

COURSE/MODULE SUMMARY

MD-2068, CHISINAU, 9/7 STUDENTILOR STR, PHONE: 022 50-99-63, www.utm.md

SOFTWARE SECURITY

1. Course information					
Faculty	Computers, Informatics, and Microelectronics				
Department	Informatics and Systems Engineering				
Study cycle	Cycle II, Master's degree studies				
General field of study	061 Information and Communication Technologies				
Master's study program	Data Science				
Year of study	Semester	Evaluation	Formative	Optionality	ECTS
		type	category	category	credits
I (full-time education)		F	F – fundamental	O - obligatory	5
	I	Ľ	training course	course	5

2. Estimated total time

	Including					
Total hours in	A	uditory hours	Individual work			
the curriculum	Lecture	Laboratory/seminar	Term	Study of theoretical	Application	
			paper	material	development	
150	20	20		50	60	

3. Prerequisites for access to the course

According to the curriculum plan	Computer Programming, Procedural Programming, Special Mathematics,		
	Data Structures and Algorithms, Object-Oriented Programming,		
	Information Security Technologies, Advanced Programming Techniques		
According to competencies	Knowledge and skills in designing and developing algorithms and programs		
	in different programming languages to solve problems on computers, as		
	well as knowledge and skills in designing and using information security		
	technologies.		

4. Conditions for conducting the educational process

Lecture	For presenting theoretical material in the classroom, a whiteboard, projector, and computer are required. Student delays and phone conversations during the course will not be tolerated
Laboratory/seminar	Students will complete reports according to the conditions outlined in the methodological guidelines. The deadline for submitting the laboratory work is one week after its
	completion. Late submission will result in a penalty of 1 point per week of delay.

5. Specific competencies acquired

Professional	CPM1 Designing and System Architecture Development.
competencies	Takes on a high level of responsibility in defining the strategy for implementing new
	technologies in accordance with the company's needs. Considers the current infrastructure,
	equipment wear, and new technological innovations.
	K1 Architecture models, methodologies, and system design tools
	K2 System architecture requirements: performance, maintainability, extensibility, scalability,
	availability, security, and accessibility
	K3 The costs, benefits, and risks of a system architecture
	K4 Enterprise architecture and the company's internal standards
	K5 Emerging new technologies (e.g., distributed systems, virtualization models, data sets,
	mobile systems)
	S1 Provides expertise to help solve complex technical problems and ensures the
	implementation of the best architectural solutions

J##V#F	AMOLDOVEI
	CURSE/MODULE SUMMARY
WID-2006	, CHISINAU, 977 STUDENTILOR STR, PHONE. 022 30-99-03, <u>www.uuiii.iiu</u>
	S2 Applies his/her technological knowledge from different fields to develop and implement th
	enterprise architecture.
	S3 Understands the company's objectives that impact the architecture components (data
	applications, security, development, etc.).
	S4 Assists in communicating the enterprise architecture, along with its standards, principles
	S5 Develops design models and architectural models to assist system analysts in designin
	coherent applications
	CPM2 Monitoring technological trends. Innovation. Sustainable development.
	Harnesses a wide range of specialized knowledge about new and emerging technologies t
	formulate future solutions for the enterprise. Provides expert advice to the management tear
	when making strategic decisions. Applies independent thinking and technological knowledg
	to integrate disparate concepts into original solutions. Defines the objectives and strategy for
	the sustainable development of IS by the organization's sustainability policy.
	K1 Existing and emerging technologies and their relevant applications in the market
	K2 Business, societal, and research objectives, trends, and needs
	K3 Relevant sources of information (e.g., journals, conferences and events, opinion leaders
	online forums, etc.)
	K4 Practical approaches to applied research programs
	K5 Innovation process techniques
	Ko Chrena and indicators of sustainable development K7 Corporate Social Responsibility (CSR) of stakeholders within the information system
	infrastructure
	S1 Monitors information sources and continuously tracks the most promising ones
	S2 Identifies the vendors and suppliers of the most promising solutions: evaluates, justifies
	and proposes the most suitable ones
	S3 Identifies the advantages and improvements brought by adopting emerging technologies
	S4 Thinks without preconceived ideas
	S5 Applies recommendations within projects that support the latest sustainable developmer
	strategies
	CPM3 Development of applications. Integration of components. Systems engineering.
	Uses specialized knowledge on a large scale to create a process, including establishin
	internal standards and practices. Mobilizes teams and allocates resources for integratio
	programs. Manages complexity by developing procedures and standard architectures t
	support the development of consistent products. Establishes and identifies a set of system
	applications and solvet appropriate technical options. Participates in other development
	activities Optimizes the development maintenance and performance of applications
	K1 Appropriate programs/modules DBMS and suitable programming languages Cutting
	edge technologies.
	K3 The impact of system integration on the organization or the existing system
	K4 Interfacing techniques between modules, systems, and components
	K5 Integration testing techniques
	K7 Hardware components, tools, and hardware architectures
	K8 Functional and technical design
	K9 Fundamentals of information security
	K10 Prototyping
	S1 Applies appropriate software and/or hardware architectures.
	S2 Measures system performance before, during, and after system integration.
	1 S3 Identifies and records activities issues and corrective actions related to maintenance

S4 Adapts customer needs to existing products. S5 Secures and backs up data to ensure its integrity during data or system integration.

COURSE/MODULE SUMMARY

MD-2068, CHISINAU, 9/7 STUDENTILOR STR, PHONE: 022 50-99-63, www.utm.md

-	
l	S6 Explains and communicates with the client regarding design/development.
l	S7 Launches and evaluates test results according to product specifications.
l	S8 Applies data models, processes, to develop efficiently and productively.
l	CPM5 Process Improvement
l	Implements and authorizes innovations and improvements that will enhance competitiveness
l	and/or efficiency. Demonstrates to leadership the benefits of possible changes for the
l	enterprise.
l	K1. Research, comparison, and measurement methods
l	K2 Evaluation, design, and implementation methods
l	K3 Existing internal processes
l	K4 Relevant developments/evolutions in the ICT field (e.g., virtualization, open data, etc.) and
l	their potential impact on processes
l	K5 Specificity of web, cloud, and mobile technologies
l	S1 Drafts, documents, and catalogs essential processes and procedures
	S2 Proposes changes to processes to facilitate and streamline improvements

Transversal	CTM1 Autonomy and responsibility. Performs some complex professional tasks under
competencies	conditions of autonomy and professional independence.
	CTM2 Social interaction. Assumes leadership roles in professional activities or
	organizational structures.
	CTM3 Professional and personal development. Exercises self-control over the learning
	process, anticipates training needs, and critically analyzes their own professional activity.

6. Course objectives

General objective	Students' acquisition of the concepts, notions, and examples of secure software development. Familiarizing students with basic techniques specific to secure	
	programming.	
Specific objectives	Upon successful completion of this course, students will be able to:	
	Implement security-based programming techniques	
	• Use security standards	
	Develop security-based applications	

7. Course content

		Number of hours	
Syllabus of teaching activities	Full-time	Part-time	
······································		education	
Course topics			
T1. Introduction to Software Product Security. Importance of security in	2		
software development. Types of threats and vulnerabilities.			
T2 Basic Principles of Software Product Security. Confidentiality, integrity,	2		
availability. The software development life cycle (SDLC) and security.			
T3. Securing Requirements and Design. Analysis and validation of security			
requirements. Secure design and architectural models.			
T4. Secure Programming Techniques. Programming practices to prevent	2		
common vulnerabilities. Concrete examples of programming languages.			
T5. Security Auditing and Testing. Methods for evaluating software security.	2		
Penetration testing and code review.			
T6. Vulnerability Management. Identifying, classifying, and addressing	2		
vulnerabilities. Patch management tools and techniques.			

UNIVERSITATEA TEHNICĂ A MOLDOVEI

COURSE/MODULE SUMMARY

		<u> </u>
T7. Security in Cloud and Mobile Environments. Specific challenges for cloud applications. Mobile application security.	2	
T8. Software Lifecycle Security (DevSecOps). Integrating security into DevOps	2	
processes. Automating secure testing and deployment.	_	
T9. Legal and Ethical Aspects of Software Security. Relevant legal regulations	2	
(GDPR, CCPA, etc.). Ethics in software development.	-	
T10. Case Studies and Discussions. Analyzing notable security incidents. Lessons		
learned and best practices.		
Total lectures:	20	
Topics for Practical and Laboratory Work:		
1. Vulnerability Assessment. Using scanning tools for vulnerability evaluation.	2	
2. Writing Secure Code. Programming exercises for identifying and correcting	2	
vulnerabilities.	-	
3. Penetration Testing. Simulating attacks and evaluating the security of	2	
applications.		
4. Patch Management. Implementing a patch management system.	2	
5. Securing Web Applications. Implementing protective measures for web applications.	2	
6. Mobile Application Security. Creating a prototype of a secure mobile application.	2	
7. DevSecOps in Practice. Setting up a DevOps environment that integrates security.	2	
8. Security Incident Simulations. Incident response and crisis management	2	
exercises.		
9. Case Study Analysis. Learning from others' mistakes through case studies.		
10. Project and Work Presentations. Presenting and analyzing the security	2	
projects completed during the course.		
Total practical and laboratory work:	20	

8. Using generative AI

Permission to use	 The use of generative AI in assignments and projects is permitted, provided that students adhere to the following rules: Generative AI may be used to generate ideas, text structures, or code, but all generated materials must be reviewed and adjusted by the student to ensure that they meet academic requirements. Any use of generative AI must be declared in the appendix section of each paper, using the phrase: "During the preparation of this paper, the author used [NAME OF TOOL / SERVICE] for the purpose of [REASON]. After using this tool / service, the author reviewed and edited the content as necessary and assumes full responsibility for the content of the paper."
Restrictions to use	 Students <i>MUSTN'T consider generative AI as a reliable source of information</i>, as it does not provide clear references or documented sources. <i>Direct citation of AI-generated content</i> in academic papers as if it were a primary source <i>isn't permitted</i>. Activities in which the use of generative AI is prohibited are specified by the teacher and are usually <i>intermediate and final assessments</i> or that don't involve professional competence development activities.

MD-2068, CHISINAU, 9/7 STUDENTILOR STR, PHONE: 022 50-99-63, www.utm.md

COURSE/MODULE SUMMARY

MD-2068, CHISINAU, 9/7 STUDENTILOR STR, PHONE: 022 50-99-63, www.utm.md

9. Bibliographic references

Obligatory	1. Security-Driven Software Development: Learn to analyze and mitigate risks in your						
	software projects, by Aspen Olmsted (Author), Publisher: Packt Publishing - ebooks Account						
	(March 15, 2024), ISBN-13 978-1835462836						
	2. Secure Coding in C and C++ (SEI Series in Software Engineering) 2nd Edition, by Robert						
	Seacord (Author), Addison-Wesley Professional (April 12, 2013), ISBN-13 978-0321822130						
	3. Secure Programming Cookbook for C and C++: Recipes for Cryptography,						
	Authentication, Input Validation & More, by John Viega, Matt Messier (Authors), Publisher:						
	O'Reilly Media (July 24, 2003, ISBN-13 978-0596003944 (3 exemplare)						
	4. Application Security Program Guide: Building a Comprehensive Application and						
	Product Security Program, by Ahmed Abdul-Rahman (Author), (December 21, 2023),						
	ISBN-13 979-8988840909						
Supplementary	1. Software building security in, Gary McGraw (Author), Addison-Wesley, Boston, 2011,						
	ISBN: 9780321356703, 0321356705						

10. Evaluation

Periodic		Curront	Individual study	Project/thesis	Exom			
Mid term 1	Mid term 2	Current		r toject/ulesis	Exam			
15%	15%	15%	15%	-	40%			
Minimum performance standard:								
Attendance and participation in lectures, practical lessons, and laboratory work.								
Achieving a minimum grade of "5" in each evaluation and laboratory work.								

Achieving a minimum grade of "5" in the exam.

11. Evaluation criteria

Activity	Evaluation components	EvaluationEvaluation method, evaluationcomponentscriteria		Weight in course evaluation					
Full-time education									
Mid term I	Theoretical content, topics 1-3	Test	100%	15%					
Mid term II	Theoretical content, topics 4-5	Activities during practical work/seminar	100%	15%					
Current evaluation	Practical activity	Attendance and participation in classes	50%	15%					
Individual study	Classification of research by activity type	Presentation/Discussion on the topic	100%	15%					
Final examination	Theoretical and practical content	Oral exam. Grading according to grading scale	100%	40%					