

MD-2068, CHISINAU, 9/7 STUDENTILOR STR, PHONE: 022 50-99-63, www.utm.md

Data Science. Semester Project

Facultaty	Computers, Informatics, and Microelectronics					
Chiar/department	Computer Science and Systems Engineering					
Cycle of studies	Bachelor's degree, cycle II					
Study program	Data Science					
Year of study	Semester	Type of	Training	Optionality	ECTS	
		evaluation	category	category	credits	
II (full time advection)	2	E	S – specialized	O - Obligatory	5	
II (Iun-unie education)	3	E	course unit	course unit	5	

1. Course/module information

2. Total estimated time

	Including					
Total hours in	Auditory hours		Individual work			
the curriculum	Lecture Laboratory/seminar	L aboratory/anninan	Term	Study of theoretical	Application	
		paper	material	development		
300		40	80	220		

3. Prerequisites for access to the course/module

According to the curriculum plan	To achieve the module objectives, students will use skills acquired in				
	related courses of the semester: Applied Sciences, Mathematics,				
	Mathematical Analysis 1, 2, Data Structures and Algorithms, Object-				
	Oriented Programming, C++ Programming, Python, Operating Systems.				
According to competencies	The use of domain-specific theories and tools (algorithms, methods,				
	techniques, etc.) for analyzing basic algorithms in statistics, mathematical				
	analysis, and data visualization through graphs.				

4. Conditions for conducting the educational process

Lecture	A blackboard, projector, and computer are required to present the theoretical material in			
	the classroom.			
Laboratory/seminar	Students will perfect reports according to the conditions set by the methodological			
	guidelines. The deadline for submitting the laboratory work is 2 weeks after its completion.			
	Late submission will result in a 1-point deduction per week of delay.			
	A blackboard, projector, and computer are required to conduct seminars in the study			
	auditorium.			

5. Specific competencies acquired

Professional	CPM 1. System architecture design and development			
competencies	K1 Architecture models, methodologies, and system design tools			
_	K2 System architecture requirements: performance, maintainability, extensibility, scalability,			
	availability, security, and accessibility			
	K3 Costs, benefits, and risks of a system architecture			
	K4 Enterprise architecture and the company's internal standards			
	K5 Emerging new technologies (e.g., distributed systems, virtualization models, data sets			
	mobile systems)			
	S1 Provide expertise to help solve complex technical problems and ensure the implementation			
	of the best architectural solutions			
	S2 Utilizes technological knowledge from different fields to develop and implement enterprise			
	architecture			

COURSE/MODULE SUMMARY

S3 Understands the company's objectives that impact architecture components (data,
applications, security, development, etc.) S4 Helps communicate the enterprise architecture along with standards principles and
objectives, to the various teams involved
S5 Develops design models and architectural patterns to assist system analysts in designing
coherent applications
CPM 2. Monitoring technological trends. Innovation. Sustainable development
K1 Existing and emerging technologies and their relevant applications in the market K2 Business, society, and research objectives, trends, and needs
K3 Relevant information sources (e.g., journals, conferences and events, opinion leaders,
online forums, etc.)
K4 Concrete approaches to applied research programs
K5 Innovation process techniques
K6 Sustainable development criteria and indicators
K/ Corporate social responsibility (CSR) of stakeholders within the information system
S1 Monitors information sources and continuously tracks the most promising ones
S2 Identifies vendors and suppliers of the most promising solutions; evaluates, justifies, and
proposes the most suitable ones
S3 Identifies the advantages and improvements brought by adopting emerging technologies
S4 Thinks without preconceived ideas
S5 Applies recommendations in projects that support the latest sustainable development
strategies
CPM 3. Application development. Component integration. Systems engineering.
K1 Appropriate programs/modules, DBMS, and suitable programming languages. Cutting-
edge technologies.
K3 The impact of system integration on the organization or existing system.
K4 Interface techniques between modules, systems, and components.
K5 Integration testing techniques. K7 Hardware components tools and hardware architectures
K8 Functional and technical design.
K9 Information security fundamentals.
K10 Prototyping.
S1 Applies suitable software and/or hardware architectures.
S2 Measures system performance before, during, and after system integration.
S5 identifies and records activities, issues, and corrective actions related to maintenance. S4 Adapts client needs to existing products
S5 Secures and backs up data to ensure its integrity during data or system integration.
S6 Explains and communicates with the client regarding design/development.
S7 Launches and evaluates test results according to product specifications.
S9 Applies data models and processes to develop efficiently and productively.
CPM 4. Staff development.
K1 Methods for developing competencies
K2 Methodologies for analyzing competency needs
K3 Methods for supporting learning and development (e.g., coaching, teaching)
K4 Relevant information technologies and processes
K5 Techniques for empowerment and autonomy
S1 identifies and recommends development opportunities based on work activities
S3 Incorporates competency development opportunities into routine work activities

	CPM 5. Process improvement.
	K1 Research, comparison, and measurement methods
	K2 Evaluation, design, and implementation methods
	K3 Existing internal processes
	K4 Relevant developments/evolutions in the ICT field (e.g., virtualization, open data, etc.) and
	their potential impact on processes
	K5 Specificity of web, cloud, and mobile technologies
	S1 Drafts, documents, and catalogs essential processes and procedures
	S2 Proposes process modifications to facilitate and streamline improvements
Transversal	CTM1. Autonomy and responsibility
competencies	CTM2. Social interaction
	CTM3. Personal and professional development

6. Course/Module objectives

General objective	• Knowledge and application of advanced techniques in data science for developing software solutions and innovative technologies.
	• Optimizing data analysis and processing processes using machine learning methods, artificial intelligence algorithms, and Big Data technologies.
	• Understanding information systems and distributed computing platforms used for managing and processing large data sets.
	• Developing practical projects based on real data, providing students with hands-on experience in solving data analysis and processing problems applicable across various industries.
	• Developing skills in interpreting and communicating analytical results, ensuring that proposed solutions are clear and practically implementable.
Specific objectives	• Developing practical projects based on real data, providing students with hands-on experience in solving data analysis and processing problems, applicable across various industries.
	• Developing skills in interpreting and communicating analytical results, ensuring that proposed solutions are clear and practically implementable.

7. Course/Module content

	Number of
Sullabus of teaching activities	hours
Synabus of teaching activities	Full-time
	education
Course topics	
Topic 1: Introduction to Data Science	4
Topic 2: Data Collection and Preprocessing	4
Topic 3: Exploratory Data Analysis (EDA)	4
Topic 4: Machine Learning	4
Topic 5: Model Performance Evaluation	4
Topic 6: Feature Selection	4
Topic 7: Model Validation and Generalization	4
Topic 8: Unsupervised Learning	4
Topic 9: Deep Learning	4
Topic 10: Model Optimization and Scaling	4
Total lectures:	40

8. Using generative AI

Permission to use	 The use of generative AI in assignments and projects is permitted, provided that students adhere to the following rules: Generative AI may be used to generate ideas, text structures, or code, but all generated materials must be reviewed and adjusted by the student to ensure that they meet academic requirements. Any use of generative AI must be declared in the appendix section of each paper, using the phrase: "During the preparation of this paper, the author used [NAME OF TOOL / SERVICE] for the purpose of [REASON]. After using this tool / service, the author reviewed and edited the content as necessary and assumes full responsibility for the content of the paper."
Restrictions to use	 Students <i>MUSTN'T consider generative AI as a reliable source of information</i>, as it does not provide clear references or documented sources. <i>Direct citation of AI-generated content</i> in academic papers as if it were a primary source <i>isn't permitted</i>. Activities in which the use of generative AI is prohibited are specified by the teacher and are usually <i>intermediate and final assessments</i> or that don't involve professional competence
	development activities.

9. Bibliographic references

Main	1. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning:					
	Data Mining, Inference, and Prediction. Springer. A fundamental paper for					
	understanding machine learning methods and their application in data analysis.					
	2. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical					
	Learning with Applications in R. Springer. A practical guide to machine learning					
	methods, including detailed examples using the R programming language.					
	3. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. An					
	essential resource for deep learning, covering neural networks and advanced					
	applications in detail.					
	4. Pedregosa, F., Varoquaux, G., Gramfort, A., et al. (2011). Scikit-learn: Machine					
	Learning in Python. Journal of Machine Learning Research. An important reference					
	for using Scikit-learn in machine learning projects with Python.					
	5. McKinney, W. (2017). Python for Data Analysis: Data Wrangling with Pandas,					
	NumPy, and IPython. O'Reilly Media. A practical guide to data manipulation and					
	analysis using Pandas and NumPy.					
	6. Murphy, K. P. (2012). <i>Machine Learning: A Probabilistic Perspective</i> . MIT Press. A					
	detailed introduction to model-based probabilistic machine learning, providing a					
~	solid mathematical approach.					
Supplementary	1. Provost, F., & Fawcett, T. (2013). Data Science for Business: What You Need to					
	Know About Data Mining and Data-Analytic Thinking. O'Reilly Media. A useful					
	resource for understanding the impact and applicability of data science in a					
	business context.					
	2. Wickham, H., & Grolemund, G. (2016). <i>R for Data Science: Import, Tidy,</i>					
	Transform, Visualize, and Model Data. O'Reilly Media. A very useful resource for R					
	users who want to learn modern data analysis techniques using the Tidyverse					
1	package.					

COURSE/MODULE SUMMARY

10. Evaluation

Form of	Periodic		Current	Project/thesis	Final exam
study	Mid-term 1	Mid-term 2	Current	T Toject/ thesis	i mai exam
Full-time	10%	10%	10%	30%	40%
	Minimum per	formance stand	ard	•	
	Minimum performance standard Student evaluation in the Data Science P continuous activity, attendance at consulta relevant problem in data science is a crucia demonstrate the ability to formulate concret design, and software development. Attenda the project are constantly monitored, pro- working team, allowing them to improve formative, ensuring a continuous learning exam is a summative evaluation, conducted by the team. During this presentation, each their contribution to the project and throug team. The grades obtained during the final final grade, reflecting both technical co			t is based on a baland and the final project. step in student evaluations using specific technology and participation in con- continuous feedback ess in the project. Ong ss and adjustment of y, based on the projec nt will be individually ividual discussions in a re individual and co- ncies and students' co-	ced combination of Defining a real and ation. Students must chniques in analysis, sultations related to a to students or the going assessment is solutions. The final t presented publicly evaluated, both for the presence of the postitute 40% of the communication and