MD-2068, CHISINAU, 7/9 STUDENTILOR STR, PHONE: 022 50-99-63, www.utm.md

LARGE LANGUAGE MODELS

1. Course/would mormation							
Faculty	Computers, Informatics, and Microelectronics						
Chair/department	Informatics a	nd Systems Eng	ineering				
Study cycle	Cycle II, Mas	ter's Studies					
Study program	Data Science						
Year of study	Semester	Evaluation type	Formative category	Optionality category	ECTS		
		• •		8.	credits		
			F-	O -			
I (full-time education)	2	Е	fundamental course unit	mandatory course unit	5		

1. Course/Module information

2. Estimated total time

Total hours in	Including				
the curriculum	Auditory hours Individual work				
	Lecture	Laboratory/	Term paper	Study of theoretical	Application
		seminar	material develop		development
150	20	20		60	50

3. Prerequisites for access to the course/module

According to the curriculum	Linear Algebra, Advanced Mathematics, Probability and			
plan	Information Theory, Mathematical Statistics, Mathematical Models			
	and Optimization, Exploratory Data Analysis and Data Modeling,			
	Data Visualization, Machine Learning, and Data Mining.			
According to competencies	Skills in Data Manipulation and Preprocessing: Knowledge of			
	techniques for data cleaning, normalization, feature scaling, and			
	handling missing data.			
	Data Visualization: Ability to create and interpret visualizations to			
	represent data effectively. Critical Thinking and Problem-Solving:			
	Ability to approach machine learning problems efficiently. Self-			
	Learning Skills: Ability and willingness to engage in self-directed			
	learning and research to deepen understanding and keep up with the			
	rapidly evolving field of artificial intelligence. Understanding of			
	Business Context: Awareness of how AI integrates into business and			
	real-world applications.			

4. Conditions for conducting the educational process

Lecture	Theoretical material will be presented in the classroom using a projector and a			
	computer. Teaching materials will be made available to students on the course			
	page of the department's pedagogical server.			
Laboratory/seminar	Students will complete reports according to the conditions outlined in the			
	methodological guidelines. The deadline for submitting the laboratory work is			
	two			

	weeks after its completion. Late submission of the work will result in a penalty of			
- 0 • 0	0.25 points per day of delay.			
5. Specific	competencies acquired			
Professional	CPM 1. Development and design of architecture			
competencies	K1 Architecture models, methodologies, and system design tools			
	K2 System architecture requirements: performance, maintainability, extensibility,			
	scalability, availability, security, and accessibility			
	K3 Costs, benefits, and risks of a system architecture			
	K4 Enterprise architecture and company internal standards			
	K5 Emerging technologies (e.g., distributed systems, virtualization models,			
	datasets, mobile systems)			
	CPM 3. Application development. Component integration. Systems engineering			
	K1 Appropriate programs/modules, DBMS, and suitable programming languages.			
	Cutting-edge technologies			
	K3 Impact of system integration on the organization or the existing system			
	K4 Interface techniques between modules, systems, and components			
	K5 Integration testing techniques			
	K6 Best design practices			
	K7 Hardware components, tools, and hardware architectures			
	K8 Functional and technical design			
	K9 Fundamentals of information security			
	K10 Prototyping			
Transversal	CT1. Honorable, responsible, and ethical behavior in accordance with the law to			
competencies	ensure the fulfillment of professional tasks.			
1	CT2. Demonstrating the ability to work in a team, identifying individual and shared			
	roles and responsibilities, making decisions, and assigning tasks, applying			
	relationship and effective teamwork techniques.			
	CT3. Demonstrating initiative and action for professional and personal development			
	through continuous training using sources of documentation in Romanian and			
	international languages.			
6. Course/Module objectives				
General objective	Development of theoretical and practical knowledge for building and using large			
5	linguistic models in natural language processing, providing innovative solutions			
	to current challenges.			
Specific objective	As a result of studying the course, the student will know:			

• Under	standing the architecture of transformers and their application to
differe	ent NLP tasks.

- Implementing and fine-tuning pre-trained models for specific analyses.Ethical evaluation of the use of artificial intelligence in natural language processing.

7. Course/Module content

Syllabus of teaching activities	Number of hours			
Synabus of teaching activities	Full-time education			
Course topics				
T1. Introduction to NLP and Text Preprocessing: Tokenization, Stemming,	4			
Lemmatization.				
T2. Word Embedding: Word2Vec, GloVe, FastText. Vector visualization.	4			
T3. Neural Networks for NLP: RNN, LSTM, GRU.	4			
T4. Transformers: BERT, GPT. Architecture and attention mechanisms.	6			
T5. Ethics and responsible use of NLP models.	2			
Total lectures:	20			
Topics for laboratory/seminar work				
LL1. Building a classification model using RNN.	6			
LL2. Fine-tuning BERT for sentiment analysis.	6			
LL3. Text generation with GPT.	4			
LL4. Evaluating and optimizing an NLP model.	4			
Total laboratory/seminar work:	20			

8. Using generative AI

	00				
Permission	The use of generative AI in assignments and projects is permitted, provided that students adhere				
to use	to the following rules:				
	• Generative AI may be used to generate ideas, text structures, or code, but all generated				
	materials must be reviewed and adjusted by the student to ensure that they meet academic				
	requirements.				
	• Any use of generative AI must be declared in the appendix section of each paper, using the				
	phrase: "During the preparation of this paper, the author used [NAME OF TOOL /				
	SERVICE] for the purpose of [REASON]. After using this tool / service, the author reviewed				
	and edited the content as necessary and assumes full responsibility for the content of the				
	paper."				
Restrictions	Students MUSTN'T consider generative AI as a reliable source of information, as it does not				
to use	provide clear references or documented sources.				
	• Direct citation of AI-generated content in academic papers as if it were a primary source				
	isn't permitted.				
	• Activities in which the use of generative AI is prohibited are specified by the teacher and				
	are usually intermediate and final assessments or that don't involve professional competence				
	development activities.				

9. Bibliographic references

Main	1. Vaswani, A., et al. "Attention Is All You Need." NeurIPS, 2017.
	2. Jurafsky, D., & Martin, J. H. "Speech and Language Processing." Pearson, 2020.
	3. Lewis, T., et al. "Natural Language Processing with Transformers." O'Reilly, 2021.
Supplementary	1. Goldberg, Y. "Neural Network Methods for Natural Language Processing." Morgan
	& Claypool, 2017.
	2. Hugging Face Documentation: https://huggingface.co/docs

10. Evaluat	tion
6	De

Form of	Peri	odic	Curront	Individual	Exom final	
education	Mid-term 1	Mid-term 2	Current	work	Exam mai	
Full-time	15%	15%	15%	15%	40%	
Minimum performance standard						
Attendance and participation in lectures and laboratory work Achieving a minimum grade of "5" in each evaluation and laboratory work						

11. Evaluation criteria

Activity	Evaluation components	Evaluation method, evaluation criteria	Weight in final grade for the Activity	Weight in course evaluation
		Full-time education		
Mid term I	Theoretical content, topics 1-3	Test	100%	15%
Mid term II	Theoretical content, topics 4-5	Activities during practical work/seminar	100%	15%
Current evaluation	Practical activity	Attendance and participation in classes	50%	15%
Individual study	Classification of research by activity type	Presentation/Discussion on the topic	100%	15%
Final examination	Theoretical and practical content	Oral exam. Grading according to grading scale	100%	40%