have any

synchronization semantics. In particular, the compiler does not have to flush writes
cached in registers out to shared memory before a call to Thread.sleep or Thread

.yield, nor does the compiler have to reload values cached in registers after a call to

Thread.sleep or Thread.yield.

Code that bases its concurrency safety on thread suspension or yields to
processes that

n  Flush cached registers,

n  Reload any values,

n  Or provide any happens-before relationships when execution resumes.

is incorrect and is consequently disallowed. Programs must ensure that communica-
tion between threads has proper synchronization, happens-before, and safe publica-
tion semantics.

ptg11539634

67. sleep(), yield(), and getState() do not provide synchronization semantics 217

Noncompliant Code Example (sleep())
This noncompliant code attempts to use the nonvolatile primitive Boolean member
done as a flag to terminate execution of a thread. A separate thread sets done to true
by calling the shutdown() method.

final class ControlledStop implements Runnable {
 private boolean done = false;

 @Override public void run() {
 while (!done) {
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 // Reset interrupted status
 Thread.currentThread().interrupt(); }
 }
 }

 public void shutdown() {
 this.done = true;
 }
}

The compiler, in this case, is free to read the field this.done once and to reuse
the cached value in each execution of the loop. Consequently, the while loop might
never terminate, even when another thread calls the shutdown() method to change
the value of this.done [JLS 2013]. This error could have resulted from the program-
mer incorrectly assuming that the call to Thread.sleep() causes cached values to be
reloaded.

Compliant Solution (Volatile Flag)
This compliant solution declares the flag field volatile to ensure that updates to its
value are made visible across multiple threads:

final class ControlledStop implements Runnable {
 private volatile boolean done = false;

 @Override public void run() {
 //...
 }

 // ...
}

ptg11539634

218 Chapter 5 n Programmer Misconceptions

The volatile keyword establishes a happens-before relationship between this
thread and any other thread that sets done.

Compliant Solution (Thread.interrupt())
A better solution for methods that call sleep() is to use thread interruption, which
causes the sleeping thread to wake immediately and handle the interruption.

final class ControlledStop implements Runnable {

 @Override public void run() {
 // Record current thread so others can interrupt it
 myThread = currentThread();
 while (!Thread.interrupted()) {
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 }
 }
 }

 public void shutdown(Thread th) {
 th.interrupt();
 }
}

Note that the interrupting thread must know which thread to interrupt; logic for
tracking this relationship has been omitted from this solution.

Noncompliant Code Example (Thread.getState())
This noncompliant code example contains a doSomething() method that starts a
thread. The thread supports interruption by checking a flag and waits until notified.
The stop() method checks to see whether the thread is blocked on the wait; if so, it
sets the flag to true and notifies the thread so that the thread can terminate.

public class Waiter {
 private Thread thread;
 private boolean flag;
 private final Object lock = new Object();

ptg11539634

Unfortunately, the stop() method incorrectly uses the Thread.getState()
method to check whether the thread is blocked and has not terminated before deliv-
ering the notification. Using the Thread.getState() method for synchronization
control, such as checking whether a thread is blocked on a wait, is inappropriate.
Java Virtual Machines (JVMs) are permitted to implement blocking using
 spin- waiting; consequently, a thread can be blocked without entering the WAITING or
TIMED_WAITING state [Goetz 2006]. Because the thread may never enter the WAITING
state, the stop() method might fail to terminate the thread.

If doSomething() and stop() are called from different threads, the stop()
method could fail to see the initialized thread, even though doSomething() was
called earlier, unless there is a happens-before relationship between the two calls. If
the two methods are invoked by the same thread, they automatically have a happens-
before relationship and consequently cannot encounter this problem.

 public void doSomething() {
 thread = new Thread(new Runnable() {
 @Override public void run() {
 synchronized (lock) {
 while (!flag) {
 try {
 lock.wait();
 // ...
 } catch (InterruptedException e) {
 // Forward to handler
 }
 }
 }
 }
 });
 thread.start();
 }

 public boolean stop() {
 if (thread != null) {
 if (thread.getState() == Thread.State.WAITING) {
 synchronized (lock) {
 flag = true;
 lock.notifyAll();
 }
 return true;
 }
 }
 return false;
 }
}

67. sleep(), yield(), and getState() do not provide synchronization semantics 219

ptg11539634

220 Chapter 5 n Programmer Misconceptions

Compliant Solution
This compliant solution removes the check for determining whether the thread is in
the WAITING state. This check is unnecessary because invoking notifyAll() affects
only threads that are blocked on an invocation of wait():

public class Waiter {
 // . . .
 private Thread thread;
 private volatile boolean flag;
 private final Object lock = new Object();

 public boolean stop() {
 if (thread != null) {
 synchronized (lock) {
 flag = true;
 lock.notifyAll();
 }
 return true;
 }
 return false;
 }
}

Applicability
Relying on the Thread class’s sleep(), yield(), and getState() methods for syn-
chronization control can cause unexpected behavior.

Bibliography
[Goetz 2006]

[JLS 2013] §17.3, “Sleep and Yield”

n  68. Do not assume that the remainder operator always
returns a nonnegative result for integral operands

The JLS, §15.17.3, “Remainder Operator %” [JLS 2013], states,

The remainder operation for operands that are integers after binary numeric promo-
tion (§5.6.2) produces a result value such that (a/b)*b+(a%b) is equal to a. This
identity holds even in the special case that the dividend is the negative integer of

ptg11539634

68. Do not assume that the remainder operator always returns a nonnegative result 221

largest possible magnitude for its type and the divisor is -1 (the remainder is 0). It
follows from this rule that the result of the remainder operation can be negative only
if the dividend is negative, and can be positive only if the dividend is positive; more-
over, the magnitude of the result is always less than the magnitude of the divisor.

The result of the remainder operator has the same sign as the dividend (the first
operand in the expression):

5 % 3 produces 2
5 % (-3) produces 2
(-5) % 3 produces -2
(-5) % (-3) produces -2

private int SIZE = 16;
public int[] hash = new int[SIZE];

public int lookup(int hashKey) {
 return hash[hashKey % SIZE];
}

As a result, code that depends on the remainder operation to always return a
positive result is erroneous.

Noncompliant Code Example
This noncompliant code example uses the integer hashKey as an index into the hash
array:

A negative hash key produces a negative result from the remainder operator, caus-
ing the lookup() method to throw a java.lang.ArrayIndexOutOfBoundsException.

Compliant Solution
This compliant solution calls the imod() method which always returns a positive
remainder:

// Method imod() gives nonnegative result
private int SIZE = 16;
public int[] hash = new int[SIZE];

ptg11539634

222 Chapter 5 n Programmer Misconceptions

Applicability
Incorrectly assuming a positive remainder from a remainder operation can result in
erroneous code.

Bibliography
[JLS 2013] §15.17.3, “Remainder Operator %”

n  69. Do not confuse abstract object equality with reference
equality

Java defines the equality operators == and != for testing reference equality, but uses
the equals() method defined in Object and its subclasses for testing abstract object
equality. Naïve programmers often confuse the intent of the == operation with that of
the Object.equals() method. This confusion is frequently evident in the context of
processing String objects.

As a general rule, use the Object.equals() method to check whether two
objects have equivalent contents, and use the equality operators == and != to test
whether two references specifically refer to the same object. This latter test is referred
to as referential equality. For classes that require overriding the default equals()
implementation, care must be taken to also override the hashCode() method (see
The CERT® Oracle® Secure Coding Standard for Java™ [Long 2012], “MET09-J. Classes
that define an equals() method must also define a hashCode() method”).

Numeric boxed types (for example, Byte, Character, Short, Integer, Long,
Float, and Double) should also be compared using Object.equals(), rather than
the == operator. While reference equality may appear to work for Integer values
between the range −128 and 127, it may fail if either of the operands in the compari-
son are outside that range. Numeric relational operators other than equality (such as

private int imod(int i, int j) {
 int temp = i % j;
 // Unary minus will succeed without overflow
 // because temp cannot be Integer.MIN_VALUE
 return (temp < 0) ? -temp : temp;
}

public int lookup(int hashKey) {
 return hash[imod(hashKey, SIZE)];
}

ptg11539634

69. Do not confuse abstract object equality with reference equality 223

<, <=, >, and >=) can be safely used to compare boxed primitive types (see “EXP03-J.
Do not use the equality operators when comparing values of boxed primitives”
[Long 2012], for more information).

Noncompliant Code Example
This noncompliant code example declares two distinct String objects that contain
the same value:

public class StringComparison {
 public static void main(String[] args) {
 String str1 = new String("one");
 String str2 = new String("one");
 System.out.println(str1 == str2); // Prints "false"
 }
}

The reference equality operator == evaluates to true only when the values it
compares refer to the same underlying object. The references in this example are
unequal because they refer to distinct objects.

Compliant Solution (Object.equals())
This compliant solution uses the Object.equals() method when comparing string
values:

public class StringComparison {
 public static void main(String[] args) {
 String str1 = new String("one");
 String str2 = new String("one");
 System.out.println(str1.equals(str2)); // Prints "true"
 }
}

Compliant Solution (String.intern())
Reference equality behaves like abstract object equality when it is used to compare
two strings that are results of the String.intern() method. This compliant solution
uses String.intern() and can perform fast string comparisons when only one copy
of the string one is required in memory.

ptg11539634

224 Chapter 5 n Programmer Misconceptions

Use of String.intern() should be reserved for cases in which the tokenization
of strings either yields an important performance enhancement or dramatically
simplifies code. Examples include programs engaged in natural language process-
ing and compiler-like tools that tokenize program input. For most other pro-
grams, performance and readability are often improved by the use of code that
applies the Object.equals() approach and that lacks any dependence on refer-
ence equality.

The JLS provides few guarantees about the implementation of String.intern().
For example,

n  The cost of String.intern() grows as the number of intern strings grows.
Performance should be no worse than O(n log n), but the JLS lacks a specific
performance guarantee.

n  In early Java Virtual Machine (JVM) implementations, interned strings became
immortal: they were exempt from garbage collection. This can be problematic
when large numbers of strings are interned. More recent implementations can
garbage-collect the storage occupied by interned strings that are no longer
referenced. However, the JLS lacks any specification of this behavior.

n  In JVM implementations prior to Java 1.7, interned strings are allocated in the
permgen storage region, which is typically much smaller than the rest of the
heap. Consequently, interning large numbers of strings can lead to an out-
of-memory condition. In many Java 1.7 implementations, interned strings
are allocated on the heap, relieving this restriction. Once again, the details
of allocation are unspecified by the JLS; consequently, implementations
may vary.

String interning may also be used in programs that accept repetitively occur-
ring strings. Its use boosts the performance of comparisons and minimizes memory
consumption.

public class StringComparison {
 public static void main(String[] args) {
 String str1 = new String("one");
 String str2 = new String("one");

 str1 = str1.intern();
 str2 = str2.intern();

 System.out.println(str1 == str2); // Prints "true"
 }
}

ptg11539634

70. Understand the differences between bitwise and logical operators 225

When canonicalization of objects is required, it may be wiser to use a custom
canonicalizer built on top of ConcurrentHashMap; see Joshua Bloch’s Effective Java™,
Second Edition, Item 69 [Bloch 2008] for details.

Applicability
Confusing reference equality and object equality can lead to unexpected results.

Using reference equality in place of object equality is permitted only when the
defining classes guarantee the existence of at most one object instance for each pos-
sible object value. The use of static factory methods, rather than public constructors,
facilitates instance control; this is a key enabling technique. Another technique is to
use an enum type.

Use reference equality to determine whether two references point to the same
object.

Bibliography

[Bloch 2008] Item 69, “Prefer Concurrency Utilities to wait and notify”

[FindBugs 2008] ES, “Comparison of String Objects Using == or !=”

[JLS 2013] §3.10.5, “String Literals”

§5.6.2, “Binary Numeric Promotion”

[Long 2012] EXP03-J. Do not use the equality operators when comparing
values of boxed primitives

MET09-J. Classes that define an equals() method must also
define a hashCode() method

n  70. Understand the differences between bitwise and logical
operators

The conditional AND and OR operators (&& and ||, respectively) exhibit short-
circuit behavior. That is, the second operand is evaluated only when the result of the
conditional operator cannot be deduced solely by evaluating the first operand. Con-
sequently, when the result of the conditional operator can be deduced solely from the
result of the first operand, the second operand will remain unevaluated; its side
effects, if any, will never occur.

The bitwise AND and OR operators (& and |) lack short-circuit behavior. Simi-
lar to most Java operators, they evaluate both operands. They return the same
Boolean results as && and || respectively, but can have different overall effects
depending on the presence or absence of side effects in the second operand.

ptg11539634

226 Chapter 5 n Programmer Misconceptions

Consequently, either the & or the && operator can be used when performing
Boolean logic. However, there are times when the short-circuiting behavior is pre-
ferred and other times when the short-circuiting behavior causes subtle bugs.

Noncompliant Code Example (Improper &)
This noncompliant code example, derived from Flanagan [Flanagan 2005], has two
variables with unknown values. The code must validate its data, and then check
whether array[i] is a valid index.

int array[]; // May be null
int i; // May be an invalid index for array
if (array != null & i >= 0 &
 i < array.length & array[i] >= 0) {
 // Use array
} else {
 // Handle error
}

This code can fail as a result of the same errors it is trying to prevent. When
array is NULL or i is not a valid index, the reference to array and array[i] will cause
either a NullPointerException or an ArrayIndexOutOfBoundsException to be
thrown. The exception occurs because the & operator fails to prevent evaluation of
its right operand, even when evaluation of its left operand proves that the right oper-
and is inconsequential.

Compliant Solution (Use &&)
This compliant solution mitigates the problem by using &&, which causes the evalua-
tion of the conditional expression to terminate immediately if any of the conditions
fail, thereby preventing a runtime exception:

int array[]; // May be null
int i; // May be an invalid index for array
if (array != null && i >= 0 &&
 i < array.length && array[i] >= 0) {
 // Handle array
} else {
 // Handle error
}

ptg11539634

70. Understand the differences between bitwise and logical operators 227

Compliant Solution (Nested if Statements)
This compliant solution uses multiple if statements to achieve the proper effect.

int array[]; // May be null
int i; // May be a valid index for array
if (array != null) {
 if (i >= 0 && i < array.length) {
 if (array[i] >= 0) {
 // Use array
 } else {
 // Handle error
 }
 } else {
 // Handle error
 }
} else {
 // Handle error
}

Although correct, this solution is more verbose and could be more difficult to
maintain. Nevertheless, this solution is preferable when the error-handling code for
each potential failure condition is different.

Noncompliant Code Example (Improper &&)
This noncompliant code example demonstrates code that compares two arrays for
ranges of members that match. Here i1 and i2 are valid array indices in array1 and
array2, respectively. Variables end1 and end2 are the indices of the ends of the
matching ranges in the two arrays.

if (end1 >= 0 & i2 >= 0) {
 int begin1 = i1;
 int begin2 = i2;
 while (++i1 < array1.length &&
 ++i2 < array2.length &&
 array1[i1] == array2[i2]) {
 // Arrays match so far
 }
 int end1 = i1;
 int end2 = i2;
 assert end1 - begin1 == end2 - begin2;
}

ptg11539634

228 Chapter 5 n Programmer Misconceptions

The problem with this code is that when the first condition in the while loop
fails, the second condition does not execute. That is, once i1 has reached array1
.length, the loop terminates after i1 is incremented. Consequently, the apparent
range over array1 is larger than the apparent range over array2, causing the final
assertion to fail.

Compliant Solution (Use &)
This compliant solution mitigates the problem by judiciously using &, which guar-
antees that both i1 and i2 are incremented, regardless of the outcome of the first
condition:

public void exampleFuntion() {
 while (++i1 < array1.length & // Not &&
 ++i2 < array2.length &&
 array1[i1] == array2[i2]){
 // Do something
 }
}

Applicability
Failure to understand the behavior of the bitwise and conditional operators can
cause unintended program behavior.

Bibliography
[Flanagan 2005] §2.5.6., “Boolean Operators”

[JLS 2013] §15.23, “Conditional-And Operator &&”

§15.24, “Conditional-Or Operator ||”

n  71. Understand how escape characters are interpreted when
strings are loaded

Many classes allow inclusion of escape sequences in character and string literals.
Examples include java.util.regex.Pattern as well as classes that support
XML- and SQL-based actions by passing string arguments to methods. According

ptg11539634

71. Understand how escape characters are interpreted when strings are loaded 229

to the JLS, §3.10.6, “Escape Sequences for Character and String Literals”
[JLS 2013],

The character and string escape sequences allow for the representation of some
nongraphic characters as well as the single quote, double quote, and backslash
characters in character literals (§3.10.4) and string literals (§3.10.5).

Correct use of escape sequences in string literals requires understanding how
the escape sequences are interpreted by the Java compiler, as well as how they are
interpreted by any subsequent processor, such as an SQL engine. SQL statements
may require escape sequences (for example, sequences containing \t, \n, \r) in cer-
tain cases, such as when storing raw text in a database. When representing SQL
statements in Java string literals, each escape sequence must be preceded by an extra
backslash for correct interpretation.

As another example, consider the Pattern class used in performing regular
expression-related tasks. A string literal used for pattern matching is compiled into an
instance of the Pattern type. When the pattern to be matched contains a sequence of
characters identical to one of the Java escape sequences—"\" and "n", for example—
the Java compiler treats that portion of the string as a Java escape sequence and trans-
forms the sequence into an actual newline character. To insert a newline escape
sequence, rather than a literal newline character, the programmer must precede the
"\n" sequence with an additional backslash to prevent the Java compiler from replac-
ing it with a newline character. The string constructed from the resulting sequence,

\\n

consequently contains the correct two-character sequence \n and correctly denotes
the escape sequence for newline in the pattern.

In general, for a particular escape character of the form \X, the equivalent Java
representation is

\\X

Noncompliant Code Example (String Literal)
This noncompliant code example defines a method, splitWords(), that finds
matches between the string literal (WORDS) and the input sequence. It is expected
that WORDS would hold the escape sequence for matching a word boundary. However,
the Java compiler treats the "\b" literal as a Java escape sequence, and the string
WORDS silently compiles to a regular expression that checks for a single backspace
character.

ptg11539634

230 Chapter 5 n Programmer Misconceptions

Compliant Solution (String Literal)
This compliant solution shows the correctly escaped value of the string literal WORDS
that results in a regular expression designed to split on word boundaries:

public class Splitter {
 // Interpreted as backspace
 // Fails to split on word boundaries
 private final String WORDS = "\b";

 public String[] splitWords(String input){
 Pattern pattern = Pattern.compile(WORDS);
 String[] input_array = pattern.split(input);
 return input_array;
 }
}

public class Splitter {
 // Interpreted as two chars, '\' and 'b'
 // Correctly splits on word boundaries
 private final String WORDS = "\\b";

 public String[] split(String input){
 Pattern pattern = Pattern.compile(WORDS);
 String[] input_array = pattern.split(input);
 return input_array;
 }
}

Noncompliant Code Example (String Property)
This noncompliant code example uses the same method, splitWords(). This time
the WORDS string is loaded from an external properties file.

public class Splitter {
 private final String WORDS;

 public Splitter() throws IOException {
 Properties properties = new Properties();
 properties.load(new FileInputStream("splitter.properties"));
 WORDS = properties.getProperty("WORDS");
 }

ptg11539634

72. Do not use overloaded methods to differentiate between runtime types 231

In the properties file, the WORD property is once again incorrectly specified as \b.

WORDS=\b

This is read by the Properties.load() method as a single character b, which
causes the split() method to split strings along the letter b. Although the string is
interpreted differently than if it were a string literal, as in the previous noncompliant
code example, the interpretation is incorrect.

Compliant Solution (String Property)
This compliant solution shows the correctly escaped value of the WORDS property:

WORDS=\\b

Applicability
Incorrect use of escape characters in string inputs can result in misinterpretation and
potential corruption of data.

Bibliography

[API 2013] Class Pattern, “Backslashes, Escapes, and Quoting”

Package java.sql

[JLS 2013] §3.10.6, “Escape Sequences for Character and String Literals”

n  72. Do not use overloaded methods to differentiate between
runtime types

Java supports overloading methods and can distinguish between methods with dif-
ferent signatures. Consequently, with some qualifications, methods within a class

 public String[] split(String input){
 Pattern pattern = Pattern.compile(WORDS);
 String[] input_array = pattern.split(input);
 return input_array;
 }
}

ptg11539634

232 Chapter 5 n Programmer Misconceptions

can have the same name if they have different parameter lists. In method overload-
ing, the method to be invoked at runtime is determined at compile time. Conse-
quently, the overloaded method associated with the static type of the object is
invoked even when the runtime type differs for each invocation.

For program understandability, do not introduce ambiguity while overloading
(see Guideline 65, “Avoid ambiguous or confusing uses of overloading”), and use
overloaded methods sparingly [Tutorials 2013].

Noncompliant Code Example
This noncompliant code example attempts to use the overloaded display() method
to perform different actions depending on whether the method is passed an
ArrayList<Integer> or a LinkedList<String>:

public class Overloader {
 private static String display(ArrayList<Integer> arrayList) {
 return "ArrayList";
 }

 private static String display(LinkedList<String> linkedList) {
 return "LinkedList";
 }

 private static String display(List<?> list) {
 return "List is not recognized";
 }

 public static void main(String[] args) {
 // Single ArrayList
 System.out.println(display(new ArrayList<Integer>()));
 // Array of lists
 List<?>[] invokeAll = new List<?>[] {
 new ArrayList<Integer>(),
 new LinkedList<String>(),
 new Vector<Integer>()};

 for (List<?> list : invokeAll) {
 System.out.println(display(list));
 }
 }
}

At compile time, the type of the object array is List. The expected output is Array-
List, ArrayList, LinkedList, and List is not recognized (because java.util.Vec-
tor is neither an ArrayList nor a LinkedList). The actual output is ArrayList

ptg11539634

72. Do not use overloaded methods to differentiate between runtime types 233

followed by List is not recognized repeated three times. The cause of this unexpected
behavior is that overloaded method invocations are affected only by the compile-time type
of their arguments: ArrayList for the first invocation and List for the others.

Compliant Solution
This compliant solution uses a single display method and instanceof to distin-
guish between different types. As expected, the output is ArrayList, ArrayList,
LinkedList, List is not recognized:

public class Overloader {
 private static String display(List<?> list) {
 return (
 list instanceof ArrayList ? "Arraylist" :
 (list instanceof LinkedList ? "LinkedList" :
 "List is not recognized")
);
 }

 public static void main(String[] args) {
 // Single ArrayList
 System.out.println(display(new ArrayList<Integer>()));

 List<?>[] invokeAll = new List<?>[] {
 new ArrayList<Integer>(),
 new LinkedList<String>(),
 new Vector<Integer>()};

 for (List<?> list : invokeAll) {
 System.out.println(display(list));
 }
 }
}

Applicability
Ambiguous uses of overloading can lead to unexpected results.

Bibliography

[API 2013] Interface Collection<E>

[Bloch 2008] Item 41, “Use Overloading Judiciously”

[Tutorials 2013] Defining Methods

ptg11539634

234 Chapter 5 n Programmer Misconceptions

n  73. Never confuse the immutability of a reference with that
of the referenced object

Immutability helps to support security reasoning. It is safe to share immutable
objects without risking modification by the recipient [Mettler 2010].

Programmers often incorrectly assume that declaring a field or variable final
makes the referenced object immutable. Declaring variables that have a primitive
type to be final does prevent changes to their values after initialization (by normal
Java processing). However, when the variable has a reference type, the presence of a
final clause in the declaration only makes the reference itself immutable. The final
clause has no effect on the referenced object. Consequently, the fields of the refer-
enced object may be mutable. For example, according to the JLS, §4.12.4, “final
Variables” [JLS 2013],

If a final variable holds a reference to an object, then the state of the object may
be changed by operations on the object, but the variable will always refer to the
same object.

This also applies to arrays, because arrays are objects; if a final variable holds a
reference to an array, then the components of the array may still be changed by oper-
ations on the array, but the variable will always refer to the same array.

Similarly, a final method parameter obtains an immutable copy of the object
reference. Again, this has no effect on the mutability of the referenced data.

Noncompliant Code Example (Mutable Class, final Reference)
In this noncompliant code example, the programmer has declared the reference to
the point instance to be final under the incorrect assumption that doing so pre-
vents modification of the values of the instance variables x and y. The values of the
instance variables can be changed after their initialization because the final
clause applies only to the reference to the point instance and not to the referenced
object.

class Point {
 private int x;
 private int y;

 Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

ptg11539634

73. Never confuse the immutability of a reference with that of the referenced object 235

Compliant Solution (final Fields)
When the values of the x and y instance variables must remain immutable after their
initialization, they should be declared final. However, this invalidates the set_xy()
method because it can no longer change the values of x and y:

 void set_xy(int x, int y) {
 this.x = x;
 this.y = y;
 }

 void print_xy() {
 System.out.println("the value x is: " + this.x);
 System.out.println("the value y is: " + this.y);
 }
}

public class PointCaller {
 public static void main(String[] args) {
 final Point point = new Point(1, 2);
 point.print_xy();

 // Change the value of x, y
 point.set_xy(5, 6);
 point.print_xy();
 }
}

class Point {
 private final int x;
 private final int y;

 Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

 void print_xy() {
 System.out.println("the value x is: " + this.x);
 System.out.println("the value y is: " + this.y);
 }

 // set_xy(int x, int y) no longer possible

With this modification, the values of the instance variables become immutable
and consequently match the programmer’s intended usage model.

ptg11539634

236 Chapter 5 n Programmer Misconceptions

Compliant Solution (Provide Copy Functionality)
If the class must remain mutable, another compliant solution is to provide copy
functionality. This compliant solution provides a clone() method in the class Point,
avoiding the elimination of the setter method:

final public class Point implements Cloneable {
 private int x;
 private int y;

 Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

 void set_xy(int x, int y) {
 this.x = x;
 this.y = y;
 }

 void print_xy() {
 System.out.println("the value x is: "+ this.x);
 System.out.println("the value y is: "+ this.y);
 }

 public Point clone() throws CloneNotSupportedException {
 Point cloned = (Point) super.clone();
 // No need to clone x and y as they are primitives
 return cloned;
 }
}

public class PointCaller {
 public static void main(String[] args)
 throws CloneNotSupportedException {
 Point point = new Point(1, 2); // Is not changed in main()
 point.print_xy();

 // Get the copy of original object
 Point pointCopy = point.clone();
 // pointCopy now holds a unique reference to the
 // newly cloned Point instance

 // Change the value of x,y of the copy
 pointCopy.set_xy(5, 6);

 // Original value remains unchanged

ptg11539634

73. Never confuse the immutability of a reference with that of the referenced object 237

The clone() method returns a copy of the original object that reflects the state
of the original object at the moment of cloning. This new object can be used without
exposing the original object. Because the caller holds the only reference to the newly
cloned instance, the instance variables cannot be changed without the caller’s coop-
eration. This use of the clone() method allows the class to remain securely mutable.
(See The CERT® Oracle® Secure Coding Standard for Java™ [Long 2012], “OBJ04-J.
Provide mutable classes with copy functionality to safely allow passing instances to
untrusted code.”)

The Point class is declared final to prevent subclasses from overriding the
clone() method. This enables the class to be suitably used without any inadvertent
modifications of the original object.

Noncompliant Code Example (Arrays)
This noncompliant code example uses a public static final array, items:

private static final String[] items = {/* . . . */};

public static final String getItem(int index) {
 return items[index];
}

public static final int getItemCount() {
 return items.length;
}

Providing direct access to the array objects themselves is safe because String is
immutable.

 point.print_xy();
 }
}

public static final String[] items = {/* . . . */};

Clients can trivially modify the contents of the array, even though declaring the
array reference to be final prevents modification of the reference itself.

Compliant Solution (Index Getter)
This compliant solution makes the array private and provides public methods to
get individual items and array size:

ptg11539634

238 Chapter 5 n Programmer Misconceptions

Compliant Solution (Clone the Array)
This compliant solution defines a private array and a public method that returns a
copy of the array:

private static final String[] items = {/* . . . */};

public static final String[] getItems() {
 return items.clone();
}

Because a copy of the array is returned, the original array values cannot be modi-
fied by a client. Note that a manual deep copy could be required when dealing with
arrays of objects. This generally happens when the objects do not export a clone()
method. Refer to “OBJ06-J. Defensively copy mutable inputs and mutable internal
components” [Long 2012], for more information.

As before, this method provides direct access to the array objects themselves,
but this is safe because String is immutable. If the array contained mutable objects,
the getItems() method could return an array of cloned objects instead.

Compliant Solution (Unmodifiable Wrappers)
This compliant solution declares a private array from which a public immutable
list is constructed:

private static final String[] items = {/* . . . */};

public static final List<String> itemsList =
 Collections.unmodifiableList(Arrays.asList(items));

Neither the original array values nor the public list can be modified by a client.
For more details about unmodifiable wrappers, refer to Guideline 3, “Provide sensi-
tive mutable classes with unmodifiable wrappers.” This solution can also be used
when the array contains mutable objects.

Applicability
Incorrectly assuming that final references cause the contents of the referenced
object to remain mutable can result in an attacker modifying an object believed to be
immutable.

ptg11539634

74. Use the serialization methods writeUnshared() and readUnshared() with care 239

Bibliography

[Bloch 2008] Item 13, “Minimize the Accessibility of Classes and Members”

[Core Java 2003] Chapter 6, “Interfaces and Inner Classes”

[JLS 2013] §4.12.4, “final Variables”

§6.6, “Access Control”

[Long 2012] OBJ04-J. Provide mutable classes with copy functionality to
safely allow passing instances to untrusted code

OBJ06-J. Defensively copy mutable inputs and mutable internal
components

[Mettler 2010] “Class Properties for Security Review in an Object-Capability
Subset of Java”

n  74. Use the serialization methods writeUnshared() and
readUnshared() with care

When objects are serialized using the writeObject() method, each object is written
to the output stream only once. Invoking the writeObject() method on the same
object a second time places a back-reference to the previously serialized instance in
the stream. Correspondingly, the readObject() method produces at most one
instance for each object present in the input stream that was previously written by
writeObject().

According to the Java API [API 2013], the writeUnshared() method

writes an “unshared” object to the ObjectOutputStream. This method is identical to
writeObject, except that it always writes the given object as a new, unique object in
the stream (as opposed to a back-reference pointing to a previously serialized instance).

Similarly, the readUnshared() method

reads an “unshared” object from the ObjectInputStream. This method is identical to
readObject, except that it prevents subsequent calls to readObject and read-

Unshared from returning additional references to the deserialized instance obtained
via this call.

Consequently, the writeUnshared() and readUnshared() methods are
 unsuitable for round-trip serialization of data structures that contain reference
cycles.

ptg11539634

240 Chapter 5 n Programmer Misconceptions

Consider the following code example:

public class Person {
 private String name;

 Person() {
 // Do nothing — needed for serialization
 }

 Person(String theName) {
 name = theName;
 }

 // Other details not relevant to this example
}

public class Student extends Person implements Serializable {
 private Professor tutor;

 Student() {
 // Do nothing — needed for serialization
 }

 Student(String theName, Professor theTutor) {
 super(theName);
 tutor = theTutor;
 }

 public Professor getTutor() {
 return tutor;
 }
}

public class Professor extends Person implements Serializable {
 private List<Student> tutees = new ArrayList<Student>();

 Professor() {
 // Do nothing — needed for serialization
 }

 Professor(String theName) {
 super(theName);
 }

ptg11539634

 public List<Student> getTutees () {
 return tutees;
 }

 /**
 * checkTutees checks that all the tutees
 * have this Professor as their tutor
 */
 public boolean checkTutees () {
 boolean result = true;
 for (Student stu: tutees) {
 if (stu.getTutor() != this) {
 result = false;
 break;
 }
 }
 return result;
 }
}

// ...

Professor jane = new Professor("Jane");
Student able = new Student("Able", jane);
Student baker = new Student("Baker", jane);
Student charlie = new Student("Charlie", jane);
jane.getTutees().add(able);
jane.getTutees().add(baker);
jane.getTutees().add(charlie);
System.out.println("checkTutees returns: " + jane.checkTutees());
// Prints "checkTutees returns: true"

Professor and Student are types that extend the basic type Person. A stu-
dent (that is, an object of type Student) has a tutor of type Professor. A professor
(that is, an object of type Professor) has a list (actually, an ArrayList) of tutees
(of type Student). The method checkTutees() checks whether all of the tutees of
this professor have this professor as their tutor, returning true if that is the case
and false otherwise.

Suppose that Professor Jane has three students, Able, Baker, and Charlie, all of
whom have Professor Jane as their tutor. Issues can arise if the writeUnshared() and
readUnshared() methods are used with these classes, as demonstrated in the follow-
ing noncompliant code example.

74. Use the serialization methods writeUnshared() and readUnshared() with care 241

ptg11539634

242 Chapter 5 n Programmer Misconceptions

Noncompliant Code Example
This noncompliant code example attempts to serialize data using writeUnshared().

String filename = "serial";
try (ObjectOutputStream oos = new ObjectOutputStream(new
 FileOutputStream(filename))) {
 // Serializing using writeUnshared
 oos.writeUnshared(jane);
} catch (Throwable e) {
 // Handle error
}

// Deserializing using readUnshared
try (ObjectInputStream ois = new ObjectInputStream(new
 FileInputStream(filename))){
 Professor jane2 = (Professor)ois.readUnshared();
 System.out.println("checkTutees returns: " +
 jane2.checkTutees());
} catch (Throwable e) {
 // Handle error
}

String filename = “serial”;
try (ObjectOutputStream oos = new ObjectOutputStream(new
 FileOutputStream(filename))) {
 // Serializing using writeUnshared
 oos.writeObject(jane);
} catch (Throwable e) {
 // Handle error
}

However, when the data is deserialized using readUnshared(), the checkTu-
tees() method no longer returns true because the tutor objects of the three stu-
dents are different from the original Professor object.

Compliant Solution
This compliant solution uses the writeObject() and readObject() methods to
ensure that the tutor object referred to by the three students has a one-to-one map-
ping with the original Professor object. The checkTutees() method correctly
returns true.

ptg11539634

75. Do not attempt to help the garbage collector 243

Applicability
Using the writeUnshared() and readUnshared() methods may produce unexpected
results when used for the round-trip serialization of data structures containing refer-
ence cycles.

Bibliography

[API 2013] Class ObjectOutputStream

Class ObjectInputStream

n  75. Do not attempt to help the garbage collector by setting
local reference variables to null

Setting local reference variables to null to “help the garbage collector” is unneces-
sary. It adds clutter to the code and can make maintenance difficult. Java just-in-time
compilers (JITs) can perform an equivalent liveness analysis and most implementa-
tions do so.

A related bad practice is the use of a finalizer to null out references. See The
CERT® Oracle® Secure Coding Standard for Java™ [Long 2012], “MET12-J. Do not use
finalizers,” for additional details.

This guideline applies specifically to local variables. For a case where explicitly
erasing objects is useful, see Guideline 49, “Remove short-lived objects from long-
lived container objects.”

Noncompliant Code Example
In this noncompliant code example, buffer is a local variable that holds a reference
to a temporary array. The programmer attempts to help the garbage collector by
assigning null to the buffer array when it is no longer needed.

// Deserializing using readUnshared
try (ObjectInputStream ois = new ObjectInputStream(new
 FileInputStream(filename))) {
Professor jane2 = (Professor)ois.readObject();
System.out.println("checkTutees returns: " +
 jane2.checkTutees());
} catch (Throwable e) {
 // Handle error
}

ptg11539634

244 Chapter 5 n Programmer Misconceptions

Compliant Solution
Program logic occasionally requires tight control over the lifetime of an object refer-
enced from a local variable. In the unusual cases where such control is necessary, use
a lexical block to limit the scope of the variable, because the garbage collector can
collect the object immediately when it goes out of scope [Bloch 2008].

This compliant solution uses a lexical block to control the lifetime of the buffer
object:

{ // Local scope
 int[] buffer = new int[100];
 doSomething(buffer);
 buffer = null;
}

{ // Limit the scope of buffer
 int[] buffer = new int[100];
 doSomething(buffer);
}

Applicability
It is unnecessary to set local reference variables to null when they are no longer
needed in a mistaken attempt to help the garbage collector reclaim the associated
memory.

Bibliography

[Bloch 2008] Item 6, “Eliminate Obsolete Object References”

[Long 2012] MET12-J. Do not use finalizers

ptg11539634

 245

Appendix A
Android

This appendix describes the applicability of the guidelines in this book to developing
Java apps for the Android platform.

Guideline Applicability

1. Limit the lifetime of sensitive data Applicable1

2. Do not store unencrypted sensitive information on the
client side

Applicable

3. Provide sensitive mutable classes with unmodifiable
wrappers

Unknown

4. Ensure that security-sensitive methods are called with
validated arguments

Applicable in principle2

5. Prevent arbitrary file upload Applicable in principle

6. Properly encode or escape output Applicable in principle

7. Prevent code injection Applicable in principle3

8. Prevent XPath injection Applicable

9. Prevent LDAP injection Applicable in principle4

1. The noncompliant code example is more difficult to exploit on Dalvik because each app executes
in its own Dalvik VM, making the string object more difficult to access from other apps.

2. On Android, AccessControlContext() is not available.

3. ScriptEngineManager is not included in the Android SDK.

4. Applicable in principle for Android apps that try to implement their own LDAP.

ptg11539634

246 Appendix A n Android

Guideline Applicability

10. Do not use the clone() method to copy untrusted
method parameters

Applicable

11. Do not use Object.equals() to compare
 cryptographic keys

Applicable

12. Do not use insecure or weak cryptographic algorithms Applicable

13. Store passwords using a hash function Applicable

14. Ensure that SecureRandom is properly seeded Applicable

15. Do not rely methods that can be overridden by
untrusted code

Applicable

16. Avoid granting excess privileges Not applicable5

17. Minimize privileged code Not applicable6

18. Do not expose methods that use reduced-security
checks to untrusted code

Not applicable

19. Define custom security permissions for fine-grained
security

Not applicable

20. Create a secure sandbox using a security manager Not applicable

21. Do not let untrusted code misuse privileges of callback
methods

Unknown

22. Minimize the scope of variables Applicable

23. Minimize the scope of the @SuppressWarnings
annotation

Applicable

24. Minimize the accessibility of classes and their members Applicable

25. Document thread-safety and use annotations where
applicable

Applicable

26. Always provide feedback about the resulting value of a
method

Applicable

27. Identify files using multiple file attributes Applicable in principle7

28. Do not attach significance to the ordinal associated with
an enum

Applicable

29. Be aware of numeric promotion behavior Applicable

30. Enable compile-time type checking of variable arity
parameter types

Applicable

31. Do not apply public final to constants whose value
might change in later releases

Applicable

5. Android doesn’t use AccessController.

6. Android doesn’t use AccessController.

7. On Android, openFileOutput() and openFileInput() are preferred for file I/O.

ptg11539634

Appendix A n Android 247

Guideline Applicability

32. Avoid cyclic dependencies between packages Applicable

33. Prefer user-defined exceptions over more general
exception types

Applicable

34. Try to gracefully recover from system errors Applicable

35. Carefully design interfaces before releasing them Applicable

36. Write garbage collection–friendly code Applicable

37. Do not shadow or obscure identifiers in subscopes Applicable

38. Do not declare more than one variable per declaration Applicable

39. Use meaningful symbolic constants to represent literal
values in program logic

Applicable

40. Properly encode relationships in constant definitions Applicable

41. Return an empty array or collection instead of a null
value for methods that return an array or collection

Applicable

42. Use exceptions only for exceptional conditions Applicable

43. Use a try-with-resources statement to safely handle
closeable resources

Not applicable8

44. Do not use assertions to verify the absence of runtime
errors

Applicable in principle9

45. Use the same type for the second and third operands in
conditional expressions

Applicable

46. Do not serialize direct handles to system resources Applicable

47. Prefer using iterators over enumerations Applicable

48. Do not use direct buffers for short-lived, infrequently
used objects

Applicable

49. Remove short-lived objects from long-lived container
objects

Applicable

50. Be careful using visually misleading identifiers and literals Applicable

51. Avoid ambiguous overloading of variable arity methods Applicable

52. Avoid in-band error indicators Applicable

53. Do not perform assignments in conditional expressions Applicable

54. Use braces for the body of an if, for, or while statement Applicable

55. Do not place a semicolon immediately following an if,
for, or while condition

Applicable

8. The Android SDK currently does not support Java7, so try-with-resources is not available on
Android.

9. On Android, assert() is ignored by default.

ptg11539634

Guideline Applicability

56. Finish every set of statements associated with a case
label with a break statement

Applicable

57. Avoid inadvertent wrapping of loop counters Applicable

58. Use parentheses for precedence of operation Applicable

59. Do not make assumptions about file creation Applicable in principle10

60. Convert integers to floating-point for floating-point
operations

Applicable

61. Ensure that the clone() method calls super.clone() Applicable

62. Use comments consistently and in a readable fashion Applicable

63. Detect and remove superfluous code and values Applicable

64. Strive for logical completeness Applicable

65. Avoid ambiguous or confusing uses of overloading Applicable

66. Do not assume that declaring a reference volatile
guarantees safe publication of the members of the
referenced object

Applicable

67. Do not assume that the sleep(), yield(), or
getState() methods provide synchronization semantics

Applicable

68. Do not assume that the remainder operator always
returns a nonnegative result for integral operands

Applicable

69. Do not confuse abstract object equality with reference
equality

Applicable

70. Understand the differences between bitwise and logical
operators

Applicable

71. Understand how escape characters are interpreted when
strings are loaded

Applicable

72. Do not use overloaded methods to differentiate between
runtime types

Applicable

73. Never confuse the immutability of a reference with that
of the referenced object

Applicable

74. Use the serialization methods writeUnshared() and
readUnshared() with care

Applicable

75. Do not attempt to help the garbage collector by setting
local reference variables to null

Applicable

10. On Android, java.nio.file is not available.

248 Appendix A n Android

ptg11539634

 249

Glossary

atomicity When applied to an operation on primitive data, indicates that other
threads that might access the data might see the data as it exists before the
operation occurs or after the operation has completed, but may never see an
intermediate value of the data.

canonicalization Reducing the input to its equivalent simplest known form.

class variable “A class variable is a field declared using the keyword static within
a class declaration, or with or without the keyword static within an interface
declaration. A class variable is created when its class or interface is prepared and
is initialized to a default value. The class variable effectively ceases to exist when its
class or interface is unloaded” [JLS 2013, §4.12.3, “Kinds of Variables”].

condition predicate An expression constructed from the state variables of a class
that must be true for a thread to continue execution. The thread pauses execution,
via Object.wait(), Thread.sleep(), or some other mechanism, and is resumed
later, presumably when the requirement is true and when it is notified [Goetz 2006].

controlling expression The top-level expression in the conditional expression of
an if, while, do... while, or switch statement.

data race “When a program contains two conflicting accesses that are not ordered
by a happens-before relationship, it is said to contain a data race” [JLS 2013,
§17.4.5, “Happens-before Order”].

ptg11539634

250 Glossary

happens-before order “Two actions can be ordered by a happens-before relationship.
If one action happens-before another, then the first is visible to and ordered before the
second. . . . It should be noted that the presence of a happens-before relationship
between two actions does not necessarily imply that they have to take place in that
order in an implementation. If the reordering produces results consistent with a legal
execution, it is not illegal. . . . More specifically, if two actions share a happens-before
relationship, they do not necessarily have to appear to have happened in that order to
any code with which they do not share a happens-before relationship. Writes in one
thread that are in a data race with reads in another thread may, for example, appear to
occur out of order to those reads” [JLS 2013, §17.4.5, “Happens-before Order”].

heap memory “Memory that can be shared between threads is called shared
memory or heap memory. All instance fields, static fields and array elements are
stored in heap memory. . . . Local variables, formal method parameters or exception
handler parameters are never shared between threads and are unaffected by the
memory model” [JLS 2013, §17.4.1, “Shared Variables”].

hide One class field hides a field in a superclass if they have the same identifier.
The hidden field is not accessible from the class. Likewise, a class method hides a
method in a superclass if they have the same identifier, but incompatible
signatures. The hidden method is not accessible from the class. See the JLS,
§8.4.8.2, “Hiding (by Class Methods)” [JLS 2013] for the formal definition.
Contrast with override.

immutable When applied to an object, immutable means that its state cannot be
changed after being initialized. An object is immutable if

n	 Its state cannot be modified after construction;

n	 All its fields are final; and

n	 It is properly constructed (the this reference does not escape during
 construction) [Goetz 2006].

It is technically possible to have an immutable object without all fields being final.
String is such a class but this relies on delicate reasoning about benign data races
that requires a deep understanding of the Java Memory Model.

liveness Every operation or method invocation executes to completion without
interruptions, even if it goes against safety.

memory model “The rules that determine how memory accesses are ordered and
when they are guaranteed to be visible are known as the memory model of the Java
programming language” [Arnold 2006]. “A memory model describes, given a

ptg11539634

Glossary 251

program and an execution trace of that program, whether the execution trace is a
legal execution of the program” [JLS 2013, §17.4, “Memory Model”].

normalization Lossy conversion of the data to its simplest known (and anticipated)
form. “When implementations keep strings in a normalized form, they can be
assured that equivalent strings have a unique binary representation” [Davis 2008].

obscure One scoped identifier obscures another identifier in a containing scope if
the two identifiers are the same but the obscuring identifier does not shadow the
obscured identifier. This can happen if the obscuring identifier is a variable and the
obscured identifier is a type, for example. See the JLS, §6.4.2, “Obscuring”
[JLS 2013], for more information.

override One class method overrides a method in a superclass if they have compatible
signatures. The overridden method is still accessible from the class via the super
keyword. See the JLS, §8.4.8.1, “Overriding (by Instance Methods)” [JLS 2013], for the
formal definition. Contrast with hide.

publishing objects “Publishing an object means making it available to code outside of
its current scope, such as by storing a reference to it where other code can find it,
returning it from a nonprivate method, or passing it to a method in another class”
[Goetz 2006].

race condition “General races cause nondeterministic execution and are failures in
programs intended to be deterministic” [Netzer 1992]. “A race condition occurs
when the correctness of a computation depends on the relative timing or
interleaving of multiple threads by the runtime” [Goetz 2006].

safe publication “To publish an object safely, both the reference to the object and
the [state of the object] must be made visible to other threads at the same time.
A properly constructed object can be safely published by:

n	 Initializing an object reference from a static initializer;

n	 Storing a reference to it into a volatile field or AtomicReference;

n	 Storing a reference to it into a final field of a properly constructed object; or

n	 Storing a reference to it into a field that is properly guarded by a lock” [Goetz
2006, §3.5 “Safe Publication”].

safety Its main goal is to ensure that all objects maintain consistent states in a
multithreaded environment [Lea 2000].

sanitization Validating input and transforming it to a representation that conforms
to the input requirements of a complex subsystem. For example, a database may

ptg11539634

252 Glossary

require all invalid characters to be escaped or eliminated before their storage. Input
sanitization is the elimination of unwanted characters from the input by means of
removing, replacing, encoding, or escaping the characters.

security flaw A software defect that poses a potential security risk [Seacord 2013].

sensitive code Any code that performs operations that would be forbidden to
untrusted code. Also, any code that accesses sensitive data. For example, code
whose correct operation requires enhanced privileges is typically considered to
be sensitive.

sensitive data Any data that must be kept secure. Consequences of this security
requirement include the following:

n	 Untrusted code is forbidden to access sensitive data

n	 Trusted code is forbidden to leak sensitive data to untrusted code

Examples of sensitive data include passwords and personally identifiable information.

shadow One scoped identifier shadows another identifier in a containing scope if
the two identifiers are the same, and they both reference variables. They may also
both reference methods or types. The shadowed identifier is not accessible in the
scope of the shadowing identifier. See the JLS, §6.4.1, “Shadowing” [JLS 2013], for
more information. Contrast with obscure.

synchronization “The Java programming language provides multiple mechanisms
for communicating between threads. The most basic of these methods is
synchronization, which is implemented using monitors. Each object in Java is
associated with a monitor, which a thread can lock or unlock. Only one thread at
a time may hold a lock on a monitor. Any other threads attempting to lock that
monitor are blocked until they can obtain a lock on that monitor” [JLS 2013,
§17.1, “Synchronization”].

thread-safe An object is thread-safe if it can be shared by multiple threads without
the possibility of any data races. “A thread-safe object performs synchronization
internally, so multiple threads can freely access it through its public interface
without further synchronization” [Goetz 2006]. Immutable classes are thread-safe
by definition. Mutable classes may also be thread-safe if they are properly
synchronized.

trusted code Code that is loaded by the primordial class loader regardless of
whether or not it constitutes the Java API. In this text, this meaning is extended
to include code that is obtained from a known entity and given permissions that
untrusted code lacks. By this definition, untrusted and trusted code can coexist

ptg11539634

Glossary 253

in the namespace of a single class loader (not necessarily the primordial class
loader). In such cases, the security policy must make this distinction clear by
assigning appropriate privileges to trusted code while denying the same from
untrusted code.

untrusted code Code of unknown origin that can potentially cause some harm
when executed. Untrusted code may not always be malicious, but it is usually
hard to determine automatically. Consequently, untrusted code should be run in
a sandboxed environment.

volatile “A write to a volatile field happens-before every subsequent read of that
field” [JLS 2013, §17.4.5, “Happens-before Order”]. “Operations on the master
copies of volatile variables on behalf of a thread are performed by the main
memory in exactly the order that the thread requested” [JVMSpec 1999]. Accesses
to a volatile variable are sequentially consistent, which also means that the
operations are exempt from compiler optimizations. Declaring a variable volatile
ensures that all threads see the most up-to-date value of the variable if any thread
modifies it. Volatile guarantees atomic reads and writes of primitive values, but it
does not guarantee the atomicity of composite operations such as variable
incrementation (read-modify-write sequence).

vulnerability “A set of conditions that allows an attacker to violate an explicit or
implicit security policy” [Seacord 2013].

ptg11539634

This page intentionally left blank

ptg11539634

 255

References

[Allen 2000] Vermeulen, Allan, Scott W. Ambler, Greg Bumgardner, Eldon Metz,
Trevor Misfeldt, Jim Shur, and Patrick Thompson. The Elements of Java™ Style.
New York, NY: Cambridge University Press (2000).

[Apache 2013] Apache Tika: A Content Analysis Toolkit. The Apache Software
Foundation (2013). http://tika.apache.org/index.html

[API 2006] Java™ Platform, Standard Edition 6 API Specification. Oracle
(2006/2011). http://docs.oracle.com/javase/6/docs/api/

[API 2013] Java™ Platform, Standard Edition 7 API Specification. Oracle (2013).
http://docs.oracle.com/javase/7/docs/api/index.html

[Arnold 2006] Arnold, Ken, James Gosling, and David Holmes. The Java™
Programming Language, Fourth Edition. Boston, MA: Addison-Wesley (2006).

[Bloch 2001] Bloch, Joshua. Effective Java™: Programming Language Guide. Boston,
MA: Addison-Wesley (2001).

[Bloch 2005] Bloch, Joshua, and Neal Gafter. Java™ Puzzlers: Traps, Pitfalls, and
Corner Cases. Boston, MA: Addison-Wesley (2005).

[Bloch 2008] Bloch, Joshua. Effective Java™: Programming Language Guide, Second
Edition. Boston, MA: Addison-Wesley (2008).

http://tika.apache.org/index.html
http://docs.oracle.com/javase/6/docs/api/
http://docs.oracle.com/javase/7/docs/api/index.html

ptg11539634

256 References

[Campione 1996] Campione, Mary, and Kathy Walrath. The Java™ Tutorial:
Object-Oriented Programming for the Internet. Reading, MA: Addison-Wesley (1996).

[Chan 1998] Chan, Patrick, Rosanna Lee, and Douglas Kramer. The Java™ Class
Libraries: Supplement for the Java™ 2 Platform, Volume 1, Second Edition. Upper
Saddle River, NJ: Prentice Hall (1998).

[Conventions 2009] Code Conventions for the Java Programming Language.
Oracle (2009). www.oracle.com/technetwork/java/codeconv-138413.html

[Coomes 2007] Coomes, John, Peter Kessler, and Tony Printezis. “Garbage
Collection–Friendly Programming.” JavaOne Conference (2007). http://docs
.huihoo.com/javaone/2007/java-se/TS-2906.pdf

[Core Java 2003] Horstmann, Cay S., and Gary Cornell. Core Java™ 2, Volume I:
Fundamentals, Seventh Edition. Upper Saddle River, NJ: Prentice Hall (2003).

[Coverity 2007] Coverity Prevent™ User’s Manual (3.3.0). Coverity (2007).

[Daconta 2003] Daconta, Michael C., Kevin T. Smith, Donald Avondolio, and
W. Clay Richardson. More Java Pitfalls: 50 New Time-Saving Solutions and
Workarounds. Indianapolis, IN: Wiley (2003).

[Davis 2008] Unicode Standard Annex #15: Unicode Normalization Forms, ed.
Mark Davis and Ken Whistler. Unicode (2008). http://unicode.org/reports/tr15/

[ESA 2005] Java Coding Standards. ESA Board for Software Standardisation and
Control (BSSC) (2005). http://software.ucv.ro/~eganea/SoftE/JavaCodingStandards.pdf

[FindBugs 2008] FindBugs Bug Descriptions (2008/2011). http://findbugs
.sourceforge.net/bugDescriptions.html

[Flanagan 2005] Flanagan, David. Java™ in a Nutshell, Fifth Edition. Sebastopol,
CA: O’Reilly (2005).

[Fortify 2013] A Taxonomy of Coding Errors That Affect Security, “Java/JSP.” Fortify
Software (2013). www.hpenterprisesecurity.com/vulncat/en/vulncat/index.html

[GNU 2013] GNU Coding Standards, §5.3, “Clean Use of C Constructs.” Richard
Stallman and other GNU Project volunteers (2013). www.gnu.org/prep/standards/
standards.html#Syntactic-Conventions

[Goetz 2004] Goetz, Brian. Java Theory and Practice: Garbage Collection and
Performance: Hints, Tips, and Myths about Writing Garbage Collection-Friendly
Classes. IBM developerWorks (2004). www.ibm.com/developerworks/java/library/
j-jtp01274/index.html

http://www.oracle.com/technetwork/java/codeconv-138413.html
http://docs.huihoo.com/javaone/2007/java-se/TS-2906.pdf
http://docs.huihoo.com/javaone/2007/java-se/TS-2906.pdf
http://www.hpenterprisesecurity.com/vulncat/en/vulncat/index.html
http://www.gnu.org/prep/standards/standards.html#Syntactic-Conventions
http://www.gnu.org/prep/standards/standards.html#Syntactic-Conventions
http://www.ibm.com/developerworks/java/library/j-jtp01274/index.html
http://www.ibm.com/developerworks/java/library/j-jtp01274/index.html
http://unicode.org/reports/tr15/
http://software.ucv.ro/~eganea/SoftE/JavaCodingStandards.pdf
http://findbugs.sourceforge.net/bugDescriptions.html
http://findbugs.sourceforge.net/bugDescriptions.html

ptg11539634

References 257

[Goetz 2006] Goetz, Brian, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David
Holmes, and Doug Lea. Java Concurrency in Practice. Boston, MA: Addison-Wesley
(2006).

[Goetz 2007] Goetz, Brian. Java Theory and Practice: Managing Volatility:
Guidelines for Using Volatile Variables. IBM developerWorks (2007). www.ibm
.com/developerworks/java/library/j-jtp06197/index.html

[Gong 2003] Gong, Li, Gary Ellison, and Mary Dageforde. Inside Java™ 2 Platform
Security: Architecture, API Design, and Implementation, Second Edition. Boston, MA:
Addison-Wesley (2003).

[Goodliffe 2007] Goodliffe, Pete. Code Craft: The Practice of Writing Excellent
Code. San Francisco, CA: No Starch Press, (2007).

[Grand 2002] Grand, Mark. Patterns in Java™, Volume 1: A Catalog of Reusable
Design Patterns Illustrated with UML, Second Edition. Indianapolis, IN: Wiley (2002).

[Grubb 2003] Grubb, Penny, and Armstrong A. Takang. Software Maintenance:
Concepts and Practice, Second Edition. River Edge, NJ: World Scientific (2003).

[Guillardoy 2012] Guillardoy, Esteban. Java 0Day Analysis (CVE-2012-4681).
(2012). http://immunityproducts.blogspot.com.ar/2012/08/java-0day-analysis-
cve-2012-4681.html

[Hatton 1995] Hatton, Les. Safer C: Developing Software for High-integrity and
Safety-critical Systems. New York, NY: McGraw-Hill, (1995).

[Hawtin 2006] Hawtin, Thomas. [drlvm][kernel_classes] ThreadLocal
Vulnerability. MarkMail (2006). http://markmail.org/message/4scermxmn5oqhyi

[Havelund 2009] Havelund, Klaus, and Al Niessner. JPL Coding Standard,
Version 1.1. California Institute of Technology (2009). http://lars-lab.jpl.nasa.gov/
JPL_Coding_Standard_Java.pdf

[Hirondelle 2013] Passwords Never Clear in Text. Hirondelle Systems (2013).
www.javapractices.com/topic/TopicAction.do?Id=216

[ISO/IEC 9126-1:2001] Software Engineering—Product Quality, Part 1, Quality
Model (ISO/IEC 9126-1:2001). Geneva, Switzerland: International Organization for
Standardization (2001).

[ISO/IEC/IEEE 24765:2010] Software Engineering—Product Quality, Part 1,
Quality Model (ISO/IEC/IEEE 24765:2010). Geneva, Switzerland: International
Organization for Standardization (2010).

http://www.ibm.com/developerworks/java/library/j-jtp06197/index.html
http://www.ibm.com/developerworks/java/library/j-jtp06197/index.html
http://www.javapractices.com/topic/TopicAction.do?Id=216
http://lars-lab.jpl.nasa.gov/JPL_Coding_Standard_Java.pdf
http://lars-lab.jpl.nasa.gov/JPL_Coding_Standard_Java.pdf
http://markmail.org/message/4scermxmn5oqhyi
http://immunityproducts.blogspot.com.ar/2012/08/java-0day-analysis-cve-2012-4681.html
http://immunityproducts.blogspot.com.ar/2012/08/java-0day-analysis-cve-2012-4681.html

ptg11539634

258 References

[JLS 2013] Gosling, James, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley.
The Java Language Specification: Java SE 7 Edition. Oracle America, Inc. (2013).
http://docs.oracle.com/javase/specs/jls/se7/html/index.html

[JVMSpec 1999] The Java™ Virtual Machine Specification, Second Edition. Sun
Microsystems, Inc. (1999). http://docs.oracle.com/javase/specs/

[Kalinovsky 2004] Kalinovsky, Alex. Covert Java™: Techniques for Decompiling,
Patching, and Reverse Engineering. Indianapolis, IN: SAMS (2004).

[Knoernschild 2002] Knoernschild, Kirk. Java™ Design: Objects, UML, and Process.
Boston, MA: Addison-Wesley (2002).

[Lea 2000] Lea, Doug. Concurrent Programming in Java™: Design Principles and
Patterns, Second Edition. Boston, MA: Addison-Wesley (2000).

[Lo 2005] Lo, Chia-Tien Dan, Witawas Srisa-an, and J. Morris Chang. “Security
Issues in Garbage Collection.” STSC Crosstalk (2005). www.eng.auburn
.edu/users/hamilton/security/papers/STSC%20CrossTalk%20-%20Security%20
Issues%20in%20Garbage%20Collection%20-%20Oct%a02005.pdf

[Long 2012] Long, Fred, Dhruv Mohindra, Robert C. Seacord, Dean F. Sutherland,
and David Svoboda. The CERT® Oracle® Secure Coding Standard for Java™. Boston,
MA: Addison-Wesley (2012).

[Manion 2013] Manion, Art. “Anatomy of Java Exploits,” CERT/CC Blog (2013).
www.cert.org/blogs/certcc/2013/01/anatomy_of_java_exploits.html

[McGraw 1999] McGraw, Gary, and Ed Felten. Securing Java: Getting Down to
Business with Mobile Code, Second Edition. New York, NY: Wiley (1999).

[Mettler 2010] Mettler, Adrian, and David Wagner. “Class Properties for Security
Review in an Object-Capability Subset of Java.” Proceedings of the 5th ACM
SIGPLAN Workshop on Programming Languages and Analysis for Security (PLAS ’10).
New York, NY: ACM (2010). DOI: 10.1145/1814217.1814224. http://dl.acm.org/
citation.cfm?doid=1814217.1814224

[Miller 2009] Miller, Alex. Java™ Platform Concurrency Gotchas. JavaOne
Conference (2009).

[Netzer 1992] Netzer, Robert H. B., and Barton P. Miller. “What Are Race
Conditions? Some Issues and Formalization.” ACM Letters on Programming
Languages and Systems 1(1):74–88 (1992). http://dl.acm.org/citation
.cfm?id=130616.130623

[Oaks 2001] Oaks, Scott. Java™ Security. Sebastopol, CA: O’Reilly (2001).

http://docs.oracle.com/javase/specs/jls/se7/html/index.html
http://docs.oracle.com/javase/specs/
http://www.eng.auburn.edu/users/hamilton/security/papers/STSC%20CrossTalk%20-%20Security%20Issues%20in%20Garbage%20Collection%20-%20Oct%a02005.pdf
http://www.eng.auburn.edu/users/hamilton/security/papers/STSC%20CrossTalk%20-%20Security%20Issues%20in%20Garbage%20Collection%20-%20Oct%a02005.pdf
http://www.eng.auburn.edu/users/hamilton/security/papers/STSC%20CrossTalk%20-%20Security%20Issues%20in%20Garbage%20Collection%20-%20Oct%a02005.pdf
http://www.cert.org/blogs/certcc/2013/01/anatomy_of_java_exploits.html
http://dl.acm.org/citation.cfm?doid=1814217.1814224
http://dl.acm.org/citation.cfm?doid=1814217.1814224
http://dl.acm.org/citation.cfm?id=130616.130623
http://dl.acm.org/citation.cfm?id=130616.130623

ptg11539634

References 259

[Oracle 2010a] Java SE 6 HotSpot™ Virtual Machine Garbage Collection Tuning.
Oracle (2010). www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html

[Oracle 2010b] New I/O APIs. Oracle (2010). http://docs.oracle.com/javase/1.5.0/
docs/guide/nio/

[Oracle 2011a] Java™ PKI Programmer’s Guide. Oracle (2011). http://docs.oracle.
com/javase/6/docs/technotes/guides/security/certpath/CertPathProgGuide.html

[Oracle 2011b] Java SE 6 Documentation. Oracle (2011). http://docs.oracle.com/
javase/6/docs/index.html

[Oracle 2011c] Package javax.servlet.http. Oracle (2011). http://docs.oracle.com/
javaee/6/api/javax/servlet/http/package-summary.html

[Oracle 2011d] Permissions in the Java™ SE 6 Development Kit (JDK). Oracle
(2011). http://docs.oracle.com/javase/6/docs/technotes/guides/security/
permissions.html

[Oracle 2013a] API for Privileged Blocks. Oracle (2013). http://download
.java.net/jdk8/docs/technotes/guides/security/doprivileged.html

[Oracle 2013b] “Reading ASCII Passwords from an InputStream Example,” Java™
Cryptography Architecture (JCA) Reference Guide. Oracle (2013). http://docs
.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.
html#ReadPassword

[Oracle 2013c] Java Platform Standard Edition 7 Documentation. Oracle (2013).
http://docs.oracle.com/javase/7/docs/

[Oracle 2013d] Oracle Security Alert for CVE-2013-0422. Oracle (2013). www
.oracle.com/technetwork/topics/security/alert-cve-2013-0422-1896849.html

[OWASP 2009] Session Fixation in Java. OWASP (2009). https://www.owasp.org/
index.php/Session_Fixation_in_Java

[OWASP 2011] Cross-site Scripting (XSS). OWASP (2011). www.owasp.org/index
.php/Cross-site_Scripting_%28XSS%29

[OWASP 2012] “Why Add Salt?” Hashing Java. OWASP (2012). www.owasp.org/
index.php/Hashing_Java

[OWASP 2013] OWASP Guide Project. The Open Web Application Security
Project (OWASP) (2013). www.owasp.org/index.php/OWASP_Guide_Project

[Paar 2010] Paar, Christof, and Jan Pelzl. Understanding Cryptography: A Textbook
for Students and Practitioners. Heidelberg, NY: Springer (2010).

http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
http://docs.oracle.com/javase/6/docs/technotes/guides/security/certpath/CertPathProgGuide.html
http://docs.oracle.com/javase/6/docs/technotes/guides/security/certpath/CertPathProgGuide.html
http://docs.oracle.com/javase/1.5.0/docs/guide/nio/
http://docs.oracle.com/javase/1.5.0/docs/guide/nio/
http://docs.oracle.com/javase/6/docs/index.html
http://docs.oracle.com/javase/6/docs/index.html
http://docs.oracle.com/javaee/6/api/javax/servlet/http/package-summary.html
http://docs.oracle.com/javaee/6/api/javax/servlet/http/package-summary.html
http://docs.oracle.com/javase/6/docs/technotes/guides/security/permissions.html
http://docs.oracle.com/javase/6/docs/technotes/guides/security/permissions.html
http://download.java.net/jdk8/docs/technotes/guides/security/doprivileged.html
http://download.java.net/jdk8/docs/technotes/guides/security/doprivileged.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html#ReadPassword
http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html#ReadPassword
http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html#ReadPassword
http://docs.oracle.com/javase/7/docs/
http://www.oracle.com/technetwork/topics/security/alert-cve-2013-0422-1896849.html
http://www.oracle.com/technetwork/topics/security/alert-cve-2013-0422-1896849.html
https://www.owasp.org/index.php/Session_Fixation_in_Java
https://www.owasp.org/index.php/Session_Fixation_in_Java
http://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%29
http://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%29
http://www.owasp.org/index.php/Hashing_Java
http://www.owasp.org/index.php/Hashing_Java
http://www.owasp.org/index.php/OWASP_Guide_Project

ptg11539634

260 References

[Pistoia 2004] Pistoia, Marco, Nataraj Nagaratnam, Larry Koved, and Anthony
Nadalin. Enterprise Java™ Security: Building Secure J2EE™ Applications. Boston, MA:
Addison-Wesley (2004).

[Policy 2010] Default Policy Implementation and Policy File Syntax, Document
revision 1.6. Oracle (2010). http://docs.oracle.com/javase/1.4.2/docs/guide/
security/PolicyFiles.html

[SCG 2010] Secure Coding Guidelines for the Java Programming Language, Version
4.0. Oracle (2010). www.oracle.com/technetwork/java/seccodeguide-139067.html

[Seacord 2009] Seacord, Robert C. The CERT® C Secure Coding Standard. Boston,
MA: Addison-Wesley (2009).

[Seacord 2012] Seacord, Robert C., Will Dormann, James McCurley, Philip Miller,
Robert Stoddard, David Svoboda, and Jefferson Welch. Source Code Analysis
Laboratory (SCALe) (CMU/SEI-2012-TN-013). Pittsburgh, PA: Carnegie Mellon
University (2012). www.sei.cmu.edu/library/abstracts/reports/12tn013.cfm

[Seacord 2013] Seacord, Robert C. Secure Coding in C and C++, Second Edition.
Boston, MA: Addison-Wesley (2013). See www.cert.org/books/secure-coding for
news and errata.

[SecuritySpec 2010] Java Security Architecture. Oracle (2010). http://docs
.oracle.com/javase/1.5.0/docs/guide/security/spec/security-specTOC.fm.html

[Sen 2007] Sen, Robi. Avoid the Dangers of XPath Injection. IBM developerWorks
(2007). www.ibm.com/developerworks/xml/library/x-xpathinjection/index.html

[Sethi 2009] Sethi, Amit. Proper Use of Java’s SecureRandom. Cigital Justice
League Blog (2009). www.cigital.com/justice-league-blog/2009/08/14/proper-
use-of-javas-securerandom/

[Steinberg 2008] Steinberg, Daniel H. Using the Varargs Language Feature. Java
Developer Connection Tech Tips (2008). www.java-tips.org/java-se-tips/java.lang/
using-the-varargs-language-feature.html

[Sterbenz 2006] Sterbenz, Andreas, and Charlie Lai. Secure Coding Antipatterns:
Avoiding Vulnerabilities. JavaOne Conference (2006). https://confluence.ucdavis
.edu/confluence/download/attachments/16218/ts-1238.pdf?version=1&modificatio
ndate=1180213302000

[Sutherland 2010] Sutherland, Dean F., and William L. Scherlis. “Composable
Thread Coloring.” In Proceedings of the 15th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP ‘10). New York, NY: ACM (2010).
http://dl.acm.org/citation.cfm?doid=1693453.1693485

http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://docs.oracle.com/javase/1.4.2/docs/guide/security/PolicyFiles.html
http://docs.oracle.com/javase/1.4.2/docs/guide/security/PolicyFiles.html
http://www.sei.cmu.edu/library/abstracts/reports/12tn013.cfm
http://www.cert.org/books/secure-coding
http://docs.oracle.com/javase/1.5.0/docs/guide/security/spec/security-specTOC.fm.html
http://docs.oracle.com/javase/1.5.0/docs/guide/security/spec/security-specTOC.fm.html
http://www.ibm.com/developerworks/xml/library/x-xpathinjection/index.html
http://www.cigital.com/justice-league-blog/2009/08/14/proper-use-of-javas-securerandom/
http://www.cigital.com/justice-league-blog/2009/08/14/proper-use-of-javas-securerandom/
http://www.java-tips.org/java-se-tips/java.lang/using-the-varargs-language-feature.html
http://www.java-tips.org/java-se-tips/java.lang/using-the-varargs-language-feature.html
https://confluence.ucdavis.edu/confluence/download/attachments/16218/ts-1238.pdf?version=1&modificationdate=1180213302000
https://confluence.ucdavis.edu/confluence/download/attachments/16218/ts-1238.pdf?version=1&modificationdate=1180213302000
https://confluence.ucdavis.edu/confluence/download/attachments/16218/ts-1238.pdf?version=1&modificationdate=1180213302000
http://dl.acm.org/citation.cfm?doid=1693453.1693485

ptg11539634

References 261

[Tutorials 2013] The Java™ Tutorials. Oracle (2013). http://docs.oracle.com/
javase/tutorial/index.html

[Unicode 2013] Unicode 6.2.0. Mountain View, CA: The Unicode Consortium
(2013). www.unicode.org/versions/Unicode6.2.0/

[Viega 2005] Viega, John. CLASP Reference Guide, Volume 1.1. Secure Software, 2005.

[W3C 2003] The World Wide Web Security FAQ. World Wide Web Consortium
(W3C) (2003). www.w3.org/Security/Faq/wwwsf2.html

[Ware 2008] Ware, Michael S. Writing Secure Java Code: A Taxonomy of Heuristics
and an Evaluation of Static Analysis Tools. James Madison University (2008). http://
mikeware.us/thesis/

[Zadegan 2009] Zadegan, Bryant. A Lesson on Infinite Loops. winJade.net (2009).
http://winjade.net/2009/01/lesson-on-infinite-loops/

http://www.unicode.org/versions/Unicode6.2.0/
http://www.w3.org/Security/Faq/wwwsf2.html
http://mikeware.us/thesis/
http://mikeware.us/thesis/
http://winjade.net/2009/01/lesson-on-infinite-loops/
http://docs.oracle.com/javase/tutorial/index.html
http://docs.oracle.com/javase/tutorial/index.html

ptg11539634

This page intentionally left blank

ptg11539634

 263

Symbols
& (AND)

bitwise vs. logical operators, 225–228
precedence of operation, 186–187

&& (AND)
assignments in conditional expressions,

176–177
bitwise vs. logical operators, 225–228

| (OR)
bitwise vs. logical operators, 225–228
numeric promotion behavior, 110
precedence of operation, 186

|| (OR)
assignments in conditional expressions, 176
bitwise vs. logical operators, 225–228

% (remainder operator), 220–222
() (parentheses), 186–188
*/ (asterisk backslash), 196–197
' (single quote), 27
" (double quotes)

output sanitization, 19
preventing XPath injection, 27

/ (backslash), 27
/* (backslash asterisk), 196–197
// (double backslash), 196
; (semicolon), 180–181
?: (conditional operator), 153, 176
!= (equality operator), 222

^ (caret), 186
{} (braces), 178–180
v (PI), 139–140
<> (angle braces)

output sanitization, 19
preventing XPath injection, 27

<< (comparison operators), 186
= (assignment operator), 176–178
== (equality operator), 70, 222–225
>> (comparison operators), 186

A
abstract classes, 126–127
Abstract object equality, 222–225
Abstract Window Toolkit (AWT), 95
Access control

avoid granting excess privileges, 50–53
calling security-sensitive methods with

validated arguments, 11–13
java.util.Date, 33
minimize accessibility of classes and their

members, 84–89
AccessControlContext

avoid granting excess privileges, 52–53
preventing code injection, 22

AccessController
doPrivileged(), 51
SecurityManager, 68

Index

ptg11539634

264 Index

Advanced Encryption Standard (AES), 36–37
allowedType, 14
Always provide feedback about resulting value

of method, 96–99
AND (&)

bitwise vs. logical operators, 225–228
precedence of operation, 186–187

AND (&&)
assignments in conditional expressions,

176–177
bitwise vs. logical operators, 225–228

Android guidelines applicability, 245–246
Angle braces (<>)

output sanitization, 19
preventing XPath injection, 27

Annotations
document thread-safety, 89–96
scope of @SuppressWarnings, 82–84

Apache Geronimo and Tomcat vulnerability, 130
API

careful interface design, 125–128
minimize accessibility of classes and their

members, 85, 89
prefer using iterators over enumerations,

159–161
providing feedback about resulting method

values, 96–99
scope of guidelines, xv
SecurityManager, 70–71
writeUnshared(), 239

Applet security managers, 68
appletviewer, 70
Arbitrary code

output sanitization, 16–19
preventing upload, 13–16

Arguments, validated, 11–13
Arithmetic operations

floating-point operations, 191–194
precedence of operation, 186–188

ArrayIndexOutOfBoundsException, 147
ArrayList

minimize scope of @SuppressWarnings,
83–84

remove short-lived objects from long-lived
container objects, 163–164

Arrays
return empty instead of null, 143–146
safe publication guarantee and volatile,

210–211

ASCII character set, 168
assert, 151–153
Assignment operators (=), 176–178
Assignments, 175–178
Assumptions. See Programmer misconceptions
Asterisk backslash (*/), 196–197
AtomicIntegerArray, 211
Atomicity

defined, 249
preserving compound operation, 213

AtomicReferenceArray, 33–34
Attributes, 99–106
Audience, xvii
Authentication

preventing LDAP injection, 29–31
preventing XPath injection, 24

AutoDetectParser, 15–16
Avoid ambiguous or confusing uses of

overloading, 205–208
Avoid ambiguous overloading of variable arity

methods, 171–173
Avoid cyclic dependencies between packages,

118–121
Avoid granting excess privileges, 50–53
Avoid in-band error indicators, 173–175
Avoid inadvertent wrapping of loop counters,

183–186
AWT (Abstract Window Toolkit), 95

B
Backslash (/), 27
Backslash asterisk (/*), 196–197
Backward compatibility of SecurityManager, 68
BasicPermission, 65–67
Be aware of numeric promotion behavior,

108–112
Be careful using visually misleading identifiers

and literals, 167–171
Bitwise vs. logical operators, 225–228
Bloch, Joshua

overloading methods, 207
on thread-safety annotations, 92

Block comments, 196–198
Booleans

feedback about resulting method values, 97
meaningful symbolic constants to represent, 138
type use for second and third operands in

conditional expressions, 153–154
Braces ({}), 178–180

ptg11539634

Index 265

break statement, 181–183
BufferedReader

file identification, 100
limiting lifetime of sensitive data, 2–4

Buffers
helping garbage collector, 243–244
limiting lifetime of sensitive data, 2–5
short-lived infrequently used objects and,

162–163
Bugs, xv–xvi
byte array, 40–41
Bytecode verifier, 1

C
Callback methods, 72–77
CallBackAction, 72–77
Canonicalization

custom, 225
defined, 213

Carefully design interfaces before releasing
them, 125–128

Caret (^), 186
case, 181–183
catch, 146–147
The CERT® Oracle® Secure Coding Standard for

Java™ (Long)
CERT Vulnerability Note VU#636312, 60–62
defined, xiv
exception NUM12-EX0 of NUM12-J, 155
feedback about resulting method values, 96
graceful recovery from system errors, 124
in-band error indicators, 173
premature optimization, 140–141
preventing code injection, 20
random number generation, 42
reduced security checks, 58
safe publication, 94
try-with-resources statement, 148
unchecked warnings, 82
wrapping sensitive mutable classes, 10

changePassword(), 54–55
Characters

to exclude from whitelists, 28
how escape characters are interpreted when

strings are loaded, 228–231
meaningful symbolic constants to represent, 138
preventing XPath injection, 27
type use for second and third operands in

conditional expressions, 153–154

visually misleading identifiers and
literals, 167–168

checkMetaData(), 15
checkPackageAccess(), 62
checkPassword(), 41
Class loaders, 56–58, 60–62
Class variables, 249
Classes

minimizing accessibility of, 84–89
minimizing scope of @SuppressWarnings,

82–83
security, 1
SecurityManager, 67–72
unmodifiable wrappers for sensitive

mutable, 9–11
Class.forName(), 61–64
Client-side storage of sensitive information, 5–9
clone()

ensuring it calls super.clone(), 194–196
final variable and, 236–237
untrusted method parameters, 31–34

Closeable resources, 148–151
Code

detect and remove superfluous, 198–202
garbage-collection-friendly, 128–130
injection, 20–23
Java guidelines and standards, xiv–xv
source, 50–51
style, xvii
understandability. See Program

understandability
CodeSource, 50–51
Collections

iterators vs. enumerations, 159–161
returning empty instead of null, 143–146
unmodifiable wrappers for sensitive mutable

classes, 9
Command-line security manager

installation, 69–70
Comment consistency and readability, 196–198
Comparison operations

abstract object equality vs. reference equality,
222–225

cryptographic keys, 34–35
terminating loops, 185

Comparison operators (>>), 186
Comparison operators (<<), 186
Compile-time checking of variable arity

parameter types, 112–115

ptg11539634

266 Index

Compound operators, 109, 111–112
Concurrency annotations, 90
Condition predicate

defined, 249
wait-notify protocols, 95

Conditional expressions
assignments in, 175–178
bitwise vs. logical operators, 225–228
same type for second and third operands in,

153–157
Conditional operator (?:), 153, 176
Constants

application of public final, 115–118
encoding relationships in definitions, 142–143
representing literal values in program logic,

138–142
Constructor overloading, 205–206
Controlling expression, 95, 175–178, 249
Controversial guidelines, xvii
Convert integers to floating point for floating-

point operations, 191–194
Cookies, 5–9
Copying

providing functionality with clone(), 236–238
untrusted method parameter, 31–34

counter(), 81–82
Create secure sandbox using security manager,

67–72
createNewFile(), 189–190
createSecurityManager, 68
Creative Commons Attribution License, 90
Cross-Site Scripting (XSS) attacks

output sanitization, 16–19
storing unencrypted sensitive information, 5–6

Cryptographic algorithms, 36–37
Cryptographic hash functions, 37–38
Cryptographic key comparison, 34–35
Custom security manager, 71
Custom security permissions, 64–67
Custom security policies, 68
Cyclic dependencies, 118–121

D
DAG (directed acyclic graph), 118
Data Encryption Standard (DES), 36
Data races. See also Race conditions

defined, 249
preventing, 96

Data, sensitive. See Sensitive data
DataElement, 164–165
DateFormat, 214–215
Dead code, 198–202
Deadlock, 249
Decimal values, 170
Declarations, 134–137
Default exception handler, 65–67
default label

defined, 181–183
logical completeness, 203

Default security manager, 69–71
Defensive programming

always provide feedback about resulting
value of method, 96–99

application of public final to constants
whose value might change, 115–118

avoid cyclic dependencies between
packages, 118–121

be aware of numeric promotion behavior,
108–112

carefully design interfaces before releasing
them, 125–128

do not attach significance to ordinal
associated with enum, 106–108

document thread-safety and use annotations
where applicable, 89–96

enable compile-time type checking of
variable arity parameter types, 112–115

identify files using multiple file attributes,
99–106

minimize accessibility of classes and their
members, 84–89

minimize scope of @SuppressWarnings
annotation, 82–84

minimize scope of variables, 80–82
overview, 79
prefer user-defined exceptions over more

general exception types, 121–123
try to gracefully recover from system errors,

123–125
write garbage-collection-friendly code,

128–130
Define custom security permissions for

fine-grained security, 64–67
Delegating method implementation, 126
delete(), 99
Delimiters, 196–197

ptg11539634

Index 267

Denial-of-service (DoS)
garbage-collection-friendly code, 128–129
graceful recovery from system errors,

124–125
inadvertent wrapping of loop counters, 186
returning empty array or collection instead

of null value, 143, 146
verifying absence of runtime errors, 152

Dependencies, cyclic, 118–121
DES (Data Encryption Standard), 36
Design

intent, 89
interface, 125–128

Detect and remove superfluous code and
values, 198–202

Direct buffers, 162–163
Directed acyclic graph (DAG), 118
Directories, 99
-disableassertions (-da), 151
display(), 232–233
displayBooleans(), 171–172
Division, 191–193
do ... while, 175
Document thread-safety and use annotations

where applicable, 89–96
Documentation

consistency and readability, 196–198
thread-safety and use annotations where

applicable, 89–96
doPrivileged()

avoid granting excess privileges, 52
calling security-sensitive methods with

validated arguments, 12
do not expose methods that use reduced-

security checks to untrusted code, 58–59
do not let untrusted code misuse privileges

of callback methods, 75–77
minimize privileged code, 54–55
preventing code injection, 22

DoS (denial-of-service). See Denial-of-service
(DoS)

doSomething()
synchronization semantics, 218–219
user-defined exceptions, 122

double
floating-point operations, 192–193
numeric promotion behavior, 108–111

Double backslash (//), 196

Double quotes (")
output sanitization, 19
preventing XPath injection, 27

E
E, 140
Electronic Frontier Foundation’s (EFF) Deep

Crack, 36
Empty arrays and collections, 143–144
Enable compile-time type checking of variable

arity parameter types, 112–115
Encoding

proper output, 16–20
relationships in constant definitions, 142–143

Encryption
storing passwords using hash functions, 37–42
using secure algorithms, 36–37

End-of-line comments, 196–198
Ensure security-sensitive methods are called

with validated arguments, 11–13
Ensure that clone() method calls super.

clone(), 194–196
Ensure that SecureRandom is properly seeded,

42–43
enum

do not attach significance to ordinal
associated with an, 106–108

prefer using iterators over, 159–161
thread-safety annotations, 92

Equality operator (==), 70, 222–225
Equality operator (!=), 222
equals()

abstract object equality vs. reference equality,
222–225

comparing cryptographic keys, 34–35
do not rely on methods that can be overridden

by untrusted code, 44–45
Errors

avoid in-band indicators, 173–175
graceful recovery from system, 123–125
providing feedback about resulting method

values, 96–99
reliability, xiii
verifying absence of runtime, 151–153

Escape characters, 228–231
Escaping output, 16–20
evaluate(), 24
ExceptionReporterPermission, 65–67

ptg11539634

268 Index

Exceptions
assumptions about file creation, 189–190
avoid in-band error indicators, 173
graceful recovery from system errors, 123–125
providing feedback about resulting method

values, 96–99
try-with-resources statement, 148–151
use for exceptional conditions, 146–148
user-defined vs. general types, 121–123

F
false, 97
Federally funded research and development

center (FFRDC), xvii
Feedback, 96–99
Field shadowing, 132–133
“File not found”, 122
FileChannel.size(), 105
fileKey, 103–104
filename, 100
Files

assumptions about creation, 189–190
do not serialize direct handles to system

resources, 157–158
identifying using multiple file attributes,

99–106
preventing arbitrary upload, 13–16

Files.isSameFile(), 101–102
filter, 30–31
final

application of public final to constants,
115–118

immutability of reference vs. referenced
object, 234–238

final class
do not rely on methods that can be

overridden by untrusted code, 47, 49
minimize accessibility of classes and their

members, 86–87
Finalizers, 243
finally block

graceful recovery from system errors,
123–124

try-with-resources statement and, 149
findClass(), 61–62
Finish every set of statements associated with

case label with break statement, 181–183
Fixes, 125
Flashback, 33

float, 108–111
Floating-point numbers

convert integers to, 191–194
meaningful symbolic constants to represent,

138
for

assignments in conditional expressions, 175
declaring variables separately, 136–137
do not place semicolon immediately

following, 180–181
inadvertent wrapping of loop counters,

183–186
minimizing scope of variables, 80–82
use braces for, 178–180
use exceptions only for exceptional

conditions, 147
format, 214

G
Garbage collector (GC)

garbage collection–friendly code, 128–130
remove short-lived objects from long-lived

container objects, 163–164
setting local reference variables to null,

243–244
short-lived, infrequently used objects, 162

Generational garbage collection, 129
Generic type parameters, 112–115
getArray(), 9–11
getConnection(), 59–60
getData(), 206–208
getFirst(), 210–211
getState(), 218–220
getTime(), 33
getVersion(), 116–117
Goetz, Brian

documenting locking policies, 92
documenting wait-notify protocols, 95

Granting privileges, 50–53
@GuardedBy, 91, 92–93

H
Happens-before relationship, 211–212, 252
Hash functions, 37–42
hashCode()

abstract object equality vs. reference
equality, 222

methods that can be overridden by untrusted
code, 44–46, 48–49

ptg11539634

Index 269

hashKey, 221–222
Heap memory, 250
heavilyUsedBuffer, 162
Hide, 132, 250
HTML files, 13–16
HTML renderers, 16
HttpSession, 7–8

I
Identifiers

be careful using visually misleading, 167–171
do not shadow or obscure in subscopes,

132–134
using multiple file attributes, 99–106

IdentityHashMap, 46–47
if

assignments in conditional expressions,
175–177

bitwise vs. logical operators, 227
do not place semicolon immediately

following, 180–181
logical completeness, 202
use braces for, 178–180

Immutability
confusing reference with referenced object,

234–239
defined, 252
short-lived objects, 129
thread-safety annotations, 91–92
unmodifiable wrappers for sensitive mutable

classes, 9–10
@Immutable, 91
imod(), 221–222
In-band error indicators, 173–175
Index variable, 80–82
Indirect buffers, 162–163
Initialization, 135
Injection attacks

Java security, 1–2
prevent code, 20–23
prevent LDAP, 27–31
prevent XPath, 23–27

Input
normalization, 30–31
verification, 152

Insecure cryptographic algorithms, 36–37
Installing security manager, 69–72
Integers

convert for floating-point operations, 191–194

inadvertent wrapping of loop counters,
184–186

meaningful symbolic constants to
represent, 138

numeric promotion behavior, 108–112
Integral operands, 220–222
Intent of programmer

Java guidelines and, xiv
visually misleading identifiers and literals, 168

Interfaces
careful design, 125–128
cyclic dependencies between packages,

119–121
Interned strings, 223–225
IsSameFile(), 101–102
Iterators, 159–161
-J Flag, 70

J
Java Concurrency in Practice (Goetz), 90
Java Language Specification (JLS)

be careful using visually misleading
identifiers and literals, 167–168

escape characters, 229
final fields and constants, 116
final variables, 234
numeric promotion behavior, 108
on obscuring, 132
ordinal associated with enum, 106
remainder operators, 220–221
rules for determining result type of

conditional expression, 153–154
scope of guidelines, xv
security, 1
sleep()and yield(), 215
String.intern(), 224
types of exceptions, 123
volatile fields, 209

Java Naming and Directory Interface (JNDI)
metacharacters, 27–28

Java SE 7 Platform, xv, xvi
Java Virtual Machine (JVM)

graceful recovery from system errors, 123
password storage, 40
reduced security checks, 56
scope of guidelines, xv
security, 1
String.intern(), 224
synchronization semantics, 219

ptg11539634

270 Index

java.io, 189
java.io.File, 99
java.nio, 162
java.nio.file.Path, 99
java.policy, 69–70
JavaScript code injection, 20–23
java.util.Date, 33
java.util.regex.Pattern, 228
javax, xvi, 20
JCIP (Java Concurrency in Practice)

annotations, 90
JITs (just-in-time compilers), 243
JLS (Java Language Specification), see Java

Language Specification (JLS)
JNDI (Java Naming and Directory Interface)

metacharacters, 27–28
JSure tool, 90
Just-in-time compilers (JITs), 243
JVM (Java Virtual Machine). See Java Virtual

Machine (JVM)

K
Key classes, 34–35

L
Large objects, 129
Latin-1 characters, 168
LayoutManager, 47–49
LDAP (Lightweight Directory Access Protocol)

injection, 27–31
Libraries, xv–xvi
LicenseManager, 44–47
Lifetime of sensitive data, 2–5
Lightweight Directory Access Protocol (LDAP)

injection, 27–31
Limit lifetime of sensitive data, 2–5
List, 207, 232–233
Literal values

be careful using visually misleading, 167–171
use meaningful symbolic constants to

represent, 138–142
Liveness, 243, 250
Loading libraries, 65–67
Locking policies, 92–94
Logical completeness, 202–204
Logical operators, 225–228
Logs, 123–124

long, 108–109
Long-lived container objects, 163–165
Loops

declaring variables separately, 136–137
inadvertent wrapping of loop counters,

183–186
logical completeness, 203–204

M
Maintenance, 118
MaliciousCallBack, 75
Map, 212
Mathematical expressions

floating-point operations, 191–194
precedence of operation, 186–188

MD5 (Message-Digest Algorithm), 38
Memory

garbage-collection-friendly code, 128–130
limiting lifetime of sensitive data, 2–4
OutOfMemoryError, 125
remove short-lived objects from long-lived

container objects, 163–165
Memory model

defined, 250–251
volatile fields, 209

Message-Digest Algorithm (MD5), 38
MessageDigest, 38–41
Messages, 121–122
Metacharacters

preventing LDAP injection, 27–28
preventing XPath injection, 27

Methods
accessibility of classes and their members,

84–89
ambiguous overloading of variable arity,

171–173
calling security-sensitive with validated

arguments, 11–13
copying untrusted parameters, 31–34
ensuring that clone() calls super.clone(),

194–196
exposure to untrusted code, 56–64
feedback about resulting value of, 96–99
file identification and, 99
in-band error indicators, 173
misuse of overloaded to differentiate

between, 231–233

ptg11539634

Index 271

overloading, 206–208
overridden by untrusted code, 44–50
privileges of callback, 72–77
returning empty array or collection instead

of null, 143–146
scope of @SuppressWarnings, 82
synchronization, 213–214
varargs, 112
writeUnshared() and readUnshared(),

239–243
Minimize accessibility of classes and their

members, 84–89
Minimize privileged code, 54–55
Minimize scope of @SuppressWarnings

annotation, 82–84
Minimize scope of variables, 80–82
Misconceptions. See Programmer

misconceptions
Misleading characters, 168
Model-view-controller (MVC), 17
Modularize interfaces, 127
move(), 99
Multiplication

converting integers for floating-point
operations, 191–192

numeric promotion behavior, 109–110
Mutable classes
final variable and, 234–235
provide sensitive with unmodifiable

wrappers, 9–11
Mutable objects

applying static final, 115
construction annotations, 94–95
safe publication guarantee and volatile,

210, 212–215

N
Never confuse immutability of reference with

that of referenced object, 234–239
NIO (new I/O) buffer, 4–5
NodeNotFoundException, 98
Nonnative libraries, 59
Normalization, 30–31, 251
Notation, 136–137
Notify protocols, 95–96
NOTREACHED, 196–197
@NotThreadSafe, 92

Null Object pattern, 164–165
null values

avoid in-band error indicators, 173
calling security-sensitive methods with

validated arguments, 11–13
do not attempt to help garbage collector,

243–244
providing feedback about resulting method

values, 98–99
return empty array or collection instead of,

143–146
Number, 113–114
Numeric promotion behavior, 108–112

O
Object

compile-time type checking of variable arity
parameter types, 112–113

declaring variables separately, 135–136
immutability, 252

Object.equals()
abstract object equality vs. reference equality,

222–225
comparing cryptographic keys, 34–35
methods that can be overridden by untrusted

code, 44
Object.hashCode(), 44
Obscure, 132, 251
Octal values, 170
Operands

floating-point, 191–194
numeric promotion behavior, 108–112
parentheses for precedence of operation,

186–188
remainder operator results for integral,

220–222
type use for second and third in conditional

expressions, 153–157
OR (|)

bitwise vs. logical operators, 225–228
numeric promotion behavior, 110
precedence of operation, 186

OR (||)
assignments in conditional expressions, 176
bitwise vs. logical operators, 225–228

ordinal(), 106–108
OutOfMemoryError, 125, 162

ptg11539634

272 Index

Output sanitization, 16–20
Overloading

avoid ambiguous or confusing uses of,
205–208

misuse of methods to differentiate between,
231–233

variable arity methods, 171–173
Override, 251

P
Package dependencies, 118–121
Package-private access, 84–89
Parameters

avoid ambiguous or confusing uses of
overloading, 205–208

compile-time type checking of variable arity
types, 112–115

do not use clone()to copy untrusted
method, 31–34

preventing XPath injection, 26–27
Parentheses (()), 186–188
parse(), 214–215
Passwords

limiting lifetime of sensitive data, 3–4
minimize privileged code, 54–55
preventing XPath injection, 24–27
store using hash function, 37–42

Path, 99, 101
Pattern, 228–231
performActionOnFile(), 51–52
Performance

calling System.gc(), 130
reliability, 131

permgen, 224
Permissions. See also Privileges

assumptions about file creation, 189
avoid granting excess privileges,

50–53
define custom security for fine-grained

security, 64–67
SecurityManager, 68

PI (v), 139–140
Platforms

Android guidelines applicability,
245–246

scope of guidelines, xv
Point, 236–237

Policy files, 69–70
Precedence of operation, 186–188
Predefined constants, 140
Prefer user-defined exceptions over more

general exception types, 121–123
Prefer using iterators over enumerations,

159–161
Premature optimization, 140–141
Prevent arbitrary file upload, 13–16
Prevent code injection, 20–23
Prevent LDAP injection, 27–31
Prevent XPath injection, 23–27
private classes

accessibility of classes and members,
84–89

final variable and, 237–238
private static, 116–117
Privileges

avoiding excess, 50–53
callback method, 72–77
calling security-sensitive methods, 11–13
minimizing privileged code, 54–55
preventing code injection, 22–23

processSingleString(), 146–147
Program understandability

assignments in conditional expressions,
175–178

avoid ambiguous or confusing uses of
overloading, 205–208

avoid ambiguous overloading of variable
arity methods, 171–173

avoid in-band error indicators, 173–175
avoid inadvertent wrapping of loop counters,

183–186
be careful using visually misleading

identifiers and literals, 167–171
convert integers to floating point for

floating-point operations, 191–194
detect and remove superfluous code and

values, 198–202
do not make assumptions about file creation,

189–190
do not place semicolon immediately

following if, for, or while condition,
180–181

ensure that clone() method calls super.
clone(), 194–196

ptg11539634

Index 273

finish every set of statements associated with
case label with break statement,
181–183

overview, 167
parentheses for precedence of operation,

186–188
strive for logical completeness, 202–204
use braces for body of if, for, or while

statement, 178–180
use comments consistently and in readable

fashion, 196–198
Programmatic SecurityManager

installation, 70–71
Programmer intent, xiv
Programmer misconceptions

do not assume that declaring reference
volatile guarantees safe publication of
members of referenced object, 209–216

do not assume that remainder operator
always returns nonnegative result for
integral operands, 220–222

do not assume that sleep(), yield(), or
getState() provide synchronization
semantics, 216–220

do not attempt to help the garbage collector
by setting local reference variables to
null, 243–244

do not confuse abstract object equality with
reference equality, 222–225

do not use overloaded methods to differentiate
between runtime types, 231–233

never confuse immutability of reference with
that of referenced object, 234–239

overview, 209
understand differences between bitwise and

logical operators, 225–228
understand how escape characters are

interpreted when strings are loaded,
228–231

use serialization methods writeUnshared()
and readUnshared() with care,
239–243

Programming, defensive. See Defensive
programming

Properly encode or escape output, 16–20
Properly encode relationships in constant

definitions, 142–143

protected classes, 84–89
Protection domain, 51
Provide sensitive mutable classes with

unmodifiable wrappers, 9–11
public classes, 86
public final, 115–118, 237–238
Publishing objects

defined, 251
safe publication guarantee, 209–216

R
Race conditions

assumptions about file creation, 189–190
defined, 251
preventing with annotation, 96
preventing with state testing, 97

Random number generation, 42–43
RandomAccessFile, 104
rarelyUsedBuffer, 162
Readability. See also Program

understandability
comment consistency and readability,

196–198
defined, 167
meaningful symbolic constants, 141

readObject(), 239
readUnshared(), 239–243
Recovery, 123–125
References

abstract object equality vs. reference equality,
222–225

immutability vs. immutability of referenced
object, 234–239

safe publication guarantee and volatile,
209–216

setting local variables to null, 243–244
Referents, 210
@Region, 91
@RegionLock, 91, 92–94
Registries, 42–43
Relationship encoding, 142–143
Releases

application of public final to constants
whose value might change, 115–118

avoid cyclic dependencies between
packages, 118

careful interface design, 125–128

ptg11539634

274 Index

Reliability
defined, xiii
do not declare more than one variable per

declaration, 134–137
do not serialize direct handles to system

resources, 157–158
do not shadow or obscure identifiers in

subscopes, 132–134
do not use assertions to verify absence of

runtime errors, 151–153
do not use direct buffers for short-lived,

infrequently used objects, 162–163
overview, 131–132
prefer using iterators over enumerations,

159–161
properly encode relationships in constant

definitions, 142–143
remove short-lived objects from long-lived

container objects, 163–165
return empty array or collection instead of

null value for methods that return array
or collection, 143–146

use exceptions only for exceptional
conditions, 146–148

use meaningful symbolic constants to
represent literal values in program logic,
138–142

use same type for second and third
operands in conditional expressions,
153–157

use try-with-resources statement to safely
handle closeable resources, 148–151

Remainder operator (%), 220–222
Remember-me functionality, 5–9
Remove short-lived objects from long-lived

container objects, 163–165
renameTo(), 99
Resources, 148–151
RestrictedAccessControlContext, 22
Return empty array or collection instead of

null value for methods that return array
or collection, 143–146

Reusability, 118
Robustness, 79
ROT13 cipher, 37
RSAPrivateCrtKey, 35
RSAPrivateKey, 35
run(), 49–50

Runtime errors, 151–153
Runtime types, 231–233
RuntimeException, 147

S
Safe publication guarantee, 209–216, 251
Safety, 251
Salt, 38
Sandbox, secure

create using security manager, 67–72
preventing code injection, 22–23

Sanitization
defined, 251
input, 30–31
output, 16–20

SCALe (Source Code Analysis Laboratory), xiv
Scherlis, William, 95
Scope
@SuppressWarnings annotation, 82–84
variable, 80–82

searchRecord(), 29
Secure Hash Algorithm (SHA), 38, 39–40
Secure sandbox

create using security manager, 67–72
preventing code injection, 22–23

SecureRandom, 42–43
Security

avoid granting excess privileges, 50–53
carefully design interfaces before releasing

them, 125–126
create secure sandbox using security

manager, 67–72
define custom security permissions for

fine-grained security, 64–67
do not expose methods that use reduced-

security checks to untrusted code, 56–64
do not let untrusted code misuse privileges

of callback methods, 72–77
do not rely on methods that can be

overridden by untrusted code, 44–50
do not store unencrypted sensitive

information on client side, 5–9
do not use clone()to copy untrusted

method parameters, 31–34
do not use insecure or weak cryptographic

algorithms, 36–37
do not use Object.equals() to compare

cryptographic keys, 34–35

ptg11539634

Index 275

ensure security-sensitive methods are called
with validated arguments, 11–13

ensure that SecureRandom is properly
seeded, 42–43

limit lifetime of sensitive data, 2–5
minimize privileged code, 54–55
overview, 1–2
prevent arbitrary file upload, 13–16
prevent code injection, 20–23
prevent LDAP injection, 27–31
prevent XPath injection, 23–27
properly encode or escape output, 16–20
provide sensitive mutable classes with

unmodifiable wrappers, 9–11
store passwords using hash function, 37–42

Security flaws
careful interface design, 126
defined, 252
nonnative libraries and, 59

Security manager
create secure sandbox using, 67–72
defining permissions, 64–65
preventing code injection, 22–23

Security-sensitive methods, 11–13
SecurityException, 65, 69
Semicolon (;), 180–181
Sensitive code, 252
Sensitive data

defined, 252
limit lifetime of, 2–5
storing unencrypted sensitive information

on, 5–9
Sensitive mutable classes, 9–11
Sentinel pattern, 164–165
Serialization

do not serialize direct handles to system
resources, 157–158

writeUnshared() and readUnshared(),
239–243

Server-side storage, 5–9
Servlet security managers, 68
Session-fixation attacks, 9
setArray(), 10–11
setFirst(), 210–211
setPassword(), 41
setSecurityManager, 68, 72
SHA (Secure Hash Algorithm), 38, 39–40
Shadow, 132–134, 252

Short-lived objects
do not use direct buffers for, 162–163
garbage-collection-friendly code, 129
remove from long-lived container objects,

163–165
shutdown(), 217
SimpleLock, 93
Simplicity, 79
Single quote ('), 27
sleep(), 216–220
Software reliability. See Reliability
Source Code Analysis Laboratory (SCALe), xiv
Special characters, 27–28
StackOverflowError, 124
startThread(), 49–50
State

logical completeness, 202–204
providing feedback about resulting method

value, 96–99
StateLock, 94
static, 225
static final, 138
stop(), 218–219
Storage

password, 37–42
unencrypted sensitive information, 5–9

storeDateInDB(), 32–33
String

abstract object equality vs. reference equality,
222–225

storing passwords using hash functions,
39–40

String.intern(), 223–225
Strings

how escape characters are interpreted when
loaded, 228–231

meaningful symbolic constants to represent,
138

Strive for logical completeness, 202–204
Subclasses

ensuring that clone() calls super.clone(),
194–196

interface design, 125, 128
Subobjects, 213
Subscopes, 132–134
SubWorker, 49–50
super.clone(), 194–196
super.startThread(), 50

ptg11539634

276 Index

@SuppressWarnings, 82–84
SureLogic, 90
Sutherland, Dean, 95
switch

assignments in conditional expressions, 176
dead code, 201
finishing case label statements with break,

181–183
logical completeness, 202–203

Symbolic constants, 138–142
Symmetric key algorithm, 38–39
Synchronization

defined, 252
safe publication guarantee and volatile,

211–214
sleep(), yield(), and getState(),

216–220
System errors, 123–125
System resources, 157–158
System.gc(), 130
System.loadLibrary(), 54–55, 58

T
Tenured generation, 129
Terminating loops, 183–186
Testing, 118
Thread-safety

defined, 252
documenting, 89–96
volatile references and, 210, 214–216

Thread.interrupt(), 218
ThreadLocal, 215
Thread.run(), 44
@ThreadSafe, 90–92
throw, 146–147
Throwable, 123–125
Time-of-check, time-of-use (TOCTOU) race

condition
assumptions about file creation, 189–190
file identification, 99, 103–105
prevention with state testing, 97

Time values, 31–33
TIMED_WAITING, 219
Tokenization, 224
Tools, xvii
transient, 158
true, 97
Trusted code, 252–253

try-catch block, 123–124
try-catch-finally block, 148–150
Try to gracefully recover from system errors,

123–125
try-with-resources statement, 148–151
Types

declaring variables separately, 135–137
misuse of overloaded methods to differentiate

between, 231–233
for second and third operands in conditional

expressions, 153–157

U
Unchecked warnings, 82–84
Understand how escape characters are interpreted

when strings are loaded, 228–231
Understand the differences between bitwise

and logical operators, 225–228
Understandability. See Program

understandability
Unencrypted sensitive information, 5–9
Unicode characters, 167–168
@Unique("return"), 94–95
Unmodifiable interfaces, 85
Unmodifiable wrappers, 9–11, 238
UnsupportedOperationException, 10–11
Untrusted code

defined, 253
do not expose methods that use reduced-

security checks to, 56–64
do not let misuse privileges of callback

 methods, 72–77
do not rely on methods that can be

overridden by, 44–50
Untrusted method parameters, 31–34
Unused values, 201
updateNode(), 97–98
Uploads, 13–16
Use braces for body of if, for, or while

statement, 178–180
Use comments consistently and in readable

fashion, 196–198
Use exceptions only for exceptional conditions,

146–148
Use meaningful symbolic constants to represent

literal values in program logic, 138–142
Use parentheses for precedence of operation,

186–188

ptg11539634

Index 277

Use same type for second and third operands in
conditional expressions, 153–157

Use serialization methods writeUnshared()
and readUnshared() with care, 239–243

Use try-with-resources statement to safely
handle closeable resources, 148–151

User credentials
preventing LDAP injection, 29
preventing XPath injection, 24–27
storing passwords using hash functions,

37–42
storing unencrypted sensitive information, 5–9

User-defined exceptions, 121–123
UserLookupCallBack, 73–77
util, xvi

V
Validated arguments, 11–13
ValidateOutput, 17–19
validateValue(), 31–32
Values

detect and remove superfluous, 198–202
meaningful symbolic constants to represent

literal, 138–142
null. See null values
provide feedback about resulting method,

96–99
Variable arity (varargs) types

avoid ambiguous overloading of, 171–173
compile-time type checking of, 112–115

Variables
do not declare more than one per declaration,

134–137
documenting locking policies, 92–94
encoding relationships in constant

definitions, 142–143
minimize scope of, 80–82
minimize scope of @SuppressWarnings, 82
setting local reference to null, 243–244
shadowing, 133–134

Vector, 159
Versions, 116–117
volatile

defined, 253
providing synchronization semantics,

217–218
safe publication guarantee and, 209–216

Vulnerability, 253

W
Wait-notify protocols, 95–96
WAITING, 219–220
Warnings, 82–84
Weak cryptographic algorithms, 36–37
while

assignments in conditional expressions, 175
do not place semicolon immediately

following, 180–181
inadvertent wrapping of loop counters,

183–186
use braces for, 178–180

Whitelisting
output sanitization, 17–19
preventing code injection, 21
preventing LDAP injection, 27–28, 30–31

Widget, 47–49
Worker, 49–50
Wrappers

avoid in-band error indicators, 174–175
inadvertent wrapping of loop counters,

183–186
performActionOnFile(), 51–52
unmodifiable, 238
unmodifiable for sensitive mutable classes,

9–11
Write garbage-collection-friendly code,

128–130
writeUnshared(), 239–243

X
XML documents, 23–27
XPath injection, 23–27
XQuery, 25–27
XSS (Cross-Site Scripting) attacks

output sanitization, 16–19
storing unencrypted sensitive

information, 5–6
-XX:+DisableExplicitGC, 130
-XX:ExplicitGCInvokedConcurrent, 130

Y
yeild(), 216–220
Younger generation, 129

Z
Zadegan, Bryant, 204
Zune 30, 203–204

ptg11539634

Software developers are often faced with the challenge of reconciling
code quality with time and budget constraints. Ensuring that code
conforms to the CERT® secure coding standards represents a significant
investment that may be difficult to justify.

Let us help to ease the burden. Using our Source Code Analysis
Laboratory (SCALe), we can test your source code for conformance to
CERT secure coding standards. This process offers you a variety of
benefits:

analyzing the code yourself.

testing, you will be authorized to promote
that version with the CERT
Conformance Tested seal.

in our online registry of certificates.

confident in the quality of your code.

For more information about our work, visit the
secure coding area of the CERT website:

www.cert.org/secure-coding

CERT is a registered mark owned by Carnegie Mellon University.

Testing conformance to the
CERT® secure coding standards

Seacord_Book.indb 570 2/28/13 9:42 AM

“In the Java world, security is not viewed as an add-on feature. It is a per-
vasive way of thinking. Those who forget to think in a secure mind-set end
up in trouble. But just because the facilities are there doesn’t mean that
security is assured automatically. A set of standard practices has evolved
over the years. The CERT® Oracle® Secure Coding Standard for Java™ is a
compendium of these practices. These are not theoretical research papers
or product marketing blurbs. This is all serious, mission-critical, battle-tested,
enterprise-scale stuff.”

—James A. Gosling, Father of the Java Programming Language

PEARSONALWAYS LEARNING

Books | eBooks | Video | Software
For more information and sample content,
visit informit.com/title/9780321803955

Available in print and eBook formats at informit.com
and other retail stores

ISBN-13: 978-0-321-80395-5

9780321933157_Long_BoBad.indd 1 7/24/13 9:30 PM

http://www.cert.org/secure-coding

ptg11539634

Software developers are often faced with the challenge of reconciling
code quality with time and budget constraints. Ensuring that code
conforms to the CERT® secure coding standards represents a significant
investment that may be difficult to justify.

Let us help to ease the burden. Using our Source Code Analysis
Laboratory (SCALe), we can test your source code for conformance to
CERT secure coding standards. This process offers you a variety of
benefits:

analyzing the code yourself.

testing, you will be authorized to promote
that version with the CERT
Conformance Tested seal.

in our online registry of certificates.

confident in the quality of your code.

For more information about our work, visit the
secure coding area of the CERT website:

www.cert.org/secure-coding

CERT is a registered mark owned by Carnegie Mellon University.

Testing conformance to the
CERT® secure coding standards

Seacord_Book.indb 570 2/28/13 9:42 AM

“In the Java world, security is not viewed as an add-on feature. It is a per-
vasive way of thinking. Those who forget to think in a secure mind-set end
up in trouble. But just because the facilities are there doesn’t mean that
security is assured automatically. A set of standard practices has evolved
over the years. The CERT® Oracle® Secure Coding Standard for Java™ is a
compendium of these practices. These are not theoretical research papers
or product marketing blurbs. This is all serious, mission-critical, battle-tested,
enterprise-scale stuff.”

—James A. Gosling, Father of the Java Programming Language

PEARSONALWAYS LEARNING

Books | eBooks | Video | Software
For more information and sample content,
visit informit.com/title/9780321803955

Available in print and eBook formats at informit.com
and other retail stores

ISBN-13: 978-0-321-80395-5

9780321933157_Long_BoBad.indd 1 7/24/13 9:30 PM

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Authors
	Chapter 1 Security
	1. Limit the lifetime of sensitive data
	2. Do not store unencrypted sensitive information on the client side
	3. Provide sensitive mutable classes with unmodifiable wrappers
	4. Ensure that security-sensitive methods are called with validated arguments
	5. Prevent arbitrary file upload
	6. Properly encode or escape output
	7. Prevent code injection
	8. Prevent XPath injection
	9. Prevent LDAP injection
	10. Do not use the clone() method to copy untrusted method parameters
	11. Do not use Object.equals() to compare cryptographic keys
	12. Do not use insecure or weak cryptographic algorithms
	13. Store passwords using a hash function
	14. Ensure that SecureRandom is properly seeded
	15. Do not rely on methods that can be overridden by untrusted code
	16. Avoid granting excess privileges
	17. Minimize privileged code
	18. Do not expose methods that use reduced-security checks to untrusted code
	19. Define custom security permissions for fine-grained security
	20. Create a secure sandbox using a security manager
	21. Do not let untrusted code misuse privileges of callback methods

	Chapter 2 Defensive Programming
	22. Minimize the scope of variables
	23. Minimize the scope of the @SuppressWarnings annotation
	24. Minimize the accessibility of classes and their members
	25. Document thread-safety and use annotations where applicable
	26. Always provide feedback about the resulting value of a method
	27. Identify files using multiple file attributes
	28. Do not attach significance to the ordinal associated with an enum
	29. Be aware of numeric promotion behavior
	30. Enable compile-time type checking of variable arity parameter types
	31. Do not apply public final to constants whose value might change in later releases
	32. Avoid cyclic dependencies between packages
	33. Prefer user-defined exceptions over more general exception types
	34. Try to gracefully recover from system errors
	35. Carefully design interfaces before releasing them
	36. Write garbage collection–friendly code

	Chapter 3 Reliability
	37. Do not shadow or obscure identifiers in subscopes
	38. Do not declare more than one variable per declaration
	39. Use meaningful symbolic constants to represent literal values in program logic
	40. Properly encode relationships in constant definitions
	41. Return an empty array or collection instead of a null value for methods that return an array or collection
	42. Use exceptions only for exceptional conditions
	43. Use a try-with-resources statement to safely handle closeable resources
	44. Do not use assertions to verify the absence of runtime errors
	45. Use the same type for the second and third operands in conditional expressions
	46. Do not serialize direct handles to system resources
	47. Prefer using iterators over enumerations
	48. Do not use direct buffers for short-lived, infrequently used objects
	49. Remove short-lived objects from long-lived container objects

	Chapter 4 Program Understandability
	50. Be careful using visually misleading identifiers and literals
	51. Avoid ambiguous overloading of variable arity methods
	52. Avoid in-band error indicators
	53. Do not perform assignments in conditional expressions
	54. Use braces for the body of an if, for, or while statement
	55. Do not place a semicolon immediately following an if, for, or while condition
	56. Finish every set of statements associated with a case label with a break statement
	57. Avoid inadvertent wrapping of loop counters
	58. Use parentheses for precedence of operation
	59. Do not make assumptions about file creation
	60. Convert integers to floating-point for floating-point operations
	61. Ensure that the clone() method calls super.clone()
	62. Use comments consistently and in a readable fashion
	63. Detect and remove superfluous code and values
	64. Strive for logical completeness
	65. Avoid ambiguous or confusing uses of overloading

	Chapter 5 Programmer Misconceptions
	66. Do not assume that declaring a reference volatile guarantees safe publication of the members of the referenced object
	67. Do not assume that the sleep(), yield(), or getState() methods provide synchronization semantics
	68. Do not assume that the remainder operator always returns a nonnegative result for integral operands
	69. Do not confuse abstract object equality with reference equality
	70. Understand the differences between bitwise and logical operators
	71. Understand how escape characters are interpreted when strings are loaded
	72. Do not use overloaded methods to differentiate between runtime types
	73. Never confuse the immutability of a reference with that of the referenced object
	74. Use the serialization methods writeUnshared() and readUnshared() with care
	75. Do not attempt to help the garbage collector by setting local reference variables to null

	Appendix A: Android
	Glossary
	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

