

MD-2045, CHISINAU, 7/9 STUDENTILOR STR, , PHONE: 022 50-99-01 | FAX: 022 50-99-05, www.utm.md

MATHEMATICAL MODELS AND OPTIMIZATIONS

1. Course/Module information

Faculty	Computers, Informatics, and Microelectronics				
Department	Informatics and Systems Engineering				
Study cycle	Master's Studies, Cycle II				
Study program	Data Science				
Year of study	Semester	Type of evaluation	Formative category	Optionality category	ECTS credits
I (full-time education)	1	Е	F – fundamental course unit	O - mandatory course unit	5

2. Estimated total time

Total have	Including					
in the	Auditory hours		Individual work			
curriculum	lecture	Laboratory/seminar	Year	Study of theoretical	Application	
			project	material	preparation	
150	20	20/0	-	55	55	

3. Prerequisites for access to the course/module

According to the curriculum plan	Special mathematics, Discrete mathematics, Computer programming, Data structures and algorithms, Models and computation methods, Numerical methods, Operations research, Databases, Web technologies, Systems theory.
According to competencies	Acquiring theoretical and practical knowledge of modeling through methods of information accumulation, processing, and transfer, and mastering modern optimization methods.

4. Conditions for conducting the educational process

Lecture	A projector and computer are required to present the theoretical material in the classroom.
Lecture	Student delays, as well as phone conversations during the course, will not be tolerated.
Laboratory/seminar	Students will complete reports according to the conditions set by the methodological guidelines. The deadline for submitting the laboratory work is one week after its completion. Late submission of the work will result in a penalty of 1 point per week of delay.

5. Specific competencies acquired

Professional competencies	 CPM1 System architecture development and design CPM2 Monitoring technological trends. Innovation. Sustainable development. CPM3 Application development. Component integration. Systems engineering. CPM 5. Process improvement.
Transversal competencies	CTM1 Autonomy and responsibility CTM2 Social interaction CTM3 Personal and professional development

6. Course/Modul	e objectives
	At the level of knowledge and understanding:
	\checkmark Technical-engineering models and types of optimization problems;
	\checkmark Most common methods for solving linear programming problems (simplex
	algorithm, dual simplex algorithm, interior point method, solution sensitivity);
General objectives	\checkmark Methods for solving convex programming and semidefinite programming
	problems (gradient methods, conjugate direction methods, Lagrange multiplier
	method, interior point methods);
	\checkmark Elements of game theory and queueing theory. Reduction to mathematical
	programming problems.
	At application and integration level, the master's student must be able to:
	use mathematical models and optimization methods to apply them in determining
	the optimal solutions for mathematical programming problems, semidefinite
	programming, combinatorial optimization, game theory problems, and queueing
Specific objectives	theory problems;
	• develop the algorithm for solving the considered problem and write the program
	in a programming language according to the algorithm and be able to use software
	products such as QM, Excel, Matlab, Mathematica, Maple, etc., for solving
	practical problems on the electronic computer.

7. Course/Module content

		Number of hours	
Syllabus of teaching activities	Full-time	Part-time	
	education	education	
Syllabus of lecture activities			
T1. Introduction. Modeling and optimization. The problem-solving process. High-			
performance computing. Complexity. Types of optimization problems.	2		
Considerations on modeling and optimization. Current state of optimization	2	-	
software.			
T2. Technical-engineering and macroeconomic models. The link between			
modeling and optimization. Linear vs. nonlinear. Large-scale models. Model	1		
generation. Model preprocessing. Model postprocessing. Allocation models.	+	-	
Distribution models. Model development.			
T3. Elements of convex analysis. Convex sets. Segments. Convex polyhedra.			
Extreme points. Separation theorems for convex sets. Convex functions.			
Strictly and strongly convex functions. Unconstrained optimization.	2	-	
Conditions for extrema in unconstrained optimization. Gradient and conjugate			
direction methods. Newton-Raphson method. Quasi-Newton methods.			
T4. Linear optimization. General linear optimization problem. Practical examples			
of linear optimization problems. Duality in linear optimization. Dual theorems	2	-	
of linear programming. Reoptimization and parameterization in linear	-		
programming. Sensitivity analysis of optimal solutions.			
T5. Integer linear optimization. The knapsack problem. Assignment problem. The	2	-	
traveling salesman problem. Cutting and branching methods.	-		
T6. Elements of game theory. Matrix games. Solving games using linear			
programming. Reducing linear programming problems to a matrix game.	4	-	
Symmetric matrix games. Matrix solution for symmetric games. Applications.			
T7. Nonlinear optimization problems. Nonlinear programming problems with	_		
equality constraints. Lagrange function. Necessary and sufficient conditions	2	-	
for extrema. Nonlinear programming problems with inequality constraints.			

UNIVERSITATEA TEHNICĂ A MOLDOVEI

Quadratic programming. Kuhn-Tucker conditions. Newton-type methods. Applications.		
T8. Examples and applications of semidefinite programming. Non-convex combinatorial optimization. Structural optimization. Software packages for semidefinite programming.	2	-
Total lectures:	20	-
	Number	of hours
Syllabus of seminar/practical work activities	Full-time	Part-time
	education	education
LL1. Technical-engineering models. Use of software products in the study of	4	
models associated with optimization problems.		-
LL2. Linear optimization models. Presentation and analysis of linear mathematical	8	
models associated with linear programming problems.		-
LL3. Solving matrix games. Exemplifying mathematical modeling techniques	4	
presented in the course.		-
LL4. Solving nonlinear optimization problems. Quadratic programming. QM	4	
software product.		-
Total laboratory works:	20	-

8. Using generative AI

Permission to use	 The use of generative AI in assignments and projects is permitted, provided that students adhere to the following rules: Generative AI may be used to generate ideas, text structures, or code, but all generated materials must be reviewed and adjusted by the student to ensure that they meet academic requirements. Any use of generative AI must be declared in the appendix section of each paper, using the phrase: "During the preparation of this paper, the author used [NAME OF TOOL / SERVICE] for the purpose of [REASON]. After using this tool / service, the author reviewed and edited the content as necessary and assumes full responsibility for the content of the paper."
Restrictions	Students MUSTN'T consider generative AI as a reliable source of information, as it does not
to use	provide clear references or documented sources.
	• Direct citation of AI-generated content in academic papers as if it were a primary source
	isn't permitted.
	• Activities in which the use of generative AI is prohibited are specified by the teacher and
	are usually <i>intermediate and final assessments</i> or that don't involve professional competence
	development activities.

9. Bibliographic references

	1.	Moraru V. Metode de calcul numeric și optimizări. Note de curs. Secția Redactare și
		Editare a U.T.M., 2009304 p. ISBN 978-9975-45-108-6.
	2.	Moraru V., Popescu A. Rezolvarea numerică a ecuațiilor neliniare și a problemelor de
Main		optimizare necondiționată. Ciclu de prelegeri. Departamentul Editorial - Poligrafic al
		U.T.M., Chişinău, 199788 p.
	3.	Moraru V., Pârțachi I., Berzan R. Introducere în optimizarea liniară. Chișinău, Editura
		A.S.E. 1997.

COURSE/MODULE SUMMARY

	Andrei N. Pachete de programe, modele și probleme test pentru programarea matematică.				
	MatrixRom, București, 2001				
	5. Trandafir R. Modele și algoritmi de optimizare. Editura AGIR București, 2004. 252 p.				
	http://civile.utcb.ro/mao.pdf				
	6. Necoară I. Metode de optimizare numerică. Editura Universitatea Politehnica din				
	București. 2013. 278 p. http://141.85.225.150/courses/curs_to.pdf				
	Jeffrey Paul Wheeler. An Introduction to Optimization with Applications in Machine				
	Learning and Data Analytics. Publisher CRC Press, Chapman and Hall/CRC, 2023, 473				
	p. ISBN 0367425505, ISBN13: 978-0367425500. DOI				
	https://doi.org/10.1201/9780367425517				
	2. Roberto Cominetti, Francisco Facchinei, Jean B. Lasserre Modern Optimization				
	Modelling Techniques. 2012, 269 p. Publisher: Birkhauser Springer Basel ISBN: 978-3-				
	0348-0290-1 . DOI 10.1007/ 978-3-0348-0291-8				
	3. Andrei N. Programarea matematică avansată: teorie, metode computaționale, aplicații, Ed.				
	Tehnică, București (1999);				
	4. Andrei N. Programare semidefinită. MatrixRom, București, 2001.				
	 Blajină Ovidiu. – Cercetări operaționale, Ed.Printech 2001 				
	• Ciobanu Gh., Nica V., Mustață F., Mărăcine V., Mitruț D. – Cercetări Operaționale,				
	Ed. MatrixRom, București, 2002				
	• Dumitrescu M., Niculescu C Teoria deciziei și Cercetare Operațională, Ed.				
	Niculescu, București, 2001;				
Supplementary	• Hillier F., Limberman G., Introduction to operational research, McGraw-Hill				
	Publishing Company, New-York, 1990				
	• Kaufmann A, Metode și modele ale cercetării operaționale, Ed,Științifică, București,				
	1967				
	5. Гилл Ф., Мюррэй У., Райт У. Практическая оптимизация. М. : Мир, 1985509р.				
	(traducere din limba engleză Gill Ph., Murraz M., Wright M. Practical optimization.				
	Academic Press, 1981).				
	6. Муртаф Б. Современное линейное програмирование. Теория и практика. М.: Мир,				
	1984224p. (traducere din limba engleză Murtagh B. Advanced linear programming:				
	computation and practice, 1981).				
	7. Поляк Б.Г. Введение в оптимизацию. М.: Наука, 1983384р.				
	8. Схрейвер А. Теория линейного и целочисленного програмирования. М. :Мир, 1991				
	360p. (traducere din limba engleză Schrijver A. Theory of linear and integer programming				
	9. Lucrari practice. Studiile de caz rezolvate cu produsul informatic QM. ASE București,				
1	1994.				

10. Evaluation

Current		Torm popor	Final ayom	
Mid-term 1	Mid-term 2	Term paper	Filiai exaili	
30%	30%	40%		
Minimum performance standard				
Attendance and participation in lectures and laboratory work;				
Achieving a minimum grade of "5" in each of the certifications and laboratory works;				
Achieving a minimum grade of "5" in the term project;				
Demonstrating knowledge of the conditions for applying constructive modeling methods in the final exam paper.				

11. Evaluation criteria				
Activity	Evaluation components	Evaluation method, evaluation criteria	Weight in final grade for the Activity	Weight in course evaluation
Full-time education				
Mid term I	Theoretical content, topics 1-3	Test	100%	15%
Mid term II	Theoretical content, topics 4-5	Activities during practical work/seminar	100%	15%
Current evaluation	Practical activity	Attendance and participation in classes	50%	15%
Individual study	Task 1: Classification of research by activity type	Presentation/Discussion on the topic	50%	15%
	Task 2: Developing a scientific article	Article presented for evaluation	50%	
Final evaluation	Theoretical and practical content	Oral exam. Grading according to grading scale	100%	40%