

MD-2045, CHISINAU, 9/7 STUDENȚILOR STR., PHONE: 022 50-99-05 | FAX: 022 50-99-05, www.utm.md

PLATFORMS FOR ADVANCED DATA ANALYSIS

1. Course/Module information

Faculty	Computers, Informatics, and Microelectronics				
Chair/department	Informatics and Systems Engineering				
Study cycle	Cycle II, Master's Studies				
Study program	Data Science				
Year of study	Semester	Evaluation	Formative	Optionality	ECTS
-		type	category	category	credits
I	1	DA	S – specialized	O - optional	5
	1	rA	course unit	course unit	5

2. Estimated total time

Total hours in the curriculum	Including					
	Auditory hours		Individual work			
	Lecture	Practical work	Term paper	Study of theoretical material	Application development	
150			40	110		

3. Prerequisites for access to the course/module

According to the curriculum	Mathematical Statistics, Mathematical Models and Optimization,
Cycle I, Bachelor's degree	Exploratory Data Analysis and Data Modeling, Data Visualization,
	Machine Learning, and Data Mining.
According to competencies	Computer Programming, Algebraic and Probabilistic Calculus.

4. Conditions for conducting the educational process

Lecture	Room equipped with a board, projector, and computer.
Practical work	Computer lab with appropriate software.

5. Specific competencies acquired

Professional	CPM1 System architecture design and development
competencies	CPM2 Monitoring technological trends. Innovation. Sustainable development.
_	CPM3 Application Development. Component Integration. Systems Engineering.
	CPM 5. Process improvement
Transversal	CTM1. Autonomy and responsibility
competencies	CTM2. Social interaction
_	CTM3. Personal and professional development

6. Course/Module objectives

General objective	Mastering the most important calculation methods used in Mathematical Statistics.				
Specific objectives	• Familiarization with advanced data analysis platforms (Apache Spark, Google BigOuery, etc.)				
	 Understanding data analysis workflows (processes from data acquisition, preprocessing, and modeling to interpretation and visualization of results, all integrated on modern platforms) 				
	• Developing competencies in machine learning (training and optimizin, machine learning models on cloud platforms using large datasets).				

• Integrating Big Data technologies with advanced analysis (advanced techniques for parallel and distributed data processing to optimize the management of large data volumes).

• Automating data analysis processes (techniques and tools for workflow automation, such as Apache Airflow, to create efficient data processing pipelines).

7. Course/Module content

Syllabus of teaching activities	Number of hours	
Course topics		
Topic 1: Introduction to Data Analysis Platforms: Setup and Preprocessing	4	
Topic 2: Exploring and visualizing data using advanced platforms	4	
Topic 3: Data analysis and modeling using Apache Spark	4	
Topic 4: Machine Learning on cloud platforms: Google BigQuery ML	4	
Topic 5: Advanced time series analysis		
Topic 6: Designing and implementing data pipelines using Apache Airflow	4	
Topic 7: Integrating machine learning models with cloud platforms: Azure ML	4	
Topic 8: Text data processing and sentiment analysis	4	
Topic 9: Optimizing the performance of machine learning models	4	
Topic 10: Semester project – Implementing a complete advanced data analysis system	4	
Total courses:	40	

8. Using generative AI

0	8				
Permission	The use of generative AI in assignments and projects is permitted, provided that students				
to use	adhere to the following rules:				
	• Generative AI may be used to generate ideas, text structures, or code, but all generated				
	materials must be reviewed and adjusted by the student to ensure that they meet academic				
	requirements.				
	• Any use of generative AI must be declared in the appendix section of each paper, using				
	the phrase: "During the preparation of this paper, the author used [NAME OF TOOL /				
	SERVICE] for the purpose of [REASON]. After using this tool / service, the author				
	reviewed and edited the content as necessary and assumes full responsibility for the				
	content of the paper."				
Restrictions	Students MUSTN'T consider generative AI as a reliable source of information, as it does				
to use	not provide clear references or documented sources.				
	• Direct citation of AI-generated content in academic papers as if it were a primary				
	source <i>isn't permitted</i> .				
	• Activities in which the use of generative AI is prohibited are specified by the teacher				
	and are usually intermediate and final assessments or that don't involve professional				
	competence development activities.				

9. Bibliographic references

Main	1. Nithin Buduma, Nikhil Buduma and Joe Papa, 2022 Fundamentals of Deep Learning:			
	Designing Next-Generation Machine Learning Algorithms, 2 nd Edition, OReilly Media			
	Inc.			
	2. Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning, 2016, MIT			

	Press, http://www.deeplearningbook.org (Chapters 1-5)						
	3. Michael Nielsen, Neural Networks and Deep Learning, 2019,						
	http://neuralnetworksanddeeplearning.com						
	 4. O. Theobald, 2017, Machine Learning For Absolute Beginners: A Plain English Introduction, Second Edition (AI, Data Science, Python & Statistics for Beginners Scatterplot Press 5. Educational materials and bibliographic sources on FCIM's ELSE Platform 						
	https://else.fcim.utm.md/course/view.php?id=702						
	6. Andriy Burkov, 2019, The Hundred-Page Machine Learning Book, ISBN-10:						
G 1 (19995/9500A, ISBIN-13 : 9/8-19995/9500						
Supplementa	1. Lewis Tunstall, Leandro von Werra, and Thomas Wolf, 2022, Natural Language						
ry	Processing with Transformers. Building Language Applications with Hugging Face,						
	O'Reilly Media.						
	2. John D. Kelleher and Brian Mac Namee, 2015, Fundamentals of Machine Learning for						
	Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies, MIT-Press,						
	ISBN-10 : 0262029448, ISB.N-13 978-0262029445.						
	3. Aurélien Géron, 2019, Hands-On Machine Learning with Scikit-Learn, Keras, and						
	TensorFlow, 2nd Edition, O'Reilly Media, Inc. ISBN: 9781492032649;						
	https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632						

10. Evaluation

Form of	Periodic		Curront	Droigot/theorie	Einal avom
education	Mid-term 1	Mid-term 2	Current	Project/tilesis	rinai exam
Full time	10%	10%	10%	30%	40%
run-une	Minimum per	formance standa	ırds		
	Minimum performance standardsDefining a current problem and providing an overview of the solution(s) using analysis, design, and development techniques for software products.Presence and activity at the semester project consultations.Current evaluation, being formative, provides continuous feedback to the students/team on design activities or integrated modules, ensuring that the student receives the maximum grade if the team's work is rated with a passing grade.The final exam, being summative, is conducted orally based on the project presented publicly by the team and individual discussions (in the presence of the team). The				

1. Evaluation criteria

Activity	Evaluation components	Evaluation method, evaluation criteria	Weight in final grade for the Activity	Weight in course evaluation
		Full-time education		
Mid term I	Theoretical	Test	100%	10%
	content, topics 1-3			
Mid term II	Theoretical content, topics 4-5	Activities during practical work/seminar	100%	10%
Current evaluation	Practical activity	Attendance and participation in classes	50%	10%

Activity	Evaluation components	Evaluation method, evaluation criteria	Weight in final grade for the Activity	Weight in course evaluation
Project	Task 1: Classification of research by activity type	Presentation/Discussion on the topic	50%	30%
Final examination	Theoretical and practical content	Oral exam. Grading according to grading scale	100%	40%