

MD-2068, CHISINAU, 9/7 STUDENTILOR STR, PHONE: 022 50-99-63, www.utm.md

CLOUD APPLICATIONS

1. Course/Module information

Faculty	Computers, Informatics, and Microelectronics				
Chair/department	Informatics and	Informatics and Systems Engineering			
Study cycle	Cycle II, Maste	Cycle II, Master's degree			
Study program	Data Science				
Year of study	Semester	Evaluation	Formative	Optionality	ECTS
		type	category	category	credits
I (full-time education);	2	E-exam	S – specialty	O - obligatory	5
	2	E-exam	course unit	course unit	3

2. Estimated total time

			Inc	luding	
Total hours in	Audit	ory hours	Individual work		
the curriculum	Lecture	Practical work	Term paper	Study of theoretical material	Application development
150	20	20	-	110	-

3. Prerequisites for access to the course/module

	, 1=1 100,-000	
According to the curriculum plan	To achieve the course objectives, students must possess knowledge about:	
	Computer networks; Computer architectures; System and network	
	programming; Operating systems; Information systems design; IT	
	infrastructure in the Cloud environment.	
According to competencies	Acquiring theoretical and practical knowledge in the design,	
	programming, and operation of computing systems.	

4. Conditions for conducting the educational process

Lecture	A projector and computer are required for presenting theoretical material in the
	classroom. Student delays and phone conversations during the course will not be
	tolerated.
Laboratory/seminar	Computers and their devices are required for conducting laboratory work, in accordance
	with the topics studied.
	Students will complete reports according to the conditions set by the methodological
	guidelines. The deadline for submitting the laboratory work is 2 weeks after its
	completion. Late submission will result in a penalty of 1 point per week of delay.

5. Specific competencies acquired

Professional	CPL 1. Designing Applications
competencies	K1 Techniques for modeling requirements and techniques for needs analysis.
	K6 Existing applications and their corresponding architecture.
	S1 Identifies clients, users, and stakeholders.
	S4 Evaluates the use of prototypes to support requirements validation.
	S5 Designs, organizes, and monitors the plan for application design.
	S6 Establishes functional design requirements based on defined requirements.
	CPL 2. Designing and Developing Applications
	K2 Hardware components, tools, and hardware architectures.
	K3 Functional and technical design.
	K8 Integrated development environment (IDE).

COURSE/MODULE SUMMARY

	S3 Applies appropriate software and/or hardware architectures.		
	S5 Manages and ensures a high level of quality and cohesion.		
	CPL 4. Application Testing		
	K1 Techniques, infrastructure, and tools used in the testing process.		
	S2 Manages and evaluates the testing process.		
	CPL 5. Implementing Solutions		
	K2 Techniques related to problem management (operation, performance,		
	compatibility).		
	K5 Technologies and standards used during implementation/deployment.		
	S3 Configures components at any level to ensure correct overall interoperability.		
	S4 Identifies and engages the necessary expertise to resolve interoperability issues.		
Transversal	CTL1. Autonomy and responsibility		
competencies	CTL2. Social interaction		
•	CTL3. Personal and professional development		

6. Course/Module objectives

0. Course/1/10a	are objectives	
General objective	Analysis, design, and implementation of applications in a Cloud environment.	
Specific objectives	Understanding the fundamental concepts of Cloud Computing.	
	Familiarization with service models (IaaS, PaaS, SaaS), Cloud architectures, and data	
	storage and processing solutions.	
	Acquiring the necessary skills for developing and implementing cloud-native	
	applications, as well as optimizing application performance.	
	Learning security methods and practices for protecting data and applications in the	
	Cloud environment.	
	Using case studies and practical projects to apply Cloud technologies in real business	
	contexts.	
	Improving the ability to identify and solve problems related to the implementation and	
	management of cloud solutions.	

7. Course/Module content

		Number of hours	
Syllabus of teaching activities	Full-time	Part-time	
	education	education	
Course topics			
T1. Introduction to Cloud Computing	2	-	
T2. Architecture and Design of Applications in the Cloud Environment		-	
T3. Storage Services and Databases in the Cloud Environment		-	
T4. Deploying Applications in the Cloud Environment		1	
T5. Automation of Application Deployment in the Cloud Environment	4	-	
T6. Monitoring Applications	2	-	
T7. Security of Applications in the Cloud Environment	2	-	
Total lectures:	20	-	

Syllabus of teaching activities		Number of hours	
		Part-time	
		education	
Practical works topics			
P1. Introduction to the Google Cloud Administration and Monitoring Console for	4	-	
Applications and Services			
P2. Containerizing Applications Using the Docker Platform		-	

COURSE/MODULE SUMMARY

P3. Introduction to Cloud SQL and Cloud Storage		-
P4. Deploying Applications in the Google Cloud Environment	4	1
P5. Automating the CI/CD Cycle Using Google Cloud Services		-
Total practical work:		-

8. Using generative AI

	ng generative in
Permission	The use of generative AI in assignments and projects is permitted, provided that students adhere to the following rules:
to use	 Generative AI may be used to generate ideas, text structures, or code, but all generated materials must be reviewed and adjusted by the student to ensure that they meet academic requirements. Any use of generative AI must be declared in the appendix section of each paper, using the phrase: "During the preparation of this paper, the author used [NAME OF TOOL /
	SERVICE] for the purpose of [REASON]. After using this tool / service, the author reviewed and edited the content as necessary and assumes full responsibility for the content of the paper."
Restrictions	Students MUSTN'T consider generative AI as a reliable source of information, as it does not
to use	provide clear references or documented sources.
	• Direct citation of AI-generated content in academic papers as if it were a primary source isn't permitted.
	 Activities in which the use of generative AI is prohibited are specified by the teacher and are usually <i>intermediate and final assessments</i> or that don't involve professional competence development activities.
	de velopment detivities.

9. Bibliographic references

Main	 B. Sosinsky CLOUD COMPUTING BIBLE, Wiley Publishing Inc., Indianopolis, Indiana, 2011. R. Jennings CLOUD COMPUTING with Windows Azure Platform, Wiley Publishing Inc., Indianopolis, Indiana, 2009 R. Buyya, J. Broberg, A. Goscinski CLOUD COMPUTING. Principles and Paradigms, Wiley, Inc., Hoboken, New Jersey, 2011
	 13. T.Velte, J. Velte, R. Elsenpeter CLOUD COMPUTING: A Practical Approach, MacGrow Hill, 2010 14. Buyya, Rajkumar, Broberg, James and Goscinski, Andrej. 2011. Cloud Computing.
	Principles and Paradigms., Wiley, 2011. 15. Chandrasekaran, K. Essentials of CLOUD COMPUTING. s.l.: CRC Press, 2015. 16. Gendron, Michael S. Business Intelligence and the Cloud. s.l.: Wiley, 2014. 17. Marc, Farley. Rethinking enterprise storage-A hybrid cloud model. s.l.: Microsoft
	Press, 2013. 18. Kevin Hoffman, <i>Beyond the Twelve-Factor App</i> , Ed. O'Reilly Media, 2016, 19. John Arundel and Justin Domingus, <i>Cloud Native DevOps with Kubernetes</i> , Ed,
	O'Reilly Media, 2019, 20. Claudio Caldato, <i>Cloud Native for the Enterprise</i> , Ed. O'Reilly Media, 2020, 21. Microsoft Edition, <i>Cloud Application Architecture</i> , Ed. Microsoft Press 2017. 22. SUSE Special Edition, Kubernetes Management For Dummies, Ed. John Wiley &
Supplementary	 22. SOSE Special Edition, Rubernetes Wanagement For Duminies, Ed. John Whey & Sons, 2021 23. N. Tanasseri, R., Rai. Microservices with Azure. Birmingham: Packt Publishing Ltd., 2017. Torre, Cesar de la. Containerized Docker Application Lifecycle with Microsoft

COURSE/MODULE SUMMARY

Platform and Tools. Microsoft Press, 2017.

- **24.** George Reese Cloud Application Architectures: Building Applications and Infrastructure in the Cloud (Theory in Practice), 2012, O'Reilly Publishing, ISBN:978-0596156367
- **25.** John Roton Cloud Computing Explained: Implementation Handbook for Enterprises, Recursive Limited, 2013, ISBN: 978-0956355607
- 26. Sam Newman, Building Microservices, Ed. O'Reilly Media, 2015
- 27. Subbu Allamaraju, RESTful Web Services Cookbook, Ed. O'Reilly Media, 2010
- 28. Mark Massé, REST API Design Rulebook, Ed. O'Reilly Media, 2012

10. Evaluation

	101 2 / WIWWIOI							
	Form of study	Periodic		Current	In dissidual seconds	Final exam		
		Mid-term 1	Mid-term 2	Carrent	Individual work	Timar Oxum		
	Full-time	15%	15%	15%	15%	40%		

Minimum performance standards:

Attendance and participation in lectures and laboratory work.

Achieving a minimum grade of "5" in each evaluation and laboratory work.

11. Evaluation criteria

Activity	Evaluation components	Evaluation method, evaluation criteria	Weight in final grade for the Activity	Weight in course evaluation				
Full-time education								
Mid term I	Theoretical content, topics 1-3	Test	100%	15%				
Mid term II	Theoretical content, topics 4-5	Activities during practical work/seminar	100%	15%				
Current evaluation	Practical activity	Attendance and participation in classes	50%	15%				
Individual study	Classification of research by activity type	Presentation/Discussion on the topic	100%	15%				
Final examination	Theoretical and Oral exam. Grading according to grading scale		100%	40%				