

MD-2068, CHISINAU, 9/7 STUDENTILOR STR, PHONE: 022 50-99-63, www.utm.md

Big Data Technologies

1. Course/Module information

Faculty	Computers, Int	formatics, and Mi	croelectronics		
Chair/department	Informatics and Systems Engineering				
Study cycle	CYCLE II, Ma	ster's Studies			
Study program	Data Science				
Year of study	Semester	Evaluation	Formative	Optionality	ECTS
_		type	category	category	credits
Ι	II	Е	F	0	5

2. Estimated total time

	Including				
Total hours in the	Auditory hours		Individual work		
curriculum	Lecture	Practical work	Term	Study of theoretical	Application
curriculuii	Lecture	Flactical WOLK	paper	material	development
150	20	20		110	-

3. Prerequisites for access to the course/module

According to the	The study is based on the knowledge accumulated by students in the following subjects:		
curriculum plan	probability theory, mathematical statistics, programming methods, web technologies, and		
	databases. Additionally, master's students should be familiar with computer architecture, at		
	least with one operating system (Windows, Linux, MacOS), as well as some programming		
	languages such as C#, C++, HTML, PHP, and Python.		
According to	Master's students must possess the following knowledge, competencies, and skills to master		
competencies	the academic discipline "Big Data Technologies": data analysis methods, application of		
	modern Database Management Systems, including MySQL and MS SQL Server,		
	multidimensional data modeling, modeling and application of Operational Databases and		
	Data Warehouses, OLTP, OLAP, and BI technologies (e.g., VS, Power BI), as well as a		
	certain level of data exploration using Data Mining tools.		
	Additionally, master's students should be able to work in teams, effectively use ICT for		
	solving applied professional problems, and apply mathematical modeling skills to socio-		
	economic phenomena, environmental issues, technical fields, as well as domains such as		
	finance and banking, education, healthcare, insurance, and marketing.		
	The main outcomes of the "Big Data Technologies" course include applying knowledge,		
	competencies, and skills in Data Engineering activities, as well as in the study of related		
	disciplines such as "Data Analysis," "Data Science," "Big Data Analytics," and "Business		
	Informatics," among others.		
<u>. </u>			

4. Conditions for conducting the educational process

Lecture	The theoretical material is presented in the lecture hall, combining the use of a projector
	and computer as well as a traditional whiteboard. Phone calls are not tolerated during the
	lecture.
	Throughout the course, students will take three generalizing quick tests on previously
	covered material, specifically after the 3rd, 5th, and final lecture sessions. The conditions
	for these tests are provided on the MOODLE platform.

Laboratory/semin	For completed tasks, students must prepare reports in digital format and, if required, in hard
ar/practical	copy (printed), following the conditions specified in the methodological guidelines. The
	deadline for submitting laboratory or practical work, whether individual or group-based, is
	determined at the lecturer's discretion.
	For late submissions, students will be penalized by 1 (one) point per week of delay.

5. Specific competencies acquired

Professional competencies	CPM1: System architecture design and development CPM2: Monitoring technological trends. Innovation. Sustainable development
	CPM4: Staff development
Transversal	CTM1: Autonomy and responsibility
competencies	CTM2: Social interaction
	CPM5: Process improvement

6. Course/Module objectives

General	The acquisition of knowledge, development of skills, practical abilities, and competencies
objective	in Data Engineering/Big Data Analytics aims to facilitate their application to solving a wide
	range of challenges within the national economy. This is achieved through the simulation of
	processes and phenomena in fields relevant to future ICT specialists trained at the Faculty of
	Computers, Informatics, and Microelectronics, under the Data Science study program.
	Specifically, upon completing this course, master's students should be able to:
	• conduct studies and evaluations on the implementation and efficiency of Big Data technologies
	and tools within enterprises (Business Big Data Management);
	• implement and apply analytical and decision-support tools based on Big Data for Decision
	Management;
	• develop new models for an enterprise's information infrastructure, considering the capabilities
	of Big Data technologies (Model Management).
Specific	•to acquire and gain new knowledge regarding the use of the technologies and tools underlying
objectives	the "Big Data Technologies" course, necessary for activities in related fields such as data
	engineering, data science, and artificial intelligence;
	•to familiarize with the application of emerging ICT fields, such as artificial intelligence, Big
	Data analytics, cloud computing, augmented and virtual reality, in innovation and deep research
	activities on socio-economic phenomena, in order to be prepared to apply emerging technological trends in transforming research and production models, addressing current challenges;
	•to develop new capabilities for analyzing and using Big Data technologies, from the perspective
	of data utilization efficiency, when working on a concrete informational project related to the
	decision-making process efficiency of an entity, where Big Data is assumed to provide real support;
	•to develop new capabilities for applying distributed data processing principles and utilizing
	high-performance computing architectures in this context;
	•to develop the ability to adapt solutions based on data-driven approaches for specific problems
	within a particular field of applicability;
	•to develop the ability to plan and organize research activities in a field by organizing group
	work; to understand responsibilities and adhere to professional ethics, as well as data security
	and confidentiality rules.
	At the knowledge level:

	•to acquire knowledge and competencies to use the technologies and tools derived from the
	essence and specifics of the "Big Data Technologies" course in data engineering, data science,
	and business activities;
	•to develop interdisciplinary competencies by using languages such as Python, platforms like
	Power BI, Visual Studio, cloud technologies, and cloud platforms such as AWS, Azure, Google
	Cloud, for Big Data analysis and analytics;
	•to develop competencies that provide an understanding of business architecture, the impact of
	introducing new IT technologies, including Big Data technologies, on enterprise management
	efficiency, and the transformation of the value chain;
	•to develop management competencies in the field of implementing Big Data systems and
	services based on Big Data technologies;
	•to develop and acquire new knowledge and competencies in the use of effective learning,
	information, and specialization methods and techniques; the ability to select and critically
	analyze bibliographic resources; the commitment to a continuous professional development plan
	through the ongoing updating of knowledge and skills in alignment with the scientific and
	technological advancements in the field.
	At the skills level:
	•to develop practical skills and abilities in the processes of using technologies and tools specific
	to the field of "Big Data Technologies" for data engineering, data science, and business activities;
	•to develop new capabilities to operate with fundamental concepts from mathematical, computer
	science, and econometric modeling, as well as from statistical analysis, thereby acquiring skills
	that are applied in practical research or production contexts;
	•to develop practical skills and acquire new competencies, both in data engineering (the practice
	of designing and building systems for collecting, storing, and analyzing large-scale data) and
	analytics (statistical modeling, supervised and unsupervised learning methods, machine learning
	and deep learning techniques), enabling future specialists to apply the accumulated knowledge
	to solve diverse problems in the national economy by simulating processes and phenomena in
	fields relevant to future ICT specialists;
	•to develop skills in using platforms and technologies specific to processing large volumes of
	data and implementing scalable applications;
	•to acquire mathematical and technological knowledge and skills for selecting, evaluating,
	analyzing, and using Big Data tools and technologies;
	• to acquire research knowledge and skills in big data analysis, stochastic optimization, predictive
	modeling, forecasting, enterprise data management, business analysis, and economic and
	mathematical modeling.
L	

7. Course/Module content

Syllabus of teaching activities	
Course topics	
TP1 Introduction to Big Data: definition of Big Data and the reasons for its emergence. Examples of business opportunities and Big Data. Characteristics of Big Data. Types of Big Data. The difference between Big Data and regular data. (distributed structure of Big Data). Managing and analyzing Big Data using microservices technology. Areas of application of Big Data. Advantages of applying Big Data.	2

TP2 Big Data Technologies, TBD: <i>data collection</i> (during the collection process, data is subject to	2
cleaning); data storage (Hadoop, MongoDB, etc., DWH/ETL vs ELT, Data Lake (procedure:	
extraction, loading into the database/DWH, and transformation into a format suitable for current	
tasks), DBMS (relational/SQL, MS SQL Server, VS, Power BI, non-relational/NoSQL, MongoDB,	
Atlas/Compass MongoDB)); data processing (MapReduce technology, Hadoop, Apache Spark):	
data analysis/processing/analytics (BI technologies/Data analytics/Data Mining, Microsoft Azure).	
TP3 TBD and limitations of traditional Big Data processing: Data integrity issue. Scalability	2
challenge. ACID transactions. Data scaling and storage across multiple levels: CAP theorem; BASE	
theorem. NoSQL paradigm. Classification of NoSQL databases.	
TP4 TBD and high-performance computing: distributed computing across multiple servers, the	2
MapReduce computing paradigm. The Apache Hadoop project and its ecosystem. Apache Spark and	
its components.	
TP5 TBD and data repositories: Data management. Security. Data quality (Data discovery, Data	2
auditing, Data provenance, Data exploration). The difference between data lakes and data	
warehouses.	
<i>TP6</i> TBD and Cloud Computing: Cloud service providers - AWS (Amazon), Azure, Google	2
Cloud. Features. Cloud service providers – Data Lake. Definition. Basic concepts of Data Lake. Data	
Lake architecture. Benefits and risks of using Data Lake in TBD.	
TP7 TBD and DWH + Data Lake or what is LakeHouse: Components of LakeHouse (Delta	2
Tables, Work Catalog). Delta Lake. Delta Lake architecture. How Delta Lake differs from traditional	
Big Data processing? Why is Delta Lake important? The need for Delta Lake. Azure Delta Lake.	
What is ETL and why is it important? And ELT? Differences. Uses. Hybrid Data Lake. Advantages.	
How do we utilize the advantages of Data Warehouse with Data Lake in TBD?	
<i>TP8</i> TBD and Azure Databricks: Introduction to Azure Databricks. Spark architecture.	2
Data manipulation in Azure Databricks. Streaming data processing with Azure Databricks	
structured streaming. Integration of Azure Databricks with Azure Synapse. Azure	
Databricks Lakehouse ETL and TBD.	
TP9 TBD and Big Data Applications: Big Data Analytics. Converting unstructured data into	2
actionable data, knowledge, and wisdom. DWH in Big Data, Big Data management tools in Big Data	
Analytics.	
<i>TP10</i> TBD and the NoSQL paradigm: NoSQL Database Management System. NoSQL vs SQL —	2
which type of database is more efficient for Big Data applications. Tools for storing Big Data.	
Total lectures:	20

8. Content of the practical works

Syllabus of teaching activities	Number of hours
Laboratory works topics	
<i>LP1</i> . Big Data Analytics – basic stages: Data collection and integration; Data processing; Data cleaning and transformation; Data analysis. Using Big Data Analytics in: Descriptive analysis (information) ("what happened"); Diagnostic analysis ("why it happened"); Predictive analysis ("what will happen next"); Prescriptive analysis ("how to improve it");	4
<i>LP2</i> . Big Data Analytics technologies and tools, including: for storage, exploitation, analysis, and visualization / Data storage and integration (MongoDB, etc); Data Mining (VS, RapidMiner, ElasticSearch, etc): Big Data Analytics (Spark, lp. R, Python, etc); Data visualization (Excel, Tableau, MongoDB Charts, Plotly, etc).	
<i>LP3.</i> Solving challenges in Big Data analysis: (Data storage and processing; Data quality; Data security; Correct tools and techniques) using Atlas MongoDB, Azure, and their numerous easy-to-use technologies. Big Data Analytics in BI and Data Science. Azure Synapse Analytics.	4
<i>LP4</i> . Big Data Analytics applications in business: (Risk management; Understanding market competitors; Identifying trends and patterns; Using Big Data analysis in retail; Creating new products; Managing human resources, in DSS, etc.)	4

LP5. Complex analytical methods: classification of analysis tasks: Text, Data, Web, Social	4
Mining. Applying machine learning in analysis. K-means and C-means clustering, classification.	
Logistic regression, associations, Apriori algorithm. Text analysis: Search engines: Lucene, Solr,	
ElasticSearch. Word2Vec and Glove algorithms.	
Total practical works:	20

9. Using generative AI

Permission to	The use of generative AI in assignments and projects is permitted, provided that students adhere to					
use	the following rules:					
	• Generative AI may be used to generate ideas, text structures, or code, but all generated materials					
	must be reviewed and adjusted by the student to ensure that they meet academic requirements.					
	• Any use of generative AI must be declared in the appendix section of each paper, using the					
	phrase: "During the preparation of this paper, the author used [NAME OF TOOL / SERVICE] for					
	the purpose of [REASON]. After using this tool / service, the author reviewed and edited the					
	content as necessary and assumes full responsibility for the content of the paper."					
Restrictions	Students MUSTN'T consider generative AI as a reliable source of information, as it does not					
to use	provide clear references or documented sources.					
	• <i>Direct citation of AI-generated content</i> in academic papers as if it were a primary source <i>isn't permitted</i> .					
	Ĩ					
	• Activities in which the use of generative AI is prohibited are specified by the teacher and an					
	usually <i>intermediate and final assessments</i> or that don't involve professional competence					
	development activities.					

10. Bibliographic references

Main	1.	Michael Z. Zgurovsky Yuriy P. Zaychenko, Big Data: Conceptual Analysis and Applications,
		SSN 2197-6503 ISSN 2197-6511 (electronic) Studies in Big Data ISBN 978-3-030-14297-1
		ISBN 978-3-030-14298-8 (eBook) https://doi.org/10.1007/978-3-030-14298-8 Library of
		Congress Control Number: 2019933181 © Springer Nature Switzerland AG 2020
	2.	Zeng Deze, Huan Huang, Rui Hou, Seungmin Rho, Naveen Chilamkurti, Big Data
		Technologies and Applications, 10th EAI International Conference, BDTA 2020 and 13th EAI
		International Conference on Wireless Internet, WiCON 2020 Virtual Event, December 11, 2020.
		ISSN 1867-8211 ISSN 1867-822X (electronic) Lecture Notes of the Institute for Computer
		Sciences, Social Informatics and Telecommunications Engineering ISBN 978-3-030-72801-4
		ISBN 978-3-030-72802-1 (eBook) https://doi.org/10.1007/978-3-030-72802-1
	3.	Sherif Sakr, Albert Y. Zomaya, Encyclopedia of Big Data Technologies, ISBN 978-3-319-
		77524-1 ISBN 978-3-319-77525-8 (eBook) ISBN 978-3-319-77526-5 (print and electronic
		bundle), Library of Congress Control Number: 2018960889 © Springer Nature Switzerland AG
		2019 https://doi.org/10.1007/978-3-319-77525-8
	4.	S. Ejaz Ahmed, Big and Complex Data Analysis Methodologies and Applications, SSN 1431-
		1968 Contributions to Statistics ISBN 978-3-319-41572-7 ISBN 978-3-319-41573-4 (eBook)
		DOI 10.1007/978-3-319-41573-4 Library of Congress Control Number: 2017930198 © Springer
		International Publishing AG 2017
	5.	Big Data Analytics with Spark, Copyright © 2015 by Mohammed Guller, ISBN-13 (pbk): 978-
		1-4842-0965-3, ISBN-13 (electronic): 978-1-4842-0964-6, www.apress.com/source-code/, OR
		www.it-ebooks.info
	6.	
	_	Techniques, Copyright © 2016 Arcitura Education Inc., ISBN-13: 978-0-13-429107-9
	7.	Raul Estrada Isaac Ruiz, Big Data SMACK: A Guide to Apache Spark, Mesos, Akka,
		Cassandra, and Kafka, Mexico City Mexico City, ISBN-13 (pbk): 978-1-4842-2174-7 ISBN-13

	(electronic): 978-1-4842-2175-4, DOI 10.1007/978-1-4842-2175-4, Library of Congress Control
	Number: 2016954634, Copyright © 2016 by Raul Estrada and Isaac Ruiz
8.	Wes McKinney, Python for Data Analysis, Copyright © 2013 Wes McKinney. All rights
	reserved. Printed in the United States of America. Published by O'Reilly Media, Inc., 1005
	Gravenstein Highway North, Sebastopol, CA 95472.
9.	John Wiley & Sons, Data Science & Big Data Analytics: Discovering, Analyzing, Visualizing
	and Presenting Data, 10475 Crosspoint Boulevard, Indianapolis, IN 46256, www.wiley.com
	Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana, Published simultaneously
	in Canada ISBN: 978-1-118-87613-8, ISBN: 978-1-118-87622-0 (ebk) ISBN: 978-1-118-87605-3
	(ebk)
10). Peters Morgan, Data analysis from scratch with Python. Step by step guide © Copyright
	2016 by AI Sciences LLC, all rights reserved. First Printing, 2016, Edited by Davies Company
	Ebook Converted and Cover by Pixels Studio Publised by AI Sciences LLC, ISBN-13: 978-
	1721942817, ISBN-10: 1721942815
11	1. Building Big Data and Analytics Solutions in the Cloud International Technical Support
	Organization December 2014
12	2. Big Data Principles and Paradigms, Edited by Rajkumar Buyya The University of
	Melbourne and Manjrasoft Pty Ltd, Australia Rodrigo N. Calheiros The University of
	Melbourne, Australia Amir Vahid Dastjerdi The University of Melbourne, Australia, Morgan
	Kaufmann is an imprint of Elsevier 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, USA
1	Copyright © 2016 Elsevier Inc. All rights reserved.496 pag
	3. 10 Best Big Data Books in 2023 [Learn Big Data ASAP] https://azure.microsoft.com/en-us/products
	https://realtoughcandy.com/best-big-data-books/
14	4. 20 Best Big Data Books for Beginners
	https://bookauthority.org/books/beginner-big-data-books
14	5. Must Read Books for Beginners on Big Data, Hadoop and Apache Spark
	https://www.analyticsvidhya.com/blog/2015/10/books-big-data-hadoop-apache-spark/
	https://dokumen.pub/big-data-concepts-technology-and-architecture-9781119701828.html
10	6. Microsoft Aure for students
	https://engineering.buffalo.edu/computer-science-engineering/information-for-
	students/information-technology/software-distribution/microsoft-azure-for-students.html
	https://learn.microsoft.com/en-us/azure/education-hub/azure-dev-tools-teaching/azure-students-
	program
	https://azure.microsoft.com/en-us/resources/students?activetab=pivot:githubtab
	https://learn.microsoft.com/en-us/azure/education-hub/azure-dev-tools-teaching/program-faq
	https://www.techopedia.com/definition/26434/azure-service-platform
17	7. Big Data Analytics - Statistical Methods.
	https://www.tutorialspoint.com/big_data_analytics/statistical_methods.htm
18	3. Майер-Шенбергер, В. Большие данные. Революция, которая изменит то, как мы
	живем, работаем и мыслим / Виктор Майер-Шенбергер, Кеннет Кукьер ; пер. с англ.
10	Инны Гайдюк. — М. : Манн, Иванов и Фербер, 2014. — 240
	9. Гусева Е. Н. Теория вероятностей и математическая статистика : Учебники и учебные
	пособия для ВУЗов [Электронный ресурс] - Москва : ФЛИНТА, 2016 - 220 – Режим
20	доступа: http://biblioclub.ru/index.php?page=book_red&id=83543
20). Гутова С. Г., Алтемерова О. А. Теория вероятностей и математическая статистика: Учебники и учебные пособия для ВУЗов [Электронный ресурс] - Кемерово : Кемеровский
	государственный университет, 2016 - 216 - Режим доступа: http://biblioclub.ru/index.php?
	page=book_red&id=481538
21	раде-воок_тенахи-481558 1. Кочетков Евгений Семенович. Теория вероятностей и математическая статистика:
	Учебник [Электронный ресурс] : Форум, 2018 - 240 - Режим доступа:
	http://znanium.com/go.php?id=944923
22	2. Миркин Б. Г. Введение в анализ данных. Учебник и практикум[Электронный ресурс]:
	M.:Издательство Юрайт, 2019 - 174 - Режим доступа: https://biblioonline.ru/book/vvedenie-v-
	analiz-dannyh-432851

Supplem	1.	Белько Иван Васильевич. Теория вероятностей, математическая статистика,		
entary		математическое программирование : Учебное пособие [Электронный ресурс], 2016 - 299 -		
		Режим доступа: http://znanium.com/go.php?id=542521		
	2.	Волкова Полина Андреевна. Статистическая обработка данных в учебно-		
		исследовательских работах : Учебное пособие [Электронный ресурс] : Форум, 2019 - 96 -		
		Режим доступа: http://znanium.com/go.php?id=1030246		
	3.	Непомнящая Наталья Васильевна. Статистика: общая теория статистики,		
		экономическая статистика. Практикум : Учебное пособие [Электронный ресурс], 2015 -		
		376 -Режим доступа: http://znanium.com/go.php?id=549841		
	4.	Основы теории вероятностей и математической статистики [Электронный ресурс],		
		2018 - 90 - Режим доступа: https://lib.rucont.ru/efd/684477		

11. Evaluation

Periodic		Current	Current Individual study Project/		hesis Exam	
PE 1	PE 2		ind fiddal study	I reject mesus		
15%	15%	15%	15%	-	40%	

Minimum performance standards:

- 1. Attendance and activity in lectures and laboratory/practical/seminar work;
- 2. Achieving the minimum grade of "5" for each of the tests/assessments and individual or group practical works;
- 3. Demonstrating in the final examination paper the theoretical knowledge, competencies, and practical skills required for the use of Big Data Technologies in the development of a specific project, regarding the Course Final Paper.

12. Evaluatio				
Activity	Evaluation components	Evaluation method, Evaluation criteria	Weight in the final grade of the activity	Weight in the course evaluation
Full-time education	on			
Periodic evaluation I	Theoretical content, topics 1-3	Test on MOODLE	100%	15%
Periodic evaluation II	Theoretical content, topics 4-5	Test on MOODLE	100%	15%
Current evaluation	Practical activity	Discussions during seminars Test on MOODLE	50%	15%
File completed wi	th Reports for each Cas	se Study under discussion	50%	15%
Individual study	Research on the topic Course final project.	Presentation/public speech	100%	
Final evaluation	Theoretical and practical content	Oral exam. Course final project presentation. Grading according to grading scale	100%	40%

12. Evaluation criteria