

MD-2068, CHISINAU, 9/7 STUDENTILOR STR, PHONE: 022 50-99-63, www.utm.md

APPLICATION-ORIENTED SOFTWARE ENVIRONMENTS

1. Course unit/module information

Faculty	Computers,	Computers, Informatics, and Microelectronics					
Chair/department	Informatics	Informatics and Systems Engineering					
Cycle of studies	Master's deg	Master's degree studies, cycle II					
Study program	Data Science	Data Science					
Year of study	Semester	Type of evaluation	Training category	Optionality category	ECTS credits		
II (full-time education);	3	E	F-Fundamental course unit	O – Obligatory	5		

2. Total estimated time

Total hours in	Including				
the curriculum	Audito	ry hours		Individual work	
plan	Course	Laboratory/Seminar	Term paper	Study of theoretical material	Application preparation
150	20	20		60	50

3. Preconditions for access to the course unit/module

According to the curriculum plan	Object-Oriented	Programming,	Operations	Research,	Advanced
	Programming Tec	chniques, Systems	Analysis and	Modeling,	Information
	Security Technolo	ogies, Software Tes	sting, Interactiv	ve Programi	ning.
According to competencies		ledge of progra iliarity with databa	•		

4. Conditions for conducting the educational process

Lecture	The theoretical material will be presented in the classroom using a projector and a computer. Educational materials will be made available to students on the course page of the department's pedagogical server.
Laboratory/Se minar	Students will complete reports according to the conditions outlined in the methodological guidelines. The deadline for submitting the laboratory work is two weeks after its completion. Late submissions will be penalized by a deduction of 0.25 points per day of delay.

5. Specific competencies acquired

Professional	CPM 1. Development and Design of Architecture			
competencies	K1 Architecture Models, Methodologies, and System Design Tools			
	K2 Requirements for System Architecture: Performance, Maintainability, Extensibility,			
Scalability, Availability, Security, and Accessibility				
K3 Costs, Benefits, and Risks of a System Architecture				
K4 Enterprise Architecture and Company Internal Standards				
	K5 Emerging Technologies (e.g., Distributed Systems, Virtualization Models, Data Sets,			

	Mobile Systems)				
	CPM 3. Application Development. Component Integration. Systems Engineering				
	K1 Appropriate Programs/Modules, DBMS, and Programming Languages. Cutting-Edge				
	Technologies				
	K3 The Impact of System Integration on the Organization or Existing System				
	K4 Interface Techniques Between Modules, Systems, and Components				
	K5 Integration Testing Techniques				
	K6 Best Design Practices				
	K7 Hardware Components, Tools, and Hardware Architectures K8				
	Functional and Technical Design				
	K9 Fundamentals of Information Security				
	K10 Prototyping				
Transversal	CT1. Honorable, Responsible, and Ethical Behavior in the Spirit of the Law to Ensure the				
Competencies	Fulfillment of Professional Tasks.				
	CT2. Demonstrating the Ability to Work in a Team, Identifying Individual and Shared				
	Roles and Responsibilities, Making Decisions, and Assigning Tasks, with the				
	Application of Relationship Techniques and Effective Work Within the Team.				
	CT3. Demonstrating Initiative and Action for Professional and Personal Development				
	Through Continuous Training Using Documentation Sources in Romanian and				
	International Languages.				

6. Course/Module objectives

General objective	The development of the theoretical and practical competencies necessary for the design, development, and implementation of software applications using modern software environments and frameworks.				
Specific objectives	 As a result of studying the course, the student will know: Understanding of Service-Oriented Architecture (SOA) applications. Development of skills in using modern software environments and frameworks (e.g., Spring, Django). Integration of APIs and utilization of web services. Optimization of applications for performance and scalability. Understanding of software testing practices and continuous delivery (CI/CD). 				

7. Course/Module content

Syllabus of teaching activities	Number of Hours, Full-Time Education
Course topics	
T1. Introduction to Application-Oriented Software Environments: Principles and Architectures.	4
T2. Software Development Frameworks: Overview of Technologies (Spring, Flask, Django).	4
T3. Web Services and API Integration: REST and GraphQL.	4
T4. Application Performance Optimization: Caching, Load Balancing.	4
T5. CI/CD and DevOps in Software Development.	4
Total lectures:	20

Syllabus of teaching activities	Number of hours, full-time education	
Laboratory/seminar works topics		
LL1. Creating a simple web application using Django.	6	
LL2. Implementing a REST API using Flask.	6	
LL3. Integrating an external service into a software application.	4	
LL4. Automating delivery with GitHub Actions and Docker.	4	
Total laboratory/seminar works:	20	

8. Using generative AI

8. Usi	ing generative Al
Permission	The use of generative AI in assignments and projects is permitted, provided that students adhere to
to use	the following rules:
to use	Generative AI may be used to generate ideas, text structures, or code, but all generated
	materials must be reviewed and adjusted by the student to ensure that they meet academic
	requirements.
	• Any use of generative AI must be declared in the appendix section of each paper, using the
	phrase: "During the preparation of this paper, the author used [NAME OF TOOL / SERVICE]
	for the purpose of [REASON]. After using this tool / service, the author reviewed and edited
	the content as necessary and assumes full responsibility for the content of the paper."
Restrictions	Students MUSTN'T consider generative AI as a reliable source of information, as it does not
to use	provide clear references or documented sources.
	• Direct citation of AI-generated content in academic papers as if it were a primary source
	isn't permitted.
	• Activities in which the use of generative AI is prohibited are specified by the teacher and
	are usually intermediate and final assessments or that don't involve professional competence

9. Bibliographic references

development activities.

Main	1. Freeman, E., & Robson, E. "Head First Design Patterns." O'Reilly Media, 2020.
	2. Richardson, L. & Amundsen, M. "RESTful Web APIs." O'Reilly Media, 2022.
	3. Chacon, S., & Straub, B. "Pro Git." Apress, 2021.
Supplementar	1. Martin, R. "Clean Architecture: A Craftsman's Guide to Software Structure and
y e	Design." Prentice Hall, 2017.
	2. Docker Documentation: https://docs.docker.com/
	3. Spring Framework Documentation: https://spring.io/projects/spring-framework.

10. Evaluation

Form of study	Periodic		Current	Individual	Final exam	
	Mid-term 1	Mid-term 2	Current	work	Piliai Cxalli	
Full-time	15%	15%	15%	15%	40%	
Minimum performance standards						

Attendance and participation in lectures and laboratory work Obtaining a minimum grade of "5" for each evaluation and laboratory work

11. Evaluation criteria

Activity	Evaluation components	Evaluation method, evaluation criteria	Weight in final grade for the Activity	Weight in course evaluation
Full-time education				
Mid term I	Theoretical content, topics 1-3	Test	100%	15%
Mid term II	Theoretical content, topics 4-5	Activities during practical work/seminar	100%	15%
Current evaluation	Practical activity	Attendance and participation in classes	50%	15%
Individual study	Classification of research by activity type	Presentation/Discussion on the topic	100%	15%
Final examination	Theoretical and practical content	Oral exam. Grading according to grading scale	100%	40%