

MD-2068, CHISINAU, 9/7 STUDENTILOR STR, 9/7, PHONE: 022 50-99-63, www.utm.md

Exploratory Data Analysis and Modeling

1. Course/Module information

Faculty	CIM				
Department	Software En	Software Engineering and Automation			
Study cycle	Master's Degree				
Study program	Data Science				
Year of study	Somostor				ECTS credits
1 st Year (full-time education)	1	Е	F	0	5

2. Estimated total time

	Including				
Total hours in the	Auditory hours		Individual work		
curriculum plan	Lecture	Laboratory/ seminar	Term paper	Study of theoretical material	Application development
Full-time education	20	20	-	110	-

3. Prerequisites for access to the course/module

According to	Mathematics (Linear Algebra, Differential and Integral Calculus, Probability Theory,
the curriculum	Mathematical Statistics), Data Structures and Algorithms, Programming (Python or
plan	R), Databases, Web Technologies.
According to competencies	Basic data-related skills and knowledge, fundamental statistical concepts, key concepts from higher mathematics (including linear algebra, differential and integral calculus, etc.), data manipulation skills, understanding graphical representations, critical thinking and logical reasoning, basic programming skills (programming concepts in any language, preferably Python or R), data collection concepts, knowledge of how data is stored and extracted from databases, interest and curiosity for data analysis, understanding of the business context, self-learning skills.

4. Conditions for conducting the educational process

Lecture	A projector and computer are required to present theoretical material in the classroom. Student tardiness, as well as phone conversations during the lecture, will not be tolerated.
Laboratory/ seminar	Students will engage in seminars under the guidance of the professor and assistant and will complete reports according to the methodological instructions. The deadline for submitting individual work is one week from completion. If the work is submitted late, a penalty of 1 point per week of delay will be applied.

5. Specific competencies acquired

Professional	CPM1 System architecture design and development.				
competencies	CPM2 Monitoring technological trends. Innovation. Sustainable development.				
-	CPM3 Application development. Component integration. Systems engineering.				
Transversal	CT1. Autonomy and responsibility				
competencies	CT2. Social interaction				
	CT3. Personal and professional development				

6. Course/Module objectives

C	The development of knowledge and the formation of skills necessary for the effective					
General	use of data analysis methods and techniques to detect and capture the relationships and					
objective	patterns hidden behind the data, and to obtain a simplified, clear, and easily					
	interpretable representation of these relationships and patterns.					
	To achieve the general objective, it is necessary to develop knowledge and skills in:					
	• Data Profiling and Summarization: Techniques for effective profiling and					
	summarizing of datasets.					
	• Data Visualization: Skills for visually representing data using various charts,					
	graphs, etc.					
	• Pattern and Trend Identification: Identifying patterns, trends, and relationships					
	within data to generate insights.					
	• Handling Missing Data and Outliers: Methods for handling missing data and					
	detecting outliers during exploratory analysis.					
	• Statistical Analysis Techniques: Statistical methods to analyze data and draw					
Specific	conclusions.					
objectives	• Preprocessing Data: Knowledge of data preprocessing techniques to prepare					
	data for analysis.					
	• Domain-Specific EDA: EDA techniques specific to various fields, such as					
	finance, healthcare, or marketing.					
	• Communicating Findings: Skills to effectively communicate insights and					
	findings from EDA to both technical and non-technical audiences.					
	• Collaboration Practices in EDA: Collaborating with colleagues in performing					
	EDA and sharing information for collective understanding.					
	 Ethical and Responsible EDA: Ethical considerations and responsibilities 					
	related to performing EDA, including data privacy and protection.					

7. Course/Module content

Syllabus of teaching activities	Number of hours
Course topics	
T1 EDA Research Topic, motivation and methods Descriptive statistics and graphical techniques for data exploration. Definitions of basic concepts such as population, sample, and observation. Measures of central tendency (mean, mode, median) and their properties. Measures of variability and dispersion (range, variance, standard deviation, skewness, kurtosis) and their properties. Chebyshev's theorem and the empirical rule of distribution for normal distribution	2
T2 Types of Data and graphical methods of exploration. Qualitative data: Nominal vs. ordinal data. Quantitative data: Discrete vs. continuous data. Exploring qualitative data - frequency charts and pie charts. Exploring quantitative data - histograms, quartiles, percentiles, and measures of relative position. Interquartile Range and Box Plots. Time series data - line charts and trends.	2
T3. Relationships between two variables. Direction, Type, and Relevance of the Relationship. Correlation, Covariance and Pearson's Correlation Coefficient. Interpretation and Examples. False Correlation.	2
T4. Least squares method. Simple linear regression. Sum of squared residuals and stochastic error. Residual minimization problem. Examples.	2
T5. Multiple linear regression and fit quality. R-squared, total sum of squares, residual sum of squares and explained sum of squares.	2
T6. Hypothesis testing. Null and alternative hypotheses. Type I and Type II errors. Decision rule. Acceptance and rejection regions. T-statistic, critical t-value, and p-value for significance level. Examples.	2
T7. Multiple hypothesis testing and regression significance. F-test, critical F-value, degrees of freedom.	2

Syllabus of teaching activities	Number of hours
T8. Model specification and predictor selection. OLS assumptions. Influence of omitted variables. Suppressing the intercept. Polynomial regressions. Dummy variables.	2
T9. Logistic regression. Understanding logistic regression and the Logit function. Interpreting logistic regression results.	2
T10. Time series. Trend, cyclicality, seasonality. AR, MA, ARIMA, SARIMA, VARIMA.	
Difference and stationarity. Dickey-Fuller (DF) test and Augmented Dickey-Fuller	2
(ADF) test. Autocorrelation function (ACF) and partial autocorrelation function (PACF).	L
Total course, hours	20
Practical work topics	
Practical work No. 1. Introduction to Using Python in Google Collaboratory - Loading datasets, calculating, and exploring descriptive statistics.	2
Practical work No. 2. Data visualization and analysis using graphical methods in Python.	2
Practical work No. 3. Correlations between variables in Python. Heatmaps and their interpretation.	2
Practical work No. 4. Implementation and interpretation of a simple linear regression model in Python.	2
Practical work No. 5. Multivariate regression in Python and evaluating the goodness of fit of the model.	2
Practical work No. 6. Hypothesis testing in Python, interpreting statistical significance.	2
Practical work No. 7. Multivariate regression in Python and joint significance testing using the F-test.	2
Practical work No. 8. Model specification testing and simulating omitted variables.	2
Practical work No. 9. Logistic regression in Python. Encoding binary variables.	2
Practical work No. 10. Time series modeling in Python: AR, MA, ARIMA. ACF and PACF. DF and ADF tests in Python – implementation and interpretation.	2
Total practical work, hours	20

8. Using generative AI

Permission to use	 The use of generative AI in assignments and projects is permitted, provided that students adhere to the following rules: Generative AI may be used to generate ideas, text structures, or code, but all generated materials must be reviewed and adjusted by the student to ensure that they meet academic requirements.
	• Any use of generative AI must be declared in the appendix section of each paper, using the phrase: "During the preparation of this paper, the author used [NAME OF
	TOOL / SERVICE] for the purpose of [REASON]. After using this tool / service, the author reviewed and edited the content as necessary and assumes full responsibility for
	the content of the paper."
Restrictions	Students MUSTN'T consider generative AI as a reliable source of information, as it does
to use	not provide clear references or documented sources.
	• Direct citation of AI-generated content in academic papers as if it were a primary
	source <i>isn't permitted</i> .
	• Activities in which the use of generative AI is prohibited are specified by the teacher
	and are usually intermediate and final assessments or that don't involve professional
	competence development activities.

9. Bibliographic references

	1. Keller Gerald, Statistics for Management and Economics, South-Western
	College Publishing; 10th edition, 2014
Main	2. Studenmund Arnold H., Unsing Econometrics: A practical Guide, Pearson
	Education, 2014
	3. Educational Materials and Bibliographic Sources on FCIM's ELSE Platform:
	https://else.fcim.utm.md/enrol/index.php?id=701
	1. Wes McKinney, Python for Data Analysis, O'Reilly Media, 3rd Edition,
	2022 ISBN: 9781098104009
Supplementary	2. Jake Vanderplas, Python Data Science Handbook: Essential Tools for
	Working with Data. O'Reilly Media, 2nd Edition, 2023, ISBN-10:
	1098121228, ISBN-13: 978-1098121228

10. Evaluation

Periodic		Current	Individual study	Project/thesis	Exam		
PE 1	PE 2	Current	mulviuuai stuuy	r roject/tilesis	Exam		
	Full-time education						
15%	15%	15%	15%	-	40%		
Minimum performance standards							

Attendance at lectures; activity and quality of preparation for lectures and practical works; Obtaining a minimum grade of "5" for each assessment and practical work;

Demonstrating knowledge of the theoretical content of the course and the Python/R language in the final exam paper.

11. Evaluation criteria

Activity	Evaluation components	Evaluation method, Evaluation criteria	Weight in the final grade of the activity	Weight in the course evaluation
		Full-time education		
Periodic evaluation I	Theoretical content, topics 1-4	Test on MOODLE	100%	15%
Periodic evaluation II	Theoretical content, topics 6-8	Test on MOODLE	100%	15%
Current		Discussions during seminars	50%	
evaluation	Practical activity	File completed with Reports for each Case Study under discussion	50%	15%
Individual	Research on the	Presentation/public speech	100%	15%
study	topic	resentation public speech	10070	10 / 0
Final evaluation	Theoretical and practical content	Oral exam. Grading according to grading scale	100%	40%