

MD-2068, CHISINAU, 9/7 STUDENTILOR STR, PHONE: 022 50-99-63, www.utm.md

DATA ANALYSIS AND VISUALIZATION

1. Information about the discipline/module

*							
Facultaty	Computers, Int	Computers, Informatics, and Microelectronics					
Chair/department	Informatic and	Informatic and Systems Engineering					
Cycle of studies	Bachelor's deg	Bachelor's degree, cycle II					
Study program	Data Science	Data Science					
Year of study	Semester	Type of evaluation	Formative category	Optionality category	ECTS credits		
			F –	0 –			
II (full-time education)	3	Е	Fundamental	Obligatory	5		
			course unit	course unit			

2. Total estimated time

Total hours in			In	cluding			
Total hours in the curriculum plan	Au	ditory hours		Individual work			
	Course	Laboratory/comin	Term	Study of theoretical	Application		
pian	Course	Laboratory/semin	paper	material	preparation		
150	20	20	-	80	30		

3. Preconditions for access to the discipline/module

According to the curriculum plan	Mathematical Analysis, Probability and Applied Statistics, Data Structures and Algorithms, Discrete Mathematics, Computer Programming,					
	Interactive Programming.					
According to competences	The use of domain-specific theories and tools (algorithms, methods,					
	techniques, etc.) for analyzing fundamental algorithms in statistics,					
	mathematical analysis, and graphical data visualization.					

4. Conditions for conducting the educational process

Course	For presenting theoretical material in the classroom, a board, projector, and computer are required.
Laboratory/seminar	Students will complete reports in accordance with the conditions specified in the methodological guidelines. The deadline for submitting the laboratory work is two weeks after its completion. Late submissions will be penalized by 1 point per week of delay. For conducting seminars in the study auditorium, a whiteboard, projector, and computer are required.

5. Specific competencies acquired

Professional	CPM1 Elaboration and design of the system architecture
competencies	CPM2 . Monitoring technology trends. Innovation. Sustainable development.
	CPM3 Application development. Component integration. Systems engineering.
	CPM5. Process improvement.

6. Course/Module objectives

General objective	Describe the basic concepts. Determine the role of data visualization. Determine the
	tools and techniques used
Specific objectives	To understand measures of central tendency: mean, median, mode, as well as measures
	of dispersion: variance, standard deviation, interquartile range.
	To define the concept of regression and evaluate regression models.

To apply design principles for data visualization, use visualization tools such as Matplotlib, Seaborn, and Plotly, and create interactive charts.

7. Course/Module content

Syllabus of teaching activities	Number of hours Full-time education
Course topics	
Topic 1. Introduction to Statistical Analysis and Data Visualization.	2
Topic 2. Data Collection and Preprocessing.	2
Topic 3. Descriptive Statisticians.	2
Topic 4. Probability and Probability Distributions.	2
Topic 5. Regression Analysis.	2
Topic 6. Factor Analysis.	2
Topic 7. Clustering Analysis.	2
Topic 8. Data Visualization Techniques.	2
Topic 9. Visualization of geospatial data.	2
Topic 10. Data Visualization Projects.	2
Total lectures:	20

	Number of hours
Syllabus of teaching activities	Full-time
	education
Topics of laboratory work/seminars	
Practical work no. 1. Preprocessing and Data Mining	4
Practical work no. 2. Basic Statistical Views	4
Practical work no. 3. Visualization and Analysis of Probability Distributions	4
Practical work no. 4. Regression Analysis Project	4
Practical work no. 5. Interactive Visualization Project	4
Total laboratory/practical work:	20

8. Using generative AI

Permission	The use of generative AI in assignments and projects is permitted, provided that students adhere to the
	following rules:
to use	• Generative AI may be used to generate ideas, text structures, or code, but all generated materials
	must be reviewed and adjusted by the student to ensure that they meet academic requirements.
	• Any use of generative AI must be declared in the appendix section of each paper, using the phrase:
	"During the preparation of this paper, the author used [NAME OF TOOL / SERVICE] for the
	purpose of [REASON]. After using this tool / service, the author reviewed and edited the content
	as necessary and assumes full responsibility for the content of the paper."

Restrictions	Students MUSTN'T consider generative AI as a reliable source of information, as it does not provide clear
to use	references or documented sources.
	• Direct citation of AI-generated content in academic papers as if it were a primary source isn't
	permitted.
	• Activities in which the use of generative AI is prohibited are specified by the teacher and are
	usually intermediate and final assessments or that don't involve professional competence development
	activities.

9. Bibliographic references

Main	1. Lucia Căbulea, Nicoleta Breaz. INTERPRETAREA STATISTICĂ A					
	INFORMAȚIILOR. ELEMENTE DE DATA MINING ȘI PROGNOZĂ, Universitatea 1					
	Decembrie 1918" Alba Iulia.					
	2. <u>http://www.uab.ro/cursuri perfectionare/program perfectionare profesionala/p</u>					
	agini/cursuri/Modul-7-Cabulea-Breaz/curs_modul7.doc					
	3. T. Andrei, Statistică și econometrie, Ed. Economică, 2003.					
	4. C. Anghelache, E. Bugudui, S. Gresoi, E. Niculescu, Statistică aplicată-indicatori, sinteze și studii de caz, Ed. Economică, 2006					
	 5. E.N. Bâzdoacă, S. Matei, N.G. Bâzdoacă, Inițiere în Excel, Ed.Arves, Colecția Inițiere în calculator 2, 2002 					
	6. Liviu Ciortuz , Alina Munteanu , Elena Badarau Exercitii de invatare automata ed UNIVERSITATII "ALEXANDRU IOAN CUZA" (2015) ISBN: 606-714-197-9					
	7. MARCUS, S., NICOLAU, E., STATI, S., 1966. Introducere în lingvistica matematică. București, Editura științifică, p.336.					
	8. An estimate of an upper bound for the entropy of English. Brown, Della Pietra, Mercer, Della Pietra, Lai. Computational Linguistics, 18(1), pp31-40, 1992.					
	9. VLAD, A., MITREA, A., MITREA, M., 2005. Limba română scrisă ca sursă de informație. Paideia, România, 286 p.					
	10. Roman Feldman, James Sauger. The Text Mining Handbook. Advanced					
	Approaches in Analyzing Unstructured Data. Cambridge 2008.					
Additional	1. MIHALCEA, R., 2002. Diacritics Restoration: Learning from Letters versus Learning					
	from Words. in Proceedings of the Third International Conference on Intelligent Text					
	Processing and Computational Linguistics, Mexico, p.339-348.					
	2. Christopher D.Manning, Hinrich Schutze Foundations of Statistical Natural Language					
	Processing Mit Press, 1999.					
	3. Ronald Rosenfeld. Two decades of Statistical Language Modeling: Where Do We Go From Here? Proceedings of the IEEE, 88(8), 2000.					
	4. Lillian Lee. "I'm sorry Dave, I'm afraid I can't do that": Linguistics, Statistics, and					
	Natural Language Processing. Computer Science: Reflections on the Field,					
	Reflections from the Field, pp. 111118, 2004.					

10. Evaluation

Form of education	Periodic		Current	Individual	Final examination	
Full-time	Mid-term 1	Mid-term 2	Current	work		
Tun-une	15%	15%	15%	15%	40%	
Minimum performance standard						
Attendance and participation in lectures, seminars, and laboratory work. Obtaining a minimum grade of "5" in each assessment and laboratory work.						

UNIVERSITATEA TEHNICĂ A MOLDOVEI

Demonstrating knowledge of fundamental algorithms in formal language theory, finite automata, and pushdown automata in the final examination.

11. Evaluation criteria

Activity	Evaluation components	Evaluation method, evaluation criteria	Weight in final grade for the Activity	Weight in course evaluation
Full-time education				
Mid term I	Theoretical content, topics 1-3	Test	100%	15%
Mid term II	Theoretical content, topics 4-5	Activities during practical work/seminar	100%	15%
Current evaluation	Practical activity	Attendance and participation in classes	50%	15%
Individual study	Classification of research by activity type	Presentation/Discussion on the topic	100%	15%
Final examination	Theoretical and practical content	Oral exam. Grading according to grading scale	100%	40%