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Dedication 

To my grandmother Ruth McGraw, who lives life to the fullest. 
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Advance Praise for Software Security 
"I have been involved with trying to solve security problems for over twenty years—
starting with individual desktop systems and transitioning to network security as that 
became the prevalent issue. I have been an entrepreneur, executive in the industry, and 
am now an investor and company builder, all focused on trying to solve these important 
issues. What I have learned over these twenty years is that we have done an okay job at 
slowing down the problem, but we are no closer to solving the problem than we were 
when we started. 

"Our twenty years of investment has been spent being reactive—trying to 'keep the bad 
guys out.' The idea has been to build a wall around our companies so high and so thick 
that no one with nefarious intentions could get in. In today's world this just does not 
work. We live in a wall-less economy where companies need to allow freedom of 
communication in and out of their enterprises. Freedom of information access and 
freedom of application usage are central drivers for staying competitive. In other words, 
the battlefield has changed. Thus the weapons and tactics we use to secure our assets 
must change as well. 

"The only way I see the security conundrum getting solved is by confronting the problem 
and not the symptoms of the problem. We need to design and build security in from the 
beginning. No application, no operating system, no piece of middleware should ever be 
released that has not already been designed for security and reviewed for security 
vulnerabilities. Only then will we start to fight these new battles with the correct weapons 
and tactics that afford us the chance to win. 

"I believe so fervently in these concepts that I founded a company called Fortify Software 
to develop, market, and sell solutions to attack and solve these issues directly. We need to 
get proactive not reactive, and fix the problems at the root cause. 

"Gary McGraw is the father of software security. Much of what we did at Fortify was 
based on Gary's research. His new book should be the bible by which your company puts 
software security into action. You cannot afford to wait much longer." 

—Ted Schlein Managing Partner Kleiner Perkins Caufield & Byers 

"McGraw is leading the charge in software security. His advice is as straightforward as it 
is actionable. If your business relies on software (and whose doesn't), buy this book and 
post it up on the lunchroom wall. Transform the way you build software with the seven 
software security touchpoints. Then, finally, maybe I can get some sleep." 

—Avi Rubin Director of the NSF ACCURATE Center for Correct, Usable, Reliable, 
Auditable, and Transparent Elections Professor, Johns Hopkins University Coauthor of 
Firewalls and Internet Security 
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"I'm sick of software that's full of stupid security holes. If you're going to write software 
that I may someday run, you need to read and understand this book. 

"Gary's book shows us what we already should know: It's better to build security in when 
you develop your software. And he shows us how, step-by-step." 

—Marcus J. Ranum Inventor of the firewall Chief Scientist, Tenable Security 

"Gary McGraw's book shows how to combine development and testing to improve the 
quality of software. In doing so, he presents a framework that software developers, 
testers, and managers would do well to adopt. Dr. McGraw's knowledge and experience 
came through well in his earlier books, and this one continues his tradition of improving 
the state of the art of software security." 

—Matt Bishop Professor of computer science, UC Davis Author of Computer Security 

"Methodologies for assurance and assessment are fundamental ingredients of all modern 
engineering practice. While the development of secure software is an engineering 
discipline, rigorous assurance and assessment methodologies have been missing. Gary 
McGraw's Software Security is a landmark contribution to this area. Readers who follow 
its principles will not only get things done, they will get them done right." 

—George Cybenko Dorothy and Walter Gramm Professor of Engineering Dartmouth 
College 

"When it comes to software security, the devil is in the details. This book tackles the 
details." 

—Bruce Schneier CTO and founder, Counterpane Author of Beyond Fear and Secrets 
and Lies 

"Most people don't think coherently about security. Let's face it, most people don't think 
about security at all most of the time, including software developers. So when something 
bad happens to them because a virus wipes out their disk drive they react, and like most 
first reactions, putting in firewalls and antivirus products is not the most appropriate 
solution. 

"In this book, Gary McGraw thinks coherently about software security, and shows that 
robust and secure software needs forethought and planning. This should not be a surprise, 
but it often is. More importantly, though, Gary describes how to go about this. Now we 
just need to make lots of software developers read it." 

—Greg Rose Vice President of Product Security Qualcomm 

"With his latest book, McGraw continues to offer an insider's view of the changing 
demands on companies that develop software. Software quality and security, and the 
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perception thereof, are driven by the need to research and understand the business and 
define the technology solutions to support those needs. Beyond the traditional emphasis 
on improving software quality by focusing on the development methodology and process, 
McGraw takes a more holistic view by concentrating on how the software components 
come together around the operation of systems and services. If you have any dependency 
on software, you should read this book." 

—Ron Moritz Senior Vice President and Chief Security Strategist Computer Associates 

"According to Moore's Law, the number of transistors that can be packed into each 
square millimeter of a chip doubles every eighteen months. As a result, microprocessors 
get faster. RAM chips get bigger. These exponential improvements in hardware are 
fueling corresponding increases in software complexity. 

"With this boon comes a curse: unintended interactions and security flaws. For almost 
everyone working on data security problems today, myself included, our main challenge 
is finding cost-effective ways to deliver the most functionality with the minimum risk. 
Excessive paranoia can paralyze a company or development team. At the same time, 
disasters are common; my company's customers have lost billions of dollars as a direct 
result of preventable software defects. Achieving the right balance is not easy. 

"Cryptography (my area of specialty) is often hailed as a possible savior. On first blush, 
this seems plausible: Modern encryption algorithms offer mathematical strength that far 
exceeds what any attacker can today (or possibly ever) muster. Unfortunately, this is 
mostly an illusion—cryptographic systems are only as strong as the underlying 
implementations. My work designing SSL 3.0 highlights this fact all too well. Even 
though the protocol itself is believed to be solid, a 'lock' icon is hardly of much 
significance when displayed by a bug-riddled browser running on a spyware-infested 
computer talking to a compromised Web server. In other words, no matter what tools you 
use in building a system, your security will still be limited by your ability to build robust 
software. 

"Clearly, some approaches do not work. The worst problems often arise when 
engineering techniques that work well for implementing features are misapplied to 
security. Traditional software development is an iterative cycle of writing code, then 
finding and correcting problems. The result is an evolutionary process that favors 
desirable functionality and removes the visible bugs. Unfortunately, most security flaws 
are invisible to conventional testing. As a result, many engineers' intuition will say that a 
system is sound when it is not. 

"Ultimately, tackling the software security problem is easier said than done. You won't 
find any magic bullets (there aren't any), but this book provides one of the clearest 
strategies I've seen for coping with complexity." 

—Paul Kocher President and Chief Scientist Cryptography Research, Inc. 
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"Software security is a continual process, requiring first an understanding of the issues. 
To be effective, this understanding and knowledge must then be incorporated into the 
software development lifecycle including design, coding, testing, and deployment. 
Several years ago I helped build a security analysis tool for Windows NT, called 
NtSpectre. We built the tool to analyze the security configuration of servers designed for 
an online game played for money. The game idea remained simply an idea, but our tool 
developed a nice cult following, and my understanding of the layers of security and their 
complexity grew considerably. This experience left me with one main philosophical and 
practical approach to software development, and software security specifically—test, 
neither assume nor guess. 

"This book puts software security in its place, integral to your software development 
process. Whether you're agile, extreme, rational, or perhaps teetering at the top of a 
waterfall, this book will guide you in building security into your methodology. Theory 
and abstractions aside, Dr. McGraw concretely describes actual, and scarily common, 
security vulnerabilities he has encountered in the field. He goes on to show that security 
issues are inherently related to gaps in the development process, and expertly guides you 
to improvements in that process." 

—Erik Hatcher Developer, eHatcher Solutions, Inc. Coauthor of Lucene in Action 

"One of the most important ways we can solve information security problems for the long 
term is by making security part of the 'core DNA' of software development. McGraw's 
book tells you how to make the 'culture of security' part of your development lifecycle." 

—Howard A. Schmidt President and CEO, R & H Security Consulting LLC Former 
White House cyber security advisor 

 

 

 

 

 

 

 



 7

Addison-Wesley Software Security Series 
Gary McGraw, Consulting Editor 

 

Titles in the Series 

Exploiting Software: How to Break Code, by Greg Hoglund and Gary McGraw 

ISBN: 0-201-78695-8 

Rootkits: Subverting the Windows Kernel, by Greg Hoglund and James Butler 

ISBN: 0-321-29431-9 

Software Security: Building Security In, by Gary McGraw 

ISBN: 0-321-35670-5 

 
For more information about these titles, and to read sample chapters, 
please visit the series web site at 
www.awprofessional.com/softwaresecurityseries 

 

 

 



 8

Foreword 
Software is easy to criticize and hard to do. The bigger the software, the more that is true. 
It is thus like speech—the more you say, the easier it is for the reader to find something 
to criticize, and the more likely the critic will get it wrong. Brevity may be the soul of 
wit, but it is wit that is the soul of brevity. 

And, indeed, our software is nothing if not loquacious, slang-riven, ill-bred, bloated, and 
raw. Is it any wonder that software is as prone to misinterpretation as is our language, any 
wonder that our software, like our language, can be "twisted by knaves to make a trap for 
fools?" No, it is not, but, as with language, everything we collectively are now depends 
on software. Software is so very essential that it is unlikely that the world's population 
would be as great as it now is without software—software to transport, to transact, to 
transcribe, to translate, to transmit, to transform. In other words, the evidence is 
unarguable that we have to get software right, just as the evidence is unarguable that 
getting software right does not, and will not, come naturally. 

As Dr. McGraw reminds us, breaking something is easier than designing something that 
cannot be broken, though I personally prefer Sam Rayburn's earthy formulation, viz.: 
"Any jackass can kick down a barn, but it takes a good carpenter to build one." And that 
is what makes secure software in particular the pinnacle of concern because the very 
definition of secure software is that it withstands sentient opponents. Parsing that 
definition in its contrapositive: If a product does not have sentient opponents, then it does 
not have security requirements. This is best examined by looking at why products fail—if 
your product fails because of a collection of clueless users ("Hey, watch this!"), alpha 
particles, or discharged batteries, security is not your issue. If your product fails because 
some gleeful clown discovers that he can be the super-user by typing 5000 lowercase As 
into some prompt, said clown may not be all that sentient, but nevertheless your product 
has security requirements. 

This can't be a completely bright line, but it is an instructive distinction. Secure software 
is, by definition, designed with failure in mind. Secure software resists failure even when 
that failure is devoutly wished for by the opponent. Secure software is designed for the 
failure case as much as or more than the success case. Designers and implementers alike 
envision an opponent who can think. 

As Dr. McGraw says throughout this book, baking in security only happens when there is 
intent to do so. My father used to scold me when my excuse for this or that was "I didn't 
mean to do it, Daddy." His stinging comeback, for which I am a better man, was always 
"But did you mean not to?" Given what I do for a living, I read vulnerability reports 
every day. Every one of them says, "I didn't mean to do it, Daddy." Sometimes they even 
try to say, "I didn't do it, but if I did I didn't mean to, and anyway you didn't notice, so all 
you have to do is install this tiny little fix unless you want what happens next to be your 
fault; aren't I a good boy?" I want to scream "Did you mean not to?" even though the 
honest answer will at best be "I thought I meant not to." 
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There is not enough security expertise to go around. Good people are hard to find, and the 
need for them rises faster than the supply of them. What do you do when some skill is 
rare but needful? You convert rare expertise into a process that others can follow, but the 
kind of process has to be one that reinforces disciplined thinking, avoids patronizing the 
people on whom it must be imposed, and can be measured sufficiently well to know if it 
works. Better still if the process is one where you don't have to take all or nothing, where 
you can get real value out of doing only some of it. Better to do it all, but at the limit any 
process will have diminishing return so partial value for partial effort is a good thing. Dr. 
McGraw, describing himself as not naturally a process person, does exactly what I asked 
for above. 

A good idea is one where, once you've heard it, you say, "Well, that's obvious." Much of 
what you will find in this book has that quality—you will be tempted to say, "Well, that's 
obvious." For example, the idea that code review is the highest power weapon you can 
train on software security. For example, that you can't know how much of a fight your 
software will have to put up when challenged unless you study hard how it might come 
under intentional abuse. Of course, the process is only good if you use it. Buffer 
overflows remain the most common attack method, and we've known how to avoid them 
for years, so knowing what to do is provably insufficient. 

You might say, "What makes Cigital's process better than XYZ's process?" For that there 
is one clear logical response: The question is moot. There is so little effective being done 
that there must be something wrong. That "something wrong" is either a shortage of skill 
or a shortage of discipline. If it is a shortage of skill, experts are duty bound to share what 
works in a way that others can use. There may be many workable processes, but this book 
shows there is at least one. With this book, the clock is ticking; any continuing failure 
must trace to a shortage of discipline. We'll know soon enough. 

If the reader would prefer some numbers even in the Foreword, here are three: There's a 
new Windows virus every four hours. Perhaps 15% of all desktop machines are running 
malware of some sort. Embedded systems outnumber desktop machines by between one 
and two orders of magnitude, and they are almost never field upgradeable. The raison 
d'être for this book is thus shown useful. 

My own research has satisfied me that the spread between the firms with the best 
software security practices and the worst is growing wider; my best guess is a disparity 
(measured by ratios of flaw density between best and worst) that is doubling every twelve 
months. If you believe, as I and Dr. McGraw do, that security is a subset of reliability, 
you have merely to borrow availability calculus: With five systems components in an e-
commerce application, each of which has 98% uptime, you should expect to be down 2.5 
hours per day. 

Security is to software what mutation is to natural selection, but with the overwhelmingly 
important difference: With software security you are in control of your survival 
advantage. If that sounds attractive, adopt at least some of the McGraw/Cigital program. 
It won't be easy and it won't be fun, but as the U.S. Army Ranger Handbook says: 
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Two of the gravest general dangers to survival are the desire for comfort and a passive 
outlook. 

Ball's in your court. 

     Dan Geer 
     September 17, 2005 
     Cambridge, MA 
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Preface 
Software security has come a long way in the last few years, but we've really only just 
begun. Software security is the practice of building software to be secure and to function 
properly under malicious attack. The underlying concepts behind Software Security have 
developed over almost a decade and were first described in Building Secure Software 
[Viega and McGraw 2001] and Exploiting Software [Hoglund and McGraw 2004]. This 
book begins where its predecessors left off, describing in detail how to put software 
security into practice. 

After completing Java Security [McGraw and Felten 1996] and following it up with 
Securing Java [McGraw and Felten 1999], I began wondering how it was that such 
excellent designers, engineers, and architects went astray when it came to security. What 
was it about software that made security such a problem? If you wanted to build secure 
software, how would you do it? These questions and the perseverance of John Viega led 
to Building Secure Software. 

Building Secure Software (BSS), the white hat book, seems to have touched off a 
revolution. Security people who once relied solely on firewalls, intrusion detection, and 
antivirus mechanisms came to understand and embrace the necessity of better software. 
BSS provides a coherent and sensible philosophical foundation for the blossoming field 
of software security. 

Exploiting Software (ES), the black hat book, provides a much-needed balance, teaching 
how to break software and how malicious hackers write exploits. ES is meant as a reality 
check for software security, ensuring that the good guys address real attacks and invent 
and peddle solutions that actually work. The two books are in some sense mirror images. 

Software Security unifies the two sides of software security—attack and defense, 
exploiting and designing, breaking and building—into a coherent whole. Like the yin and 
the yang, software security requires a careful balance. 

Who This Book Is For 

Software Security is a "how to" book for software security. In most organizations, 
software security is nobody's job, when software security really should be everyone's job. 
Hopefully this book will help explain both why this is so and what to do about it. 

The number one audience for the book is software security professionals. If your job is to 
analyze software for security problems, you will find this book filled to the brim with 
ideas and processes that you can apply today. Software security professionals should seek 
to use each of the best practices (which I call touchpoints) throughout the software 
lifecycle, follow a risk management framework, and call on software security knowledge. 
If you're a software security person, I'm afraid you'll have to read the whole book. 
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As computer security evolves, the job of security analysis gets more complicated. 
Computer security professionals will benefit greatly from Chapters 1, 2, and 9. Chapter 1 
provides a discussion of the software security problem and can help justify attention to 
software security. As philosophy in action, the risk management framework of Chapter 2 
is directly applicable to computer security, regardless of software. Chapter 9 in particular 
was written for computer security professionals who may not necessarily know much 
about software. Turns out there is plenty for operational security people to do to enhance 
and support software security. We need your help. 

Software developers and architects almost always enjoy learning new things. Hopefully, 
the lessons of Software Security will find their way into many development shops. 
Software people will probably benefit most from the description of code review and 
architectural risk analysis in Chapters 4 and 5, as well as the taxonomy of coding errors 
described in Chapter 12. Of course, all of the best practices described in this book are 
designed to be directly applicable by those at the rock face (Part II), so benefit should be 
derived from each chapter in Part II. If you're a coder and you've ever wondered what to 
do about software security other than wring your hands, this book will give you some 
concrete ideas. Also note that each chapter in Part II includes a Coder's Corner feature 
that was written with developers in mind. 

Business people and technical managers may be surprised that we geeks don't have as 
much of a handle on the security problem as we should. Business leadership will benefit 
from Part I of the book, though it may make you sleep a little less soundly. Risk 
management comes naturally to business executives, and putting a risk management 
framework, as described in Chapter 2, in place is very valuable (and can yield useful 
metrics to boot). Chapter 10 should also prove valuable, especially to upper-level 
managers worrying about how to transform an organization so that it produces good, 
solid, secure software. 

Academics and researchers will probably appreciate Chapter 12 the most, though I am 
sure to be flamed to a crisp by some professor or other. The annotated bibliography in 
Chapter 13 will be useful to new scientists. I would hope that each of the touchpoints 
provides enough in the way of open questions to spark many a research program. 

What This Book Is About 

This book presents a coherent and detailed approach for putting software security into 
practice. Through the unification of proactive design and careful exploit-driven testing 
built on a foundation of risk management, Software Security explains in detail how to 
properly address software-induced security risk. 

The book is divided into three parts. Part I, Software Security Fundamentals, is an 
updated introduction to the field of software security. Readers of Building Secure 
Software and Exploiting Software will find themselves in familiar territory here, though 
the treatment of the problem has been updated with new numbers. 
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Chapter 1, Defining a Discipline, begins with an in-depth description of the computer 
security problem and explains why broken software lies at its heart. This may be old 
news to some, but the trinity of trouble—connectivity, extensibility, and complexity—
deeply impacts software as much as ever. Software is everywhere and is the lifeblood of 
business and society. Software security is relevant to the kind of software found in your 
phone, your car, and your washing machine (not to mention your computer and the Web-
based applications it makes available to you). For this reason, a critical distinction is 
drawn between application security and software security. This book is about making all 
software behave, and how to do this in light of modern security demands. The most 
important material in Chapter 1 is the introduction of the three pillars of software 
security: applied risk management, software security best practices (touchpoints), and 
knowledge. Each of the three pillars is a necessity for software security. 

Chapter 2, A Risk Management Framework, describes my philosophy of risk 
management and how to put it into practice. All too often in computer security, risk 
management is paid only lip service. We know we're supposed to be doing it, but nobody 
ever says how. Chapter 2 fixes that. A continuous risk management framework 
encompasses identifying, synthesizing, ranking, and keeping track of risks throughout 
software development. Only by practicing risk management and factoring in critical 
business information about impact will software security begin to enjoy the business 
relevance it deserves. 

Part II of this book, Seven Touchpoints for Software Security, is devoted to software 
security best practices. The touchpoints are one of the three pillars of software security. 
Attaining software security may not be easy, but it doesn't have to be a burden. By 
describing a manageably small set of touchpoints based around the software artifacts you 
already produce, I avoid religious warfare over process and get on with the business of 
software security. You don't have to adopt all seven touchpoints to begin to build security 
in (though doing so is highly recommended). The figure on the inside front cover of the 
book shows the seven touchpoints ordered according to effectiveness and importance. 
The touchpoints are designed to fill the gap between the state of the art and the state of 
the practice—something that can be done only through the common adoption of best 
practices. 

Touchpoints are a mix of destructive and constructive activities. Destructive activities are 
about attacks, exploits, and breaking software. These kinds of things are represented by 
the black hat (offense). Constructive activities are about design, defense, and 
functionality. These are represented by the white hat (defense). Both hats are necessary. 

Chapter 3, Introduction to Software Security Touchpoints, provides a flyover of the 
touchpoints and discusses the critical idea of pushing security as early into the software 
lifecycle as possible (mostly to save money). I also discuss who should practice software 
security and how to build a software security group. 

Chapter 4, Code Review with a Tool, is about one of the two most important software 
security best practices. Though not all software projects produce specifications, or even 
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properly document requirements, they all produce code. Bugs (simple implementation 
errors in code) are responsible for 50% of all software security problems, so finding and 
fixing security-critical bugs at the code level is essential. Automated code review is a 
white hat (constructive) activity informed by a black hat history of known defects and 
exploits. The idea is to avoid implementation problems while we build software to be 
secure. Code review for security has come a long way in the last few years, and 
commercial tools are now mature enough to be put in use by all software practitioners. 
This chapter describes how. 

The best practice described in Chapter 5, Architectural Risk Analysis, is just as important 
as code review. Flaws (architectural and design-level problems) are responsible for the 
other 50% of all software security problems. Unfortunately, identifying security flaws is 
more difficult than looking for bugs in code. This is partly because many software 
projects have only the most rudimentary handle on software architecture, and it's partly 
because finding software security flaws requires expertise and experience. Architectural 
risk analysis is a white hat (constructive) activity also informed by a black hat history of 
known defects and exploits. In this case, we work to avoid design flaws while we build 
software to be secure. Chapter 5 also describes a mature process for risk analysis 
developed over the last ten years at Cigital. 

Chapter 6, Software Penetration Testing, covers a very common but often misapplied 
software security best practice. All too often, penetration testing devolves into a feel-
good security activity: Security consultants are hired to "hack into" an application, and 
they almost always find a serious hole (usually in the configuration of the network or the 
commercial off-the-shelf products the application is built on). The hole gets fixed, and 
everyone declares security victory and goes home. Usually the developers don't learn 
anything profound (since the problems found tend to be operational in nature), and worst 
of all, no real understanding of wholesale software security risk is gained. Penetration 
testing is a black hat (destructive) activity. The best kind of penetration testing is 
informed by white hat knowledge of design and risk; but all the penetration testing in the 
world will not build you secure software. In Chapter 6, I describe an enhanced approach 
to penetration testing that takes an inside out approach to testing as opposed to strictly 
outside in. This makes penetration testing much more useful. 

Chapter 7, Risk-Based Security Testing, is very similar in philosophy to Chapter 6. I 
discuss an approach to test planning and test execution that is directly aligned to risk 
analysis results coming out of an architectural risk analysis. I introduce a real-world case 
study. Risk-based security testing is a mix of constructive and destructive activities that 
requires a holistic black-and-white approach. Risk-based security testing is driven by 
abuse cases and risk analysis results. 

Chapter 8, Abuse Cases, covers just that. Software security requires the ability to "think 
like an attacker." Abuse cases help to formalize this activity. Abuse case development is 
based on understanding and applying known attack patterns and also thinking about anti-
requirements. A simple process is introduced to make adoption of abuse cases easier. 
Abuse cases are tricky. You might guess by the name that abuse cases involve only black 
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hat (destructive) activities. That would be wrong. Abuse cases are themselves driven by 
the two threads. White hat thinking (constructive) drives security requirements, which are 
a necessary foundation for a goodly percentage of the abuse cases. Black hat thinking in 
the form of attack patterns drives the remaining portion. Although abuse cases clearly 
involve a mix of both black and white hats, the black hat is predominant. 

Software security can benefit greatly from experience gained by practicing network 
security. Chapter 9, Software Security Meets Security Operations, describes how network 
security professionals can get involved in carrying out the touchpoints, providing 
experience and security wisdom that might otherwise be missing from the development 
team. Operations is a white hat activity, but it is only very weakly constructive. 
Operations is essential to security, of course, but in terms of building security in, the day-
to-day tactics carried out by ops people are largely defensive. 

Part III, Software Security Grows Up, contains a far-ranging treatment of essential 
software security knowledge and of large-scale software security programs. 

Chapter 10, An Enterprise Software Security Program, describes an approach to the kind 
of cultural change required to adopt software security in a large organization. Because of 
this, Chapter 10 is the most business-oriented of the chapters in Software Security. There 
is little doubt that adopting software security touchpoints in a development organization 
that is running 100 miles an hour is like fixing your engine while your car is zooming 
down the highway, but it is possible. This chapter draws on years of experience at Cigital, 
helping large companies implement software security programs. A completely integrated 
Secure Development Lifecycle (SDL) is the result of combining your existing approach 
to software development with the software security touchpoints. 

Chapter 11, Knowledge for Software Security, describes one of the three pillars. This 
chapter presents a taxonomy of seven knowledge catalogs useful to practitioners: 
principles, guidelines, rules, vulnerabilities, exploits, attack patterns, and historical risks. 
These knowledge catalogs are directly applicable throughout the software development 
lifecycle when you put the security touchpoints into action. 

Chapter 12, A Taxonomy of Coding Errors, introduces a classification of common 
software security bugs. My goal is to make the taxonomy as simple as possible, but still 
fundamentally useful. Though there are literally hundreds of potential coding problems 
that can lead to security problems, I find that they fit very nicely into seven "kingdoms." 
This work hints at the coming maturity of software security, where science and 
technology begins to dominate over intuition and raw intelligence. 

Finally, Chapter 13, Annotated Bibliography and References, has three parts: a list of the 
top five readings in software security, a complete list of references from this book, and a 
list of other important references. Each entry includes a sentence or two describing what I 
find valuable or useful about the reference. 
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Four appendices round out Software Security. Appendix A is a tutorial accompanying the 
CD that comes with this book. The CD introduces Fortify Software's Source Code 
Analysis Suite. Appendix B is a very basic list of coding rules from the early source code 
analysis tool, ITS4. This list serves two purposes. First, a glance through the list will 
expose you to the somewhat large pile of things that can go wrong in C (at the code 
level). Second, all source code analysis tools for security must make sure to cover this 
list. Publishing the list widely makes it more likely they will. Appendix C is an exercise 
in architectural risk analysis featuring the Smurfs. What more could you want? Finally, 
Appendix D is a very small glossary of terms. 

Icons 

The three icons used throughout this book are meant to help you navigate the waters of 
software security. The icons demarcate material in large sections of the book (chapters 
and parts). 

Fundamental material is covered under this icon (which also adorns the cover of 
the book). The yin/yang design is the classic Eastern symbol used to describe the 
inextricable mixing of standard Western polemics (black/white, good/evil, heaven/hell, 
create/destroy, and so on). Eastern philosophies are described as holistic because they 
teach that reality combines polemics in such a way that one pole cannot be sundered from 
the other. In the case of software security, two distinct threads—black hat activities and 
white hat activities (offense/defense, construction/destruction)—intertwine to make up 
software security. A holistic approach, combining yin and yang (mixing black hat and 
white hat approaches), is required. 

The three pillars of software security are applied risk management (Chapter 2), 
software security touchpoints (Part II), and knowledge (Chapter 11). Each of these major 
sections is marked with the pillar icon. 

Seven best practices, the software security touchpoints, are introduced and 
discussed at length in the heart of Software Security. The touchpoints collectively make 
up one of the three pillars. Each touchpoint chapter is branded with the touchpoint icon. 

The Series 

This book is part of the Addison-Wesley Software Security Series of software security 
books for professional software developers. The series includes: 

• Building Secure Software: How to Avoid Security Problems the Right Way 
• Exploiting Software: How to Break Code 
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• Software Security: Building Security In 
• Rootkits 

More books in this series are planned for the future. Contact Addison-Wesley or Gary 
McGraw for more information (see also <http://www.buildingsecurityin.com>). 

Contacting the Author 

I welcome e-mail from anyone with comments, suggestions, bug fixes, and/or questions. 
Please contact me through the book's Web site: <http://www.swsec.com>. 
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Chapter 1. Defining a Discipline 
The most important thing is to find out what is the most important thing. 

—Shunryu Suzuki 

Software security—the idea of engineering software so that it continues to function 
correctly under malicious attack—is not really new, but it has received renewed interest 
over the last several years as reactive network-based security approaches such as 
firewalls have proven to be ineffective. Unfortunately, today's software is riddled with 
both design flaws and implementation bugs, resulting in unacceptable security risk. As 
Cheswick and Bellovin put it, "any program, no matter how innocuous it seems, can 
harbor security holes" [Cheswick and Bellovin 1994]. The notion of software security 
risk has become common knowledge, yet developers, architects, and computer scientists 
have only recently begun to systematically study how to build secure software. 

The network security market weighs in at around $45 billion.[1] However, the 532% 
increase in CERT incidents reported (2000–2003)[2] and the fact that 43% of 500 
companies responding to a popular e-crime survey reported an increase in cybercrime[3] 
show that whatever we're doing is clearly not working. Basically, the dollars spent on 
network security and other perimeter solutions are not solving the security problem. We 
must build better software. 

[1] Network security total market value as reported by the analyst firm IDC in February 
2003, Worldwide Security Market <http://www.idc.com/getdoc.jsp?containerId=32391>. 

[2] According to data from Carnegie Mellon University's (CMU) Software Engineering 
Institute's (SEI) CERT Coordination Center (shown in Figure 1-1) 
<http://www.cert.org>. 

[3] E-Crime Watch Survey, 2004. Sponsored by CSO Magazine, United States Secret 
Service, and CMU SEI CERT Coordination Center 
<http://www.csoonline.com/releases/ecrimewatch04.pdf>. 

A body of software security literature has begun to emerge in the research community, 
but in practical terms the practice of software security remains in its infancy.[4] The first 
books on software security and security engineering, for example, were published as 
recently as 2001 [Anderson 2001; Viega and McGraw 2001; Howard and LeBlanc 2002]. 
Today, a number of references do a good job of providing a philosophical underpinning 
for software security and discussion of particular technical issues, but much remains to be 
done to put software security into practice. This book is designed to help. 

[4] See Chapter 13 for annotated pointers into the software security literature. 

The Security Problem 
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A central and critical aspect of the computer security problem is a software problem. 
Software defects with security ramifications—including implementation bugs such as 
buffer overflows and design flaws such as inconsistent error handling—promise to be 
with us for years. All too often malicious intruders can hack into systems by exploiting 
software defects [Hoglund and McGraw 2004]. Moreover, Internet-enabled software 
applications are a commonly (and too easily) exploited target, with software's ever-
increasing complexity and extensibility adding further fuel to the fire. By any measure, 
security holes in software are common, and the problem is growing. 

The security of computer systems and networks has become increasingly limited by the 
quality and security of the software running on constituent machines. Internet-enabled 
software, especially custom applications that use the Web, are a sadly common target for 
attack. Security researchers and academics estimate that more than half of all 
vulnerabilities are due to buffer overruns, an embarrassingly elementary class of bugs 
[Wagner et al. 2000]. Of course, more complex problems, such as race conditions and 
design errors, wait in the wings for the demise of the buffer overflow. These more subtle 
(but equally dangerous) kinds of security problems appear to be just as prevalent as 
simple bugs. 

Security holes in software are common. Over the last five years the problem has grown. 
Figure 1-1 shows the number of security-related software vulnerabilities reported to the 
CERT Coordination Center (CERT/CC) from 1995 through 2004. There is a clear and 
pressing need to change the way we approach computer security and to develop a 
disciplined approach to software security. 

Figure 1-1. The number of security-related software vulnerabilities reported to 
CERT/CC over several years. Though the widespread adoption of network 

security technology continues, the problem persists. 
[View full size image] 
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Software security is about understanding software-induced security risks and how to 
manage them. Good software security practice leverages good software engineering 
practice and involves thinking about security early in the software lifecycle, knowing and 
understanding common problems (including language-based flaws and pitfalls), 
designing for security, and subjecting all software artifacts to thorough objective risk 
analyses and testing. As you can imagine, software security is a knowledge-intensive 
field. 

Software is everywhere. It runs your car. It controls your cell phone. It keeps your 
dishwasher going. It is the lifeblood of your bank and the nation's power grid. And 
sometimes it even runs on your computer. What's important is realizing just how 
widespread software is. As businesses and society come to depend more heavily on 
software, we have to make it better. Now that software is networked by default, software 
security is no longer a luxury—it's a necessity. 

The Trinity of Trouble: Why the Problem Is Growing 

Most modern computing systems are susceptible to software security problems, so why is 
software security a bigger problem now than in the past? Three trends—together making 
up the trinity of trouble—have a large influence on the growth and evolution of the 
problem.[5] 

[5] Interestingly, these three general trends are also responsible for the alarming rise of 
malicious code [McGraw and Morrisett 2000]. 

Connectivity 

The growing connectivity of computers through the Internet has increased both the 
number of attack vectors and the ease with which an attack can be made. This puts 
software at greater risk. More and more computers, ranging from home PCs to systems 
that control critical infrastructure, such as the supervisory control and data acquisition 
(SCADA) systems that run the power grid, are being connected to enterprise networks 
and to the Internet. Furthermore, people, businesses, and governments are increasingly 
dependent on network-enabled communication such as e-mail or Web pages provided by 
information systems. Things that used to happen offline now happen online. 
Unfortunately, as these systems are connected to the Internet, they become vulnerable to 
software-based attacks from distant sources. An attacker no longer needs physical access 
to a system to exploit vulnerable software; and today, software security problems can 
shut down banking services and airlines (as shown by the SQL Slammer worm of January 
2003). 

Because access through a network does not require human intervention, launching 
automated attacks is easy. The ubiquity of networking means that there are more software 
systems to attack, more attacks, and greater risks from poor software security practices 
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than in the past. We're really only now beginning to cope with the ten-year-old attack 
paradigm that results from poor coding and design. Ubiquitous networking and attacks 
directly related to distributed computation remain rare (though the network itself is the 
primary vector for getting to and exploiting poor coding and design problems). This will 
change for the worse over time. Because the Internet is everywhere, the attackers are now 
at your virtual doorstep. 

To make matters worse, large enterprises have caught two bugs: Web Services and its 
closely aligned Service Oriented Architecture (SOA). Even though SOA is certainly a fad 
driven by clever marketing, it represents a succinct way to talk about what many security 
professionals have always known to be true: Legacy applications that were never 
intended to be inter-networked are becoming inter-networked and published as services. 

Common platforms being integrated into megasolutions include SAP, PeopleSoft, Oracle, 
Informatica, Maestro, and so on (not to mention more modern J2EE and .NET apps), 
COBOL, and other ancient mainframe platforms. Many of these applications and legacy 
systems don't support common toolkits like SSL, standard plug-ins for 
authentication/authorization in a connected situation, or even simple cipher use. They 
don't have the built-in capability to hook into directory services, which most large shops 
use for authentication and authorization. Middleware vendors pledge they can completely 
carve out the complexity of integration and provide seamless connectivity, but even 
though they provide connectivity (through JCA, WBI, or whatever), the authentication 
and application-level protocols don't align. 

Thus, middleware integration in reality reduces to something ad hoc like cross-enterprise 
FTP between applications. What's worse is that lines of business often fear tight 
integration with better tools (because they lack skills, project budget, or faith in their 
infrastructure team), so they end up using middleware to FTP and drop data globs that 
have to be mopped up and transmogrified into load files or other application input. 
Because of this issue, legacy product integrations often suffer from two huge security 
problems: 

1. Exclusive reliance on host-to-host authentication with weak passwords 
2. Looming data compliance implications having to do with user privacy (because 

unencrypted transport of data over middleware and the middleware's 
implementation for failover and load balancing means that queue cache files get 
stashed all over the place in plain text) 

Current trends in enterprise architecture make connectivity problems more problematic 
than ever before. 

Extensibility 

A second trend negatively affecting software security is the degree to which systems have 
become extensible. An extensible system accepts updates or extensions, sometimes 
referred to as mobile code so that the functionality of the system can be evolved in an 
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incremental fashion [McGraw and Felten 1999]. For example, the plug-in architecture of 
Web browsers makes it easy to install viewer extensions for new document types as 
needed. Today's operating systems support extensibility through dynamically loadable 
device drivers and modules. Today's applications, such as word processors, e-mail 
clients, spreadsheets, and Web browsers, support extensibility through scripting, controls, 
components, and applets. The advent of Web Services and SOA, which are built entirely 
from extensible systems such as J2EE and .NET, brings explicit extensibility to the 
forefront. 

From an economic standpoint, extensible systems are attractive because they provide 
flexible interfaces that can be adapted through new components. In today's marketplace, 
it is crucial that software be deployed as rapidly as possible in order to gain market share. 
Yet the marketplace also demands that applications provide new features with each 
release. An extensible architecture makes it easy to satisfy both demands by allowing the 
base application code to be shipped early, with later feature extensions shipped as 
needed. 

Unfortunately, the very nature of extensible systems makes it hard to prevent software 
vulnerabilities from slipping in as unwanted extensions. Advanced languages and 
platforms including Sun Microsystems' Java and Microsoft's .NET Framework are 
making extensibility commonplace. 

Complexity 

A third trend impacting software security is the unbridled growth in the size and 
complexity of modern information systems, especially software systems. A desktop 
system running Windows XP and associated applications depends on the proper 
functioning of the kernel as well as the applications to ensure that vulnerabilities cannot 
compromise the system. However, Windows XP itself consists of at least forty million 
lines of code, and end-user applications are becoming equally, if not more, complex. 
When systems become this large, bugs cannot be avoided. 

Figure 1-2 shows how the complexity of Windows (measured in lines of code) has grown 
over the years. The point of the graph is not to emphasize the numbers themselves, but 
rather the growth rate over time. In practice, the defect rate tends to go up as the square of 
code size.[6] Other factors that significantly affect complexity include whether the code is 
tightly integrated, the overlay of patches and other post-deployment fixes, and critical 
architectural issues. 

[6] See the article "Encapsulation and Optimal Module Size" at 
<http://www.faqs.org/docs/artu/ch04s01.html#ftn.id2894437>. 

Figure 1-2. Growth of the Microsoft operating system code base from 1990 to 
2001. These numbers include all aspects of Windows, including device drivers.[7] 
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[7] With regard to particular names for Microsoft operating systems, see 
<http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?NT5>. 

The complexity problem is exacerbated by the use of unsafe programming languages 
(e.g., C and C++) that do not protect against simple kinds of attacks, such as buffer 
overflows. In theory, we could analyze and prove that a small program was free of 
problems, but this task is impossible for even the simplest desktop systems today, much 
less the enterprise-wide systems used by businesses or governments. 

Of course, Windows is not alone. Almost all code bases tend to grow over time. During 
the last three years, I have made an informal survey of thousands of developers. With few 
exceptions (on the order of 1% of sample size), developers overwhelmingly report that 
their groups intend to produce more code, not less, as time goes by. Ironically, these same 
developers also report that they intend to produce fewer bugs even as they produce more 
code. The unfortunate reality is that "more lines, more bugs" is the rule of thumb that 
tends to be borne out in practice (and in science, as the next section shows). Developers 
are an optimistic lot. 

The propensity for software systems to grow very large quickly is just as apparent in 
open source systems as it is in Windows (see Table 1-1). The problem is, of course, that 
more code results in more defects and, in turn, more security risk. 

Table 1-1. Source Lines of Code for Major Operating Systems and Kernels 
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19xx SCOMP 20,000 

1979 Multics 1,000,000 

2000 Red Hat 6.2 17,000,000 

2000 Debian.GNU/Linux 2.2 55,000,000 

2000 Linux 2.2 kernel 1,780,000 

2000 XFree86 3.3.6 1,270,000 

2001 Red Hat 7.1 30,000,000 

2002 Mac OS X Darwin kernel 790,000 

Data on this chart gathered by Lee Badger, a DARPA program manager.[8] 
 

[8] Badger reports the Linux estimate from "Counting Potatoes: The Size of Debian 2.2" 
by Gonzalez-Barahona et al. <http://people.debian.org/~jgb/debian-counting>, and "More 
Than a Gigabuck: Estimating GNU/Linux's Size" by David Wheeler. The Multics 
estimate is from Tom Van Vleck and Charlie Clingen 
<http://www.multicians.org/mspp.html>. 

Sometimes the code base grows (in executable space) even when the source code base 
appears to be small. Consider what happens when you target the .NET or J2EE platforms. 
In these situations, you adopt an unfathomably large base of code underneath your 
application. Things get even worse when you rely on the following: 

• Data flattening: Castor, Java Data Objects (JDO), container-managed persistence 
• Identity management and provisioning 

• XML or other representational formats and associated parsers 
• Model View Controller (MVC) frameworks: Struts deployment containers 
• Application servers, Web containers 
• Databases: Oracle, SQR, Informatica, and so on 

To understand what I mean here, you should think about how much bytecode it takes to 
run "Hello World" in WebSphere or "Hello World" as a Microsoft ASP glob. What 
exactly is in that 2MB of stuff running on top of the operating system, anyway? 

Basic Science 

Everyone believes the mantra "more lines, more bugs" when it comes to software, but 
until recently the connection to security was understood only intuitively. Thanks to 
security guru Dan Geer, there are now some real numbers to back up this claim. On his 
never-ending quest to inject science into computer security, Geer has spoken widely 
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about measurement and metrics. In the now famous monoculture paper, Geer and others 
decried the (national) security risk inherent in almost complete reliance on buggy 
Microsoft operating systems (see the acclaimed paper "CyberInsecurity: The Cost of 
Monopoly" [Geer et al. 2003]). Besides being fired from his job at @stake for the trouble, 
Geer raised some interesting questions about security bugs and the pile of software we're 
creating. One central question emerged: Is it true that more buggy code leads to more 
security problems in the field? What kind of predictive power do we get if we look into 
the data? 

Partially spurred by an intense conversation we had, Geer did some work correlating 
CERT vulnerability numbers, number of hosts, and lines of code, which he has since 
presented in several talks. In an address at the Yale Law School,[9] Geer presented some 
correlations that bear repeating here. If you begin with the CERT data and the lines of 
code data presented in Figure 1-2 you can then normalize the curves. 

[9] Dan Geer, "The Physics of Digital Law," keynote address, CyberCrime and Digital 
Law Enforcement Conference, Information Society Project, Yale Law School, March 26, 
2004. (Unpublished slides.) 

Geer describes "opportunity" as the normalized product of the number of hosts (gleaned 
from publicly available Internet Society data) and the number of vulnerabilities (shown in 
Figure 1-1). See Figure 1-3. One question to ask is whether there is "untapped 
opportunity" in the system as understood in this form. Geer argues that there is, by 
comparing actual incidents curves against opportunity (not shown here). Put simply, there 
are fewer incidents than there could be. Geer believes that this indicates a growing 
reservoir of trouble. 

Figure 1-3. Total number of open holes, or "opportunity," as a normalized 
product of the number of hosts and the number of vulnerabilities (vulns). (After 

Geer.) 
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By normalizing the lines-of-code curve shown in Figure 1-2 against its own median and 
then performing the same normalization technique on the data in Figure 1-3 as well as 
data about particular incidents (also from CERT), Geer is able to overlay the three curves 
to begin to look for correlation (Figure 1-4). The curves fit best when the lines-of-code 
data are shifted right by two years, something that can be explained with reference to 
diffusion delay. This means that new operating system versions do not "plonk" into the 
world all at once in a massive coordinated switchover. Instead, there is a steady diffusion 
into the operating system population. A two-year diffusion delay seems logical. 

Figure 1-4. Normalized versions of the millions of lines of code, vulnerabilities, 
and incidents data. Now that we have put these curves together, we can begin to 

compute curves for correlation and prediction. (After Geer.) 
[View full size image] 
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The next step is a bit more complex and involves some rolling average calculation. A 
code volume curve, which Geer calls MLOCs3 (millions of lines of code smoothed), is 
computed as the three-year moving average of code volume. A second such curve, called 
MLOCs3^2+1, is the square of the three-year moving average of code volume shifted 
right one year. Justification for the squaring operation comes from the commonly 
accepted rule of thumb that program complexity grows with the square of the number of 
lines of code. Given the resulting curves (shown in Figure 1-5), Geer argues: 

Security faults are a subset of quality faults and the literature says that quality faults will 
tend to be a function of code complexity, itself proportional to the square of code volume. 
As such, the average complexity in the field should be a predictor of the attack-ability in 
an a priori sense. Shifting it right one year is to permit the attack community time to 
acquire access and skill to that growing code base complexity. This is not a statement of 
proven causality—it is exploratory data analysis.[10] 

[10] Dan Geer, "The Physics of Digital Law," keynote address, CyberCrime and Digital 
Law Enforcement Conference, Information Society Project, Yale Law School, March 26, 
2004. (Unpublished slides.) 

Figure 1-5. Computation of two kinds of code volume curves (MLOCs3 and 
MLOCs3^2+1; see text for definition) results in curves with some predictive 

power. (After Geer.) 
[View full size image] 
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Geer's analysis shows that intuitive claims about how growth in simple lines of code 
metrics correlates with growth in security problems actually hold analytical water. 

To boil this all down to one line—more code, more bugs, more security problems 

Security Problems in Software 

Software security, that is, the process of designing, building, and testing software for 
security, gets to the heart of computer security by identifying and expunging problems in 
the software itself. In this way, software security attempts to build software that can 
withstand attack proactively. 

Bugs and Flaws and Defects, Oh My! 

Though Figure 1-1 clearly shows that the software problem is large, scientists have done 
little work in classifying and categorizing software security problems. 

Perhaps the reintroduction of basic terminology—defect, bug, flaw, and risk—with a 
security emphasis can help clarify the categorization problem. I propose the following 
usage. 

Defect: Both implementation vulnerabilities and design vulnerabilities are defects. A 
defect is a problem that may lie dormant in software for years only to surface in a fielded 
system with major consequences. 

Bug: A bug is an implementation-level software problem. Bugs may exist in code but 
never be executed. Though the term bug is applied quite generally by many software 
practitioners, I reserve use of the term to encompass fairly simple implementation errors. 
Bugs are implementation-level problems that can be easily discovered and remedied. An 
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example of a bug is described in the following box—The (Much Ballyhoo'd) Buffer 
Overflow: An Implementation Bug. 

Researchers have made significant progress in detecting security vulnerabilities 
stemming from low-level and mid-level implementation bugs. Early research tools 
include FIST [Ghosh, O'Connor, and McGraw 1998], ITS4 [Viega et al. 2000a], Jscan 
[Viega et al. 2000b], Splint [Evans et al. 1994], Metal [Engler et al. 2000], and 
Prefix/Prefast [Bush, Pincus, and Sielaff 2000]. Commercial tools (e.g., Fortify 
Software's Source Code Analyzer) were introduced to the market in 2005, and 
development of these tools continues apace. The tools are effective in detecting a wide 
range of implementation bugs, including buffer overflow vulnerabilities, format string 
bugs, resource leaks, and simple race conditions—all of which depend on only limited 
code analysis and knowledge of the external environment. (See Chapter 4 for more on 
code review and static analysis tool use.) 

The (Much Ballyhoo'd) Buffer Overflow: An 
Implementation Bug 
The most pervasive security problem today in terms of reported bugs is the 
buffer overflow. A now classic paper by Dave Wagner in 2000 looked over 
CERT data and determined that almost 45% of all software security problems 
reported to CERT were caused by buffer overflows. Figure 1-6 shows a copy of 
Wagner's data. 

Figure 1-6. Dave Wagner's study determined the prevalence of buffer 
overflows as causes of CERT alerts (around 45%), showing how large a 

problem such buffer overflows are [Wagner et al. 2000]. 
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The buffer overflow problem exists because it is so easy to write beyond the 
bounds of data objects in languages like C and C++. Type-safe languages like 
Java and C#, do not suffer from this issue, since the definition of exactly what 
constitutes a data object is much more tightly controlled. 

In C, it is also extremely easy to allocate some bytes and then try to use more. 
The language does not care. For example, consider the two lines below: 

char x[12]; 
x[12] = '\0'; 
 

In the code snippet, an array of 12 chars is declared. Then the thirteenth element 
is set to 0. Everyone in "the club" knows that for hazy historical reasons 
(offsets), array references in C start with 0! What a silly language. 

There are two main flavors of buffer overflows: those associated with stack-
allocated buffers and those associated with heap-allocated buffers. Overflowing 
a stack-allocated buffer is the most common attack. This is known as "smashing 
the stack." The C Programming Language (the C "bible") shows C programmers 
how they should never get input (without saying "never") [Kernighan and 
Ritchie 1988, p. 164]. Since we teach people to program in C as an introduction 
to programming, we should not be surprised at how common buffer overflow 
vulnerabilities are. 

Many, many C library functions and arithmetic issues can lead to buffer 
overflows. Consider the snippet below. This is a dangerous piece of vulnerable 
code. Not only are we using gets() to get (unbounded) input, but we're using it 
to load a local variable on the stack. By providing just the right kind of input to 
this program, an attacker can obtain complete control over program control 
flow. 

void main() { 
  char buf[1024]; 
  gets(buf); 
} 
 

For more on buffer overflows, see Building Secure Software (where you are 
taught in excruciating detail how buffer overflows work) and Exploiting 
Software (which describes trampolining and other more advanced buffer 
overflow attacks, as well as plenty of real-world examples) [Viega and McGraw 
2001; Hoglund and McGraw 2004]. 

If you are concerned about buffer overflow problems and other basic software 
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security bugs, don't use C. If you must use C, use a source code security scanner 
as described in Chapter 4. 

By the way, C++ is even worse than C from a security perspective. C++ is C 
with an object model crammed halfway down its throat. 
 

Flaw: A flaw is a problem at a deeper level. Flaws are often much more subtle than 
simply an off-by-one error in an array reference or use of an incorrect system call. A flaw 
is certainly instantiated in software code, but it is also present (or absent!) at the design 
level. For example, a number of classic flaws exist in error-handling and recovery 
systems that fail in an insecure or inefficient fashion. Another example can be found in 
the box, Microsoft Bob: A Design Flaw, that follows. Automated technologies to detect 
design-level flaws do not yet exist, though manual risk-analysis processes can identify 
flaws (see Chapter 5). 

Table 1-2 provides some simple examples of bugs and flaws. In practice, we find that 
software security problems are divided 50/50 between bugs and flaws. This means that 
eradicating bugs through code review will solve only about half of the problem. This may 
come as a big surprise to those people who believe that software security is exclusively 
about coding issues. Clearly, it isn't. Microsoft reports that more than 50% of the 
problems the company has uncovered during its ongoing security push are architectural in 
nature [Mike Howard, personal communication]. Cigital data show a 60/40 split in favor 
of flaws, reflecting Cigital's specialization in architectural risk analysis. 

Table 1-2. Examples of Bugs and Flaws 

Bugs Flaws 

Buffer overflow: stack smashing 

Buffer overflow: one-stage 
attacks 

Buffer overflow: string format 
attacks 

Race conditions: TOCTOU 

Unsafe environment variables 

Unsafe system calls (fork(), 
exec(), system()) 

Method over-riding problems (subclass issues) 

Compartmentalization problems in design 

Privileged block protection failure (DoPrivilege()) 

Error-handling problems (fails open) 

Type safety confusion error 

Insecure audit log design 

Broken or illogical access control (role-based access 
control [RBAC] over tiers) 
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Table 1-2. Examples of Bugs and Flaws 

Bugs Flaws 

Incorrect input validation (black 
list vs. white list) 

Signing too much code 

Software security defects come in two basic flavors, each of which accounts for 
approximately 50% of software security problems. 
 

Microsoft Bob: A Design Flaw 
This is an oft-repeated story that may be apocryphal, but it is amusing and 
teaches an interesting lesson. 

Microsoft's Bob program was meant as a helper for Windows ME and Windows 
98. Though the security posture of these early PC operating systems is known to 
be very poor, Windows ME did include a facility for setting a system password. 

Microsoft Bob would pipe up (like Clippie the Paperclip in Word) when the 
program determined that the user was stuck doing something. Bob's most 
insecure function occurred when a user attempted three times (unsuccessfully) 
to type in his or her password. Bob would pop up and proclaim: "I see you have 
forgotten your password, please enter a new password." Then the user was 
allowed to change the password even though the user apparently had no idea of 
the old one. 

Microsoft Bob, hacker's friend. 
 

Risk: Flaws and bugs lead to risk. Risks are not failures. Risks capture the probability 
that a flaw or a bug will impact the purpose of the software (that is, risk = probability x 
impact). Risk measures must also take into account the potential damage that can occur. 
A very high risk is not only likely to happen but also likely to cause great harm. Risks 
can be managed by technical and non-technical means. 

Building secure software is like building a house. I liken correct low-level coding (such 
as using functions likely to cause buffer overflows) to the use of solid bricks as opposed 
to bricks made of sawdust. The kinds of bricks used are important to the integrity of the 
house, but even more important (if the goal is to keep bad things out) is having four walls 
and a roof in the design. The same thing goes for software: Which system calls and 
libraries are used and how they are used is important, but overall design properties often 
count for more. In general, software security to date has paid much more attention to 
bricks than to walls. 
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The Range of Defects 

Drawing a hard-and-fast distinction between bugs and flaws is nice, but in practice things 
are much messier. Sometimes determining whether a defect is a flaw or a bug is difficult. 
That's because flaws and bugs exist along a continuum of defects. Security defects in 
software systems range from local implementation errors (e.g., use of the gets() 
function call in C/C++) to interprocedural interface errors (e.g., a race condition between 
an access control check and a file operation) to much higher design-level mistakes (e.g., 
error-handling and recovery systems that fail in an insecure fashion or object-sharing 
systems that mistakenly include transitive trust issues). 

We can consider these defects as defining a large range based on how much program 
code must be considered to understand the vulnerability, how much detail regarding the 
execution environment must be known to understand the vulnerability, and whether a 
design-level description is best for determining whether or not a given vulnerability is 
present. For example, we can determine that a call to gets() in a C/C++ program can be 
exploited in a buffer overflow attack without knowing anything about the rest of the 
code, its design, or the execution environment other than assuming that the user entering 
text on standard input may be malicious. Hence, a gets() vulnerability can be detected 
with good precision using a very simple lexical analysis. This kind of approach is the 
subject of Chapter 4. A taxonomy of low-level coding defects can be found in Chapter 
12. 

Midrange vulnerabilities involve interactions among more than one location in code. 
Precisely detecting race conditions, for example, depends on more than simply analyzing 
an isolated line of code—it may depend on knowing about the behavior of several 
functions, understanding sharing among global variables, and being familiar with the 
operating system providing the execution environment. 

Design-level vulnerabilities carry this trend further. Unfortunately, ascertaining whether 
or not a program has design-level vulnerabilities requires great expertise (and is the 
subject of Chapter 5). This makes finding design-level flaws not only hard to do but 
particularly hard to automate as well. The problem is that design-level problems appear to 
be prevalent and are at the very least a critical category of security risk in code. 

Consider an error-handling and recovery system. Failure recovery is an essential aspect 
of security engineering. But it is complicated because it interacts with failure models, 
redundant design, and defense against denial-of-service attacks. Understanding whether 
or not an error-handling and recovery system in an object-oriented program is secure, for 
example, involves figuring out a global property spread throughout many classes in 
typical design. Error detection code is usually present in each object and method, and 
error-handling code is usually separate and distinct from the detection code. Sometimes 
exceptions propagate up to the system level and are handled by the machine running the 
code (e.g., Java 2 Virtual Machine exception handling). This makes determining whether 
or not a given error-handling and recovery design is secure quite difficult. The problem is 
ex-acerbated in transaction-based systems commonly used in commercial e-commerce 
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solutions where functionality is distributed among many different components running on 
several servers. 

Other examples of design-level problems include object-sharing and trust issues, 
unprotected data channels (both internal and external), incorrect or missing access control 
mechanisms, lack of auditing/logging or incorrect logging, ordering and timing errors 
(especially in multithreaded systems), and many others. In order to make progress as a 
scientific discipline, software security professionals must understand and categorize these 
sorts of problems in a rigorous way. 

The Problem with Application Security 

Because the idea that software is a major problem in computer security is fairly new, 
many diverse sets of people are working on the problem. One set of network security 
practitioners, led by a number of security tools vendors, has worked hard and spent lots 
of marketing money to coin "application security" as the moniker of choice to describe 
the software security space. There are a number of reasons to be wary when confronted 
with application security. Personally, I am a proponent of the term software security over 
the term application security, especially when discussing the idea of building security in. 
Here's why. 

One problem is that the term application security means different things to different 
people. In many circles, it has come to mean the protection of software after it's already 
built. Although the notion of protecting software is an important one, it's just plain easier 
to protect something that is defect-free than something riddled with vulnerabilities. 

Pondering the question, "What is the most effective way to protect software?" can help 
untangle software security and application security. On one hand, software security is 
about building secure software: designing software to be secure; making sure that 
software is secure; and educating software developers, architects, and users about how to 
build security in. On the other hand, application security is about protecting software and 
the systems that software runs in a post facto way, only after development is complete. 
Issues critical to this subfield include sandboxing code (as the Java Virtual Machine 
does), protecting against malicious code, obfuscating code, locking down executables, 
monitoring programs as they run (especially their input), enforcing the software-use 
policy with technology, and dealing with extensible systems. 

Application security follows naturally from a network-centric approach to security by 
embracing standard approaches, such as "penetrate and patch" and input filtering (trying 
to block malicious input), and by generally providing value in a reactive way. (See the 
next box—Application Security Testing Tools: Good or Bad?) Put succinctly, application 
security is based primarily on finding and fixing known security problems after they've 
been exploited in fielded systems, usually by filtering dangerous input on its way to 
broken software. Software security—the process of designing, building, and testing 
software for security—identifies and expunges problems in the software itself. In this 
way, software security practitioners attempt to build software that can withstand attack 
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proactively. Let me give you a specific example: Although there is some real value in 
stopping buffer overflow attacks by observing HTTP traffic as it arrives over port 80, a 
superior approach is to fix the broken code in order to avoid the buffer overflow 
completely. 

Another problem I have with the term application security is that it unnecessarily limits 
the purview of software security. Sure, applications have security problems, with Web-
based applications leading the pack. But if you step back a moment, you'll see that we 
have a much bigger problem at hand than simply errant Web applications. Ask yourself, 
what do wireless devices, cell phones, PDAs, browsers, operating systems, routers, 
servers, personal computers, public key infrastructure systems, and firewalls have in 
common? The answer is "software." What an interesting and wide-ranging list. It 
encompasses everything from consumer devices to infrastructure items to security 
apparatus itself. We should not be surprised that real attackers go after bad software—no 
matter where it lives. A myopic focus on "application" code ignores the bigger picture. 
That's why I like to call the field software security. 

It is important to think about the impact of simple vocabulary choices in large enterprises. 
When a large organization sets an application development project in motion, it involves 
lots of diverse groups: systems people, network people, the architecture group, and a 
whole bevy of application developers. If the security group buys into application security 
thinking, they'll likely end up pushing some vendor or product at their applications 
people (the VB.NET implementers at the bottom of the software food chain). By contrast, 
software security thinking focuses its scrutiny on both the applications people and those 
middleware architects responsible for all of the hard-core "services" code that is 
extremely susceptible to design flaws. (Of course, both application code and the 
middleware services it relies on can possess bugs.) 

Suborganizations like application development and the architecture group are very 
territorial, and even if the vendor or product chosen as an application security solution 
does end up finding defects in the application, the people in the cross hairs are likely to 
pass the buck: "Oh, you need to talk to the architects." The security ball has a big chance 
of being dropped in this situation—especially since the architecture and "real" code is 
usually set in stone and the architects redispatched to other projects before the VB.NET 
application implementers are even contracted. 

Application Security Testing Tools: Good or 
Bad?[*] 
Application security testing products are being sold as a solution to the problem 
of insecure software. Unfortunately, these first-generation solutions are not all 
they are cracked up to be. They may help us diagnose, describe, and 
demonstrate the problem, but they do little to help us fix it. 

Today's application security products treat software applications as "black 
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boxes" that are prone to misbehave and must be probed and prodded to prevent 
security disaster. Unfortunately, this approach is too simple. 

Software testing requires planning and should be based on software 
requirements and the architecture of the code under test. You can't "test quality 
in" by painstakingly finding and removing bugs once the code is done. The 
same goes for security; running a handful of canned tests that "simulate 
malicious hackers" by sending malformed input streams to a program will not 
work. Real attackers don't simply "fuzz" a program with input to find problems. 
Attackers take software apart, determine how it works, and make it misbehave 
by doing what users are not supposed to do. The essence of the disconnect is 
that black box testing approaches, including application security testing tools, 
only scratch the surface of software in an outside in fashion instead of 
digging into the guts of software and securing things from the inside. 

Badness-ometers 

That said, application security testing tools can tell you something about 
security—namely, that you're in very deep trouble. That is, if your software fails 
any of the canned tests, you have some serious security work to do. The tools 
can help uncover known issues. But if you pass all the tests with flying colors, 
you know nothing more than that you passed a handful of tests with flying 
colors. 

Put in more basic terms, application security testing tools are "badness-
ometers," as shown in Figure 1-7. They provide a reading in a range from "deep 
trouble" to "who knows," but they do not provide a reading into the "security" 
range at all. Most vulnerabilities that exist in the architecture and the code are 
beyond the reach of simple canned tests, so passing all the tests is not that 
reassuring. (Of course, knowing you're in deep trouble can be helpful!) 

Figure 1-7. A badness-ometer can be useful in some cases but is not the 
same thing as a security-ometer. 
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The other major weakness with application security testing tools is that they 
focus only on input to an application provided over port 80. Understanding and 
testing a complex program by relying only on the protocol it uses to 
communicate provides a shallow analysis. Though many attacks do arrive via 
HTTP, this is only one category of security problem. First of all, input arrives to 
modern applications in many forms other than HTTP: consider SSL, 
environment variables, outside libraries, distributed components that 
communicate using other protocols, and so on. Beyond program input, software 
security must consider architectural soundness, data security, access control, 
software environment, and any number of other aspects, all of which are 
dependent on the application itself. There is no set of prefab tests that will probe 
every possible application in a meaningful way. 

The only good use for application security tools is testing commercial off-the-
shelf software. Simple dynamic checks set a reasonably low bar to hold vendors 
to. If software that is delivered to you fails to pass simple tests, you can either 
reject it out of hand or take steps to monitor its behavior. 

In the final analysis, application security testing tools do provide a modicum of 
value. Organizations that are just beginning to think through software security 
issues can use them as badness-ometers to help determine how much trouble 
they are in. Results can alert all the interested parties to the presence of the 
problem and motivate some mitigation activity. However, you won't get 
anything more than a rudimentary analysis with these tools. Fixing the problems 
they expose requires building better software to begin with—whether you 
created the software or not. 
 

[*] A version of this example first appeared in my "[In]security" column in Network 
magazine, November 2004. Network magazine is now called IT Architect. 
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Software Security and Operations 

One reason that application security technologies, such as application firewalls, have 
evolved the way they have is because operations people dreamed them up. In most 
corporations and large organizations, security is the domain of the infrastructure people 
who set up and maintain firewalls, intrusion detection systems, and antivirus engines (all 
of which are reactive technologies). 

However, these people are operators, not builders. Given the fact that they don't build the 
software they have to operate, it's no surprise that their approach is to move standard 
security techniques "down" to the desktop and application levels. The gist of the idea is to 
protect vulnerable things (in this case, software) from attack, but the problem is that 
vulnerabilities in the software let malicious hackers skirt standard security technologies 
with impunity. If this were not the case, the security vulnerability problem would not be 
expanding the way it is. Clearly, this emphasizes the need to get builders to do a better 
job on the software in the first place. (See the Security versus Software box.) 

Protecting a network full of evolving software is difficult, even if the software is not 
patched every five minutes. If software were in some sense self-protecting (by being 
designed defensively and more properly tested from a security perspective) or at least less 
riddled with vulnerabilities, running a secure network could become easier and more cost 
effective. 

In the short run, we clearly—desperately—must make progress on both fronts. But in the 
long run, we must figure out ways to build easier-to-defend code. Software security is 
about helping builders do a better job so that operators end up with an easier job. 

Security versus Software 
Security Has Come a Long Way 

Security was the exclusive domain of guns, dogs, and concrete not too many 
years ago. Since the worldwide deluge that is the Information Age, all things 
security have changed radically. In tandem with the stunning growth of the 
Internet, the new field of computer security has taken root and grown like a 
weed. Computer security quickly became everyone's business as commerce, 
entertainment, and personal communications were swept up in the Internet 
flood. Yet computer security remains a relative newcomer. 

In the early days, computer security was about protecting the expensive machine 
from people (remember when computers took up entire rooms?). There were no 
networks, and there were not really that many users. Operations people ruled the 
roost. 

Once things shrank to a more reasonable size and the network was invented, 
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computer security confronted its first major shift. The trusted machine was 
connected to untrusted machines not necessarily under the control of operations 
people. And the dang things could be anywhere. The need for network security 
was paramount, so a host of reactive technologies came into being, including the 
firewall, antivirus programs, and intrusion detection systems. Computer security 
on the Internet relies on these technologies to this day. Operations people 
continue to rule the roost. 

The problem is that, though certainly necessary, the kinds of common computer 
security technologies we are counting on today simply don't work well enough. 
Take a look at any study, from the annual CSI/FBI report to CERT findings to 
reports commissioned by NIST—by every measure the computer security 
problem is growing even though adoption of network security technologies 
continues unabated. Why? 

Security Has Not Come Very Far 

Defending any human artifact against malicious adversaries is difficult. This is a 
lesson from way back in the days of physical security. The notion of "defending 
the perimeter," adapted from the physical security of castles and fortresses, 
requires the existence of a perimeter. Some castles and fortresses were better 
designed than others, and as a result they were easier to defend. 

The perimeter defense paradigm has its issues, though. Consider the Maginot 
Line, built as a perimeter defense in France against German aggression after 
World War I. The problem was that the defense failed when the attackers 
changed their traditional invasion routes and came through Ardennes Forest and 
once-neutral Belgium. 

Computer security has come to rely too heavily on a perimeter defense 
mentality, and the attackers have already changed their invasion routes. The 
perimeter metaphor makes sense if you take the view that the trusted inside 
machines need to be protected from the untrusted machines outside. The 
problem is that the notion of a perimeter is quaint, outdated, and too simple to 
work. Today's Web-based systems are highly distributed and involve explicit 
connection with machines that merit varying degrees of trust. Reactive 
technologies, such as firewalls that attempt to protect "the system" from the 
"outside," don't work when the very design of the system involves tunneling 
through the firewall with impunity. 

Solving the Problem: The Three Pillars of Software Security 

Software security is an ongoing activity that requires a cultural shift. There is 
unfortunately no magic tool or just-add-water process that will result in secure software. 
Software security takes work. That's the bad news. The good news is that any 
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organization that is developing software, no matter what software development 
methodology it is following (if any!), can make straightforward, positive progress by 
following the plan laid out in this book. 

Software security naturally borrows heavily from software engineering, programming 
languages, and security engineering. The three pillars of software security are applied risk 
management, software security touchpoints, and knowledge (see Figure 1-8). By 
applying the three pillars in a gradual, evolutionary manner and in equal measure, a 
reasonable, cost-effective software security program can result. Throughout the rest of 
this book, I discuss the three pillars and their constituent parts at length. 

Figure 1-8. The three pillars of software security are risk management, software 
security touchpoints, and knowledge. 

 

 

 
Pillar I: Applied Risk Management 

No discussion about security is complete without considering risk management, and the 
same holds true for software security. To make risk management coherent, it is useful to 
draw a distinction between the application of risk analysis at the architectural level 
(sometimes called threat modeling or security design analysis) and the notion of tracking 
and mitigating risk as a full lifecycle activity. Architectural risk analysis is a best practice 
and is one of the central touchpoints (see Chapter 5). However, security risks crop up 
throughout the software development lifecycle (SDLC); thus, an overall approach to risk 
management as a philosophy is also important. I will call this underlying approach the 
risk management framework (RMF). 

Risk management is often viewed as a "black art"—that is, part fortune-telling, part 
mathematics. Successful risk management, however, is nothing more than a business-
level decision-support tool: a way to gather the requisite data to make a good judgment 
call, based on knowledge of vulnerabilities, threats, impacts, and probabilities. Risk 
management has a storied history. Dan Geer wrote an excellent overview [Geer 1998]. 
What makes a good software risk assessment is the ability to apply classic risk definitions 
to software designs in order to generate accurate mitigation requirements. 
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Chapter 2 discusses an RMF and considers applied risk management as a high-level 
approach to iterative risk identification and mitigation that is deeply integrated 
throughout the SDLC. Carrying out a full lifecycle risk management approach for 
software security is at its heart a philosophy underpinning all software security work. The 
basic idea is to identify, rank, track, and understand software security risk as the 
touchpoints are applied throughout the SDLC. 

Chapter 5 provides a discussion of architectural risk analysis. In that chapter I briefly 
introduce some practical methods for applying risk analysis techniques while software is 
being designed and built. There are many different, established methodologies, each 
possessing distinct advantages and disadvantages. 

 
Pillar II: Software Security Touchpoints 

On the road to implementing a fundamental change in the way we build software, we 
must first agree that software security is not security software. This is a subtle point often 
lost on development people, who tend to focus on functionality. Obviously, there are 
security functions in the world, and most modern software includes security features; but 
adding features such as SSL to your program (to cryptographically protect 
communications) does not present a complete solution to the security problem. Software 
security is a system-wide issue that takes into account both security mechanisms (such as 
access control) and design for security (such as robust design that makes software attacks 
difficult). Sometimes these overlap, but often they don't. 

Put another way, security is an emergent property of a software system. A security 
problem is more likely to arise because of a problem in a system's standard-issue part 
(say, the interface to the database module) than in some given security feature. This is an 
important reason why software security must be part of a full lifecycle approach. Just as 
you can't test quality into a piece of software, you can't spray paint security features onto 
a design and expect it to become secure. There's no such thing as magic crypto fairy 
dust—we need to focus on software security from the ground up. We need to build 
security in. 

As practitioners become aware of software security's importance, they are increasingly 
adopting and evolving a set of best practices to address the problem. Microsoft has 
carried out a noteworthy effort under its Trustworthy Computing Initiative [Walsh 2003; 
Howard and Lipner 2003]. (See the next box, Microsoft's Trustworthy Computing 
Initiative.) Most approaches in practice today encompass training for developers, testers, 
and architects; analysis and auditing of software artifacts; and security engineering. In the 
fight for better software, treating the disease itself (poorly designed and implemented 
software) is better than taking an aspirin to stop the symptoms. There's no substitute for 
working software security as deeply into the development process as possible and taking 
advantage of the engineering lessons software practitioners have learned over the years. 
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Figure 1-9 specifies the software security touchpoints (a set of best practices) that I cover 
in this book and shows how software practitioners can apply the touchpoints to the 
various software artifacts produced during software development. These best practices 
first appeared as a set in 2004 in IEEE Security & Privacy magazine [McGraw 2004]. 
Since then, they have been adopted (and in some cases adapted) by the U.S. government 
in the National Cyber Security Task Force report [Davis et al. 2004], by Cigital, by the 
U.S. Department of Homeland Security, and by Ernst and Young. In various chapters 
ahead, I'll detail these best practices (see Part II). 

Figure 1-9. Software security best practices applied to various software artifacts. 
Although in this picture the artifacts are laid out according to a traditional 

waterfall model, most organizations follow an iterative approach today, which 
means that best practices will be cycled through more than once as the software 

evolves. 
[View full size image] 

 
 

Microsoft's Trustworthy Computing Initiative 
The Gates memo of January 2002 reproduced here highlights the importance of 
building secure software to the future of Microsoft. Microsoft's Trustworthy 
Computing Initiative, kicked off by the memo, has changed the way Microsoft 
builds software. Microsoft has spent more than $300 million (and more than 
2000 worker days) on its software security push. 

Microsoft is focusing on people, process, and technology to tackle the software 
security problem. On the people front, Microsoft is training every developer, 
tester, and program manager in basic techniques of building secure products. 
Microsoft's development process has been enhanced to make security a critical 
factor in design, coding, and testing of every product. Risk analysis, code 
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review, and security testing all have their place in the new process. External 
review and testing also play a key role. Microsoft is pursuing software security 
technology by building tools to automate as many process steps as possible. 
Tools include Prefix and Prefast for defect detection [Bush, Pincus, and Sielaff 
2000] and changes to the Visual C++ compiler to detect certain kinds of buffer 
overruns at runtime. Microsoft has also recently begun thinking about 
measurement and metrics for security. 

Microsoft has experimented with different ways to integrate software security 
practices into the development lifecycle. The company's initial approach is 
shown in Figure 1-10. This picture, originally created by Mike Howard, helped 
to inspire the process-agnostic touchpoints approach described in this book. 
Howard's original approach is very much Microsoft-centric (in that it is tied to 
the Microsoft product lifecycle and is not process agnostic), but it does 
emphasize the importance of a full-lifecycle approach. 

Figure 1-10. Early on, Microsoft put into place the (Microsoft-centric) 
software security process shown here. Notice that security does not 

happen at one lifecycle stage; nor are constituent activities "fire and 
forget." 

© 2005 Microsoft Corporation. All rights reserved. Reprinted with permission. 

[View full size image] 

 
 

Figure 1-11 shows a more up-to-date version of Microsoft's process for software 
security. A detailed paper describing the current version of Microsoft's 
Trustworthy Computing Secure Development Lifecycle is available on the Web 
through MSDN.[*] 
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Figure 1-11. An updated view of Microsoft's software security process.[*] 

© 2005 Microsoft Corporation. All rights reserved. Reprinted with permission. 

[View full size image] 

 
 

The Gates Memo[ ] 

The refocusing of Microsoft to pay more attention to security was sparked by 
Bill Gates himself. In an e-mail sent to all Microsoft employees in January 2002 
and widely distributed on the Internet (see <http://news.com.com/2009-1001-
817210.html>), Microsoft Chairman Bill Gates started a major shift at Microsoft 
away from a focus on features to building more secure and trustworthy software. 
The e-mail is reproduced in its entirety here. 

From: Bill Gates 

Sent: Tuesday, January 15, 2002 2:22 PM 

To: Microsoft and Subsidiaries: All FTE 

Subject: Trustworthy computing 

Every few years I have sent out a memo talking about the highest priority for 
Microsoft. Two years ago, it was the kickoff of our .NET strategy. Before that, 
it was several memos about the importance of the Internet to our future and the 
ways we could make the Internet truly useful for people. Over the last year it has 
become clear that ensuring .NET as a platform for Trustworthy Computing is 
more important than any other part of our work. If we don't do this, people 
simply won't be willing—or able—to take advantage of all the other great work 
we do. Trustworthy Computing is the highest priority for all the work we are 
doing. We must lead the industry to a whole new level of Trustworthiness in 
computing. 

When we started work on Microsoft .NET more than two years ago, we set a 
new direction for the company—and articulated a new way to think about our 
software. Rather than developing standalone applications and Web sites, today 
we're moving towards smart clients with rich user interfaces interacting with 
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Web services. We're driving the XML Web services standards so that systems 
from all vendors can share information, while working to make Windows the 
best client and server for this new era. 

There is a lot of excitement about what this architecture makes possible. It 
allows the dreams about e-business that have been hyped over the last few years 
to become a reality. It enables people to collaborate in new ways, including how 
they read, communicate, share annotations, analyze information and meet. 

However, even more important than any of these new capabilities is the fact that 
it is designed from the ground up to deliver Trustworthy Computing. What I 
mean by this is that customers will always be able to rely on these systems to be 
available and to secure their information. Trustworthy Computing is computing 
that is as available, reliable and secure as electricity, water services and 
telephony. 

Today, in the developed world, we do not worry about electricity and water 
services being available. With telephony, we rely both on its availability and its 
security for conducting highly confidential business transactions without 
worrying that information about who we call or what we say will be 
compromised. Computing falls well short of this, ranging from the individual 
user who isn't willing to add a new application because it might destabilize their 
system, to a corporation that moves slowly to embrace e-business because 
today's platforms don't make the grade. 

The events of last year—from September's terrorist attacks to a number of 
malicious and highly publicized computer viruses—reminded every one of us 
how important it is to ensure the integrity and security of our critical 
infrastructure, whether it's the airlines or computer systems. 

Computing is already an important part of many people's lives. Within ten years, 
it will be an integral and indispensable part of almost everything we do. 
Microsoft and the computer industry will only succeed in that world if CIOs, 
consumers and everyone else see that Microsoft has created a platform for 
Trustworthy Computing. 

Every week there are reports of newly discovered security problems in all kinds 
of software, from individual applications and services to Windows, Linux, Unix 
and other platforms. We have done a great job of having teams work around the 
clock to deliver security fixes for any problems that arise. Our responsiveness 
has been unmatched—but as an industry leader we can and must do better. Our 
new design approaches need to dramatically reduce the number of such issues 
that come up in the software that Microsoft, its partners and its customers create. 
We need to make it automatic for customers to get the benefits of these fixes. 
Eventually, our software should be so fundamentally secure that customers 
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never even worry about it. 

No Trustworthy Computing platform exists today. It is only in the context of the 
basic redesign we have done around .NET that we can achieve this. The key 
design decisions we made around .NET include the advances we need to deliver 
on this vision. Visual Studio .NET is the first multi-language tool that is 
optimized for the creation of secure code, so it is a key foundation element. 

I've spent the past few months working with Craig Mundie's group and others 
across the company to define what achieving Trustworthy Computing will 
entail, and to focus our efforts on building trust into every one of our products 
and services. Key aspects include: 

Availability: Our products should always be available when our customers need 
them. System outages should become a thing of the past because of a software 
architecture that supports redundancy and automatic recovery. Self-management 
should allow for service resumption without user intervention in almost every 
case. 

Security: The data our software and services store on behalf of our customers 
should be protected from harm and used or modified only in appropriate ways. 
Security models should be easy for developers to understand and build into their 
applications. 

Privacy: Users should be in control of how their data is used. Policies for 
information use should be clear to the user. Users should be in control of when 
and if they receive information to make best use of their time. It should be easy 
for users to specify appropriate use of their information including controlling the 
use of email they send. 

Trustworthiness is a much broader concept than security, and winning our 
customers' trust involves more than just fixing bugs and achieving "five-nines" 
availability. It's a fundamental challenge that spans the entire computing 
ecosystem, from individual chips all the way to global Internet services. It's 
about smart software, services and industry-wide cooperation. 

There are many changes Microsoft needs to make as a company to ensure and 
keep our customers' trust at every level—from the way we develop software, to 
our support efforts, to our operational and business practices. As software has 
become ever more complex, interdependent and interconnected, our reputation 
as a company has in turn become more vulnerable. Flaws in a single Microsoft 
product, service or policy not only affect the quality of our platform and services 
overall, but also our customers' view of us as a company. 

In recent months, we've stepped up programs and services that help us create 
better software and increase security for our customers. Last fall, we launched 
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the Strategic Technology Protection Program, making software like IIS and 
Windows .NET Server secure by default, and educating our customers on how 
to get—and stay—secure. The error-reporting features built into Office XP and 
Windows XP are giving us a clear view of how to raise the level of reliability. 
The Office team is focused on training and processes that will anticipate and 
prevent security problems. In December, the Visual Studio .NET team 
conducted a comprehensive review of every aspect of their product for potential 
security issues. We will be conducting similarly intensive reviews in the 
Windows division and throughout the company in the coming months. 

At the same time, we're in the process of training all our developers in the latest 
secure coding techniques. We've also published books like Writing Secure 
Code, by Michael Howard and David LeBlanc, which gives all developers the 
tools they need to build secure software from the ground up. In addition, we 
must have even more highly trained sales, service and support people, along 
with offerings such as security assessments and broad security solutions. I 
encourage everyone at Microsoft to look at what we've done so far and think 
about how they can contribute. 

But we need to go much further. 

In the past, we've made our software and services more compelling for users by 
adding new features and functionality, and by making our platform richly 
extensible. We've done a terrific job at that, but all those great features won't 
matter unless customers trust our software. So now, when we face a choice 
between adding features and resolving security issues, we need to choose 
security. Our products should emphasize security right out of the box, and we 
must constantly refine and improve that security as threats evolve. A good 
example of this is the changes we made in Outlook to avoid email borne viruses. 
If we discover a risk that a feature could compromise someone's privacy, that 
problem gets solved first. If there is any way we can better protect important 
data and minimize downtime, we should focus on this. These principles should 
apply at every stage of the development cycle of every kind of software we 
create, from operating systems and desktop applications to global Web services. 

Going forward, we must develop technologies and policies that help businesses 
better manage ever larger networks of PCs, servers and other intelligent devices, 
knowing that their critical business systems are safe from harm. Systems will 
have to become self-managing and inherently resilient. We need to prepare now 
for the kind of software that will make this happen, and we must be the kind of 
company that people can rely on to deliver it. 

This priority touches on all the software work we do. By delivering on 
Trustworthy Computing, customers will get dramatically more value out of our 
advances than they have in the past. The challenge here is one that Microsoft is 
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uniquely suited to solve. 

Bill 
 

[*] Steve Lipner and Michael Howard "The Trustworthy Computing Security 
Development Lifecycle," MSDN, March 2005, Security Engineering and 
Communications, Security Business and Technology Unit, Microsoft Corporation 
<http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnsecure/html/sdl.asp>. 

[ ] The complete Gates memo is included with permission from Microsoft. 

Note that software security touchpoints can be applied regardless of the base software 
process being followed. Software development processes as diverse as the waterfall 
model, Rational Unified Process (RUP), eXtreme Programming (XP), Agile, spiral 
development, Capability Maturity Model integration (CMMi), and any number of other 
processes involve the creation of a common set of software artifacts (the most common 
artifact being code). In the end, this means you can create your own Secure Development 
Lifecycle (SDL) by adapting your existing SDLC to include the touchpoints. You already 
know how to build software; what you may need to learn is how to build secure software. 

The artifacts I will focus on (and describe best practices for) include requirements and 
use cases, architecture, design documents, test plans, code, test results, and feedback from 
the field. Most software processes describe the creation of these kinds of artifacts. In 
order to avoid the "religious warfare" surrounding which particular software development 
process is best, I introduce this notion of artifact and artifact analysis. The basic idea is to 
describe a number of microprocesses (touchpoints or best practices) that can be applied 
inline regardless of your core software process.[11] 

[11] Worth noting is the fact that I am not a process wonk by any stretch of the 
imagination. If you don't believe me, check out Chapter 1 of my software engineering 
book Software Fault Injection [Voas and McGraw 1998]. 

This process-agnostic approach to the problem makes the software security material 
explained in this book as easy as possible to adopt. This is particularly critical given the 
fractional state of software process adoption in the world. Requiring that an organization 
give up, say, XP and adopt RUP in order to think about software security is ludicrous. 
The good news is that my move toward process agnosticism seems to work out. I 
consider the problem of how to adopt these best practices for any particular software 
methodology beyond the scope of this book (but work that definitely needs to be done). 

 
Pillar III: Knowledge 
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One of the critical challenges facing software security is the dearth of experienced 
practitioners. Early approaches that rely solely on apprenticeship as a method of 
propagation will not scale quickly enough to address the burgeoning problem. As the 
field evolves and best practices are established, knowledge management and training play 
a central role in encapsulating and spreading the emerging discipline more efficiently. 
Pillar III involves gathering, encapsulating, and sharing security knowledge that can be 
used to provide a solid foundation for software security practices. 

Knowledge is more than simply a list of things we know or a collection of facts. 
Information and knowledge aren't the same thing, and it is important to understand the 
difference. Knowledge is information in context—information put to work using 
processes and procedures. A checklist of potential security bugs in C and C++ is 
information; the same information built into a static analysis tool is knowledge. 

Software security knowledge can be organized into seven knowledge catalogs (principles, 
guidelines, rules, vulnerabilities, exploits, attack patterns, and historical risks) that are in 
turn grouped into three knowledge categories (prescriptive knowledge, diagnostic 
knowledge, and historical knowledge). 

Two of these seven catalogs—vulnerabilities and exploits—are likely to be familiar to 
software developers possessing only a passing familiarity with software security. These 
catalogs have been in common use for quite some time and have even resulted in 
collection and cataloging efforts serving the security community. Similarly, principles 
(stemming from the seminal work of Saltzer and Schroeder [1975]) and rules (identified 
and captured in static analysis tools such as ITS4 [Viega et al. 2000a]) are fairly well 
understood. Knowledge catalogs only more recently identified include guidelines (often 
built into prescriptive frameworks for technologies such as .NET and J2EE), attack 
patterns [Hoglund and McGraw 2004], and historical risks. Together, these various 
knowledge catalogs provide a basic foundation for a unified knowledge architecture 
supporting software security. 

Software security knowledge can be successfully applied at various stages throughout the 
entire SDLC. One effective way to apply such knowledge is through the use of software 
security touchpoints. For example, rules are extremely useful for static analysis and code 
review activities. 

Figure 1-12 shows an enhanced version of the software security touchpoints diagram 
introduced in Figure 1-9. In Figure 1-12, I identify those activities and artifacts most 
clearly impacted by the knowledge catalogs briefly mentioned above. More information 
about these catalogs can be found in Chapter 11. 

Figure 1-12. Mapping of software security knowledge catalogs to various 
software artifacts and software security best practices. 

[View full size image] 
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Awareness of the software security problem is growing among researchers and some 
security practitioners. However, the most important audience has in some sense 
experienced the least exposure—for the most part, software architects, developers, and 
testers remain blithely unaware of the problem. One obvious way to spread software 
security knowledge is to train software development staff on critical software security 
issues. 

The most effective form of training begins with a description of the problem and 
demonstrates its impact and importance. During the Windows security push in February 
and March 2002, Microsoft provided basic awareness training to all of its developers. 
Many other organizations have ongoing software security awareness training programs. 
Beyond awareness, more advanced software security training should offer coverage of 
security engineering, design principles and guidelines, implementation risks, design 
flaws, analysis techniques, and security testing. Special tracks should be made available 
to quality assurance personnel, especially those who carry out testing. 

Of course, the best training programs will offer extensive and detailed coverage of the 
touchpoints covered in this book. Putting the touchpoints into practice requires cultural 
change, and that means training. Assembling a complete software security program at the 
enterprise level is the subject of Chapter 10. 

The good news is that the three pillars of software security—risk management, 
touchpoints, and knowledge—can be applied in a sensible, evolutionary manner no 
matter what your existing software development approach is 

The Rise of Security Engineering 
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Designers of modern systems must take security into account proactively. This is 
especially true when it comes to software because bad software lies at the heart of a 
majority of computer security problems. Software defects come in two flavors—design-
level flaws and implementation bugs. To address both kinds of defects, we must build 
better software and design more secure systems from the ground up. 

Most computer security practitioners today are operations people. They are adept at 
designing reasonable network architectures, provisioning firewalls, and keeping networks 
up. Unfortunately, many operations people have only the most rudimentary 
understanding of software. This leads to the adoption of weak reactive technologies 
(think "application security testing" tools). Tools like those target the right problem 
(software) with the wrong solution (outside in testing). 

Fortunately, things are beginning to change in security. Practitioners understand that 
software security is something we need to work hard on. The notion that it is much 
cheaper to prevent than to repair helps to justify investment up front. In the end, 
prevention technology and assurance best practices may be the only way to go. 
Microsoft's Trustworthy Computing Initiative is no accident. 

If we are to build systems that can be properly operated, we must involve the builders of 
systems in security. This starts with education, where security remains an often-
unmentioned specialty, especially in the software arena. Every modern security 
department needs to think seriously about security engineering. The best departments 
already have staff devoted to software security. Others are beginning to look at the 
problem of security engineering. At the very least, close collaboration with the "builders" 
in your organization is a necessity. 

Don't forget that software security is not just about building security functionality and 
integrating security features! Coders are likely to ask, "If I use [this API], is it good 
enough?" when doing their building thing. The question to ask in response is, "What 
attacks would have serious impact and are worth avoiding for this module?" This line of 
questioning works to elicit a better understanding of design and its security implications. 

Software Security Is Everyone's Job 

Connectivity and distributed computation is so pervasive that the only way to begin to 
secure our computing infrastructure is to enlist everyone. 

• Builders must practice security engineering, ensuring that the systems we build 
are defensible and not riddled with holes (especially when it comes to the 
software). 

• Operations people must continue to architect reasonable networks, defend them, 
and keep them up. 

• Administrators must understand the distributed nature of modern systems and 
begin to practice the principle of least privilege. 
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• Users must understand that software can be secure so that they can take their 
business to software providers who share their values. (Witness the rise of 
Firefox.) Users must also understand that they are the last bastion of defense in 
any security design and that they need to make tradeoffs for better security. 

• Executives must understand how early investment in security design and security 
analysis affects the degree to which users will trust their products. 

The most important people to enlist for near-term progress in computer security are the 
builders. Only by pushing past the standard-issue operations view of security will we 
begin to make systems that can stand up under attack 
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Chapter 2. A Risk Management Framework[1] 
[1] Parts of this chapter appeared in original (more detailed) form as an internal Cigital 
document authored by Andrew Lefko, Stan Wisseman, Gil Matta, Paco Hope, and 
myself. The RMF was the brainchild of Karl Lewis and Hugo Sanchez. 

No noble thing can be done without risks. 

—Michel De Montaigne 

We've all said it—security is risk management. However, nomenclature remains a 
persistent problem in the security community. The idea of risk management as a key tenet 
of security, though pervasive and oft repeated, is presented under a number of different 
rubrics in software security, attached to particular processes, such as "threat modeling" 
and "risk analysis," as well as to larger-scale activities such as "security analysis." As I 
describe in Chapter 1, a continuous risk management process is a necessity. By teasing 
apart architectural risk analysis (one of the critical software security touchpoints 
described later in the book) and an overall risk management framework (RMF, described 
here), we can begin to make more sense of software security risk. 

An RMF is at its heart a philosophy for software security. Following the RMF is by 
definition a full lifecycle activity, no matter whether you're working on a little project or 
a huge corporate application strategy. The key to reasonable risk management is to 
identify and keep track of risks over time as a software project unfolds. As touchpoints 
are applied and risks are uncovered, for example, an RMF allows us to track them and 
display information about status. For the purposes of this chapter, consider risk 
management as a high-level approach to iterative risk management that is deeply 
integrated throughout the software development lifecycle (SDLC) and unfolds over time. 
The basic idea is simple: identify, rank, track, and understand software security risk as it 
changes over time. 

What follows in this chapter is a detailed explanation of a mature RMF used at Cigital. 
This chapter may be a bit heavy for some. If you're more interested in specific best 
practices for software security, you should skip ahead to Part II. If you do skip ahead, 
make sure you cycle back around later in order to understand how the framework 
described here supports all of the best practices. 

Putting Risk Management into Practice 

The software security touchpoints exist to drive out technical risk. Critical to proper 
application of the touchpoints is the notion of keeping track of security risks as they are 
uncovered and making sure they are properly dealt with. The RMF is about identifying, 
tracking, and mitigating software risk over time. 

Central to the notion of risk management is the idea of describing impact. Recall from 
Chapter 1 that risk is defined as probability x impact. Without a clear and compelling tie 
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to either business or mission consequences, technical risks, software defects, and the like 
are not often compelling enough on their own to spur action. Though the risks I focus on 
in this book are all tied directly to software and all have clear security ramifications, 
unless they are described in terms that business people and decision makers understand, 
they will not likely be addressed. There is nothing more frustrating to a technical person 
than identifying a serious problem that never gets fixed. We can avoid that frustration by 
properly describing impact. 

Put more succinctly, a major hurdle to the proper handling of technical risk has been the 
inability to tie risk clearly to business impact. This leads to the techno-gibberish problem. 
Software is a fairly geeky domain. It's about arcane technology that business people don't 
understand. The question needs to be: How do you get business people to care whether 
their software works or not? The answer has to be that software risk must be discussed, 
understood, and related in terms of business impact. As a technical person, you need to 
say something like, "If the flimflobble in sector four has a floosblozzle failure, that means 
we will miss the first quarter number by $2 million" (as opposed to just saying the first 
part). Business people can relate to the last part of the statement. 

The RMF described here is a condensed version of the Cigital RMF, which has been 
applied in the field for almost ten years. An RMF is designed to manage software-
induced business risks. For purposes of clarity, the RMF is described here in the context 
of a particular project; however, many of the activities can be applied at different levels. 
Through the application of these activities, analysts bring to bear their own technical 
expertise, relevant tools, and technologies. 

The purpose of an RMF like this is to allow a consistent and repeatable expertise-driven 
approach to risk management. By converging on and describing software risk 
management activities in a consistent manner, the basis for measurement and common 
metrics emerges. Such metrics are sorely needed and will prove to be extremely valuable, 
allowing organizations to better manage business and technical risks given particular 
quality goals; make more informed, objective business decisions regarding software (e.g., 
whether an application is ready to release); and improve internal software development 
processes so that they in turn better manage software risks 

How to Use This Chapter[2] 

[2] Or "Danger, Will Robinson, tortuous reading ahead." 

An RMF like the one described here should be applied by anyone charged with software 
risk management. This goes for reliability, performance, and safety risk managers just as 
well as it does for security personnel. Whether software risk management is being 
imposed from above in a top-down exercise of corporate governance or bubbling up from 
the technical trenches, a clear and consistent approach to risk is a necessity. For that 
reason, the RMF is designed to fit a tiny little summer internship project just as well as it 
fits a large-scale enterprise risk management regimen. 
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Application of the RMF occurs in parallel with standard SDLC activities. Applying the 
RMF as a parallel thread is not a particularly time-consuming undertaking (especially if 
parts of the framework have been automated). In our experience at Cigital, a small risk 
management team of two to four people can track and manage risks for even the largest 
project. For a small project, the RMF can be applied as the part-time activity of an 
existing team member. 

The RMF is not specific to security risks. In fact, the RMF is general enough that it is 
likely to apply even in non-software situations. We do know from experience that the 
RMF works well for tracking reliability risks, project management and governance risks, 
and a host of other software-induced business risks just as well as it tracks security risks. 
To remind you of this applicability, the example used in this chapter to step you through 
the RMF does not concentrate solely on security risks. 

Don't forget that the main purpose of the RMF is to consistently track and handle risks. 
By grounding the touchpoints described in Part II in the RMF philosophy, you can 
develop a powerful risk management capability 

The Five Stages of Activity 

The RMF is described in a pyramid fashion. Because this material is difficult, it may help 
to understand the presentation order. I begin with a picture (Figure 2-1) and then present 
a bird's-eye view of the five fundamental activities, which I refer to as stages. Next, a 
detailed walkthrough features the mythical company KillerAppCo, whose product, iWare 
1.0 Server, is under analysis. The example is rigorous and provides a number of "work 
product" tables and other guides to help make each of the five stages concrete and 
applicable. As you step through the example, don't forget that the skeleton of the process 
is available for your reference in Figure 2-1. 

Figure 2-1. The risk management framework (RMF). In this picture, the RMF 
is a closed-loop process with five basic activity stages, each of which is 

numbered. Throughout the application of the RMF, tracking, reporting, 
measurement, and display activities that focus on understanding progress 

regarding software risk can occur. The touchpoints described in this book feed 
the RMF with risks and other data. The RMF displayed here is a condensed 
version of the Cigital RMF, which has been used for almost ten years in the 

field. 
[View full size image] 
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The RMF consists of the five fundamental activity stages shown in Figure 2-1: 

1. Understand the business context 
2. Identify the business and technical risks 
3. Synthesize and prioritize the risks, producing a ranked set 
4. Define the risk mitigation strategy 
5. Carry out required fixes and validate that they are correct 

Each of the stages is briefly summarized next. Particular tasks, processes, measurements, 
work products, and templates are described in detail later in the chapter. Critical business 
decisions, including release readiness, can be made in a more straightforward and 
informed manner by identifying, tracking, and managing software risk explicitly as 
described in the RMF. 

Stage 1: Understand the Business Context 

Software risk management occurs in a business context. Risks are unavoidable and are a 
necessary part of software development. Management of risks, including the notion of 
risk aversion and technical tradeoffs, is deeply impacted by business motivation. Thus the 
first stage of software risk management involves getting a handle on the business 
situation. Commonly, business goals are neither obvious nor explicitly stated. In some 
cases, you may even have difficulty expressing these goals clearly and consistently. 
During this stage, the analyst must extract and describe business goals, priorities, and 
circumstances in order to understand what kinds of software risks to care about and 
which business goals are paramount. Business goals include but are not limited to 
increasing revenue, meeting service-level agreements (SLAs), reducing development 
costs, and generating high return on investment (ROI). The purpose of this stage is to 
gather data to answer the all-important "Who cares?" question. 
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Stage 2: Identify the Business and Technical Risks 

Business risks directly threaten one or more business goals. The identification of such 
risks helps to clarify and quantify the possibility that certain events will directly impact 
business goals. Business risks have impacts that include direct financial loss, damage to 
brand or reputation, violation of customer or regulatory constraints, exposure to liability, 
and increase in development costs. The severity of a business risk should be expressed in 
financial or project management terms. These include but are not limited to market share 
(percentage), direct cost, level of productivity, and cost of rework. 

Business risk identification helps to define and steer use of particular technical methods 
for extracting, measuring, and mitigating software risk given various software artifacts. 
The identification of business risks provides a necessary foundation that allows software 
risk (especially impact) to be quantified and described in business terms. This makes 
impact statements tangible and spurs action on risk mitigation. 

The key to making risk management work for any business lies in tying technical risks to 
the business context in a meaningful way. The ability to thoroughly identify and 
understand risks is thus essential. Uncovering and recognizing technical risks is a high-
expertise undertaking that usually requires years of experience. But on their own, out of 
the business context, technical risks are often not actionable. 

Central to this stage of the RMF is the ability to discover and describe technical risks and 
map them (through business risks) to business goals. A technical risk is a situation that 
runs counter to the planned design or implementation of the system under consideration. 
For example, a technical risk may give rise to the system behaving in an unexpected way, 
violating its own design strictures, or failing to perform as required. If the builders do not 
make proper use of touchpoints, these kinds of risks may slip by unnoticed. Technical 
risks can also be related to the process of building software. The process an organization 
follows may offer too many opportunities for mistakes in design or implementation. 
Technical risks involve impacts such as unexpected system crashes, avoidance of controls 
(audit or otherwise), unauthorized data modification or disclosure, and needless rework 
of artifacts during development. 

Technical risk identification is supported by the software security touchpoints described 
throughout this book. 

Stage 3: Synthesize and Rank the Risks 

Large numbers of risks will be apparent in almost any given system. Identifying these 
risks is important, but it is the prioritization of them that leads directly to creation of 
value. Through the activities of synthesizing and prioritizing risks, the critical "Who 
cares?" question can (and must) be answered. Synthesis and prioritization should be 
driven to answer questions such as: "What shall we do first given the current risk 
situation?" and "What is the best allocation of resources, especially in terms of risk 
mitigation activities?" Clearly, the prioritization process must take into account which 
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business goals are the most important to the organization, which goals are immediately 
threatened, and how likely technical risks are to manifest themselves in a way that 
impacts the business. This stage creates as its output lists of all the risks and their 
appropriate weighting for resolution. 

Typical risk metrics include but are not limited to risk likelihood, risk impact, risk 
severity, and number of risks emerging and mitigated over time. Collection and display 
of these metrics can be automated. The Cigital Workbench, which automates parts of the 
RMF, including collection and display of metrics over time, is described later in the 
chapter. 

Stage 4: Define the Risk Mitigation Strategy 

One of the big problems in software security is that technical analysts are pretty good at 
finding technical problems and pointing them out, but not so good at determining what to 
do about them.[3] Nobody wants to hear about their problems without hearing some 
suggested fixes. A risk analysis is only as good as the mitigation strategy it contains. 

[3] This inability to determine how to fix the problems holds true for a majority of security 
consultants. It is always easier to break something than to design something that can't be 
broken. (See Dan Geer's Foreword.) 

Given a set of risks and their priorities from stage 3, the next stage is to create a coherent 
strategy for mitigating the risks in a cost-effective manner. Any suggested mitigation 
activities must take into account cost, implementation time, likelihood of success, 
completeness, and impact over the entire corpus of risks. A risk mitigation strategy must 
be constrained by the business context and should consider what the organization can 
afford, integrate, and understand. The strategy must also directly identify validation 
techniques that can be used to demonstrate that risks are properly mitigated. 

Typical metrics to consider during this stage are financial in nature and include estimated 
cost takeout, ROI, method effectiveness in terms of dollar impact, and percentage of risk 
coverage (related in terms of removing costly impact). 

Stage 5: Carry Out Fixes and Validate 

Once a mitigation strategy has been defined, it must be executed. Those artifacts where 
problems have been identified (e.g., architectural flaws in a design, requirements 
collisions, coding errors, or problems in testing) should be rectified. Risk mitigation is 
carried out according to the strategy defined in stage 4. Progress at this stage should be 
measured in terms of completeness against the risk mitigation strategy. Good status 
metrics include but are not limited to progress against risks, open risks remaining, and 
any artifact quality metrics previously identified. 

This stage also involves carrying out the validation techniques previously identified. The 
validation stage provides some confidence that risks have been properly mitigated 
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through artifact improvement and that the risk mitigation strategy is working. Testing can 
be used to demonstrate and measure the effectiveness of risk mitigation activities. The 
central concern at this stage is to validate that software artifacts and processes no longer 
bear unacceptable risk. This stage should define and leave in place a repeatable, 
measurable, verifiable validation process that can be run from time to time to continually 
verify artifact quality. 

Typical metrics employed during this stage include artifact quality metrics as well as 
levels of risk mitigation effectiveness. 

Measuring and Reporting on Risk 

The importance of the central activity of identifying, tracking, storing, measuring, and 
reporting software risk information cannot be overemphasized. Successful use of the 
RMF depends on continuous and consistent identification and storage of risk information 
as it changes over time. A master list of risks should be maintained during all stages of 
RMF execution and continually revisited. At Cigital, we use a tool called the Workbench 
to track risk information. Before the Workbench existed, we used Excel spreadsheets. 

Measurements regarding this master list make excellent reporting fodder. For example, 
the number of risks identified in various software artifacts and/or software lifecycle 
phases can be used to identify problem areas in the software process. This makes 
topnotch driving data for defect phase containment activities, the gist being to figure out 
where in the software lifecycle problems are born. Likewise, the number of risks 
mitigated over time can be used to show concrete progress as risk mitigation activities 
unfold 

The RMF Is a Multilevel Loop 

The RMF shown in Figure 2-1 has an obvious loop. This loop is meant to graphically 
represent the idea that risk management is a continuous process. That is, identifying risks 
only once during a software project is insufficient. The idea of "crossing off a particular 
stage" once it has been executed and never doing those activities again is incorrect. 
Though the five stages are shown in a particular serial order in Figure 2-1, they may need 
to be applied over and over again throughout a project, and their particular ordering may 
be interleaved in many different ways. 

There are two main reasons for this complication. First, risks can crop up at any time 
during the software lifecycle. One natural way to apply a cycle of the loop is during each 
particular software lifecycle phase. For example, software risks should be identified, 
ranked, and mitigated (one loop) during requirements and again during design (another 
loop). Second, risks can crop up between stages, regardless of where in the process a 
project finds itself.[4] 
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[4] Note that the process-agnostic view described in Chapter 1 still holds here. I am not 
suggesting the utility of any one software process over any other. Just like the 
touchpoints, the RMF is process agnostic as well. 

In addition to the issue of continuous looping is a further complication regarding level of 
application. Put simply, the RMF is fractal. In other words, the entire process can be 
applied at several different levels. The primary level is the project level. Each stage of the 
loop clearly must have some representation during a complete project in order for risk 
management to be effective. Another level is the software lifecycle phase level. The loop 
will most likely have a representation at the requirements phase, the design phase, the 
architecture phase, the test planning phase, and so on. A third level is the artifact level. 
The loop will have a representation during both requirements analysis and use case 
analysis, for example. Fortunately, a generic description of the validation loop as a serial 
looping process is sufficient to capture critical aspects at all of these levels at once. 

In order to facilitate the learning process, this chapter presents the RMF as a series of 
stages, tasks, and methods that can be performed in succession, each stage following a 
particular process and producing a new set of work products and metrics that enhances 
and clarifies previously created data sets. In reality I describe how the RMF encompasses 
a particular cycle of the loop that is repeatedly executed on more than one level. The 
RMF loop restarts continuously so that newly arising business and technical risks can be 
identified and the status of existing risks currently undergoing mitigation can be kept up. 

Understanding that the risk management process is by nature cumulative, and at times 
arbitrary and difficult to predict (depending on project circumstances), is an important 
insight. Given this insight, I acknowledge that the practice of specific RMF stages, tasks, 
and methods (as described serially here, for pedagogical reasons) may occur 
independently of one another, in parallel, repeatedly, and unsystematically. 

Analysts may "skip through" an analytical process, as information gained from the 
performance of one activity may require the analyst to perform an activity located earlier, 
or several steps later, in the process cycle. For instance, after finding a rare technical risk, 
an analyst may need to conduct additional research prior to reprioritizing the risk tables 
and updating the risk mitigation strategy. In light of our discussion, users of the RMF 
should focus more on the basic concepts and activities presented here than on the 
particular order they are presented in. 

In practice, less experienced analysts should rely on following these processes as closely 
as possible, preserving order, and proceeding in continuous loops. Expert analysts are 
likely to devise work patterns that use the concepts and processes described here, but in a 
less ordered way 

Applying the RMF: KillerAppCo's iWare 1.0 Server 

Now that we have a basic understanding of the RMF and its five stages, we can push 
down a level or two into the details of its application. I use the fictional company 
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KillerAppCo's iWare 1.0 Server product as an example. Don't forget that we're still 
following the five stages as described earlier. It may be useful to refer back to Figure 2-1 
from time to time to track where we are. 

Although the RMF is a multilevel loop, the remainder of this chapter describes the RMF 
as a series of stages, tasks, and methods to be performed in succession. The idea is to step 
through an imaginary example (in this case, KillerAppCo is producing iWare 1.0 Server) 
and show the kinds of tasks and work products that the RMF suggests. I've already given 
you a bird's-eye view of the five stages; now it's time to roll up our sleeves and get our 
hands dirty. In the following treatment, each of the five stages previously introduced 
follows a process to produce various tables and metrics that build on each other. 

This example is overly simple. In a normal application of the RMF, it is not unusual for 
30 to 50 risks to be identified and tracked. Thus the sizes and makeup of the tables shown 
in this section would vary. 

An enhanced version of the RMF has been automated in order to make following the 
various processes described here more intuitive and less tedious (see the description of 
the Cigital Workbench near the end of this chapter). 

Understanding the Business Context 

During the first stage of RMF execution, an analyst must extract and describe business 
goals, priorities, and circumstances in order to understand what kinds of software risks to 
care about and which business goals are paramount. 

Gathering the Artifacts 

The first step is to obtain documentation about target system resources and artifacts. This 
is a good time to identify any missing resources necessary for the analysis but not in 
hand. Typical resources include system architecture (especially with regard to software), 
accounts, permissions, environments, documents, software artifacts, automated 
documents, data, and supporting materials. 

After collecting the artifacts and resources, it is important to validate that they are the 
correct versions and that the set is complete. Note that an analyst may discover the need 
to obtain additional system resources and/or to collect additional software artifacts at any 
point in applying the RMF. 

Conducting Project Research 

An analyst should research the business, program, processes, systems, products, and 
technologies to the extent dictated by the project's scope. This work should be done 
independently. In particular, an analyst characterizes the system and may author draft 
documents and illustrations that summarize the system. One example that almost always 
comes in handy is a one-page overview of the system's software architecture (see Chapter 
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5). If a forest-level view is not available, it should be created as early as possible in the 
RMF process. At this point the analyst should also determine any technical, management, 
and operational controls that the project currently has in place to detect or prevent 
software risk. 

The scope of the RMF project and the size and complexity of the system under review 
may not allow a uniform approach to analysis across the entire system. To resolve this 
problem, the analyst should examine the overall system and make an effort to decompose 
it into a reasonably small set of manageable components. These components comprise the 
system's software architecture (and should thus be represented in the one-page 
architectural overview). 

Each component and the interfaces between them can be analyzed separately by applying 
a different level of rigor. Depending on function and importance, a subsystem may reside 
in one component or may be made up of multiple components. The importance of each 
subsystem is assessed in terms of the identified business goals. All subsystems are 
subsequently prioritized based on the identified business goals, and a decision is made 
based on the scope of the RMF project about the depth of the analysis that will be 
conducted against each subsystem. This approach goes hand-in-hand with the concept of 
risk management, as the depth of the analysis of any subsystem depends on the 
importance of the subsystem, and the analyses of different subsystems is likely to shed 
light on the quality and security of the software system in general. 

At the end of the research activities, the risk posture of the entire system is examined 
based on the results obtained for each of the subsystems and their interactions. 
Knowledge and experience with analysis of similar systems is extremely helpful in this 
process.[5] During performance of this research, analysts generate research notes and gain 
a general understanding of the business context, how the target products work, and the 
role that software plays in the final product. 

[5] See Chapter 11 for a discussion of the kinds of knowledge useful to software security. 

Identifying the Business and Technical Risks 

The identification of business risks provides a necessary foundation that allows software 
risk (especially its impact component) to be quantified and described in business terms. 
Business risk identification helps to define and steer use of particular technical methods 
for extracting, measuring, and mitigating software risk given various software artifacts. 

Developing Risk Questionnaires 

Preliminary research results should be organized so that an initial set of business risks is 
identified. At this point, developing a set of risk questions to ask about the project is an 
important step. These questions should address business risks (e.g., motivation, market, 
resource, schedule, people, facilities, budget, contracts, program interfaces), project risks 
(e.g., development process, development system, management methods, work 
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environment), and product risks (e.g., technical defects, design flaws, bugs, issues with 
languages and platforms). 

Particular effort should be made to address questions regarding risk indicators, the 
likelihood that risks may occur, and business impact estimates in case risks materialize. 
Questions should directly address the project's concerns, how the target technologies 
work, the fundamental assumptions built into the target, and expected quality and security 
requirements. 

After developing a set of risk questionnaires, the analyst must identify the RMF project's 
key information sources and schedule independent interviews with each of the following 
types of personnel: 

• Upper management 
• Project management 
• Architects 
• Developers 
• Testers 

Other technical personnel, such as configuration managers, as well as subject matter 
experts and end users may also be interviewed. An independent interview approach 
permits the interviewee to openly disclose and discuss sensitive, critical information 
without bias or constraints that may be imposed by the presence of others. In most cases, 
two analysts—a facilitator who asks the questions and a recorder who scribes the 
responses—interview the principals to ensure efficiency and accuracy. 

Interviewing the Target Project Team 

During an interview, the analyst: 

• Collaborates with the interviewee to validate the comprehensiveness and accuracy 
of the draft summary documentation 

• Employs the risk questionnaire as a reference to question the interviewee (not a 
script) 

• Records the interviewee's answers to the questionnaire as well as other pertinent 
information discussed during the interview 

• Identifies content presented by the interviewee that is inconsistent with the 
analyst's present knowledge set, resolves any inconsistencies, and documents the 
necessary changes 

Based on an analysis of the quality of the interview results, and the number and type of 
new questions that may have resulted from the interview, the analyst may elect to 
conduct additional research and perform additional risk discovery interviews with newly 
identified stakeholders to gain a better understanding of the project's software risks and 
possible solutions. 
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Analyzing the Research and Interview Data 

After completing the first set of interviews with the project team, the analyst reviews the 
interview data to identify, list, and prioritize the business goals and business risks. 

As an example, Table 2-1 indicates that KillerAppCo's most important business goal, 
represented by the high (H) ranking, is to release the initial version of their software, 
iWare Server version 1.0, on January 1, 2008, so that the company can be first-to-market 
and secure an estimated 25% market share prior to its competitor's entry. KillerAppCo's 
next most important business goal, ranked as moderate (M), is for the iWare 1.0 Server to 
meet its Fortune 500 end-user availability requirements: 99.999% uptime, not including 
normal maintenance and upgrade activities. 

Table 2-1. KillerAppCo's Prioritized Business Goals 

Rank Business Goal Description 

H TIME TO MARKET  
iWare 1.0 Server must be 
released on January 1, 2008. 

KillerAppCo desires to release iWare 1.0 on 
January 1, 2008, to achieve first-to-market 
status, which will enable KillerAppCo to secure 
25% of the market prior to competitor entry. 

M AVAILABILITY  
iWare 1.0 Server must provide 
99.999% uptime. 

A large share of the iWare 1.0 Server market 
consists of Fortune 500 companies with whom 
KillerAppCo will have SLAs. The server's 
availability is a critical factor in enabling 
KillerAppCo to meet the SLA requirements. 

M ACCURACY  
Transactions must be recorded 
with 100% accuracy, with no 
invalid, duplicate, or missing 
transactions. 

Federal regulations stipulate that iWare 1.0 
Server must perform all financial transactions 
with 100% accuracy. 

 

Another of KillerAppCo's moderate business goals is for the product to perform all 
transactions with 100% accuracy, as required by federal financial regulations and 
standards. Table 2-2 provides very rough guidelines for ranking business goals. 

Table 2-2. Guidelines for Business Goal Rankings (from NIST) 

Rank Definition 

High (H) These goals are critical to the existence of the project (and possibly the 
company). If these goals are not met, there is a real risk that the project will 
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Table 2-2. Guidelines for Business Goal Rankings (from NIST) 

Rank Definition 

cease to exist and the company will be directly impacted. 

Medium 
(M) 

These goals are very important for the existence of the project (and possibly 
the company). A large number of employees may be affected if these goals 
are not met. A failure to achieve a medium-rank business goal (e.g., to 
successfully release an important project) may result in a negative affect to 
high-rank goals (e.g., damage to the company's brand and reputation). 

Low (L) These goals affect only a small portion of the company's revenue. A small 
number of employees may be affected if these goals are not met. 

Note: New analysts should use the business goal ranking definitions in this table as 
guidelines only. Ideally, analysts should attempt to define these rankings early in the 
RMF project process in terms of the project's unique business context. More senior 
analysts can draw on prior experience to help define these rankings against previous 
performance and comparable industry benchmarks. 
 

After listing and prioritizing the business goals, the analyst analyzes the data gathered to 
identify and list the business risks. 

As indicated in Table 2-3, in our example, the analyst identifies and records four business 
risks. A similar table should be created as a work product in each application of the RMF. 

Table 2-3. KillerAppCo's Business Risks 

Business Risk Description 

The software fails to 
meet the acceptance 
criteria required for 
release. 

The software may fail user acceptance testing criteria. Such 
failure will affect the release date, negatively affecting the time to 
market and possibly the company's brand and reputation. The 
share price of a publicly owned company may be negatively 
impacted. 

System failures 
cause unplanned 
downtime. 

Any unplanned downtime caused by system failures negatively 
affects the revenue from the project. In case of the existence of an 
SLA, this may cause direct monetary loss for the company. 
Unplanned downtime requires additional resources to execute 
disaster recovery plans and, possibly, to manually process the 
data usually processed by the system. News about the unplanned 
downtime may damage users' perceptions about the system and 
negatively affect users' demand for the system's services. The 



 72

Table 2-3. KillerAppCo's Business Risks 

Business Risk Description 

share price of a publicly owned company may be negatively 
impacted. 

Security weaknesses 
cause system 
failures. 

A successful attack against a system negatively affects many 
business goals at once. First, a successful attack demonstrates that 
the system is not robust, something that negatively affects the 
public's perception of the system. This, in turn, causes a decrease 
in the demand for system services and a decline in revenue. Every 
successful attack requires investigation and disaster recovery 
efforts. These efforts consume additional resources, negatively 
affecting the bottom line. The share price of a publicly owned 
company may be negatively impacted. 

The software fails to 
perform critical 
operational functions 
correctly. 

The failure of the system to perform critical operational functions 
negatively affects users' interest in the system. The use of the 
system may decline, thus negatively affecting revenue. Large 
efforts may be needed to apply fixes to shore up system 
functionality. These efforts may be resource-intensive and will 
negatively affect the bottom line of the product. News about the 
failure of the system may damage the company's brand and 
reputation, and the share price of a publicly owned company may 
be negatively impacted if the information about the failures 
makes it to the media. 

 

After fully populating business risk tables with data (the tables shown here present a very 
small amount of example data), the analyst identifies the risk indicators associated with 
each identified business risk, as well as the likelihood that each of the identified risks will 
occur. A risk indictor is a sign that the risk is materializing, an objective, measurable 
event that can be monitored and measured by the analyst to determine the status of a risk 
over time. 

As an example, Table 2-4 identifies the principle risk indicators for the four business 
risks shown in Table 2-3. For example, one indicator for the risk of failing to meet the 
acceptance criteria is the number of missed project milestones. Based on experience, 
professional consultation, and research, the analyst assigns the likelihood that the server 
will not meet the final acceptance criteria as high (H) (as defined in Table 2-5 on page 
56). The analyst also defines indicators for the remaining business risks and assigns the 
probability of their occurrence as moderate (M). The impact of business risks on business 
goals should be evaluated. The level of impact and the likelihood of occurrence will 
allow the analyst to evaluate the impact of a business risk on different business goals. 
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Table 2-4. KillerAppCo's Business Risk Indicators and Likelihood of 
Occurrence 

Business Risk Description Business Risk 
Indicators 

Likelihood 
of 
Occurrence 

The software 
fails to meet the 
acceptance 
criteria required 
for release. 

The acceptance criteria 
normally include formal 
parameters describing the 
conditions under which the 
system will be accepted by 
users and the software 
development contract will be 
considered successfully 
completed. 

• Number of 
missed project 
milestones 

• Number of 
critical-level 
errors 

• Effort required 
to fix critical 
and important 
errors 

• Decrease in 
the price of the 
company's 
shares 

H 

System failures 
cause unplanned 
downtime. 

The impact of system failures 
on the business can be 
evaluated by studying the 
costs associated with each 
failure and the number of 
these failures. 

• Number of 
reported errors 
related to 
system failure 

• Effort required 
to execute 
disaster 
recovery 
procedures 

• Effort required 
to fix the 
errors that 
caused the 
failures 

• Number of 
clients lost 

• Decline in 
revenue 

• Decrease in 
the price of the 
company's 
shares 

M 



 74

Table 2-4. KillerAppCo's Business Risk Indicators and Likelihood of 
Occurrence 

Business Risk Description Business Risk 
Indicators 

Likelihood 
of 
Occurrence 

Security 
weaknesses 
cause system 
failures. 

The impact of system failures 
on the business can be 
evaluated by studying the 
costs associated with each 
failure and the number of 
these failures. 

• Number of 
security 
vulnerabilities 
reported 

• Effort required 
to execute 
patching or 
other 
remediation 

• Effort required 
to fix the 
errors that 
caused the 
failures 

• Number of 
clients lost 

• Decline in 
revenue 

• Decrease in 
the price of the 
company's 
shares 

M 

The software 
fails to perform 
critical 
operational 
functions 
correctly. 

The failure of the system to 
perform critical operational 
functions is better assessed 
with the decline of use of that 
system and direct costs 
associated with system 
maintenance and upgrade. 

• Number of 
incorrect 
critical 
operations 
performed 

• Effort required 
to perform the 
same business 
functions 
using 
alternative 
routes 

• Effort required 
to fix the 
errors that 

M 
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Table 2-4. KillerAppCo's Business Risk Indicators and Likelihood of 
Occurrence 

Business Risk Description Business Risk 
Indicators 

Likelihood 
of 
Occurrence 

caused the 
failures 

• Number of 
clients lost 

• Decline in 
revenue 

• Decrease in 
the price of the 
company's 
shares 

 

Table 2-5. Risk Likelihood Scale (from NIST) 

Likelihood 
Value 

Definition 

High (H) The threat is highly motivated and sufficiently capable, and controls 
to prevent the risk from occurring are ineffective. 

Medium (M) The threat is motivated and capable, but controls are in place that 
may impede successful materialization of the risk. 

Low (L) The threat lacks motivation or capability, or controls are in place to 
prevent or at least significantly impede the risk from occurring. 

Note: New analysts should use the risk likelihood definitions in this table as guidelines 
only. Ideally, analysts should attempt to define these rankings early in the RMF project 
process in terms of the project's unique business context. More senior analysts should 
draw on prior experience to help define these rankings against historical performance or 
comparable industry benchmarks. The analyst should in all cases document the reasons 
for selecting the likelihood value of an event.  
 

Table 2-5 shows likelihood values and definitions that analysts can use to determine the 
likelihood that a risk will occur. 
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After identifying the risk indicators and likelihood probabilities of each business risk, the 
analyst determines the business impact of each business risk in case the risk materializes. 
This determination is made by qualitatively describing each risk's impact, including an 
estimation of the total cost of a materialized risk. 

For example, in Table 2-6, the analyst specifies that if the iWare 1.0 Server is unable to 
meet its final acceptance criteria, KillerAppCo will be unable to release the product to the 
general public on January 1, 2008, and will experience significant business loss due to 
schedule slippage. The analyst also notes that forecasts currently estimate a product 
release date of April 1, 2008. Based on initial market analyses, the analyst concludes that 
the estimated revenue loss due to the protracted schedule is $10 million. Market share 
loss is also estimated to be 15% and limited brand damage may occur. Given the 
significance of these drawbacks, a high (H) business impact rating is used (as defined in 
Table 2-7). The impacts and costs of the remaining three business risks are also defined 
by the analyst, and the business impact rating for them is determined to be medium (M). 

Table 2-6. Business Impacts of KillerAppCo's Business Risks 

Business 
Risk 

Business 
Risk 
Indicators Likelihood Impact 

Estimated 
Cost Impact

The software 
fails to meet 
the 
acceptance 
criteria 
required for 
release. 

Number of 
missed 
project 
milestones 

H KillerAppCo 
will be unable 
to release the 
product to the 
market. 

Revenue loss: 
$10 million 
Market share 
loss: 15% 
Brand and 
reputation 
damage: 
limited 

H 

System 
failures cause 
unplanned 
downtime. 

Clients 
reporting 
downtime due 
to system 
failures Need 
to execute 
disaster 
recovery 
plans 

M KillerAppCo 
will be unable 
to meet its 
clients' SLA 
availability 
requirements. 

Revenue loss: 
$3 million 
Market share 
loss: 5% Brand 
and reputation 
damage: 
extreme 

M 

Security 
weaknesses 
cause system 
failures. 

Clients 
reporting 
system 
failures due to 
security 

M KillerAppCo 
will be unable 
to meet its 
clients' SLA 
availability 

Revenue loss: 
$3 million 
Market share 
loss: 5% Brand 
and reputation 

M 
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Table 2-6. Business Impacts of KillerAppCo's Business Risks 

Business 
Risk 

Business 
Risk 
Indicators Likelihood Impact 

Estimated 
Cost Impact

breeches 
Need to 
create 
software 
patches 

requirements. damage: 
extreme 
Regulatory 
violation Legal 
risk 

The software 
fails to 
perform 
critical 
operational 
functions 
correctly. 

Clients 
reporting 
inaccurate 
transaction 
data 
processing 
Liability case 
filed 

M KillerAppCo 
will be 
noncompliant 
with federal 
regulations. 
Lawsuits will 
ensue. 

Revenue loss: 
$2 million 
Market share 
loss: 2% Brand 
and reputation 
damage: 
extreme 
Regulatory 
violation Legal 
risk 

M 

 

Table 2-7. Business Impact Scale (from NIST) 

Business 
Impact Value 

Definition 

High (H) (1) Very costly loss of major tangible assets or resources; (2) significant 
violation of, or harm or impediment to, an organization's mission, 
reputation, or interest; or (3) human death or serious injury. 

Medium (M) (1) Costly loss of tangible assets or resources; (2) violation of, or harm 
or impediment to, an organization's mission, reputation, or interest; or 
(3) human injury. 

Low (L) (1) Loss of some tangible assets or resources; or (2) a noticeable effect 
on an organization's mission, reputation, or interest. 

Note: New analysts should use the business impact definitions in this table as guidelines 
only. Ideally, analysts should attempt to define these rankings early in the RMF project 
process in terms of the project's unique business context. More senior analysts can draw 
from prior experience to help define these rankings against historical performance or 
comparable industry benchmarks. In the final analysis, analysts should define business 
impact in terms of financial impact: revenue and market share loss. Other primary 
determinants are liability exposure, brand and reputation damage, and productivity loss.  
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Table 2-7 shows values that can be used to rate the business impact caused by specific 
business risks. After assessing the business impact of each business risk, the analyst 
determines each risk's severity, which is a function of the likelihood that the risk will 
occur (Table 2-5) and the risk's business impact (Table 2-7). 

In our example, the likelihood that iWare 1.0 Server will be unable to meet its final 
acceptance criteria is high, and the business impact rating of the risk is also high. By 
referencing Table 2-8, the analyst deduces that high likelihood and high impact produce a 
high (H) severity score. The severity scores of the three remaining business risks are 
determined by the analyst to be medium (M). 

Table 2-8. Risk Severity Key (from NIST) 

Impact 
Likelihood Low Medium High 

High (H) L M H 

Medium (M) L M M 

Low (L) L L L 

The following severity value descriptions are used to rate business risks: 

• High— Indicates a strong need for corrective measures. An existing system may 
continue to operate, but a corrective action plan must be put in place as soon as 
possible. 

• Medium— Indicates that corrective actions are needed and a plan must be 
developed to incorporate these actions within a reasonable period of time 
(possibly in a future release). 

• Low— Indicates that the system's decision authorities must determine whether 
corrective actions are still required or decide to accept the risk. 

Note: New analysts should use the risk severity key definitions defined in this table as 
guidelines only. Ideally, analysts should attempt to define custom business impact levels 
(similar to what the International Electrotechnical Commission [IEC] refers to as Safety 
Integrity Levels, or SILs). The idea is to create a set of target quality metrics for each 
type of software subsystem or system component to be implemented. That is, the analyst 
should develop relative target failure and success metrics for each system or system 
component related to stated quality goal(s). (See IEC 61508; Parts 3, 6 and 7; Version 
12.0 05/12/97 [IEC 61508].) The integrity levels may be expressed in terms of low, 
medium, and high as defined by underlying "cut levels" or target metrics dictated by 
quality goals. Experienced analysts can draw on prior experience to help define these 
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Table 2-8. Risk Severity Key (from NIST) 

Impact 
Likelihood Low Medium High 

rankings against historical performance or comparable industry benchmarks.  
 

After determining the severity score of each business risk, the analyst compiles the full 
set of business risk data. An example of the resulting table is presented in Table 2-9. 

Table 2-9. KillerAppCo's Full Set of Business Risk Data 

Business 
Risk 

Business 
Risk 
Indicators Likelihood Impact 

Estimated 
Cost Impact Severity

The 
software 
fails to 
meet the 
acceptance 
criteria 
required for 
release. 

Series of 
major 
project 
milestones 
missed 

H KillerAppCo 
will be unable 
to release the 
product to the 
market. 

Revenue 
loss: $10 
million 
Market 
share loss: 
15% Brand 
and 
reputation 
damage: 
limited 

H H  

System 
failures 
cause 
unplanned 
downtime. 

Clients 
reporting 
downtime 
due to 
system 
failures 
Need to 
execute 
disaster 
recovery 
plans 

M KillerAppCo 
will be unable 
to meet its 
clients' SLA 
availability 
requirements. 

Revenue 
loss: $3 
million 
Market 
share loss: 
5% Brand 
and 
reputation 
damage: 
extreme 

M M  

Security 
weaknesses 
cause 
system 

Clients 
reporting 
system 
failures due 

M KillerAppCo 
will be unable 
to meet its 
clients' SLA 

Revenue 
loss: $3 
million 
Market 

M M  
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Table 2-9. KillerAppCo's Full Set of Business Risk Data 

Business 
Risk 

Business 
Risk 
Indicators Likelihood Impact 

Estimated 
Cost Impact Severity

failures. to security 
breeches 
Need to 
create 
software 
patches 

availability 
requirements. 

share loss: 
5% Brand 
and 
reputation 
damage: 
extreme 
Regulatory 
violation 
Legal risk 

The 
software 
fails to 
perform 
critical 
operational 
functions 
correctly. 

Clients 
reporting 
inaccurate 
transaction 
data 
processing 
Liability 
case filed 

M KillerAppCo 
will be 
noncompliant 
with federal 
regulations. 
Lawsuits will 
ensue. 

Revenue 
loss: $2 
million 
Market 
share loss: 
2% Brand 
and 
reputation 
damage: 
extreme 
Regulatory 
violation 
Legal risk 

M M  

 

Uncovering Technical Risks 

This stage of the RMF also involves discovering and describing technical risks and 
mapping them to business goals. A technical risk is a situation that runs counter to the 
planned design or implementation of the system under consideration. 

Analyzing Software Artifacts 

The analyst begins to evaluate software artifacts by performing selected analytical best 
practices (including the software security touchpoints), some of which require the 
execution of tools, to help identify technical risks. 

Table 2-10 presents technical risks resulting from the application of software security 
touchpoints. In our example, the analyst discovers technical risks that may threaten 
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KillerAppCo's time-to-market, availability, and accuracy business goals. Note that a 
technical risk may yield multiple business impacts (see TR3 and TR5 in Table 2-10). 

Table 2-10. KillerAppCo's Technical Risks 

ID 
# 

Technical Risk 

TR1 Developers do not have access to quality assurance (QA) tools for unit testing. 

TR2 QA tests do not fully evaluate requirements. 

TR3 A. Testing does not cover fault tolerance. System failures are likely. 

  B. Testing does not cover fault tolerance. Hardware failures can create incorrect 
transactions. 

TR4 System is susceptible to denial-of-service attacks. 

TR5 A. Poor random number generation (RNG) makes crypto weak. Unauthorized 
access may cause system crashes or unexplained behavior. 

  B. Poor RNG makes crypto weak. Attackers can influence transactions or create 
illegitimate transactions. 

TR6 Poor enforcement of access control rules allows misuse by insiders and outsiders. 

TR7 Poor password choices make system attacks easier. Unauthorized access can create 
invalid transactions. 

TR8 System does not require good passwords. Attackers can get in more easily and 
cause unpredictable behavior. 

 

Now it's time to determine the indicator(s) associated with each identified technical risk 
and specify the probability that each risk will materialize. In Table 2-11, the analyst 
specifies two indicators for the TR4 denial-of-service (DoS) susceptibility risk: a post-
deployment increase in unauthorized logins and a post-deployment decrease in mean 
server availability. Based on independent research, professional experience, and expert 
collaboration, the analyst also determines the likelihood that the DoS susceptibility risk 
will occur is high (H). Each remaining technical risk's indicator and likelihood are also 
defined. 

Table 2-11. KillerAppCo's Categorized Technical Risks and Likelihood of 
Occurrence 

ID # Technical Risk Technical Risk Indicators Likelihood 
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Table 2-11. KillerAppCo's Categorized Technical Risks and Likelihood of 
Occurrence 

ID # Technical Risk Technical Risk Indicators Likelihood 

TR1 Developers do not have access to 
QA tools for unit testing. 

Number of development-
phase bugs reported 

H 

TR2 QA tests do not fully evaluate 
requirements. 

Number of requirements-
phase bugs reported post-
implementation 

H 

TR3 A. Testing does not cover fault 
tolerance. System failures are 
likely. 

Number of faults reported H 

  B. Testing does not cover fault 
tolerance. Hardware failures can 
create incorrect trans actions. 

Number of inaccurate 
transactions 

  

TR4 System is susceptible to denial-of-
service attacks. 

Number of unauthorized 
logins 

H 

    Mean server availability   

/TR5 A. Poor RNG makes crypto weak. 
Unauthorized access may cause 
system crashes or unexplained 
behavior. 

Number of unauthorized 
logins 

H 

  B. Poor RNG makes crypto weak. 
Attackers can influence 
transactions or create illegitimate 
transactions. 

Number of unauthorized 
accesses 

  

    Number of inaccurate 
transactions 

  

TR6 Poor enforcement of access control 
rules allows misuse by insiders and 
outsiders. 

Number of unauthorized 
accesses 

H 

    Number of IDS anomalies   

TR7 Poor password choices make 
system attacks easier. Unauthorized 
access can create invalid 
transactions. 

Number of unauthorized 
accesses 

H 
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Table 2-11. KillerAppCo's Categorized Technical Risks and Likelihood of 
Occurrence 

ID # Technical Risk Technical Risk Indicators Likelihood 

    Number of inaccurate 
transactions 

  

TR8 System does not require good 
passwords. Attackers can get in 
more easily and cause 
unpredictable behavior. 

Number of unauthorized 
logins and accesses Number 
of IDS anomalies 

H 

Note: When determining the likelihood that a technical risk will materialize and 
ascertaining its business impact, analysts should consider controls (e.g., management, 
operational, and technical) and characteristics (e.g., type of attack, capability of the 
attacker, intent of the attacker, and resources of the attacker) associated with the risk. 

Sometimes functionality gets into a product that none of the product managers or higher-
level executives know about or think about strategically. You may find these kinds of 
things by looking into the code and asking questions (which usually get answered like 
this: "Oh, yeah. Without that, the system doesn't work for our clients who use Oracle."). 
At this point it is worth a pause to think. Perhaps you found a business goal that the 
stakeholders don't focus enough attention on. Business goal omissions are problematic 
because these omissions lead to requirements omissions, and in turn to design decisions 
that ripple back and forth along the interface with implementation and support of the real 
production environments. 

For an example, see NIST Special Publication 800-53, "Recommended Security Controls 
for Federal Information Systems" [NIST 800-53]. 
 

After determining the likelihood that an identified technical risk will occur, the analyst 
estimates the business impact of each technical risk should it materialize. This link back 
to business impact is essential. 

In the example, the analyst documents that poor RNG implementation may lead to system 
failures, unexplained behavior, and inaccurate transactions (see Table 2-12). Because of 
this technical vulnerability, unauthorized users can gain access to the system, cause 
system crashes or unexplained behavior, influence transactions, or create illegitimate 
transactions. Business impacts are defined by the analyst for each remaining technical 
risk. If different subsystems are analyzed separately, a cumulative analysis of risks 
associated with different subsystems is performed. At this time, inter-subsystem risks 
should also be identified. 
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Table 2-12. Impacts of KillerAppCo's Technical Risks 

ID 
# Technical Risk 

Technical Risk 
Indicators Likelihood Impact 

TR1 Developers do not 
have access to QA 
tools for unit testing. 

Number of 
development-phase 
bugs reported 

H The inaccessibility of 
QA tools for developers 
to use in unit testing 
may lead to QA 
problems and 
acceptance criteria 
failures. 

TR2 QA tests do not fully 
evaluate 
requirements. 

Number of 
requirements-phase 
bugs reported post-
implementation 

H The partial evaluation of 
requirements by QA 
tests may lead to QA 
problems and 
acceptance criteria 
failures. 

TR3 A. Testing does not 
cover fault tolerance. 
System failures are 
likely. 

B. Testing does not 
cover fault tolerance. 
Hardware failures 
can create incorrect 
transactions. 

Number of faults 
reported 

Number of 
inaccurate 
transactions 

H Lack of fault tolerance 
test coverage may lead 
to unplanned downtime 
and inaccurate critical 
operations. 

TR4 System is susceptible 
to denial-of-service 
attacks. 

Number of 
unauthorized logins

Mean server 
availability 

H DoS susceptibility may 
lead to unplanned 
downtime. 

TR5 A. Poor RNG makes 
crypto weak. 
Unauthorized access 
may cause system 
crashes or 
unexplained 
behavior. 

B. Poor RNG makes 
crypto weak. 

Number of 
unauthorized logins

Number of 
unauthorized 
accesses 

Number of 
inaccurate 
transactions 

H Poor RNG 
implementation may 
lead to system failures, 
unexplained behavior, 
and inaccurate 
transactions. 
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Table 2-12. Impacts of KillerAppCo's Technical Risks 

ID 
# Technical Risk 

Technical Risk 
Indicators Likelihood Impact 

Attackers can 
influence 
transactions or create 
illegitimate 
transactions. 

TR6 Poor enforcement of 
access control rules 
allows misuse by 
insiders 
andoutsiders. 

Number of 
unauthorized 
accesses 

Number of IDS 
anomalies 

H Poor access rule 
enforcement may lead to 
unexplained behavior 
and system failures. 

TR7 Poor password 
choices make system 
attacks easier. 
Unauthorized access 
can create invalid 
transactions. 

Number of 
unauthorized 
accesses 

Number of 
inaccurate 
transactions 

H Poor password choices 
may lead to 
unauthorized logons and 
inaccurate transactions. 

TR8 System does not 
require good 
passwords. Attackers 
can get in more 
easily and cause 
failures. 

unpredictable 
behavior. 

Number of 
unauthorized logins 
and accesses 

Number of IDS 
anomalies 

H The system's failure to 
require good passwords 
may lead to unexplained 
behavior and system 

 

Only after the RMF project team is fully satisfied with the initial set of collected business 
and technical risk data can the analyst proceed to the risk synthesis and prioritization 
stage. Peer review is an excellent idea. 

Synthesizing and Ranking the Risks 

To better understand and manage risk, analysts establish relationships between the 
business goals, business risks, and technical risks and subsequently prioritize them in 
meaningful business terms. The initial objective may be achieved from the bottom up by 
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first determining the technical risks that lead to each business risk(s) and then 
determining the business risks associated with each business goal. Analysts can also work 
from the top down, starting with business goals. In either case, to visualize the problem, 
analysts create the goal-to-risk relationship table, which displays the relationships 
between: 

• Business goals 
• Business risks 
• Technical risks (by identification number) 

Note that no attempt is made at this point to set priorities in the goal-to-risk relationship 
table because this action is performed during the following synthesis activity. 

As an example, in Table 2-13 the analyst concludes, based on research, professional 
experience, and expertise, that KillerAppCo's unplanned downtime and system failure 
business risks directly correspond with the availability goal. The analyst also notes how 
inadequate fault tolerance testing and DoS susceptibility feed the business risk of 
unplanned downtime. A similar linkage is created between poor password requirements, 
inadequate RNG implementation, and limited enforcement of access rules and their 
collective contribution to the business risk of system failure. Similar relationships are 
drawn by the analyst for the project's time-to-market and accuracy business goals. 

Table 2-13. KillerAppCo's Goal-to-Risk Relationship Table 

Business Goal Business Risk ID 
# 

Technical Risk 

TR1 Developers do not have 
access to QA tools for unit 
testing. 

TIME TO MARKET  
iWare 1.0 Server must be 
released on January 1, 2008. 

The software fails 
to meet the 
acceptance criteria 
required for release. 

TR2 QA tests do not fully 
evaluate requirements. 

AVAILABILITY  
iWare 1.0 Server must provide 
99.999% uptime. 

System failures 
cause unplanned 
downtime. 

TR3 A. Testing does not cover 
fault tolerance. System 
failures are likely. 

    TR4 System is susceptible to 
denial-of-service attacks. 

  Security 
weaknesses cause 
system failures. 

TR8 System does not require 
good passwords. Attackers 
can get in more easily and 
cause unpredictable 
behavior. 
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Table 2-13. KillerAppCo's Goal-to-Risk Relationship Table 

Business Goal Business Risk ID 
# 

Technical Risk 

    TR5 A. Poor RNG makes crypto 
weak. Unauthorized access 
may cause system crashes 
or unexplained behavior. 

    TR6 Poor enforcement of access 
control rules allows misuse 
by insiders and outsiders. 

The software fails 
to perform critical 
operational 
functions correctly. 

TR7 Poor password choices 
make system attacks easier. 
Unauthorized access can 
create invalid transactions. 

  TR5 B. Poor RNG makes crypto 
weak. Attackers can 
influence transactions or 
create illegitimate 
transactions. 

ACCURACY  
Transactions must be recorded 
with 100% accuracy, with no 
invalid, duplicate, or missing 
transactions. 

  TR3 B. Testing does not cover 
fault tolerance. Hardware 
failures can create incorrect 
transactions. 

 

There may be a one-to-many relationship among an identified technical risk and the 
multiple business risks to which it is related. Note, for example, that the inadequate fault 
tolerance testing risk (TR3) contributes to both the unplanned downtime and inaccurate 
operational functions business risks. 

After developing the goal-to-risk relationship table, the analyst is ready to create a table 
showing the technical risk severity by business goals. This table depicts how severely an 
identified technical risk impacts each of the business goals. To determine the severity 
level, the analyst assesses the likelihood that the technical risk will materialize and builds 
an estimate of the realized risk's business impacts in terms of each identified business 
goal. 

As an example, in Table 2-14 the analyst deduces that inadequate fault tolerance testing 
(TR1) and DoS susceptibility (TR2) will negatively impact the project's most important 
business goal—time to market—since the likelihood of the risks are high and continued 
acceptance criteria failures (the business risk to which the technical risks are tied) will 
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inevitably prevent the project team from releasing the product on time. No impact (N/A) 
is discerned between TR1 and TR2 and the other business goals. Note that a single 
technical risk, such as poor RNG implementation (TR5), may impact multiple business 
goals—availability and accuracy. A single technical risk may also impact multiple 
business goals at different severity levels. 

Table 2-14. KillerAppCo's Technical Risk Severity by Business Goals 

Business Goal 

ID 
# Technical Risk 

Time to 
Market 
(H) 

Availability 
(M) 

Accuracy 
(M) 

TR1 Developers do not have access to QA 
tools for unit testing. 

H N/A N/A 

TR2 QA tests do not fully evaluate 
requirements. 

H N/A N/A 

TR3 A. Testing does not cover fault 
tolerance. System failures are likely. 

N/A H H  

  B. Testing does not cover fault 
tolerance. Hardware failures can create 
incorrect transactions. 

      

TR4 System is susceptible to denial-of-
service attacks. 

N/A H N/A 

TR5 A. Poor RNG makes crypto weak. 
Unauthorized access may cause system 
crashes or unexplained behavior. 

N/A H H  

  B. Poor RNG makes crypto weak. 
Attackers can influence transactions or 
create illegitimate transactions. 

      

TR6 Poor enforcement of access control 
rules allows misuse by insiders and 
outsiders 

N/A H N/A 

TR7 Poor password choices make system 
attacks easier. Unauthorized access can 
create invalid transactions. 

N/A N/A H  

TR8 System does not require good 
passwords. Attackers can get in more 
easily and cause unpredictable behavior.

N/A H N/A. 
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By completing the table linking technical risk severity with business goals, analysts 
indicate the most severe technical risks that the project should address in order to meet 
prioritized business goals. In the end, the chart presents the critical risk management 
information necessary to make informed decisions, such as those involving release 
management, production, and process improvement. This marriage of business and 
technical concerns is a central driver to the RMF. These are the sort of data that can be 
used to answer the all-important "Who cares?" question. 

Reviewing the Risk Data 

Next, the analyst schedules a meeting with the RMF project team to brainstorm about the 
accumulated risk data. During the brainstorming session, the meeting attendees: 

• Confirm the accuracy and comprehensiveness of the business and technical risks 
• Confirm the risk likelihood, impact, and severity rankings 
• Confirm the relationships between business goals, business risks, and technical 

risks 
• Create a preliminary outline of the risk analysis report, which includes strategic 

risk mitigation content 

The brainstorming activity typically produces notes as well as updated risk tables. It may 
also reveal the need for the RMF project team to perform additional analytical activities. 

Conducting the Business and Technical Peer Review 

After completing all research, risk identification, and synthesis activities, the analyst 
creates an interim report or presentation summarizing the risk findings and outlines a 
preliminary risk mitigation strategy. The completed summary is submitted to the RMF 
project team for business and technical peer review. Note that peer review can sometimes 
be a time-consuming process; make sure that time is allocated both for necessary peer 
reviews and for the incorporation of feedback. 

Defining the Risk Mitigation Strategy 

During this stage, the analyst builds and finalizes a risk mitigation strategy. An outline of 
this strategy will have been created during the risk synthesis activity. To develop a 
coherent strategy, the RMF project team meets to brainstorm on possible risk mitigation 
methods, their effectiveness, and control over the project's software-induced business 
risks. Results of this work are reported in a comprehensive risk analysis report document. 

Brainstorming on Risk Mitigation 

During the risk mitigation brainstorming session, the RMF project team should answer 
the question, "How can the software risks that have been identified be managed?" Using 
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this question as a guidepost, the RMF project team members list potential mitigation 
methods on a whiteboard. Next, they associate the proposed methods with identified 
technical risks. The group then estimates the effectiveness of the proposed mitigation 
methods and the level of rigor at which each method must be performed. The resulting 
approach is a technical strategy motivated by business concerns. Methods must make 
sense economically, and in the best of all cases they will have a clear ROI that can be 
demonstrated. 

All costs of mitigation must be weighed against each method's predicted effectiveness 
and compared against potential downside costs (in case a risk materializes). The RMF 
project team should ensure that the proposed mitigation methods cover as many of the 
risks as possible. Those methods that provide large risk coverage at low cost are more 
valuable. The team also assesses the impact of legislation, regulation, and organizational 
policy on the ability to perform specific mitigation methods, as well as the impact of 
method implementation on operations. 

After strategizing activities are complete, the team creates a mapping between specific 
methods and the mitigation of identified business risks. The mapping is given a level of 
confidence (high, medium, or low). The fully populated table of recommended risk 
mitigation methods presents the information needed to help make risk mitigation 
decisions crucial to the success of the business. Using these data, stakeholders can clearly 
think through costs, benefits, and return for various technical activities. This table 
provides the basis for a description of the risk mitigation strategy. 

As an example, in Table 2-15 the analyst highly recommends that the project impose 
additional QA activities in early SDLC phases to improve the company's chances of 
meeting its number one business goal—timely release of the product to the market. 
Although the coverage of this mitigation method is limited to only two of the four 
business risks, it is estimated that the practice of the method will result in the highest 
possible ROI in terms of (1) avoided loss of revenue and market share and (2) bypassed 
brand and reputation damage (see Table 2-9). Specific QA mitigation activities may 
include having developers use best-of-breed QA tools for early lifecycle unit testing and 
evaluating requirements during QA test-planning activities. 

Table 2-15. KillerAppCo's Recommended Risk Mitigation Methods 
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Authoring the Risk Analysis Report 

After completing the table of recommended risk mitigation methods, the analyst authors a 
risk analysis report.[6] Much of the RMF project's analytical plan content and summary 
risk data can be used to build the final document. The report contains the following 
information in this order: 

[6] This is not meant to imply that looping through the RMF process is complete. In this 
case, I am sticking with my "serial order" presentation for reasons of clarity. Also, a 
report is oriented toward consulting, but you get the idea. 

1. An executive summary that establishes purpose, poses a clear problem statement, 
and motivates future action 

2. A summary of the analytical results, which includes the following tables: 
o Goal-to-risk relationship 
o Technical risk severity by business goals 
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o Recommended risk mitigation methods 
3. A list of the actual risks discovered. Each risk is described in detail with: 

o Context 
o Impact description 
o Mitigation recommendation 
o Validation steps 

4. A complete validation plan that includes the following: 
o A monitoring and measurement strategy 
o A measurement plan that lists and describes the measurements and metrics 

necessary to quantify the status of each risk undergoing mitigation 
o Procedures for collecting risk mitigation data 
o A list of the risk indicators to be employed during mitigation 
o Risk exit criteria 

5. Conclusions that directly discuss next steps and overall themes in the risks 
6. Appendices that include information such as: 

o A list of participants 
o A list and description of the analyzed artifacts 
o A list and description of the materials used 
o A list and description of the key metrics employed 
o A list and description of the analytical methods employed 

By addressing the preceding information, the risk analysis report: 

• Identifies and prioritizes software-induced business risks 
• Ensures risk management becomes an integral part of the ongoing SDLC 
• Lists and describes the methods and technologies used to mitigate software risks 
• Sets up the monitors and measures that can be used to demonstrate risk mitigation 

progress 
• Defines acceptable levels of quality to attain through the practice of custom 

software risk management strategies and software security touchpoints 
• Establishes critical exit criteria linked to business goals 

Producing Final Deliverables 

After completing the draft risk analysis report, the analyst presents the document to the 
RMF project team for peer review and subsequent editing. The analyst then uses the 
document as the basis for creating a draft risk mitigation project plan. The interim risk 
analysis report is also used to develop a risk analysis presentation to be delivered by the 
team. The presentation should contain a cost-based summary of the critical content 
included in the risk analysis report and focus on post-risk mitigation ROI. The analyst 
should incorporate feedback resulting from the risk analysis presentation into the final 
draft of the risk analysis report as well as the accompanying project plan. 
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Carrying Out Fixes and Validating 

This stage involves execution of the risk mitigation strategy. Each strategic approach to 
risk mitigation will differ according to what sorts of risks were identified, what the 
business context is, and what methods were chosen to manage risk. 

Progress at this stage should be measured against the risk mitigation strategy. Good 
metrics include but are not limited to progress against risks, open risks remaining, and 
any artifact quality metrics previously identified. 

This stage involves application of those validation techniques identified earlier in order to 
give some confidence that risks have been properly mitigated through artifact 
improvement. In many respects, the validation plan is a test plan for risk mitigation 
assurance. Each project will have a unique validation plan that directly depends on the 
risks identified and the methods chosen to address them. 

Testing can be used to demonstrate and measure the effectiveness of various software 
assurance activities. The central concern at this stage is to validate that the artifacts and 
processes no longer carry unacceptable risks. This stage should define and leave in place 
a repeatable, measurable, verifiable validation process that the project can run from time 
to time to continually verify artifact quality 

The Importance of Measurement 

One foundational approach that is critical to any science is measurement. As Lord Kelvin 
put it: 

When you can measure what you are speaking about, and express it in numbers, you 
know something about it; but when you cannot measure it, when you cannot express it in 
numbers, your knowledge is of a meager and unsatisfactory kind: it may be the beginning 
of knowledge, but you have scarcely, in your thoughts, advanced to the stage of science. 

Measurement is critical to the future of software security. Only by quantizing our 
approach and its impact can we answer questions such as: How secure is my software? 
Am I better off now than I was before? Am I making an impact on the problem? How can 
I estimate and transfer risk? 

We can begin to approach the measurement problem by recycling numbers from the 
software literature. For example, we know that fixing software problems at the design 
stage is much cheaper than fixing them later in the lifecycle.[7] An IBM study reports 
relative cost weightings as: design, 1; implementation, 6.5; testing, 15; maintenance, 100. 
We also know relative cost expenditures for lifecycle stages: design, 15%; 
implementation, 60%; testing, 25%. These and similar numbers can provide a foundation 
for measuring the impact of software security. 

[7] See Chapter 3, Figure 3-2. 
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Measuring Return 

A preliminary study reported by @stake (now part of Symantec) demonstrates the 
importance of concentrating security analysis efforts at the design stage relative to the 
implementation and testing phases (see Figure 2-2). Microsoft reports that more than 
50% of the software security problems it finds are design flaws. 

Figure 2-2. Return on investment (ROI) as measured by @stake over 23 security 
engagements.[8] 

 

 

[8] See the trade magazine article by Kevin Soo Hoo, Andrew Sudbury, and Andrew 
Jaquith, "Tangible ROI through Secure Software Engineering," Secure Business 
Quarterly, Q4 2001 <http://www.sbq.com/sbq/rosi/sbq_rosi_software_engineering.pdf>. 

Risk management calls for quantitative decision support. Work remains to be done on 
measuring software security and software security risk, but some metrics are obvious. 
The most effective metrics involve tracking risk over time. 

Measurement and Metrics in the RMF 

The most natural and easiest form of measurement in the RMF involves measuring and 
tracking information about risks and risk status at various times throughout application of 
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the RMF. The Cigital Workbench (explained in the next section) helps to automate this 
activity. The fact that software development unfolds over time is a boon for measurement 
because a relative quantity (such as number of risks) measured at two different times can 
be used to indicate progress. 

Risk measurements include but are not limited to: 

• Outstanding risks by priority 
• Identified risks by priority 
• Outstanding risks by type 
• Identified risks by type 
• Outstanding risks by subtype 
• Identified risks by subtype 
• Overall risk mitigation status percentage 
• Risk mitigation by priority: percentage resolved and percentage outstanding 
• Risk mitigation by priority: number resolved and number outstanding 
• Number of outstanding risks by financial impact 
• Number of identified risks by financial impact 
• Number of risks identified without defined mitigation by priority 
• Number of risks identified without defined mitigation by type 
• Risk discovery rate by priority 
• Risk discovery rate by type 
• Risk mitigation rate by priority 
• Risk mitigation rate by type 
• Number of outstanding risks by schedule impact 

These kinds of measurements should be made as early as possible and as continuously as 
possible during the SDLC 

The Cigital Workbench 

A key requirement for putting the RMF into practice is automating aspects of the process. 
Without automation, the elaborate steps of the RMF can become tedious. Those aspects 
best suited for automation include tracking, storing, and manipulating data about risks; 
displaying and measuring data about risks; and providing critical information and 
automation regarding processes. Note that automation like this supports the notion of 
ongoing, continual updating and refinement of risk data over time. 

Cigital provides professional services based on applying the RMF philosophy. We 
created and use a toolset called the Workbench to make our jobs as consultants more 
efficient, effective, and consistent. The Workbench, in some sense, is an automated RMF. 
It is a combination of simple tools and automated processes used to help consultants 
assess software quality. 

The Workbench has three major components: 
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1. Quality workflows and knowledge 
o Automated RMF[9] 

[9] The Workbench automates a more detailed RMF than the one presented 
in this chapter. 

o Process models and detailed descriptions of software assurance methods 
(called "the Matrix" internally) 

o Deliverable templates, reporting, and metrics 
2. Project communication and collaboration tools 

o A risk management dashboard, used to communicate risk mitigation status 
and progress (Figure 2-3) 

o A complete knowledge management and document management system 
(which in version 1 leverages the Livelink knowledge management 
software) 

o Decision criteria and guidance 
3. Process evolution and knowledge capture 

o Process models built to be instantiated and adjusted in particular projects 
o History and knowledge catalogs 

Figure 2-3. The Cigital Workbench risk management dashboard displays 
information about software risk and business impact over time. 

[View full size image] 

 
 

These components capture fundamental aspects of the RMF. 
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Central to the idea of the Workbench is the notion of tracking information about risks. 
The Workbench allows for the automatic creation of technical risk business risk 
associations, impact analysis, and ranking. Basic risk information is available in a risk log 
(Figure 2-4). Information about the relationship between business goals and technical 
risks is displayed in one of many available tables (Figure 2-5). 

Figure 2-4. The Cigital Workbench allows technical risks and business risks to 
be tracked over time. The risk log here provides a snapshot of risk status. 

Tracking risk status is central to the success of the RMF process. 
[View full size image] 

 
 

Figure 2-5. Technical risks must be tied to business goals or wither under the 
glare of the ultimate question: "Who cares?" 

[View full size image] 
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Risk Management Is a Framework for Software Security 

Whether you apply the RMF with the help of an automated tool, such as the Workbench, 
or simply track risks in an Excel spreadsheet, there is no question that identifying, 
synthesizing, ranking, and keeping track of risks throughout the SDLC is a central 
software security practice. The touchpoints described in Part II of this book are best 
applied in concert with this kind of RMF. That way, risks are properly handled once they 
are highlighted by particular software security best practices. 

There is no such thing as 100% security. Only by practicing risk management and 
factoring in critical business information about impacts will software security escape the 
realm of the geeks and have an impact on business. 
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Chapter 3. Introduction to Software Security 
Touchpoints[1] 
[1] Small portions of this chapter appeared in original form in Software Development 
magazine in September 2005 under the title "The 7 Touchpoints of Secure Software" 
[McGraw 2005]. 

Touchpoints, which are universal, are those predictable times that occur just before a 
surge of rapid growth in any line of development—motor, cognitive, or emotional. ... 

—T. Berry Brazelton 

A key aim of this book is to explore and describe a set of software security best practices 
that I call touchpoints. Putting software security into practice requires making some 
changes to the way organizations build software. The good news is that these changes do 
not need to be fundamental, earth shattering, or cost prohibitive. In fact, adopting a 
straightforward set of engineering best practices, designed in such a way that security can 
be interleaved into existing development processes, is often all it takes. Integrating 
software security best practices into the software development lifecycle is the center of 
the three pillars of software security. 

The software security best practices that I prescribe have their basis in good software 
engineering and involve explicitly pondering the security situation throughout the 
software lifecycle. This means knowing and understanding common risks, designing for 
security, and subjecting all software artifacts to thorough, objective risk analyses and 
testing. During these activities, software risk should be explicitly tracked and monitored 
according to the RMF presented in Chapter 2. This chapter presents a quick introduction 
to the software security touchpoints (a 50,000-foot view, really) and suggests an ordering 
for their adoption. 

Figure 3-1, which also adorns the inside front cover of this book, specifies the software 
security touchpoints and shows how software practitioners can apply them to the various 
software artifacts produced during software development. This means understanding how 
to work security engineering into requirements, architecture, design, coding, testing, 
validation, measurement, and maintenance. 

Figure 3-1. Lightweight software security best practices called touchpoints are 
applied to various software artifacts. The best practices are numbered according 
to effectiveness and importance. Note that by referring only to software artifacts, 

we can avoid battles over any particular process. 
[View full size image] 
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Although the artifacts are laid out according to something that looks like a traditional 
waterfall model in the picture, most organizations follow an iterative approach today, 
which means that touchpoints will be cycled through more than once as the software 
evolves. In any event, by focusing on the artifacts we can avoid broader process issues 
(including the ever-present warfare surrounding which software process is the one true 
way and the light). 

As I discuss in Chapter 1, the software security touchpoints are designed to be process 
agnostic. That is, the touchpoints can be applied no matter which software process you 
use to build your software. As long as you are producing some minimal set of software 
artifacts (and every project should at least be producing code!), you can apply the 
touchpoints. 

I used to present the software security touchpoints in order from left to right. Although 
that works OK, a better pedagogical approach is to order the touchpoints by their natural 
utility and present them in some sort of ranking. Some touchpoints are by their very 
nature more powerful than others, and you should adopt the most powerful ones first. 

Here are the touchpoints, in order of effectiveness: 

1. Code review 
2. Architectural risk analysis 
3. Penetration testing 
4. Risk-based security tests 
5. Abuse cases 
6. Security requirements 
7. Security operations 
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The ordering I describe will not be a perfect fit for every organization. In fact, the 
ordering reflects a bias developed over many years of applying these practices in code-o-
centric organizations. For that reason, code review comes before architectural risk 
analysis. However, the fact is that both of the top two touchpoints are critical. If you do 
code review and skip architectural risk analysis, you will not properly address the 
software security problem. Harking back to my definitions in Chapter 1, software defects 
that lead to security problems come in two varieties: bugs and flaws. 

Code review aims at finding the bugs. Architectural risk analysis aims at finding the 
flaws. If you skip one or the other, you're most likely to solve only half the problem. 
(Remember the 50/50 bug/flaw split.) In any event, the top two touchpoints can be 
swapped around without any loss of generality. 

As for the rest of the touchpoints, the ranking I present is based on years of experience 
applying the touchpoints at many different kinds of organizations, ranging from large 
independent software vendors to huge credit card consortiums. The ordering is not 
absolute. However, any attempt to change the order, say, by doing penetration testing 
before you do code review, is likely to be not as successful as the way I suggest. 
Ironically, the "penetration testing first" ordering is the ordering found in most 
organizations dealing with software security today, especially those shops where the 
security division is pushing software and application security. This ordering reflects the 
reactive approach to security that I am trying to counter by talking about building security 
in and by involving actual builders in the process. 

Big organizations can adopt several touchpoints simultaneously in some cases. For more 
on adopting touchpoints in a large enterprise, see Chapter 10 

Flyover: Seven Terrific Touchpoints 

1. Code Review (Tools) 

Artifact: Code 

Example of risks found: Buffer overflow on line 42 

All software projects produce at least one artifact—code. This fact moves code review to 
the number one slot on our list. At the code level, the focus is on implementation bugs, 
especially those that static analysis tools that scan source code for common 
vulnerabilities can discover. A taxonomy of these bugs can be found in Chapter 12. 
Several tools vendors now address this space. Code review is a necessary but not 
sufficient practice for achieving secure software. Security bugs (especially in C and C++) 
are a real problem, but architectural flaws are just as big a problem. In Chapter 4 you'll 
learn how to review code with static analysis tools. 

Doing code review alone is an extremely useful activity, but given that this kind of 
review can only identify bugs, the best a code review can uncover is around 50% of the 
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security problems. Architectural problems are very difficult (and mostly impossible) to 
find by staring at code. This is especially true for modern systems made of hundreds of 
thousands of lines of code. A comprehensive approach to software security involves 
holistically combining both code review and architectural analysis. 

2. Architectural Risk Analysis 

Artifact: Design and specification 

Examples of risks found: Poor compartmentalization and protection of critical data; 
failure of a Web Service to authenticate calling code and its user and to make access 
control decisions based on proper context 

At the design and architecture level, a system must be coherent and present a unified 
security front. Designers, architects, and analysts should clearly document assumptions 
and identify possible attacks. At both the specifications-based architecture stage and at 
the class-hierarchy design stage, architectural risk analysis is a necessity. At this point, 
security analysts uncover and rank architectural flaws so that mitigation can begin. 
Disregarding risk analysis at this level will lead to costly problems down the road. 

Note that risks crop up during all stages of the software lifecycle, so a constant risk 
management thread, with recurring risk-tracking and monitoring activities, is highly 
recommended. Chapter 2 describes the RMF process and how to apply it. Chapter 5 
teaches about architectural risk analysis and will help you ferret out flaws in software 
architecture. 

3. Penetration Testing 

Artifact: System in its environment 

Example of risks found: Poor handling of program state in Web interface 

Penetration testing is extremely useful, especially if an architectural risk analysis informs 
the tests. The advantage of penetration testing is that it gives a good understanding of 
fielded software in its real environment. However, any such testing that doesn't take the 
software architecture into account probably won't uncover anything interesting about 
software risk. Software that fails during the kind of canned black box testing practiced by 
prefab application security testing tools is truly bad. Thus, passing a low-octane 
penetration test reveals little about your actual security posture, but failing a canned 
penetration test indicates that you're in very deep trouble indeed (see Chapter 1). 

One pitfall with penetration testing involves who does it. Be very wary of "reformed 
hackers" whose only claim to being reformed is some kind of self-description.[2] Also be 
aware that network penetration tests are not the same as application or software-faced 
penetration tests. If you want to do penetration testing properly, see Chapter 6. 
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[2] How do we know they're reformed? Because they told us they were reformed. 

4. Risk-Based Security Testing 

Artifact: Units and system 

Example of risks found: Extent of data leakage possible by leveraging data protection 
risk 

Security testing must encompass two strategies: (1) testing of security functionality with 
standard functional testing techniques and (2) risk-based security testing based on attack 
patterns, risk analysis results, and abuse cases. A good security test plan embraces both 
strategies. Security problems aren't always apparent, even when you probe a system 
directly, so standard-issue quality assurance is unlikely to uncover all critical security 
issues. QA is about making sure good things happen. Security testing is about making 
sure bad things don't happen. Thinking like an attacker is essential. Guiding security 
testing with knowledge of software architecture, common attacks, and the attacker's 
mindset is thus extremely important. Chapter 7 shows you how to carry out security 
testing given some insight into the system's construction. 

5. Abuse Cases 

Artifact: Requirements and use cases 

Example of risks found: Susceptibility to well-known tampering attack 

Building abuse cases is a great way to get into the mind of the attacker. Similar to use 
cases, abuse cases describe the system's behavior under attack; building abuse cases 
requires explicit coverage of what should be protected, from whom, and for how long. 
Underused but important, abuse and misuse cases are the subject of Chapter 8. 
Practitioners wondering how abuse cases might work for them will get lots of mileage out 
of that chapter. 

6. Security Requirements 

Artifact: Requirements 

Example of risks found: No explicit description of data protection needs 

Security must be explicitly worked into the requirements level. Good security 
requirements cover both overt functional security (say, the use of applied cryptography) 
and emergent characteristics (best captured by abuse cases and attack patterns). The art of 
identifying and maintaining security requirements is a complex undertaking that deserves 
broad treatment. Interested readers are encouraged to check out the references in the 
Security Requirements box on the next page for pointers. A brief treatment of the subject 
can be found spread throughout Chapters 7 and 8. 
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7. Security Operations 

Artifact: Fielded system 

Example of risks found: Insufficient logging to prosecute a known attacker 

Software security can benefit greatly from network security. Well-integrated security 
operations allow and encourage network security professionals to get involved in 
applying the touchpoints, providing experience and security wisdom that might otherwise 
be missing from the development team. Battle-scarred operations people carefully set up 
and monitor fielded systems during use to enhance the security posture. Attacks do 
happen, regardless of the strength of design and implementation, so understanding 
software behavior that leads to successful attack is an essential defensive technique. 
Knowledge gained by understanding attacks and exploits should be cycled back into 
software development. 

*. External Analysis 

This is not really a touchpoint, but it's important enough to emphasize so I've put it in the 
touchpoints picture anyway. External analysis (i.e., analysis by somebody outside the 
design team) is often a necessity when it comes to security. All software security 
touchpoints are best applied by people not involved in the original design and 
implementation of the system. 

Every programmer has been stuck for hours working on a bug only to have a buddy 
(coming to drag you off for pizza) show up and point out the error: "How come you did 
that?!" This always warrants a huge groan. Argh! This phenomenon can happen in all 
stages of the software lifecycle—one reason why external analysis is a necessity. 

Security Requirements 
Study of security requirements is fairly new, and the literature is spotty. Here 
are two pointers to recommended reading: 

Jonathan D. Moffett, Charles B. Haley, and Bashar Nuseibeh, "Core Security 
Requirements Artifacts," Technical Report 2004/23. Department of Computing, 
The Open University, Milton Keynes, UK, June 2004. 

Nancy Mead, "Requirements Engineering for Survivable Systems," Technical 
Report CMU/SEI-2003-TN-013. Pittsburgh, PA: Software Engineering Institute, 
Carnegie Mellon University, 2003. 
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Why Only Seven? 

Some approaches to software security are way too bulky for most organizations to 
swallow. By limiting the touchpoints to seven best practices, I hope to make effective 
best practices easier to adopt while still making a huge impact on software security. The 
touchpoints are not only amenable to whatever process you already follow to make 
software (you do ship software already, right?) but also lightweight and easy to use. If 
you apply the seven terrific touchpoints outlined here, your software will be much more 
secure. 

Black and White: Two Threads Inextricably Intertwined 

As I note in the Preface, the two threads of black hat and white hat activities intertwine to 
make up software security. This idea serves as inspiration for the cover of this book. The 
yin/yang design is the classic Eastern symbol related to the inextricable mixing of 
standard Western polemics. Eastern philosophies are for this reason called holistic. A 
holistic approach, mixing yin and yang—that is, mixing the black hat and white hat 
approaches—is just what the doctor ordered. 

I define destructive activities as those about attacks, exploits, and breaking software. 
These kinds of things are represented by the black hat. I define constructive activities as 
those about design, defense, and functionality. These are represented by the white hat. 
Perhaps a less judgmental way to think about the dichotomy is in terms of defense and 
offense. Neither defense nor offense is intrinsically bad or good, and both are necessary 
to play almost any sport well. In any case, based on destroying and constructing, we can 
look back over the touchpoints and describe how the black and white threads intertwine. 

Code review is a white hat (constructive) activity informed by a black hat history. The 
idea is to avoid implementation problems while we build software to be secure. 

Architectural risk analysis is a white hat (constructive) activity also informed by a black 
hat history. In this case, we work to avoid design flaws while we build software to be 
secure. 

Penetration testing is a black hat (destructive) activity. The best kind of penetration 
testing is informed by white hat knowledge of design and risk. But all the penetration 
testing in the world will not build you secure software. 

Risk-based security testing is a mix of constructive and destructive activities that requires 
a holistic two-hat approach. Because risk-based security testing is driven by abuse cases 
and risk analysis results as well as functional security requirements, a mix of black hat 
and white hat is unavoidable. 

Abuse cases are tricky. You might guess by the name that abuse cases involve only a 
black hat (destructive) activity. That would be wrong. Abuse cases are themselves driven 
by the two threads. White hat (constructive) thinking drives security requirements, which 
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are a necessary foundation for a goodly percentage of the abuse cases. Black hat thinking 
in the form of attack patterns drives the remaining portion. Though abuse cases clearly 
involve a mix of both hats, the predominant hat is black. 

Security requirements and the resulting security functionality are squarely constructive, 
white hat activities. These are defined and built as an explicit defense against the black 
hat world. In fact, the notion of security requirements is in some sense the ultimate white 
hat activity. 

Security operations is a white hat activity, but it is only very weakly constructive. 
Operations is essential to security, of course, but in terms of building security in, the 
tactics carried out by network-faced ops people are largely defensive. 

Many of the touchpoints amount to assurance activities focused on assessing the security 
situation by looking at the state of various artifacts. Others, like abuse case development 
and security test planning, involve creating security-related artifacts from scratch. In 
general, those activities that involve creating new artifacts are in the business of attack 
creation, design, and simulation.[3] They are, in a sense, the kinds of activities best carried 
out with your black hat on. The others are more about constructing software properly. 
They are best performed while wearing your white hat. 

[3] It's peculiar that these "constructive" activities—building new artifacts—are really 
destructive in nature! Such are the vagaries of software security. 

Software security requires a matching set of both black hats and white hats, inextricably 
bound together. 

Moving Left 

Software people know that it is much more economical to find software defects early in 
the lifecycle than it is to find them later. Academia provided some data about this during 
the 1970s but has been remiss in its duty to drive the point home with even more data.[4] 
Nevertheless, the fact is that fixing a problem at the requirements stage (before design, 
architecture, and code exist) is bound to be much cheaper than fixing even a simple bug 
once thousands or millions of copies of the fielded software are installed. 

[4] The most oft-cited data in this regard are those gathered by TRW and IBM under the 
guidance of Barry Boehm <http://sunset.usc.edu/people/barry.html>. See Figure 3-2. 

Simply put, early is better (Figure 3-2). This fact may seem to run at cross-purposes with 
the "effectiveness" ordering of the touchpoints that I suggest. However, effectiveness for 
me takes into account much more than simply cost. I also thought about which software 
artifacts are likely to be available, what kinds of tools exist (and how good they are), and 
the challenge presented by cultural change. When you factor in those things, I stand by 
my ordering. 
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Figure 3-2. Data from Barry Boehm's work showing how much cheaper it is to 
fix a defect early in the lifecycle. Use this chart to convince management of the 

importance of starting early. Source: TRW 
[View full size image] 

 
 

If early is better, it seems somewhat crazy to focus all of our attention in software 
security at the end of the lifecycle. But that's what we seem to be doing. Hiring reformed 
hackers to carry out a penetration test against your fielded software or running some kind 
of penetration testing tool is probably better than doing nothing. But when these late 
lifecycle methods find problems in your software, what are you going to do? This 
reactive strategy (which is really a kind of penetrate-and-patch approach) may well work 
OK when the fix involves something operational or environmental in nature such as 
installing a better operating system version, changing firewall rules, or otherwise 
tweaking an operational environment. But a reactive approach doesn't work so well when 
the problems are deep in the software itself (which is, frankly, where most of the core 
problems are). The state of the practice, "penetration testing first," is not very clever. One 
caveat is in order. Penetration testing can be very effective in lighting the security fire. 
That is, in a skeptical organization that thinks it is doing everything right from a security 
perspective, there is nothing quite as powerful as a working, demo-able remote exploit to 
scare the heck out of people. Use this approach with great care. 

Actually, there is one strategy worse than "penetration testing first," and that is the "panic 
when attacked" approach. Large numbers of organizations are so far behind in computer 
security that they don't even realize what trouble they're in until it's way too late. If you're 
reading this book, you're not likely in that boat. 

The answer to both of these lame strategies is to "push left" in the touchpoints diagram 
(Figure 3-1). In fact, the top two touchpoints—code review (with a tool) and architectural 
risk analysis—exist just to the left of penetration testing. In terms of economic return, 
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those touchpoints further to the left are going to perform better. (Of course, return alone 
is not the best measurement for the efficacy of a touchpoint.) In a nice coincidence, the 
"push left" rule gets us to the top two touchpoints very early in the game. 

I predict that the software security world will soon move left into code review and that 
this will result in great benefit. Much more sophisticated tools exist now than were 
around only a few short years ago. Of course, code review with an advanced tool is no 
panacea for software security. We know that even the best tool in the world will find only 
about half the problems. Of course, finding half of the problems sure beats finding none 
of them. 

Evidence of the move to the left already exists. A number of traditional IT firms that 
offered network security testing and very basic application security testing with black box 
tools are beginning to offer security code review (using tools, of course). This is an 
encouraging development. 

Next will come a wave of architectural risk analysis. This is a much trickier undertaking, 
best performed by experts today. With better knowledge and better process models, risk 
analysis will be adopted by a much larger target market. In absence of in-house experts, 
start with your existing requirements managers and other savvy stakeholders and enhance 
them with outside consultants until they get on their feet. If your stakeholders know the 
domain well enough to hand-build a capacity plan (the performance analog of a risk 
analysis), they can hold the architects' feet to the fire during a more rigorous pencil-and-
paper security review process. 

Ultimately, pushing all the way left into requirements is our goal. By taking on security at 
the very beginning of the software lifecycle, we can really do the best job of building 
security in. 

This natural evolution of adoption can easily be mirrored in any organization, from the 
largest to the smallest. Begin moving left as soon as possible (see Chapter 10). And by all 
means, get "inside" as quickly as you can. External penetration tests can help you 
determine how severe the problem is, but they do little to fix it. 

In some cases, especially when outside consultants are involved, it is possible to combine 
best practices into a more holistic assessment. For example, my company, Cigital, 
ensures complete coverage of the software defect space by combining code review and 
architectural risk assessment into one service offering. Other potent combinations of 
touchpoints involve risk-based security testing married with penetration testing, security 
requirements analysis with abuse case development, code review with penetration testing, 
and architectural risk analysis with risk-based testing. Don't be afraid to experiment with 
combinations. The touchpoints are teased apart and presented separately mostly for 
pedagogical reasons 

Touchpoints as Best Practices 
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As noted earlier, the software security field is a relatively new one. The first books and 
academic classes on the topic appeared in 2001, demonstrating how recently developers, 
architects, and computer scientists have started systematically studying how to build 
secure software. The field's recent appearance is one reason why best practices are neither 
widely adopted nor in some cases obvious. 

The good news is that technologists and commercial vendors all acknowledge that the 
software security problem exists. The bad news is that we have barely begun to 
instantiate solutions; moreover, many proposed solutions are impotent. Not surprisingly, 
early commercial solutions to the software security problem tend to take an operational 
stance—that is, they focus on solving the software security problem through late lifecycle 
activities such as firewalling (at the application level), penetration testing, and patch 
management. Because security has tended to be operational in nature (especially in the 
corporate world, where IT security revolves around the proper placement and monitoring 
of network security apparatus), this operational tack is only natural. This leads to a 
bifurcation of approaches when it comes to software, into application security and 
software security. 

The core of the problem is that building systems to be secure cannot be accomplished by 
using an operations mindset. Instead, we must revisit all phases of system development 
and make sure that security engineering is present in each of them. When it comes to 
software, this means taking a close look over all software artifacts. This is a far cry from 
black box testing. 

Best practices are usually described as those practices expounded by experts and adopted 
by practitioners. As a group, the touchpoints vary in terms of adoption. While almost 
every organization worried about security makes use of penetration testing, very few 
venture into the murky area of abuse case development. Though I understand that the 
utility and rate of adoption varies among the touchpoints in this book, I am comfortable 
calling them all best practices. 

Coder's Corner[*] 
Count the problems in the following chunk of code. Use your knowledge of the 
touchpoints to think about what kinds of best practices might help you identify 
the different "levels" of problems here. 

1 read(fd, userEntry, sizeof(userEntry)); 
2 comparison = memcmp(userEntry, correctPasswd, 
strlen(userEntry)); 
3 if (comparison != 0) 
4      return (BAD_PASSWORD); 
 

Line 1: Return value from read() ignored. Always a bad sign but not directly 
resulting in an attack. This is the sort of bug that a fairly simple source code 
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analyzer can alert you to. Manual code inspection for quality issues can find 
these kinds of bugs as well. 

Line 2: Comparing a user entry directly with the correct password. Hmm. The 
implication is that the system stores passwords in such a manner that they can 
be directly recovered in plaintext (as opposed to storing a hash). This is an 
architectural flaw best found during architectural risk analysis. 

Line 2: strlen() relies on the read() plopping a null terminator down at the 
end of the buffer. No guarantee of that. A fancier source code analyzer can see 
the connection between the read() and the strlen(). Code review with a tool 
is helpful for finding bugs like this. 

Line 3: The comparison succeeds if the entered password exactly matches the 
correct password or if the entered password is of length zero. Oops. Bye-bye 
password security. This kind of problem can be uncovered with good testing 
based on reasonable requirements and solid test planning. 

There's a slightly more subtle truth at play here beyond the point problems 
discussed above. Although the example is contrived to pack lots of badness into 
a small number of lines, it's really not that unusual to find security problems 
clustered like this. The clueless are often gifted with the ability to be clueless in 
multiple dimensions simultaneously. The seven touchpoints help find all manner 
of cluelessness and stamp it out. 
 

[*] This example is adapted from an interview in Slashdot by Paul Kocher. See 
<http://interviews.slashdot.org/interviews/03/03/27/1357236.shtml?tid=172>. 

Fortunately, an organization is not required to put all touchpoints into practice to see 
progress on software security. Chapter 10 explains how to put together an enterprise-wide 
software security program and describes why adopting even only one or two of the 
software security touchpoints can help. Think of the touchpoints as a maturity map for 
your organization. The more you adopt and the more deeply you adopt, the better ... but 
every little bit helps. 

As you adopt touchpoints in your organization, do not overlook the importance of a 
consistent approach to risk management. The RMF (see Chapter 2) provides a potent 
foundation for all touchpoints. There is little use in identifying security risks unless you 
intend to do something about them. Use the RMF to track progress against identified 
risks over time. 

 Who Should Do Software Security? 
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As it stands in many organizations, software security is nobody's job. Developers, 
architects, and other builders are often unaware of security and possess little in the way of 
software security knowledge. When their software suffers from security failure, they 
don't often feel responsible, arguing that security is up to the people in operations who 
install and operate the software they create. 

A very common reaction among developers and software teams when confronted with a 
security problem in their system (say, during the presentation of risk analysis results) is 
"You can't do that! Nobody would ever do that! And even if they did, you're not 
supposed to do that!" Those software people who say things like that usually believe that 
security is IT's job and an infrastructure issue. By now you should know why that is 
incorrect. One key goal of the software security touchpoints is to arm software teams 
with enough information that these excuses never crop up. By understanding and thinking 
about security throughout the software development lifecycle, developers can avoid nasty 
surprises. 

Operations people become upset when their pristine, mostly secure network is sullied by 
insecure software. They don't understand why software people produce such "crap," and 
they don't feel responsible for the ensuing security mess. They decry the pathetic state of 
software and wish that software developers knew more about security. In desperation, 
operations people grasp at security straws such as application firewalls and intrusion 
detection systems. 

Obviously, this is not a healthy situation. When a security problem happens because of 
bad software, there really is nobody to hold responsible. The standard security people in 
operations are not really at fault (it's not their broken software), and neither are the 
software people (they're not security people). Organizationally, this is a textbook 
management problem. 

In the best possible world, software security would be everybody's job. In a more realistic 
world, assigning responsibility and accountability to a particular group can help solve the 
problem. 

One suggestion worth thinking about involves finding the person with the best handle on 
the way your whole software system works and tapping that person for software security. 
Ask who you turn to when something goes drastically wrong, but you don't have a clue 
about what is causing the problem. The jack-of-all-trades whom you turn to is your new 
software security person.[5] 

[5] This is way too glib, of course (though it will appeal to those "builders" who are 
accustomed to the hero approach—"we threw a guy at that"). More mature organizations 
need a better-fleshed-out "who," "what," "where" framework. Different people accept 
different portions of the responsibility as you divide, conquer, and collaborate. See 
Chapter 10. 
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Building a Software Security Group 

The world has not yet produced many software security people. That's a shame because 
the world certainly needs more. Fortunately, academia appears to be slowly rising to the 
occasion, and a number of schools are beginning to teach software security and/or 
security engineering courses (see the next box, Software Security in the Academy). 

There is not enough time to wait for academia to produce the solution. Instead, software 
security people need to be developed inside existing organizations (like yours). If you 
want to invent some software security people in your organization, consider the following 
advice. 

Don't start with security people 

Though software security is certainly essential to addressing the computer security fiasco 
we find ourselves in, a standard reactive approach will fail. Network security people 
often don't know enough about software to make good software security people. They 
may know loads of stuff about how software operations work (even more in many cases 
than developers and architects know), but this is not what we need to solve the software 
security problem. Normal security practitioners almost never know anything about 
compilers, language frameworks, software architecture, testing, and the myriad other 
things necessary to be a solid software person. 

Software Security in the Academy 
A number of academic institutions now offer security courses very much 
relevant to Building Security In. The best include the following: 

• University of California at Davis 
• University of Virginia 
• Johns Hopkins University 
• Princeton University 
• Purdue University (especially the CERIAS center) 
• Rice University 
• University of California at Berkeley 
• Stanford University 
• Naval Postgraduate School (a military school for graduates) 
• University of Idaho 
• Iowa State University 
• George Washington University 
• United States Military Academy at West Point 

Just to highlight a couple of examples, here are some of the courses offered by 
these schools: 
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• Introduction to Computer Security (practice): UC Davis 
• Computer and Information Security (theory): UC Davis 
• Computer Security: An Intrusion Detection Approach: UC Davis 
• Foundations of Computer and Information Security: UC Davis 
• Computer Incident Detection and Response: Purdue 
• Cryptography and Data Security: Purdue 
• Penetration Analysis: Purdue 
• Advanced Topics in Security (information assurance): Purdue 

Instrumental groundbreaking work in security education has been spearheaded 
by Matt Bishop of UC Davis and Cynthia Irvine of the Naval Postgraduate 
School. Eugene Spafford of Purdue has also been extremely active in calling for 
better security education. For more on this important topic, see the "Education" 
department in IEEE Security & Privacy magazine 
<http://www.computer.org/security>. 
 

Arming a normal infosec guy with a silly first-generation code scanner like ITS4 or a 
black box testing tool like Sanctum's Appscan rarely helps. Tools do not have enough 
smarts to turn network professionals into software people over night. Beware of security 
consultants who claim to be application security specialists when all they really know 
how to do is run ITS4 or Appscan and print out an incomprehensible report. 

Start with software people 

Security is much easier to learn about and grok than software development is. Good 
software people are very valuable, but software security is so important that these highly 
valuable people need to be repositioned. Also note that software people pay attention 
only to other software people, especially those with impressive scars. Don't make the 
mistake of putting lamers or newbies in front of a group of seasoned developers. The 
ensuing feeding frenzy is downright scary (if not hugely entertaining). 

Identifying a responsible person or two is critical to a successful software security 
program (see Chapter 10). Not only is this important from an accountability perspective, 
but the sheer momentum that comes from a dedicated person can't be matched. If you 
want to adopt a new way to do code review (using a tool like Fortify), identify a 
champion and empower that person to get things done. 

Often the most useful first person in a software security group is a risk management 
specialist charged with addressing software security risks that have been uncovered by 
outside consultants. Appointing a risk management person makes it much less likely that 
important results will be swept under the rug or otherwise forgotten by very busy 
organizations (and who is not busy these days?). The risk management specialist can be 
put in charge of the RMF. 
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Mentoring or otherwise training a new software security person may be impossible if 
there are no existing software security types in your organization. If that's the case, hire 
outside consultants to come and help you boot up a group. The extensive experience and 
knowledge that software security consultants have today are as valuable as they are rare, 
but it is well worth investing in mentoring your people in order to build that capability. 

Ultimately, you want two types of people to populate your software security group: black 
hat thinkers and white hat thinkers. If you're lucky, you'll find people who can switch hats 
at, um, the drop of a hat. But more likely, you'll have some good constructive types (who 
naturally swing toward the white hat side) and some devious destructive types (who 
naturally swing toward the black hat side). In some sense, this matches the distinction 
between builders and auditors. You need both, of course, because the touchpoints 
demand both. Know that the builders are much more important than the auditors, though 

Software Security Is a Multidisciplinary Effort 

Software security as a discipline is a new undertaking. On the plus side, new disciplines 
benefit from a creative mix of seemingly unrelated disciplines (see the box Creativity in a 
New Discipline). On the negative side, software security is so new that sometimes it is 
not clear exactly how it should be practiced. 

Software security can and should borrow from other disciplines in computer science and 
software engineering when developing and evolving best practices. A quick shout out to 
related fields is important, as the literature defining software security remains fairly 
sparse. The following topics are of particular relevance and well worth diving into: 

• Security requirements engineering 
• Design for security, software architecture, and architectural analysis 
• Security analysis, security testing, and use of the Common Criteria 
• Guiding principles for software security and case studies in design and analysis 
• Auditing software for implementation risks, architectural risks, automated tools, 

and technology developments (code scanning, information flow, and so on) 
• Common implementation risks (buffer overflows, race conditions, randomness, 

authentication systems, access control, applied cryptography, and trust 
management) 

A number of these topics have some coverage in the annotated bibliography found in 
Chapter 13. Much work remains to be done in each of the best practice areas defined by 
the touchpoints, but other basic practical solutions should be adapted from areas of more 
mature practice as well. 

Creativity in a New Discipline[*] 
We are experiencing a time of great creativity in computer security and must 
seize the opportunity presented by our current situation while we can. The 
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diversity of backgrounds represented by today's security practitioners may be a 
high-water mark. Consider that today's security thought leaders were trained in 
fields as diverse as bio-statistics, divinity, economics, and cognitive science, and 
thus bring with them interesting new perspectives on the security challenge. 
This leads to creative interplay in the field and has resulted in interesting 
progress, including the emergence of economic theories of security, an embrace 
of risk management, an emphasis on process-driven approaches (versus product 
sets), a shift toward software security, the rise of security engineering, and so 
on. As the worldwide security paradigm shift from guns, dogs, and concrete to 
networks, information systems, and computers continues unabated, we must 
leverage this time of creative diversity for all it's worth. 

A number of young researchers joined the computer security field in the mid-
1990s, changing the focus of security research from spookware and national 
defense (think crypto, multilevel security, communications monitoring, and the 
like) to commercial systems and commerce. This movement away from 
military-oriented research was driven in part by the widespread public adoption 
of the Internet and the growing trend of e-commerce. With money at stake, 
security quickly became as relevant to business as it was to national defense. 
This influx of "new blood" shook up the scientific security research community 
and continues to have far-reaching effects that are only now affecting 
commercial security—the commercialization of firewalls, the rise of antivirus 
technology, and the adoption of modern security platforms, such as Java and 
.NET, were all predicted and spearheaded by new thinkers in the security 
research community. 

Where Today's Security People Come From 

Only a handful of people working in computer security today started their 
careers in the field. In fact, academic programs expressly designed to train 
security practitioners are a recent phenomenon and remain rare. 

Interestingly, it may be in this dearth of "qualified" people trained in security 
that a critical opportunity can be found. Though few practitioners have academic 
security training, they most assuredly do have academic training in some field of 
study. That means that as a collective, the computer security field is filled with 
diverse and interesting points of view. This is exactly the sort of Petri dish of 
ideas that led to the Renaissance at the end of the Dark Ages. 

Diversity of ideas is healthy, and it lends a creativity and drive to the security 
field that we must take advantage of. A great example of this can be found in the 
new subfield of software security. Only five years ago the notion that bad 
software might be a major root cause of security issues was not common. 
Today, software security is the subject of keynote talks at the RSA security 
conference <http://rsaconference.com/>, and we all seem to agree that we have a 
software problem to solve. This change was partially due to the involvement of 
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programming languages people (once found only at obscure academic 
conferences like OOPSLA) in the security field. Such involvement resulted in 
the creation of modern languages like Java and .NET that include security 
models in their very design. When languages are declared "secure," things get 
interesting! The evolutionary arms race between attackers and defenders jumps 
a level, new avenues for security design emerge, and dusty but thorny problems 
(think "buffer overflow") become less relevant to the next generation of 
systems. 

Where Tomorrow's Security People Will Come From 

These days, academic and professional training programs are being put in place 
to train the next generation of security professionals. Soon, standard curricula 
will be developed, and students will be required to understand the same core set 
of concepts. This will certainly help to solidify the field of computer security, 
but at the same time, there is a danger that generalization may lead to a 
homogenization of security. Instead of the creative soup afforded by a 
multiplicity of points of view spanning many fields, security runs the risk of 
becoming staid and static. If we are careful to avoid complete homogenization 
of the field, we can retain the benefits of diversity while building a solid 
academic discipline. One way to do this might be to encourage those students 
seeking computer security degrees to study widely in other supposedly unrelated 
disciplines as well. Another is to ensure that outside perspectives remain 
welcome in the field and are not dismissed out of hand. Computer security must 
remain an inclusive discipline in order to retain its creativity. 

In any case, we must take advantage of the situation we find ourselves in now. 
Computer security is, in fact, experiencing an important rebirth, and now is the 
time to make great progress. We must pay close attention to different ideas, 
embrace change, and help security continue to evolve even as it begins to 
crystallize. 
 

[*] Portions of this text box originally appeared in my Network magazine "[In]security" 
column from February 2005 entitled "Are We in a Computer Security Renaissance?" The 
seed idea came from a conversation with Dan Geer. Network magazine is now IT 
Architect. 

Touchpoints to Success 

As I have said before, software security is not security software. Security functionality 
alone will not make software secure. The touchpoints outlined here reinforce and flesh 
out that perspective by emphasizing the kinds of assurance activities necessary to build 
security in. To attain software security, software projects must apply the touchpoints 
throughout the software lifecycle, practicing security assurance as they go. The 
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touchpoints I have identified take into account both security mechanisms (such as access 
control) and design for security (such as robust design that makes software attacks 
difficult). These encompass both black hat and white hat activities. Sometimes the areas 
overlap, but often they don't. They are, however, closely aligned. 

One central goal of this book is to describe the best practices overviewed in this chapter 
in more detail. Touchpoints are one of the three pillars of software security. As the 
connectedness, complexity, and extensibility of modern software continue to impact 
software security in a negative way, we must begin to grapple with the problem in a more 
reasonable fashion than simply spray painting cryptography on our code. Integrating a 
decent set of best practices into the software development lifecycle is an excellent way to 
do this. Playing the game of software security requires both good offense and good 
defense (in other words, two hats), and for that reason the touchpoints use both 
constructive and destructive approaches. Although software security as a field has much 
maturing to do, it already has a lot to offer to those practitioners interested in striking at 
the heart of security problems. 
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Chapter 4. Code Review with a Tool[1] 
[1] Parts of this chapter appeared in original form in IEEE Security & Privacy magazine 
coauthored with Brian Chess [Chess and McGraw 2004]. 

[View full size image] 

 

Debugging is at least twice as hard as programming. If your code is as clever as you can 
possibly make it, then by definition you're not smart enough to debug it. 

—Brian Kernighan 

All software projects are guaranteed to have one artifact in common—source code. 
Because of this basic guarantee, it makes sense to center a software assurance activity 
around code itself. Plus, a large number of security problems are caused by simple bugs 
that can be spotted in code (e.g., a buffer overflow vulnerability is the common result of 
misusing various string functions including strcpy() in C). In terms of bugs and flaws, 
code review is about finding and fixing bugs. Together with architectural risk analysis 
(see Chapter 5), code review for security tops the list of software security touchpoints. In 
this chapter, I describe how to automate source code security analysis with static analysis 
tools. 

Using a tool makes sense because code review is boring, difficult, and tedious. Analysts 
who practice code review often are very familiar with the "get done, go home" 
phenomenon described in Building Secure Software [Viega and McGraw 2001]. It is all 
too easy to start a review full of diligence and care, cross-referencing definitions and 
variable declarations, and end it by giving function definitions (and sometimes even 
entire pages of code) only a cursory glance. 
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Instead of focusing on descriptions and discussions of processes for generic code review 
or code inspection in this chapter, I refer the reader to the classic texts on the subject 
[Fagan 1976; Gilb and Graham 1993]. This chapter assumes that you know something 
about manual code review. If you don't, take a quick look at Tom Gilb's Web site 
<http://www.gilb.com/> before you continue. 

Catching Implementation Bugs Early (with a Tool) 

Programmers make little mistakes all the time—a missing semicolon here, an extra 
parenthesis there. Most of the time, such gaffes are inconsequential; the compiler notes 
the error, the programmer fixes the code, and the development process continues. This 
quick cycle of feedback and response stands in sharp contrast to what happens with most 
security vulnerabilities, which can lie dormant (sometimes for years) before discovery. 
The longer a vulnerability lies dormant, the more expensive it can be to fix. Adding insult 
to injury, the programming community has a long history of repeating the same security-
related mistakes. 

One of the big problems is that security is not yet a standard part of the programming 
curriculum. You can't really blame programmers who introduce security problems into 
their software if nobody ever told them what to avoid or how to build secure software. 
Another big problem is that most programming languages were not designed with 
security in mind. Unintentional (mis)use of various functions built into these languages 
leads to very common and often exploited vulnerabilities. 

Creating simple tools to help look for these problems is an obvious way forward. The 
promise of static analysis is to identify many common coding problems automatically, 
before a program is released. 

Static analysis tools (also called source code analyzers) examine the text of a program 
statically, without attempting to execute it. Theoretically, they can examine either a 
program's source code or a compiled form of the program to equal benefit, although the 
problem of decoding the latter can be difficult. We'll focus on source code analysis in this 
chapter because that's where the most mature technology exists (though see the box 
Binary Analysis?!). 

Manual auditing of the kind covered in Tom Gilb's work is a form of static analysis. 
Manual auditing is very time consuming, and to do it effectively, human code auditors 
must first know how security vulnerabilities look before they can rigorously examine the 
code. Static analysis tools compare favorably to manual audits because they're faster, 
which means they can evaluate programs much more frequently, and they encapsulate 
security knowledge in a way that doesn't require the tool operator to have the same level 
of security expertise as a human auditor. Just as a programmer can rely on a compiler to 
enforce the finer points of language syntax consistently, the operator of a good static 
analysis tool can successfully apply that tool without being aware of the finer points of 
security bugs. 
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Binary Analysis?! 
Source code analyzers are particularly useful when you're building software, but 
what about those times when you don't have source code? One common 
situation arises when you buy commercial software that is delivered only in 
executable form. As Exploiting Software explains, attackers really don't need 
source code to find vulnerabilities and develop exploits [Hoglund and McGraw 
2004]. In fact, disassemblers and decompilers are tools that feature prominently 
in the attacker's toolkit. If the attackers can do this, why can't the good guys? 

The answer is not so simple. Finding one or two vulnerabilities in a binary is 
very easy. In fact, grep-like engines that look for simple patterns in binaries in 
much the same way that ITS4 looks for them in source code already exist. One 
of the first was Hoglund's BugScan. The complexity of the problem has its roots 
deep in the basic asymmetry of computer security. Since attackers need to find 
only one problem (and build an exploit for it) and defenders need to find all 
problems (and fix them or otherwise defend against attack), attackers' tools can 
lack precision and still be useful. 

Building a binary scanner is an uphill battle, but it is not impossible. The main 
problem is creating the same kind of abstract internal representation of a binary 
that is created when a sophisticated source code analyzer does its thing. Once 
that is done, standard sorts of analysis engines can be applied to this 
representation just as in the (easier) source code approach. 

Of course, once you find a problem in a binary, what are you to do about it? If 
you don't have the source code, it seems you are left with either building and 
applying a binary patch or creating a rule for an external filter. Not pretty. 

In the end, it should be clear why source code analysis is superior if you are 
concerned about the software security big picture and you are creating code. If 
you are consuming more code than you produce, a binary scanner may be 
helpful for keeping your software vendors in line. 
 

Testing for security vulnerabilities is complicated by the fact that they often exist in hard-
to-reach states or crop up in unusual circumstances. Static analysis tools can peer into 
more of a program's dark corners with less fuss than dynamic analysis, which requires 
actually running the code. Static analysis also has the potential to be applied before a 
program reaches a level of completion at which testing can be meaningfully performed. 
The earlier security risks are identified and managed in the software lifecycle, the better. 

Aim for Good, Not Perfect 
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No individual touchpoint or tool can solve all of your software security problems. Static 
analysis tools are no different. For starters, static analysis tools look for a fixed set of 
patterns, or rules, in the code. Although more advanced tools allow new rules to be added 
over time, if a rule hasn't been written yet to find a particular problem, the tool will never 
find that problem. When it comes to security, what you don't know is pretty darn likely to 
hurt you, so beware of any tool that says something like, "Zero defects found, your 
program is now secure." The appropriate output is, "Sorry, couldn't find any more bugs." 

A static analysis tool's output still requires human evaluation. There's no way for any tool 
to know automatically which problems are more or less important to you, so there's no 
way to avoid trawling through the output and making a judgment call about which issues 
should be fixed and which ones carry an acceptable level of risk. Plus, knowledgeable 
people still need to get a program's design right to avoid any flaws. Static analysis tools 
can find bugs in the nitty-gritty details, but they can't even begin to critique design. Don't 
expect any tool to tell you, "I see you're implementing a funds transfer application. You 
should tighten up the user password requirements." 

Finally, there's computer science theory to contend with. Rice's theorem,[2] which says (in 
essence) that any nontrivial question you care to ask about a program can be reduced to 
the halting problem,[3] applies in spades to static analysis tools. In scientific terms, static 
analysis problems are undecidable in the worst case. The practical ramifications of Rice's 
theorem are that all static analysis tools are forced to make approximations and that these 
approximations lead to less-than-perfect output. 

[2] See <http://en.wikipedia.org/wiki/Rice's_theorem> if you need to understand more 
about Rice's theorem. 

[3] See <http://en.wikipedia.org/wiki/Halting_problem> if you're not a computer science 
theory junkie. 

Static analysis tools suffer from false negatives (in which the program contains bugs that 
the tool doesn't report) and false positives (in which the tool reports bugs that the 
program doesn't really contain). False positives cause immediate grief to any analyst who 
has to sift through them, but false negatives are much more dangerous because they lead 
to a false sense of security. 

A tool is sound if, for a given set of assumptions, it produces no false negatives. 
Unfortunately, the downside to always erring on the side of caution is a potentially 
debilitating number of false positives. The static analysis crowd jokes that too high a 
percentage of false positives leads to 100% false negatives because that's what you get 
when people stop using a tool. A tool is unsound if it tries to reduce false positives at the 
cost of sometimes letting a false negative slip by. Most commercial tools these days are 
unsound. 

Ancient History 
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The first code scanner built to look for security problems in code was Cigital's ITS4 
<http://www.cigital.com/its4/>.[4] Since ITS4's release in early 2000, the idea of detecting 
security problems by looking over source code with a tool has come of age. Much better 
approaches exist and are being rapidly commercialized. 

[4] ITS4 is actually an acronym for "It's The Software Stupid Security Scanner," a name 
we invented much to the dismay of our poor marketing people. That was back in the day 
when Cigital was called Reliable Software Technologies. 

ITS4 and its counterparts RATS <http://www.securesoftware.com> and Flawfinder 
<http://www.dwheeler.com/flawfinder/> are extremely simple—the tools scan through a 
file (lexically), looking for syntactic matches based on a number of simple "rules" that 
might indicate possible security vulnerabilities. One such rule might be "use of strcpy() 
should be avoided," which can be applied by looking through the software for the pattern 
"strcpy" and alerting the user when and where it is found. This is obviously a simple-
minded approach that is often referred to with the derogatory label "glorified grep."[5] 

[5] For the non-UNIX geeks in the audience, grep is a command-line UNIX utility for 
finding lexical patterns. 

The best thing about ITS4 and company was that creating them involved gathering and 
publishing a preliminary set of software security rules all in one place. When we released 
the tool (as open source), our hope was that the world would participate in helping to 
gather and improve the ruleset. Though over 15,000 people downloaded ITS4 in the first 
year it was out, we never received even one rule to add to its knowledge base. The world 
did not end, however, and a number of prominent commercial efforts to build up and 
evolve rulesets were undertaken. Appendix B describes a very basic set of software 
security rules (those included in ITS4) to serve as part of a minimum set of security rules 
that every static analysis tool should cover. 

Worth mentioning is the fact that ITS4 and friends were never intended to be "push the 
button, see the bug" kinds of tools. The basic idea was instead to turn an impossible 
problem (remembering all those rules while doing manual code review) into a really hard 
one (figuring out whether the things flagged by the tool matter or not). Simple tools like 
ITS4 help you carry out a source code security review, but they certainly don't do it for 
you. The same can be said for modern tools, though they definitely make things much 
easier than the first-generation tools did. 

 Approaches to Static Analysis 

Probably the simplest and most straightforward approach to static analysis is the UNIX 
utility grep—the same functionality you find implemented in the earliest tools such as 
ITS4. Armed with a list of good search strings, grep can reveal a lot about a code base. 
The downside is that grep is rather lo-fi because it doesn't understand anything about the 
files it scans. Comments, string literals, declarations, and function calls are all just part of 
a stream of characters to be matched against. 
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You might be amused to note that using grep to search code for words like "bug," 
"XXX," "fix," "here," and best of all "assume" often reveals interesting and relevant 
tidbits. Any good security source code review should start with that. 

Better fidelity requires taking into account the lexical rules that govern the programming 
language being analyzed. By doing this, a tool can distinguish between a vulnerable 
function call: 

gets(&buf); 
 

a comment: 

/* never ever call gets */ 
 

and an innocent and unrelated identifier: 

int begetsNextChild = 0; 
 

As mentioned earlier, basic lexical analysis is the approach taken by early static analysis 
tools, including ITS4, Flawfinder, and RATS—all of which preprocess and tokenize 
source files (the same first steps a compiler would take) and then match the resulting 
token stream against a library of vulnerable constructs. Earlier, Matt Bishop and Mike 
Dilger built a special-purpose lexical analysis tool specifically to identify time-of-check–
time-of-use (TOCTOU) flaws [Bishop and Dilger 1996]. 

While lexical analysis tools are certainly a step up from grep, they produce a hefty 
number of false positives because they make no effort to account for the target code's 
semantics. A stream of tokens is better than a stream of characters, but it's still a long way 
from understanding how a program will behave when it executes. Although some 
security defect signatures are so strong that they don't require semantic interpretation to 
be identified accurately, most are not so straightforward. 

To increase precision, a static analysis tool must leverage more compiler technology. By 
building an abstract syntax tree (AST) from source code, such a tool could take into 
account the basic semantics of the program being evaluated. 

Armed with an AST, the next decision to make involves the scope of the analysis. Local 
analysis examines the program one function at a time and doesn't consider relationships 
between functions. Module-level analysis considers one class or compilation unit at a 
time, so it takes into account relationships between functions in the same module and 
considers properties that apply to classes, but it doesn't analyze calls between modules. 
Global analysis involves analyzing the entire program, so it takes into account all 
relationships between functions. 
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The scope of the analysis also determines the amount of context the tool considers. More 
context is better when it comes to reducing false positives, but it can lead to a huge 
amount of computation to perform. 

A History of Rule Coverage 

Coding rules in explicit form have evolved rapidly in their coverage of potential 
vulnerabilities. Before Bishop and Dilger's work [1996] on race conditions in file access, 
explicit coding rulesets (if they existed at all) were only checklist documents of ad hoc 
information authored, managed, and typically not widely shared by experienced software 
security practitioners. Bishop and Dilger's tool was one of the first recognized attempts to 
capture a ruleset and automate its application through lexical scanning of code.[6] For the 
next four years, plenty of research was done in the area, but no other tools and 
accompanying rulesets emerged to push things forward. 

[6] Bishop and Dilger's tool was built around a limited set of rules covering potential race 
conditions in file accesses using C on UNIX systems [Bishop and Dilger 1996]. 

This changed in early 2000 with the release of ITS4, a tool whose rule-set also targeted 
C/C++ code but went beyond the single-dimensional approaches of the past to cover a 
broad range of potential vulnerabilities in 144 different APIs or functions. This was 
followed the next year by the release of two more tools, Flawfinder and RATS. 
Flawfinder, written by David Wheeler, is an "interestingly" implemented C/C++ scanning 
tool with a somewhat larger set of rules than ITS4. RATS, authored by John Viega, not 
only offers a broader ruleset covering 310 C/C++ APIs or functions but also includes 
rulesets for the Perl, PHP, Python, and OpenSSL domains. In parallel with this public 
development, Cigital (the company that originally created ITS4) began commercially 
using SourceScope, a follow-on to ITS4 with a new standard of coverage—653 C/C++ 
APIs or functions. Figure 4-1 shows how the rulesets from early tools intersect. 

Figure 4-1. A Venn diagram showing the overlap for ITS4, RATS, and 
SourceScope rules. Together, these rules define a reasonable minimum set of C 
and C++ rules for static analysis tools. (Thanks to Sean Barnum, who created 

this diagram.) 
[View full size image] 
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Today a handful of first-tier options are available in the static code analysis tools space. 
These tools include but are not limited to: 

• Coverity: Prevent <http://www.coverity.com/products/products_security.html> 
• Fortify: Source Code Analysis <http://www.fortifysoftware.com/products/sca/> 
• Ounce Labs: Prexis/Engine <http://www.ouncelabs.com/prexis_engine.html> 
• Secure Software: CodeAssure Workbench 

<http://www.securesoftware.com/products/source.html> 

Each of the tools offers a comprehensive and growing ruleset varying in both size and 
area of focus. As you investigate and evaluate which tool is most appropriate for your 
needs, the coverage of the accompanying ruleset should be one of your primary factors of 
comparison. 
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Together with the Software Engineering Institute, Cigital has created a searchable catalog 
of rules published on the Department of Homeland Security's Building Security In portal 
<http://buildsecurityin.us-cert.gov/portal/>. This catalog contains full coverage of the 
C/C++ rulesets from ITS4, RATS, and SourceScope and is intended to represent the 
foundational set of security rules for C/C++ development. Though some currently 
available tools have rulesets much more comprehensive than this catalog, we consider 
this the minimum standard for any modern tool scanning C/C++ code for security 
vulnerabilities. 

Modern Rules 

Since the early days of ITS4, the idea of security rules and security vulnerability 
categories has progressed. Today, a number of distinct efforts to categorize, describe, and 
"tool-ify" software security knowledge are under way. My approach is covered in 
Chapter 12, where I present a simple taxonomy of coding errors that lead to security 
problems. The first box, Modern Security Rules Schema, describes the schema developed 
at Cigital for organizing security rule information and gives an example.[7] The second 
box, A Complete Modern Rule on pages 119 through 122, provides an example of one of 
the many rules compiled in the extensive Cigital knowledge base. 

[7] Also of note is the new book The 19 Deadly Sins of Software Security, which provides 
treatment of the rules space as well [Howard, LeBlanc, and Viega 2005]. Chapter 12 
includes a mapping of my taxonomy against the 19 sins and the OWASP top ten 
<http://www.owasp.org/documentation/topten.html>. 

 Tools from Researchland 

Researchers have explored many methods for making sense of program semantics. Some 
are sound, some aren't; some are built to detect specific classes of bugs, while others are 
flexible enough to read definitions for what they're supposed to detect. Some of the more 
recent tools are worth pondering. You really won't be able to download most of these 
research prototypes and merrily start finding bugs in your own code. Rather, the ideas 
from these tools are driving the current crop of commercial tools (not to mention the next 
round of research tools). 

• BOON applies integer range analysis to determine whether a C program can index 
an array outside its bounds [Wagner et al. 2000]. While capable of finding many 
errors that lexical analysis tools would miss, the checker is still imprecise: It 
ignores statement order, it can't model interprocedural dependencies, and it 
ignores pointer aliasing. 

• Inspired by Perl's taint mode, CQual uses type qualifiers to perform a taint 
analysis, which detects format string vulnerabilities in C programs [Foster, 
Terauchi, and Aiken 2002]. CQual requires a programmer to annotate a few 
variables as either tainted or untainted and then uses type inference rules (along 
with pre-annotated system libraries) to propagate the qualifiers. Once the 
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qualifiers are propagated, the system can detect format string vulnerabilities by 
type checking. 

• The xg++ tool uses a template-driven compiler extension to attack the problem of 
finding kernel vulnerabilities in Linux and OpenBSD [Ashcraft and Engler 2002]. 
It looks for locations where the kernel uses data from an untrusted source without 
checking it first, methods by which a user can cause the kernel to allocate 
memory and not free it, and situations in which a user could cause the kernel to 
deadlock. 

• The Eau Claire tool uses a theorem prover to create a general specification-
checking framework for C programs [Chess 2002]. It can help find common 
security problems like buffer overflows, file access race conditions, and format 
string bugs. Developers can use specifications to ensure that function 
implementations behave as expected. 

• MOPS takes a model-checking approach to look for violations of temporal safety 
properties [Chen and Wagner 2002]. Developers can model their own safety 
properties, and some have used the tool to check for privilege management errors, 
incorrect construction of chroot jails, file access race conditions, and ill-
conceived temporary file schemes. 

• Splint extends the lint concept into the security realm [Larochelle and Evans 
2001]. By adding annotations, developers can enable splint to find abstraction 
violations, unannounced modifications to global variables, and possible use-
before-initialization errors. Splint can also reason about minimum and maximum 
array bounds accesses if it is provided with function pre- and postconditions. 

Modern Security Rules Schema 
The schema shown in this table associates several distinct fields with each rule. 
This schema was developed at Cigital and is the skeleton of one of many 
knowledge catalogs. Though not all of the fields are relevant to static analysis 
per se, they do help in organizing and categorizing rules, which can then be 
consumed by a tool. 

Fieldname Field Description Selection 
Choices 

  

Number Unique rule descriptor.     

ID Shorthand label for the 
rule. 

    

Title Short rule descriptor.     

Identification 
Difficulty 

How hard is it to apply 
this rule? Do we need 
simple text scanning? A 
complete type tree in an 

Scan—Text 
scanning AST—
AST parse tree 
analysis flow 
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AST? Data flow analysis analysis? 

Accuracy How likely is this rule to 
be accurate? Will there 
be a large number of 
false positives? 

False negatives 
High false 
positives False 
positives Low 
false positives 

  

Priority How important is this 
rule? 

Low—Look at 
instances of the 
rule if there is 
time  
Medium—All 
instances should 
be examined, but 
not always fixed 
High—All 
instances should 
be fixed  
Info—Simply 
flagged for info 

  

Attack 
Category 

What typical types of 
attacks does this rule 
help expose and/or 
mitigate? 

Denial of service 
Spoofing  
Impersonation  
Log forging  
None  
Path spoofing or 
confusion 
problem  
Resource 
injection  
Setting 
manipulation  
SQL injection 

  

Vulnerability 
Kingdom 

What types of 
vulnerabilities are 
exposed by this rule? 
(See Chapter 12.) 

Input validation 
and 
representation  
API abuse  
Security features 
Time and state  
Error handling  
Code quality  
Encapsulation  
Environment 
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Software 
Context 

In what area of software 
implementation does the 
rule have likely impact? 

    

Context Software implementation 
context of impact for this 
rule. 

Authorization  
Critical sections 
Cryptography  
Debug API  
File creation  
File I/O  
File management 
Filename 
management  
File path 
management  
Handle 
duplication  
Impersonation  
Inheritance  
Internet  
ISAPI  
Memory 
management  
OLE registration 
National 
language support 

Process 
management  
Security  
Shell 
functions  
String 
conversion 
macros  
String 
formatting  
String 
management  
String parsing  
Sundry 
platform 
pitfalls  
Temporary 
file 
management  
Threads and 
processes  
Using named 
kernel objects 
in services  
Other 

Other Context New software 
development contexts 
that are not in the 
Context list. 

    

Location Header file, class, or 
module where this rule's 
APIs live. 

    

Description Full explanation of the 
rule, things to search for, 
and (potentially) context 
of what can reduce the 
level of false positive hits 
on this rule. 

    

APIs Which APIs does this     
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rule apply to? 

Function Name API name.     

Comments Comments describing 
any special conditions of 
how this rule applies to 
the API. 

    

Method of 
Attack 

Context/motivation of 
how this rule is important 
to an attacker. How 
would the attacker 
leverage this weakness to 
exploit the software? 

  

 

Exception 
Criteria 

Under what conditions is 
it okay to ignore the 
triggering of this rule? 

    

Solution What needs to be done to 
fix the code to avoid this 
rule and therefore 
improve the security of 
the code? What should 
be changed? 

    

Solution 
Applicability 

A natural language 
explanation of when it is 
appropriate to consider 
this solution. 

    

Solution 
Description 

Description of the 
proposed actions or steps 
for this solution. 

    

Solution 
Efficacy 

A natural language 
explanation of the 
efficacy of this particular 
solution. 

    

Signature 
Details 

What specific code 
signature will indicate 
that this rule is relevant 
for the code being 
analyzed? 

    

Code Specific code examples     
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Examples 
Negative 

that exhibit this rule in 
failure mode. 

Code 
Examples 
Positive 

Specific code examples 
that exhibit this rule in 
solution mode. 

    

Source 
References 

Any supporting 
bibliography entries 
(sources) for this rule. 

    

Recommended 
Resources 

Recommended resources 
for better understanding 
the context, nature, and 
implications of this rule. 

    

Resource 
Name 

Name of the resource 
being recommended. 

    

Resource Link URL link to the resource 
(if applicable). 

    

Maturity What is the state of 
maturity of the definition 
of this rule? 

Draft, low, 
medium, high 

  

 
 

A Complete Modern Rule 
Given the schema shown in the previous table, Cigital has collected, categorized, and 
fleshed out many rules. The table here is an example of a complete rule for catgets(). 
Reading an entire set of rules, even if they are presented with this advanced schema, is 
difficult and no fun. (Try it for yourself by perusing Appendix B.) A static analysis tool 
can enforce rules like these without forcing every developer in the world to internalize all 
possible potential vulnerabilities. In fact, by applying these rules with a tool during 
development (especially when the tool is completely integrated into an IDE), developers 
can more naturally internalize the rules. 

Title catgets 

Attack 
Category 

Path spoofing or confusion problem 

Vulnerability 
Kingdom 

Input validation and representation 

  • Format string 
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• Buffer overflow 

Software 
Context 

National language support 

Location nl_types.h 

Description Text obtained from message catalogs may not be trustworthy, and care 
must be exercised in how it is used. 

  The function catopen() opens a message catalog file located either 
according to a supplied path (containing a / character) or by searching 
for a named catalog (with no /) by referencing the values of the 
NLSPATH, LANG, and LC_MESSAGES environment variables. 
Subsequently, the catgets() function may be used to obtain message 
text from the catalog. If an attacker can influence the environment in 
which the program runs, he or she can cause a program to load strings 
from arbitrary files. 

  Careless use of text returned by catgets() can create vulnerabilities 
that can be exploited by an attacker who manages to substitute text. 
Depending on how the text is used, buffer overflow or format 
vulnerabilities may be present, which, if exploited, could result in the 
execution of arbitrary code. 

 
APIs Function Name Comments 

  catopen Opens message catalog based on environment 

  catgets Returns arbitrary length string 

Method of 
Attack 

Attacker can manipulate NLSPATH and related environment variables to 
control what gets returned by catopen() and catgets(). Alternatively, 
the standard catalog file could be overwritten if catalog directories are not 
secure. By installing a custom catalog of messages, the attacker can cause 
arbitrarily long strings to be returned and/or can include format string 
information (e.g., %s) into the string, which may be interpreted if the text 
is used as a format string. In many cases, setuid programs access locale-
specific message catalogs to print messages. If this is not done with due 
care, an attacker can use this to cause arbitrary code execution. 

Exception 
Criteria 

catgets() is safe if the standard catalog directory is secure and the 
catalog descriptor received from catopen() was opened using a fully 
specified path containing a / character, or NLSPATH and other environment 
variables are validated before being used. catgets() is also safe if the 
returned message text is used in a safe fashion. 
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Solution Solution Applicability Solution Description Solutions 

Efficacy 

  Particularly applicable to 
setuid programs for which 
the user can control the 
environment. 

Validate that catopen() 
will return an authentic 
message catalog. 

Effective, but 
hard to 
implement 
correctly. Best 
used in 
combination 
with the 
solution of 
using text 
safely. 

  This requires either 
certainty that an attacker 
could not manipulate the 
program environment (not 
necessarily an option for a 
setuid program) or that the 
information used to locate 
the particular message 
catalog file was validated 
before catopen() was 
called. Specifying a fully 
qualified catalog path 
containing a / character 
would work, but it largely 
defeats the purpose of 
using a message catalog. 
The alternative is to 
examine NLSPATH and 
related environment 
variables to confirm that 
they correspond only to the 
expected secure directories. 
This also requires that the 
message catalog locations 
be constrained, with those 
constraints known to the 
program at compilation 
time. 

  

 

  Particularly applicable to 
setuid programs for which 

Use text obtained from 
catgets() safely, in a way 

Effective. 
Validating text 
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that reflects its 
untrustworthy nature. 

to be used as a 
format string 
could be tricky 
unless rigid 
constraints are 
enforced. 

  

the user can control the 
environment. 

Text obtained from 
catgets() is typically 
used in printed or displayed 
messages. This should not 
be used as a format string, 
as in printf (text), but 
should instead be used as a 
data string, as in printf 
"%s", text). If the text must 
be used as a format string, 
it should be parsed and 
validated as being safe 
before it is used. 

  

    If text obtained from 
catgets() is placed in a 
placed in a buffer, care 
must be exercised to ensure 
that buffer overflows 
cannot occur. 

  

Signature 
Details 

Any use of catopen() or catgets() should be examined. If no Details 
checks are done on NLSPATH and usage of catgets() result matches the 
signature for a potential format string problem or buffer overflow problem, 
a problem exists. Most relevant for setuid programs, for which the user can 
control the execution environment. 

 
    

Code Examples 
Negative 

nl_catd catd = catopen("MyCatalog", 0); 
char *text = catgets(catd, 2, 10, "Default 
text."); 
printf(text); // vulnerable to format string 
attack 
strcpy(buffer, text); // vulnerable to BO attack 
 

Code Examples Positive // Verify an expected secure path will be 
searched 
if (!nlsPathIsSafe()) exit(EXIT_FAILURE); 
nl_catd catd = catopen("MyCatalog", 0); 
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// Ensure safe usage of retrieved text 
char *text = catgets(catd, 2, 10, "Default 
text."); 
printf("%s", text); 
strncpy(buffer, text, bufferSize); 
 

Source References N/A 
 
Recommend
ed Resources 

Resourc
e Name 

Resource Link 

  catgets(3
) man 
page 

<http://www.freebsd.org/cgi/man.cgi?query=catgets&sekti
on=3> 

  catopen(
3) man 
page 

<http://www.freebsd.org/cgi/man.cgi?query=catopen&sekti
on=3> 

Discriminant 
Set 

Operatin
g System 

• UNIX (all) 
• Windows (all) 

  Languag
e 

• C 
• C++ 

 
 

Many static analysis approaches hold promise but have yet to be directly applied to 
security. Some of the more noteworthy ones include ESP (a large-scale property 
verification approach) [Das, Lerner, and Seigle 2002], model checkers such as SLAM 
and BLAST (which use predicate abstraction to examine program safety properties) [Ball 
and Rajamani 2001; Henzinger et al. 2003], and FindBugs (a lightweight checker with a 
good reputation for unearthing common errors in Java programs) [Hovemeyer and Pugh 
2004]. 

Academic work on static analysis continues apace, and research results are published 
with some regularity at conferences such as USENIX Security, IEEE Security and 
Privacy (Oakland), ISOC Network and Distributed System Security, and Programming 
Language Design and Implementation (PLDI). Although it often takes years for results to 
make a commercial impact, solid technology transfer paths have been established, and the 
pipeline looks good. Expect great progress in static analysis during the next several years. 

Commercial Tool Vendors 
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In 2004 and 2005, a number of startups formed to address the software security space. 
Many of these vendors have built and are selling basic source code analysis tools. Major 
vendors in the space include the following: 

• Coverity <http://www.coverity.com> 
• Fortify <http://www.fortifysoftware.com> 
• Ounce Labs <http://www.ouncelabs.com> 
• Secure Software <http://www.securesoftware.com> 

The technological approach taken by many of these vendors is very similar, although 
some are more academically inclined than others. By basing their tools on compiler 
technology, these vendors have upped the level of sophistication far beyond the early, 
almost unusable tools like ITS4.[8] 

[8] Beware of security consultants armed with ITS4 who aren't software people. 
Consultants with code review tools are rapidly becoming to the software security world 
what consultants with penetration testing tools are to the network security world. Make 
sure you carefully vet your vendors. 

A critical feature that currently serves as an important differentiator in the static analysis 
tools market is the kind of knowledge (the ruleset) that a tool enforces. The importance of 
a good ruleset can't be overestimated. 

Commercial Source Code Analyzers 

One of the main reasons to use a source code analysis tool is that manual review is costly 
and time consuming. Manual review is such a pain that reviewers regularly suffer from 
the "get done, go home" phenomenon—starting strong and ending with a sputter. An 
automated tool can begin to check every line of code whenever a build is complete, 
allowing development shops to get on with the business of building software. 

Integrating a source code analyzer into your development lifecycle can be painless and 
easy. As long as your code builds, you should be able to run a modern analysis. Working 
through the results remains a challenge but is nowhere near as much trouble as 
painstakingly checking every line of code by hand. 

Modern approaches to static analysis can now process on the order of millions of lines of 
code quickly and efficiently. Though a complete review certainly requires an analyst with 
a clue, the process of looking through the results of a tool and thinking through potential 
vulnerabilities beats looking through everything. A time savings of several hundred 
percent is not out of the question. 

Several timesaving mechanisms are built into modern tools. The first is the knowledge 
encapsulated in a tool. Keeping a burgeoning list of all known security problems found in 
a language like C (several hundred) in your head while attempting to trace control flow, 
data flow, and an explosion of states by hand is extremely difficult. Having a tool that 



 138

remembers security problems (and can easily be expanded to cover new problems) is a 
huge help. The second timesaving mechanism involves automatically tracking control 
flow, call chains, and data flow. Though commercial tools make tradeoffs when it comes 
to soundness (as discussed earlier), they certainly make the laborious process of control 
and data flow analysis much easier. For example, a decent tool can locate a potential 
strcpy() vulnerability on a given line, present the result in a results browser, and arm 
the user with an easy and automated way to determine (through control flow, call chains, 
and data flow structures) whether the possible vulnerability is real. Though tools are 
getting better at figuring out this kind of thing for themselves, they are not perfect. 

The root cause of most security problems can be found in the source code and 
configuration files of common software applications—especially custom apps that you 
write yourself. Problems are seeded when vulnerable code is written right into the 
system, which is undeniably the most efficient and effective time to remove them. The 
way forward is to use automated tools and processes that systematically and 
comprehensively target the root cause of security issues in source code. Instead of sorting 
through millions of lines of code looking for vulnerabilities, a developer using an 
advanced software security tool that returns a small set of potential vulnerabilities can 
pinpoint actual vulnerabilities in a matter of seconds—precisely the same vulnerabilities 
that would take a malicious hacker or manual code reviewer weeks or even months to 
find. Of course, most bad guys know this and will use these kinds of tools themselves 
[Hoglund and McGraw 2004]. 

Key Characteristics of a Tool 

To be useful and cost effective, a source code analysis tool must have six key 
characteristics. 

1. Be designed for security. Software security may well be a subset of software 
quality, but software security requires the ability to think like a bad guy. 
Exploiting software is not an exercise in standard-issue QA. A software defect 
uncovered during functionality testing might be addressed in such a way that the 
functional issue is resolved, but security defects may still remain and be reachable 
via surprising execution paths that are not even considered during functionality 
testing. It almost goes without saying that software security risks tend to have 
much more costly business impacts than do standard-issue software risks. 
Security impact is payable in terms of loss of business data, loss of customer trust 
and brand loyalty, cost of downtime and inability to perform business 
transactions, and other intangible costs. Simply put, software quality tools may be 
of some use when it comes to robustness, but software security tools have more 
critical security knowledge built into them. The knowledge base built into a tool is 
an essential deciding factor.[9] 

[9] While more general quality tools will not pinpoint security issues, they can be 
used by a seasoned reviewer to identify "smells" in the complexity, cohesion, 
coupling, and effort/volume relationship of code modules—all good starting 



 139

points for identifying possible security weak spots. In many cases, security errors 
arising from sloppy coding don't appear as rare blips among otherwise pristine 
code. They are usually the consequence of a larger, more pervasive carelessness 
that can sometimes be seen from high up in terms of quality errors. Don't rely on 
quality metrics to identify security issues, but keep an eye out for quality weak 
modules. Vices tend to roll together 

2. Support multiple tiers. Modern software applications are rarely written in a single 
programming language or targeted to a single platform. Most business-critical 
applications are highly distributed, with multiple tiers each written in a different 
programming language and executed on a different platform. Automated security 
analysis software must support each of these languages and platforms, as well as 
properly negotiate between and among tiers. A tool that can analyze only one or 
two languages can't meet the needs of modern software. 

3. Be extensible. Security problems evolve, grow, and mutate, just like species on a 
continent. No one technique or set of rules will ever perfectly detect all security 
vulnerabilities. Good tools need a modular architecture that supports multiple 
kinds of analysis techniques. That way, as new attack and defense techniques are 
developed, the tool can be expanded to encompass them. Likewise, users must be 
able to add their own security rules. Every organization has its own set of 
corporate security policies, meaning that a fixed "one-size-fits-all" approach to 
security is doomed to fail. 

4. Be useful for security analysts and developers alike. Security analysis is 
complicated and hard. Even the best analysis tools cannot automatically fix 
security problems, just as debuggers can't magically debug your code. The best 
automated tools make it possible for analysts to focus their attention directly on 
the most important issues. Good tools support not only analysts but also the poor 
developers who need to fix the problems uncovered by a tool. Good tools allow 
users to find and fix security problems as efficiently as possible. Used properly, 
source code analysis tools are excellent teaching tools. Simply by using them, 
developers can learn about software security (almost by osmosis). 

5. Support existing development processes. Seamless integration with build 
processes and IDEs is an essential characteristic of any software tool. For a source 
code analysis tool to become accepted as part of an application development 
team's toolset, the tool must properly interoperate with existing compilers used on 
the various platforms and support popular build tools like make and ant. Good 
tools both integrate into existing build processes and also coexist with and support 
analysis in familiar development tools. 

6. Make sense to multiple stakeholders. Software is built for a reason—usually a 
business reason. Security tools need to support the business. A security-oriented 
development focus is new to a vast majority of organizations. Of course, software 
security is not a product; rather, it is an ongoing process that necessarily involves 
the contributions of many people across an organization. But good automated 
tools can help to scale a software security initiative beyond a select few to an 
entire development shop. Views for release managers, development managers, 
and even executives allow comparison using relative metrics and can support 
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release decisions, help control rework costs, and provide much-needed data for 
software governance. 

Three Characteristics to Avoid 

Source code analysis is not easy, and early approaches (including ITS4) suffered from a 
number of unfortunate problems. Some of these problems persist in source code analysis 
tools today. Watch out for these characteristics. 

1. Too many false positives. One common problem with early approaches to static 
analysis was their excessive false positive rates. Practitioners seem to feel that 
tools that provide a false positive rate under 40% are okay. ITS4 would 
sometimes produce rates in the range of 90% and higher, making it a real pain to 
use. Glorified grep machines have an extremely low signal-to-noise ratio. 
Modern approaches that include data flow analysis capability dramatically reduce 
false positives, making source code analysis much more effective. 

2. Spotty integration with IDEs. Emacs may be great, but it is not for everyone. 
Developers already have an IDE they like, and they shouldn't have to switch to do 
a security analysis. Enough said. 

3. Single-minded support for C. Canonical security bugs are pervasive in C. 
However, modern software is built with multiple languages and supports multiple 
platforms. If your system is built of more than C, make sure you don't skip the 
"non-C" parts when you review code. 

The Fortify Source Code Analysis Suite[10] 
[10] Full disclosure: I am the chairman of Fortify Software's Technical Advisory Board. 
Part of Fortify's code analysis technology (in the form of SourceScope) was invented and 
developed by Cigital. 

I think it is important to give you a feel for what a real commercial tool looks like 
(especially if you read about the use of RATS in Building Secure Software [Viega and 
McGraw 2001]). This section is about one of the leading software security tools. Others 
exist. Make sure that you pick the tool that is right for you. 

That said, Fortify Software produces a very successful source code analysis suite that 
many organizations will find useful. It includes the five components outlined in Table 4-
1. 

Table 4-1. The Five Components of the Fortify Source Code Analysis Suite 

Component Description 

Source Code 
Analysis Engine 

The Fortify code analysis and vulnerability detection engine 
performs basic semantic, data flow, control flow, and 
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Table 4-1. The Five Components of the Fortify Source Code Analysis Suite 

Component Description 

configuration analysis. 

Secure Coding 
Rulepacks and Rules 
Builder 

Secure Coding Rulepacks provide coverage of 2,000+ base 
language and third-party functions and over 50,000 vulnerability 
paths. Rules Builder allows creation of custom rules. 

Audit Workbench Fortify's visual interface enables rapid analysis of software 
vulnerabilities in order to prioritize the remediation of defects. 

Developer Desktop Fortify integrates critical vulnerability detection directly into 
popular IDEs (including JBuilder, Visual Studio .NET, Rational 
Application Developer for WebSphere Software, and Eclipse). 

Software Security 
Manager 

Fortify centralizes analysis and reporting of vulnerability trend 
data across people and projects. 

 

The Source Code Analysis (SCA) Engine searches for violations of security-specific 
coding rules in source code. An intermediate representation in the form of an AST built 
using advanced parser technology enables a set of analyzers in the SCA Engine to 
pinpoint and prioritize violations. This helps to make security code reviews more 
efficient, consistent, and complete, especially where large code bases are involved. 

The SCA Engine determines the location of security vulnerabilities in source code and 
computes vulnerability relevance based on the relationship of the vulnerability to the 
surrounding code. The analyzers built into the tool provide multilanguage analysis across 
multiple tiers, allowing developers to determine which path or paths through a piece of 
code are actually vulnerable. 

The SCA Engine includes four analyzers: semantic, data flow, control flow, and 
configuration. These analyzers locate security defects across the entire code base, 
including problems that span multiple tiers. The tool, which supports Java, C, C++, C#, 
JSP, XML, and PL/SQL, produces an XML results file that is consumed by the results 
browser. Figure 4-2 shows a basic architecture. 

Figure 4-2. Components making up the Fortify Source Code Analysis Suite. 
[View full size image] 
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The SCA Engine uses the Secure Coding Rulepacks as the expandable knowledge base 
for analysis. The prepackaged Secure Coding Rulepacks that come with the tool 
encapsulate years of security knowledge about anomalous constructs and vulnerable 
functions in software. The rules can identify dozens of vulnerability categories, including 
buffer overflows, log forging, cross-site scripting, memory leaks, and SQL injection. The 
Fortify toolset is extensible and allows automated creation of new application-specific, 
third-party library, and corporate-standards–based custom rules using the Rules Builder 
(Figure 4-3). 

Figure 4-3. The Fortify Rule Details Editor in the Rules Builder allows creation 
of custom rules. 

[View full size image] 



 143

 
 

The Audit Workbench (Figure 4-4) is a visual interface allowing detailed and efficient 
analysis of potential software vulnerabilities in order to prioritize and fix problems. 
Human interface concerns are critical in these kinds of tools because the human analyst 
plays a central role in the process of automated code review. Without a smart human in 
the loop, the tool is not very useful. The Audit Workbench provides a summary view of 
security problems with detail related to the defect in focus. The data displayed include 
information about particular vulnerabilities, the rules that uncovered them, and what to do 
about them. (This kind of information is extremely useful in context and is available to 
interested readers at <http://vulncat.fortifysoftware.com>. See Chapter 12 for a taxonomy 
of vulnerability information.) Potential problems are displayed with surrounding source 
code and a call tree. Results are categorized into customizable buckets of defects and can 
be annotated with resolution severity, priority, and status. 

Figure 4-4. The Fortify Audit Workbench window supports in-depth analysis. 
[View full size image] 
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The Developer Desktop (Figure 4-5) is a collection of software components for a 
developer's desktop. It includes the SCA Engine, Secure Coding Rulepacks, and plug-ins 
for common IDEs. Because it is integrated into standard development tools, adoption is 
fairly painless. Integration of the toolset enhances a standard IDE with detailed and 
accurate security vulnerability knowledge. This is an effective way to train developers 
about secure coding practices as they do their normal thing. Fortify supports Eclipse, 
Rational Application Developer for WebSphere Software, and Microsoft Visual Studio 
.NET Add-in. 

Figure 4-5. Developer Desktop components have a familiar look and feel. 
[View full size image] 
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The Software Security Manager is a Web-based security policy and reporting interface 
that enables development teams to manage and control risk across multiple projects and 
releases. The Software Security Manager helps to centralize reporting, enable trend 
analysis, and produce software security reports for management. The Software Security 
Manager includes a number of predefined metrics that cover the number and type of 
vulnerabilities, policy violations, and severity. Figure 4-6 shows the Software Security 
Manager Dashboard. 

Figure 4-6. The Software Security Manager Dashboard helps bring source code 
analysis up out of the weeds. 

[View full size image] 
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The Fortify Knowledge Base 

The most critical feature of any static analysis tool involves the knowledge built into it. 
We've come a long way since the early days of RATS and ITS4 when a simple grep for a 
possibly dangerous API might suffice. Today, the software security knowledge expected 
to drive static analysis tools is much more sophisticated. 

A complete taxonomy of software security vulnerabilities that can be uncovered using 
automated tools is discussed in Chapter 12. Software security rules knowledge has 
progressed much further than other more subtle knowledge categories such as secure 
coding patterns and technology-specific guidelines. 

The vulnerability descriptions powering the Fortify SCA Engine are far more 
sophisticated than the early ITS4 database mentioned earlier in this chapter. For the 
complete taxonomy, see the Fortify Web site at <http://vulncat.fortifysoftware.com>. 

Coder's Corner 

What follows is an example of one of 78 basic vulnerability descriptions 
identified and described by Brian Chess and Jacob West. This description shows 
the kind of knowledge available to developers when they use a sophisticated 
static analysis tool. Note the similarity between the vulnerability description 
here and the complete rule shown earlier in the chapter. 

Security Functionality: Authentication  
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(getlogin) 

Abstract 

The getlogin() function is easy to spoof. Do not rely on the name it returns. 

Explanation 

The getlogin() function is supposed to return a string containing the name of 
the user currently logged in at the terminal, but an attacker can cause 
getlogin() to return the name of any user logged in to the machine. Do not 
rely on the name returned by getlogin() when making security decisions. 

Example 1: The following code relies on getlogin() to determine whether or 
not a user is trusted. It is easily subverted. 

pwd = getpwnam(getlogin()); 
if (isTrustedGroup(pwd->pw_gid)) { 
  allow(); 
} else { 
  deny(); 
} 
 

Recommendations 

You should rely on a user's ID, not the username, for identification. The 
previous example can be rewritten as follows: 

pwd = getpwuid(getuid()); 
if (isTrustedGroup(pwd->pw_gid)) { 
  allow(); 
} 
  else { 
  deny(); 
} 
 

If multiple users are allowed to share the same user ID (a dubious proposition 
from a security standpoint), a bit more care is required. The following example 
checks to see whether the username returned by getlogin() matches the 
username associated with the user ID; the check ensures that if two users share 
the same ID, one user cannot act on behalf of the other. 

pwd = getpwuid(getuid()); 
pwdName = pwd->pw_name; 
/* Bail out if the name associated with the uid does not 
  match the name associated with the terminal. */ 
if (strncmp(pwdName, getlogin(), MAX_NAM_LEN))  { 
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  printf("shared uid not supported\n"); 
  deny(); 
  return; 
} 
if (isTrustedGroup(pwd->pw_gid)) { 
  allow(); 
} else { 
  deny(); 
} 
 

Note: If the process is not being run from a terminal, getlogin() returns 
NULL. 
 

Using Fortify 

A special demonstration version of the Fortify Source Code Analysis product is included 
with this book. Please note that the demonstration software includes only a subset of the 
functionality offered by the Source Code Analysis Suite. For example, this demonstration 
version scans for buffer overflow and SQL injection vulnerabilities but does not scan for 
cross-site scripting or access control vulnerabilities. 

Appendix A is a tutorial guide reprinted with permission from Fortify Software. If you 
would like to learn more about how the Fortify Source Code Analysis Suite works in a 
hands-on way, check out the appendix. The key you will need to unlock the demo on the 
CD is FSDMOBEBESHIPFSDMO. To prevent any confusion, this key is composed of letters 
exclusively. There are no numbers. 

Touchpoint Process: Code Review 

I am not a process person, especially when it comes to software. But there is no denying 
that complex tools like those described in this chapter can't simply be thrown at the 
software security problem and expected to solve problems willy-nilly. By wrapping a tool 
like the Fortify SCA Engine in a process, your organization can benefit much more from 
tool use than if you buy the tool and stick it on a shelf. 

Figure 4-7 shows a very simple process for applying a static analysis. Note that this is 
only one of many processes that can be wrapped around a source code analysis tool. The 
process here is very much based on a software assurance perspective and is the kind of 
process that a software security type or an analyst would use. There are other use cases 
for developers (e.g., more closely aligned with IDE integration). This process is one of 
many. 

Figure 4-7. A simple process diagram showing the use of a static analysis tool. 
This is a simplified version of the process used by Cigital. 

[View full size image] 
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Static code analysis can be carried out by any kind of technical resource. Background in 
software security and lots of knowledge about software security bugs is very helpful 
because the tool identifies particular areas of the code for the analyst to check more 
thoroughly. The tool is really an analyst aid more than anything. 

The analyst can choose from any number of security tools (as shown in Figure 4-7), 
including, in some cases, use of research prototypes. The analyst uses a tool on the code 
to be analyzed and both refers to external information regarding potential problems and 
tracks issues that are identified. 
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Note that raw tool results are not always the most useful form of information that this 
process can provide. As an analyst pours over results, some possible problems will turn 
out to be non-issues. Other possible problems will turn out to be exploitable. Figuring this 
all out is the bulk of the work when using a source code analysis tool. 

The simple process shown in Figure 4-7 results in code that has been fully diagnosed and 
a set of issues that need to be addressed. Fixing the code itself is not part of this process. 

A much different approach can be taken by developers who can use a tool to spot 
potential problems and then fix them as they work. This is probably the most effective 
use of static analysis technology. Even so, widespread adoption of source code analysis 
tools by development shops is only now beginning to happen. 

 Use a Tool to Find Security Bugs 

Good static analysis tools must be easy to use, even for non-security people. This means 
that the results from these tools must be understandable to normal developers who might 
not know much about security. In the end, source code analysis tools educate their users 
about good programming practice. Good static checkers can help their users spot and 
eradicate common security bugs. This is especially important for languages such as C or 
C++, for which a very large corpus of rules already exists. 

Static analysis for security should be applied regularly as part of any modern 
development process. 
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Chapter 5. Architectural Risk Analysis[1] 
[1] Parts of this chapter appeared in original form in IEEE Security & Privacy magazine 
co-authored with Denis Verdon [Verdon and McGraw 2004]. 

[View full size image] 

 

Architecture is the learned game, correct and magnificent, of forms assembled in the 
light. 

—Le Corbusier 

Design flaws account for 50% of security problems. You can't find design defects by 
staring at code—a higher-level understanding is required. That's why architectural risk 
analysis plays an essential role in any solid software security program. By explicitly 
identifying risk, you can create a good general-purpose measure of software security, 
especially if you track risk over time. Because quantifying impact is a critical step in any 
risk-based approach, risk analysis is a natural way to tie technology issues and concerns 
directly to the business. A superior risk analysis explicitly links system-level concerns to 
probability and impact measures that matter to the organization building the software. 

The security community is unanimous in proclaiming the importance of a risk-based 
approach to security. "Security is risk management" is a mantra oft repeated and yet 
strangely not well understood. Nomenclature remains a persistent problem in the security 
community. The term risk management is applied to everything from threat modeling and 
architectural risk analysis to large-scale activities tied up in processes such as RMF (see 
Chapter 2). 

As I describe in Chapter 1, a continuous risk management process is a necessity. This 
chapter is not about continuous risk management, but it does assume that a base process 
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like the RMF exists and is in place.[2] By teasing apart architectural risk analysis (the 
critical software security best practice described here) and an overall RMF, we can begin 
to make better sense of software security risk. 

[2] All of the other touchpoint chapters make this same assumption. 

Common Themes among Security Risk Analysis Approaches 

Risk management has two distinct flavors in software security. I use the term risk 
analysis to refer to the activity of identifying and ranking risks at some particular stage in 
the software development lifecycle. Risk analysis is particularly popular when applied to 
architecture and design-level artifacts. I use the term risk management to describe the 
activity of performing a number of discrete risk analysis exercises, tracking risks 
throughout development, and strategically mitigating risks. Chapter 2 is about the latter. 

A majority of risk analysis process descriptions emphasize that risk identification, 
ranking, and mitigation is a continuous process and not simply a single step to be 
completed at one stage of the development lifecycle. Risk analysis results and risk 
categories thus drive both into requirements (early in the lifecycle) and into testing 
(where risk results can be used to define and plan particular tests). 

Risk analysis, being a specialized subject, is not always best performed solely by the 
design team without assistance from risk professionals outside the team. Rigorous risk 
analysis relies heavily on an understanding of business impact, which may require an 
understanding of laws and regulations as much as the business model supported by the 
software. Also, human nature dictates that developers and designers will have built up 
certain assumptions regarding their system and the risks that it faces. Risk and security 
specialists can at a minimum assist in challenging those assumptions against generally 
accepted best practices and are in a better position to "assume nothing." (For more on 
this, see Chapter 9.) 

A prototypical risk analysis approach involves several major activities that often include 
a number of basic substeps. 

• Learn as much as possible about the target of analysis. 

o Read and understand the specifications, architecture documents, and other 
design materials. 

o Discuss and brainstorm about the target with a group. 
o Determine system boundary and data sensitivity/criticality. 
o Play with the software (if it exists in executable form). 
o Study the code and other software artifacts (including the use of code 

analysis tools). 
o Identify threats and agree on relevant sources of attack (e.g., will insiders 

be considered?). 
• Discuss security issues surrounding the software. 
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o Argue about how the product works and determine areas of disagreement 
or ambiguity. 

o Identify possible vulnerabilities, sometimes making use of tools or lists of 
common vulnerabilities. 

o Map out exploits and begin to discuss possible fixes. 
o Gain understanding of current and planned security controls.[3] 

[3] Note that security controls can engender and introduce new security 
risks themselves (through bugs and flaws) even as they mitigate others. 

• Determine probability of compromise. 

o Map out attack scenarios for exploits of vulnerabilities. 
o Balance controls against threat capacity to determine likelihood. 

• Perform impact analysis. 

o Determine impacts on assets and business goals. 
o Consider impacts on the security posture. 

• Rank risks. 

• Develop a mitigation strategy. 

o Recommend countermeasures to mitigate risks. 
• Report findings. 

o Carefully describe the major and minor risks, with attention to impacts. 
o Provide basic information regarding where to spend limited mitigation 

resources. 

A number of diverse approaches to risk analysis for security have been devised and 
practiced over the years. Though many of these approaches were expressly invented for 
use in the network security space, they still offer valuable risk analysis lessons. The box 
Risk Analysis in Practice lists a number of historical risk analysis approaches that are 
worth considering. 

My approach to architectural risk analysis fits nicely with the RMF described in Chapter 
2. For purposes of completeness, a reintroduction to the RMF is included in the box Risk 
Analysis Fits in the RMF. 

Risk Analysis in Practice 
A number of methods calculate a nominal value for an information asset and attempt to 
determine risk as a function of loss and event probability. Others rely on checklists of 
threats and vulnerabilities to determine a basic risk measurement. 

Examples of risk analysis methodologies for software fall into two basic categories: 
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commercial and standards-based. 

Commercial 

• STRIDE from Microsoft 
<http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vbcon/html/vbconOverviewOfWebApplicationSecurityThreats.asp> (also see 
[Howard and LeBlanc 2003]) 

• Security Risk Management Guide, also from Microsoft 
<http://www.microsoft.com/technet/security/topics/policiesandprocedures/secrisk/
default.mspx> 

• ACSM/SAR (Adaptive Countermeasure Selection Mechanism/Security Adequacy 
Review) from Sun (see [Graff and van Wyk 2003] for public discussion) 

• Cigital's architectural risk analysis process (described later in this chapter), which 
is designed to fit into the RMF (see Chapter 2) 

Standards-Based 

• ASSET (Automated Security Self-Evaluation Tool) from the National Institute on 
Standards and Technology (NIST) <http://csrc.nist.gov/asset/> 

• OCTAVE (Operationally Critical Threat, Asset, and Vulnerability Evaluation) 
from SEI 
<http://www.sei.cmu.edu/publications/documents/99.reports/99tr017/99tr017abstr
act.html> 

• COBIT (Control Objectives for Information and Related Technology) from 
Information Systems Audit and Control Association (ISACA) 
<http://www.isaca.org/Template.cfm?Section=COBIT_Online&Template=/Conte
ntManagement/ContentDisplay.cfm&ContentID=15633> 

 

Risk Analysis Fits in the RMF 
Architectural risk analysis fits within a continuous risk management framework 
(RMF) just as the other touchpoint best practices do. The continuous risk 
management process we use at Cigital loops constantly and at many levels of 
description through several stages (Figure 5-1). A simplified version of the 
RMF shown here is described in gory detail in Chapter 2. In this approach, 
business goals determine risks, risks drive methods, methods yield 
measurement, measurement drives decision support, and decision support drives 
fix/rework and application quality. 

Figure 5-1. Cigital's risk management framework typifies the fractal 
and continuous nature of risk analysis processes. Many aspects of 

frameworks like these can be automated—for example, risk storage, 
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business risk to technical risk mapping, and display of status over time. 
[View full size image] 

 
 

During the process of architectural risk analysis, we follow basic steps very 
similar to those making up the RMF. 

The RMF shown in Figure 5-1 has a clear loop, called the validation loop. This 
loop is meant to graphically represent the idea that risk management is a 
continuous process. That is, identifying risks only once in a project is 
insufficient. The idea of "crossing off a particular stage" once it has been 
executed and never doing those activities again is incorrect. Though the seven 
stages are shown in a particular serial order in Figure 5-1, they may need to be 
applied over and over again throughout a software development effort, and their 
particular ordering may be interleaved in many different ways. 

Risk management is in some sense fractal. In other words, the entire continuous, 
ongoing process can be applied at several different levels. The primary level is 
the project level. Each stage of the validation loop clearly must have some 
representation during a complete development effort in order for risk 
management to be effective. Another level is the software lifecycle artifact 
level. The validation loop will most likely have a representation given 
requirements, design, architecture, test plans, and so on. The validation loop will 
have a representation during both requirements analysis and use case analysis, 
for example. Fortunately, a generic description of the validation loop as a serial 
looping process is sufficient to capture critical aspects at all of these levels at 
once. (See Chapter 2.) 

Traditional Risk Analysis Terminology 
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An in-depth analysis of all existing risk analysis approaches is beyond the scope of this 
book; instead, I summarize basic approaches, common features, strengths, weaknesses, 
and relative advantages and disadvantages. 

As a corpus, "traditional" methodologies are varied and view risk from different 
perspectives. Examples of basic approaches include the following: 

• Financial loss methodologies that seek to provide a loss figure to be balanced 
against the cost of implementing various controls 

• Mathematically derived "risk ratings" that equate risk to arbitrary ratings for 
threat, probability, and impact 

• Qualitative assessment techniques that base risk assessment on anecdotal or 
knowledge-driven factors 

Each basic approach has its merits, but even when approaches differ in the details, almost 
all of them share some common concepts that are valuable and should be considered in 
any risk analysis. These commonalities can be captured in a set of basic definitions. 

• Asset: The object of protection efforts. This may be variously defined as a system 
component, data, or even a complete system. 

• Risk: The probability that an asset will suffer an event of a given negative impact. 
Various factors determine this calculation: the ease of executing an attack, the 
motivation and resources of an attacker, the existence of vulnerabilities in a 
system, and the cost or impact in a particular business context. Risk = probability 
x impact. 

• Threat: The actor or agent who is the source of danger. Within information 
security, this is invariably the danger posed by a malicious agent (e.g., fraudster, 
attacker, malicious hacker) for a variety of motivations (e.g., financial gain, 
prestige). Threats carry out attacks on the security of the system (e.g., SQL 
injection, TCP/IP SYN attacks, buffer overflows, denial of service). 
Unfortunately, Microsoft has been misusing the term threat as a substitute for risk. 
This has led to some confusion in the commercial security space. (See the next 
box, On Threat Modeling versus Risk Analysis: Microsoft Redefines Terms.) 

• Vulnerability: For a threat to be effective, it must act against a vulnerability in the 
system. In general, a vulnerability is a defect or weakness in system security 
procedures, design, implementation, or internal controls that can be exercised and 
result in a security breach or a violation of security policy. A vulnerability may 
exist in one or more of the components making up a system. (Note that the 
components in question are not necessarily involved with security functionality.) 
Vulnerability data for a given software system are most often compiled from a 
combination of OS-level and application-level vulnerability test results (often 
automated by a "scanner," such as Nessus, Nikto, or Sanctum's Appscan), code 
reviews, and higher-level architectural reviews. In software, vulnerabilities stem 
from defects and come in two basic flavors: flaws are design-level problems 
leading to security risk, and bugs are implementation-level problems leading to 
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security risk. Automated source code analysis tools tend to focus on bugs. Human 
expertise is required to uncover flaws. 

• Countermeasures or safeguards: The management, operational, and technical 
controls prescribed for an information system which, taken together, adequately 
protect the confidentiality, integrity, and availability of the system and its 
information. For every risk, controls may be put in place that either prevent or (at 
a minimum) detect the risk when it triggers. 

• Impact: The impact on the organization using the software, were the risk to be 
realized. This can be monetary or tied to reputation, or may result from the breach 
of a law, regulation, or contract. Without a quantification of impact, technical 
vulnerability is hard to deal with—especially when it comes to mitigation 
activities. (See the discussion of the "techno-gibberish problem" in Chapter 2.) 

• Probability: The likelihood that a given event will be triggered. This quantity is 
often expressed as a percentile, though in most cases calculation of probability is 
extremely rough. I like to use three simple buckets: high (H), medium (M), and 
low (L). Geeks have an unnatural propensity to use numbers even when they're 
not all that useful. Watch out for that when it comes to probability and risk. Some 
organizations have five, seven, or even ten risk categories (instead of three). 
Others use exact thresholds (70%) and pretend-precision numbers, such as 68.5%, 
and end up arguing about decimals. Simple categories and buckets seem to work 
best, and they emerge from the soup of risks almost automatically anyway. 

Using these basic definitions, risk analysis approaches diverge on how to arrive at 
particular values for these attributes. A number of methods calculate a nominal value for 
an information asset and attempt to determine risk as a function of loss and event 
probability. Some methods use checklists of risk categories, threats, and attacks to 
ascertain risk. 

On Threat Modeling versus Risk Analysis: 
Microsoft Redefines Terms 
The good news is that Microsoft appears to be taking software security very 
seriously. The company has its own set of experts (the superstar being Michael 
Howard) and has even invented its own processes (paramount among these 
being the STRIDE model). The bad news is that the company also has its own 
vocabulary, which differs in important ways from standard usage in the security 
literature. 

The biggest problem lies in misuse of the term threat. Microsoft describes as 
threat modeling what most others call risk analysis. For example, in the book 
Threat Modeling, Swiderski and Snyder explain that: 

During threat modeling, the application is dissected into its functional 
components. The development team analyzes the components at every entry 
point and traces data flow through all functionality to identify security 
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weaknesses. [Swiderski and Snyder 2004, p. 16] 

Clearly they are describing risk analysis. The term threat modeling should really 
refer to the activity of describing and cataloging threats—those actors or agents 
who want to attack your system. Having an old-style threat model like this is a 
critical step in thinking about security risk. After all, all the security 
vulnerabilities and software defects in the world would not matter if nobody 
were hell-bent on exploiting them. 

The Microsoft Approach 

Big problems with vocabulary aside, the basic process described in the book 
Threat Modeling is sound and well worth considering. Based on the STRIDE 
model introduced by Howard and LeBlanc (also from Microsoft), the Microsoft 
risk analysis process relies a bit too heavily on the notion of cycling through a 
list of attacks [Howard and LeBlanc 2003]. For example, STRIDE is an 
acronym for Spoofing, Tampering, Repudiation, Information disclosure, Denial 
of service, and Elevation of privilege. These are categories of attacks, and like 
attack patterns, they make useful lists of things to consider when identifying 
risks. Of course, any list of attacks will be incomplete and is very much unlikely 
to cover new creative attacks.[*] In any case, applying the STRIDE model in 
practice is an exercise in "sliding" known attacks over an existing design and 
seeing what matches. This is an excellent thing to do. 

Risk analysis is the act of creating security-relevant design specifications and 
later testing that design. This makes it an integral part of building any secure 
system. The Threat Modeling book describes how to build a model of the 
system using both data flow diagrams and use cases. Then it goes on to describe 
a simple process for creating attack hypotheses using both lists of vulnerabilities 
and lists of system assets as starting points. This process results in attack trees 
similar in nature to the attack trees described in Building Secure Software 
[Viega and McGraw 2001]. 

Go ahead and make use of Microsoft's process, but please don't call it threat 
modeling. 
 

[*] You can think of these checklists of attacks as analogous to virus patterns in a virus 
checker. Virus checkers are darn good at catching known viruses and stopping them cold. 
But when a new virus comes out and is not in the "definition list," watch out! 

Knowledge Requirement 

Architectural risk analysis is knowledge intensive. For example, Microsoft's STRIDE 
model involves the understanding and application of several risk categories during 
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analysis[4] [Howard and LeBlanc 2003]. Similarly, my risk analysis approach involves 
three basic steps (described more fully later in the chapter): 

[4] In STRIDE, these are referred to as "threat categories"; however, that term would more 
correctly be used to refer to groups of attackers, not to groups of risks. 

1. Attack resistance analysis 
2. Ambiguity analysis 
3. Weakness analysis 

Knowledge is most useful in each of these steps: the use of attack patterns [Hoglund and 
McGraw 2004] and exploit graphs for understanding attack resistance analysis, 
knowledge of design principles for use in ambiguity analysis [Viega and McGraw 2001], 
and knowledge regarding security issues in commonly used frameworks (.NET and J2EE 
being two examples) and other third-party components to perform weakness analysis. 
These three subprocesses of my approach to risk analysis are discussed in detail in this 
chapter. 

For more on the kinds of knowledge useful to all aspects of software security, including 
architectural risk analysis, see Chapter 11. 

The Necessity of a Forest-Level View 

A central activity in design-level risk analysis involves building up a consistent view of 
the target system at a reasonably high level. The idea is to see the forest and not get lost 
in the trees. The most appropriate level for this description is the typical whiteboard view 
of boxes and arrows describing the interaction of various critical components in a design. 
For one example, see the following box, .NET Security Model Overview. 

Commonly, not enough of the many people often involved in a software project can 
answer the basic question, "What does the software do?" All too often, software people 
play happily in the weeds, hacking away at various and sundry functions while ignoring 
the big picture. Maybe, if you're lucky, one person knows how all the moving parts work; 
or maybe nobody knows. A one-page overview, or "forest-level" view, makes it much 
easier for everyone involved in the project to understand what's going on. 

The actual form that this high-level description takes is unimportant. What is important is 
that an analyst can comprehend the big picture and use it as a jumping-off place for 
analysis. Some organizations like to use UML (the Unified Modeling Language) to 
describe their systems.[5] I believe UML is not very useful, mostly because I have seen it 
too often abused by the high priests of software obfuscation to hide their lack of clue. But 
UML may be useful for some. Other organizations might like a boxes-and-arrows picture 
of the sort described here. Formalists might insist on a formal model that can be passed 
into a theorem prover in a mathematical language like Z. Still others might resort to 
complex message-passing descriptions—a kind of model that is particularly useful in 
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describing complex cryptosystems. In the end, the particular approach taken must result 
in a comprehensible high-level overview of the system that is as concise as possible. 

[5] For more on UML, see <http://www.uml.org/>. 

The nature of software systems leads many developers and analysts to assume 
(incorrectly) that code-level description of software is sufficient for spotting design 
problems. Though this may occasionally be true, it does not generally hold. eXtreme 
Programming's claim that "the code is the design" represents one radical end of this 
approach. Because the XP guys all started out as Smalltalk programmers they may be a 
bit confused about whether the code is the design. A quick look at the results of the 
obfuscated C contest <http://www.ioccc.org> should disavow them of this belief.[6] 

[6] Incidentally, any language whose aficionados purposefully revel in its ability to be 
incomprehensible (even to the initiated) has serious issues. Perhaps experienced 
developers should require a license to use C. Newbies would not be permitted until 
properly licensed. 

Without a whiteboard level of description, an architectural risk analysis is likely to 
overlook important risks related to flaws. Build a forest-level overview as the first thing 
you do in any architectural risk analysis. 

.NET Security Model Overview 
Figure 5-2 shows a one-page high-level architectural view of the .NET security 
model prepared while performing a .NET risk analysis. Before this diagram was 
created, the only high-level description of the .NET security architecture was a 
book-length description of its (way too many) parts. Putting all the parts 
together in one picture is an essential aspect of risk analysis. 

Figure 5-2. A one-page overview of Microsoft's .NET security model. 
An architectural picture like this, though not in any sense detailed 

enough to perform a complete analysis, is extremely useful for thinking 
about components, modules, and possible attacks. Every one-page 
overview should list all components and show what is connected to 

what. 
[View full size image] 
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All risk analyses should begin by understanding and, if necessary, describing 
and documenting a high-level overview of the system to be analyzed. 
Sometimes the act of building this picture is a monumental undertaking. 
Sometimes a one-page overview already exists. In any case, making one is a 
great idea. 



 162

By referencing the picture in Figure 5-2, an analyst can hypothesize about 
possible attacks. This can be driven by a list of known attacks such as the attack 
patterns described in Chapter 8 (and fleshed out in vivid detail in Exploiting 
Software [Hoglund and McGraw 2004]), or it can be driven by deep technical 
understanding of the moving parts. 

As an example of the latter approach, consider the flow of information in Figure 
5-2. In this picture the Verifier feeds the just in time (JIT) compiler. As noted in 
Java Security, the Verifier exists to ensure that the bytecode (in this case, CLR 
code) coheres to various critical type-safety constraints [McGraw and Felten 
1996]. Type safety is about objects having certain properties that can be 
guaranteed. If type-safety rules are not followed or the Virtual Machine 
becomes confused about type safety, very bad things happen. 

Anyway, the Verifier does its thing and passes information on to the JIT 
compiler. 

A JIT compiler transforms intermediate CLR code (or Java bytecode) into 
native code (usually x86 code) "just in time." This is done for reasons of speed. 
For the security model to retain its potency, the JIT compiler must carry out 
only transformations that preserve type safety. By thinking through scenarios in 
which the JIT compiler breaks type safety, we can anticipate attacks and identify 
future risks. Interestingly, several relevant security issues based on this line of 
reasoning about attacks and type safety led to the discovery of serious security 
problems in Java. (For a complete description of the Java attacks, see 
<http://www.securingjava.com>, where you can find a complete, free, online 
edition of my book Securing Java [McGraw and Felten 1999].) 

Unless we built up a sufficient high-level understanding of the .NET security 
model (probably through the process of creating our one-page picture), we 
would not likely come across possible attacks like the one described here. 
 

One funny story about forest-level views is worth mentioning. I was once asked to do a 
security review of an online day-trading application that was extremely complex. The 
system involved live online attachments to the ATM network and to the stock exchange. 
Security was pretty important. We had trouble estimating the amount of work to be 
involved since there was no design specification to go on.[7] We flew down to Texas and 
got started anyway. Turns out that only one person in the entire hundred-person company 
knew how the system actually worked and what all the moving parts were. The biggest 
risk was obvious! If that one person were hit by a bus, the entire enterprise would grind to 
a spectacular halt. We spent most of the first week of the work interviewing the architect 
and creating both a forest-level view and more detailed documentation. 
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[7] The dirty little trick of software development is that without a design spec your system 
can't be wrong, it can only be surprising! Don't let the lack of a spec go by without raising 
a ruckus. Get a spec. 

A Traditional Example of a Risk Calculation 

One classic method of risk analysis expresses risk as a financial loss, or Annualized Loss 
Expectancy (ALE), based on the following equation: 

ALE = SLE x ARO 

where SLE is the Single Loss Expectancy and ARO is the Annualized Rate of 
Occurrence (or predicted frequency of a loss event happening). 

Consider an Internet-based equities trading application possessing a vulnerability that 
may result in unauthorized access, with the implication that unauthorized stock trades can 
be made. Assume that a risk analysis determines that middle- and back-office procedures 
will catch and negate any malicious transaction such that the loss associated with the 
event is simply the cost of backing out the trade. We'll assign a cost of $150 for any such 
event. This yields an SLE = $150. With even an ARO of 100 such events per year, the 
cost to the company (or ALE) will be $15,000. 

The resulting dollar figure provides no more than a rough yardstick, albeit a useful one, 
for determining whether to invest in fixing the vulnerability. Of course, in the case of our 
fictional equities trading company, a $15,000 annual loss might not be worth getting out 
of bed for (typically, a proprietary trading company's intraday market risk would dwarf 
such an annual loss figure).[8] 

[8] There are other quantitative methods that don't use ALE. For example, some 
organizations use hard numbers such as the actual cost of developing and operating the 
system, dollar value to paying customers, and so on. 

Other methods take a more qualitative route. In the case of a Web server providing a 
company's face to the world, a Web site defacement might be difficult to quantify as a 
financial loss (although some studies indicate a link simply between security events and 
negative stock price movements [Cavusoglu, Mishra, and Raghunathan 2002]). In cases 
where intangible assets are involved (e.g., reputation), qualitative risk assessment may be 
a more appropriate way to capture loss. 

Regardless of the technique used, most practitioners advocate a return-on-investment 
study to determine whether a given countermeasure is a cost-effective method for 
achieving the desired security goal. For example, adding applied cryptography to an 
application server, using native APIs (e.g., MS-CAPI) without the aid of dedicated 
hardware acceleration, may be cheap in the short term; but if this results in a significant 
loss in transaction volume throughput, a better ROI may be achieved by investing up 
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front in crypto acceleration hardware. (Make sure to be realistic about just what ROI 
means if you choose to use the term. See the box The Truth about ROI.) 

Interested organizations are advised to adopt the risk calculation methodology that best 
reflects their needs. The techniques described in this chapter provide a starting point. 

The Truth about ROI 
ROI sounds great in glossy marketing handouts. But what exactly does ROI 
mean for security? Other than confirming that getting started with security early 
in the lifecycle is of critical importance and will save you money, studies of 
return on security investment (ROSI) have not amounted to much. 

Fact is, security is more like insurance than it is like some kind of investment. 
You can manage risk by identifying and mitigating security issues both 
technically and at the business level. But you will never hit a "big payoff" if 
your security holds. You'll only avoid serious negative consequences if it 
doesn't. We buy car insurance for just that reason: not because we can't wait for 
the big payoff when we have a crash but just in case we do. 

Limitations of Traditional Approaches 

Traditional risk analysis output is difficult to apply directly to modern software design. 
For example, in the quantitative risk analysis equation described in the previous section, 
even assuming a high level of confidence in the ability to predict the dollar loss for a 
given event and having performed Monte Carlo distribution analysis of prior events to 
derive a statistically sound probability distribution for future events, there's still a large 
gap between the raw dollar figure of an ALE and a detailed software security mitigation 
definition. 

Another, more worrying, concern is that traditional risk analysis techniques do not 
necessarily provide an easy guide (not to mention an exhaustive list) of all potential 
vulnerabilities and threats to be concerned about at a component/environment level. This 
is where a large knowledge base and lots of experience is invaluable. (See Chapter 11 for 
more on software security knowledge.) 

The thorny knowledge problem arises in part because modern applications, including 
Web Services applications, are designed to span multiple boundaries of trust. 
Vulnerability of, and risk to, any given component varies with the platform that the 
component exists on (e.g., C# applications on Windows .NET Server versus J2EE 
applications on Tomcat/Apache/Linux) and with the environment it exists in (secure 
production network versus client network versus Internet DMZ). However, few of the 
traditional approaches adequately address the contextual variability of risk given changes 
in the core environment. This becomes a fatal flaw when considering highly distributed 
applications, Service Oriented Architectures, or Web Services. 
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In modern frameworks, such as .NET and J2EE, security methods exist at almost every 
layer of the OSI model, yet too many applications today rely on a "reactive protection" 
infrastructure (e.g., firewalls, SSL) that provides protection below layer four only. This is 
too often summed up in the claim "We are secure because we use SSL and implement 
firewalls," leaving open all sorts of questions such as those engendered by port 80 
attacks, SQL injection, class spoofing, and method overwriting (to name a handful). 

One answer to this problem is to begin to look at software risk analysis on a component-
by-component, tier-by-tier, environment-by-environment level and apply the principles of 
measuring threats, risks, vulnerabilities, and impacts at all of these levels. 

Modern Risk Analysis 

Given the limitations of traditional approaches, a more holistic risk management 
methodology involves thinking about risk throughout the lifecycle (as described in 
Chapter 2). Starting the risk analysis process early is critical. In fact, risk analysis is even 
effective at the requirements level. Modern approaches emphasize the importance of an 
architectural view and of architectural risk analysis. 

Security Requirements 

In the purest sense, risk analysis starts at the requirements stage because design 
requirements should take into account the risks that you are trying to counter. The box 
Back to Requirements briefly covers three approaches to interjecting a risk-based 
philosophy into the requirements phase. (Do note that the requirements systems based 
around UML tend to focus more attention on security functionality than they do on abuse 
cases, which I discuss at length in Chapter 8.) 

Whatever risk analysis method is adopted, the requirements process should be driven by 
risk. 

Back to Requirements 
SecureUML[*] is a methodology for modeling access control policies and their 
integration into a model-driven software development process. SecureUML is 
based on Role-Based Access Control and models security requirements for well-
behaved applications in predictable environments. 

UMLsec [Jurjens 2001] is an extension of UML to include modeling of 
security-related features, such as confidentiality and access control. 

Sindre and Opdahl [2000] attempt to model abuse cases as a way of 
understanding how an application might respond to threats in a less controllable 
environment and to describe functions that the system should not allow. 
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[*] See http://kisogawa.inf.ethz.ch/WebBIB/publications-
softech/papers/2002/0_secuml_uml2002.pdf. 

As stated earlier, a key variable in the risk equation is impact. The business impacts of 
any risks that we are trying to avoid can be many, but for the most part, they boil down 
into three broad categories: 

1. Legal and/or regulatory risk: These may include federal or state laws and 
regulations (e.g., the Gramm-Leach-Bliley Act [GLBA], HIPPA, or the now-
famous California Senate Bill 1386, also known as SB1386) 

2. Financial or commercial considerations (e.g., protection of revenue, control over 
high-value intellectual property, preservation of brand and reputation) 

3. Contractual considerations (e.g., service-level agreements, avoidance of liability) 

Even at this early point in the lifecycle, the first risk-based decisions should be made. 
One approach might be to break down requirements into three simple categories: "must-
haves," "important-to-haves," and "nice-but-unnecessary-to-haves." 

Unless you are running an illegal operation, laws and regulations should always be 
classed into the first category, making these requirements instantly mandatory and not 
subject to further risk analysis (although an ROI study should always be conducted to 
select the most cost-effective mitigations). For example, if the law requires you to protect 
private information, this is mandatory and should not be the subject of a risk-based 
decision. Why? Because the government may have the power to put you out of business, 
which is the mother of all risks (and if you want to test the government and regulators on 
this one, then go ahead—just don't say that you weren't warned!). 

You are then left with risk impacts that need to be managed in other ways, the ones that 
have as variables potential impact and probability. At the initial requirements definition 
stage, you may be able to make some assumptions regarding the controls that are 
necessary and the ones that may not be. 

Even application of these simple ideas will put you ahead of the majority of software 
developers. Then as we move toward the design and build stages, risk analysis should 
begin to test those assumptions made at the requirements stage by analyzing the risks and 
vulnerabilities inherent in the design. Finally, tests and test planning should be driven by 
risk analysis results as well. 

A Basic Risk Analysis Approach 

To encompass the design stage, any risk analysis process should be tailored. The object 
of this tailoring exercise is to determine specific vulnerabilities and risks that exist for the 
software. A functional decomposition of the application into major components, 
processes, data stores, and data communication flows, mapped against the environments 
across which the software will be deployed, allows for a desktop review of threats and 
potential vulnerabilities. I cannot overemphasize the importance of using a forest-level 
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view of a system during risk analysis. Some sort of high-level model of the system (from 
a whiteboard boxes-and-arrows picture to a formally specified mathematical model) 
makes risk analysis at the architectural level possible. 

Although one could contemplate using modeling languages, such as UMLsec, to attempt 
to model risks, even the most rudimentary analysis approaches can yield meaningful 
results. Consider Figure 5-3, which shows a simple four-tier deployment design pattern 
for a standard-issue Web-based application. If we apply risk analysis principles to this 
level of design, we can immediately draw some useful conclusions about the security 
design of the application. 

Figure 5-3. A forest-level view of a standard-issue four-tier Web application. 

 

 

During the risk analysis process we should consider the following: 

• The threats who are likely to want to attack our system 
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• The risks present in each tier's environment 
• The kinds of vulnerabilities that might exist in each component, as well as the 

data flow 
• The business impact of such technical risks, were they to be realized 
• The probability of such a risk being realized 
• Any feasible countermeasures that could be implemented at each tier, taking into 

account the full range of protection mechanisms available (e.g., from base 
operating system–level security through Virtual Machine security mechanisms, 
such as use of the Java Cryptography Extensions in J2EE) 

This very basic process will sound familiar if you read Chapter 2 on the RMF. In that 
chapter, I describe in great detail a number of critical risk management steps in an 
iterative model. 

In this simple example, each of the tiers exists in a different security realm or trust zone. 
This fact immediately provides us with the context of risk faced by each tier. If we go on 
to superimpose data types (e.g., user logon credentials, records, orders) and their flows 
(logon requests, record queries, order entries) and, more importantly, their security 
classifications, we can draw conclusions about the protection of these data elements and 
their transmission given the current design. 

For example, suppose that user logon flows are protected by SSL between the client and 
the Web server. However, our deployment pattern indicates that though the encrypted 
tunnel terminates at this tier, because of the threat inherent in the zones occupied by the 
Web and application tiers, we really need to prevent eavesdropping inside and between 
these two tiers as well. This might indicate the need to establish yet another encrypted 
tunnel or, possibly, to consider a different approach to securing these data (e.g., message-
level encryption as opposed to tunneling). 

Use of a deployment pattern in this analysis is valuable because it allows us to consider 
both infrastructure (i.e., operating systems and network) security mechanisms as well as 
application-level mechanisms as risk mitigation measures. 

Realize that decomposing software on a component-by-component basis to establish trust 
zones is a comfortable way for most software developers and auditors to begin adopting a 
risk management approach to software security. Because most systems, especially those 
exhibiting the n-tier architecture, rely on several third-party components and a variety of 
programming languages, defining zones of trust and taking an outside in perspective 
similar to that normally observed in traditional security has clear benefits. In any case, 
interaction of different products and languages is an architectural element likely to be a 
vulnerability hotbed. 

At its heart, decomposition is a natural way to partition a system. Given a simple 
decomposition, security professionals will be able to advise developers and architects 
about aspects of security that they're familiar with such as network-based component 
boundaries and authentication (as I highlight in the example). Do not forget, however, 
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that the composition problem (putting the components all back together) is unsolved and 
very tricky, and that even the most secure components can be assembled into an insecure 
mess! 

As organizations become adept at identifying vulnerability and its business impact 
consistently using the approach illustrated earlier, the approach should be evolved to 
include additional assessment of risks found within tiers and encompassing all tiers. This 
more sophisticated approach uncovers technology-specific vulnerabilities based on 
failings other than trust issues across tier boundaries. Exploits related to broken 
transaction management and phishing attacks[9] are examples of some of the more subtle 
risks one might encounter with an enhanced approach. 

[9] For more on phishing, which combines social engineering and technical subterfuge, 
see <http://www.antiphishing.org/>. 

Finally, a design-level risk analysis approach can also be augmented with data from code 
reviews and risk-based testing. 

Coder's Corner 
Avi Rubin, a professor at Johns Hopkins University, and his graduate students 
spent much effort performing an architectural risk analysis on Diebold 
electronic voting machines. Their work is collected here 
<http://avirubin.com/vote/>. 

The abstract of their paper <http://avirubin.com/vote.pdf> on one of their more 
famous (and controversial) analyses says: 

With significant U.S. federal funds now available to replace outdated punch-
card and mechanical voting systems, municipalities and states throughout the 
U.S. are adopting paperless electronic voting systems from a number of 
different vendors. We present a security analysis of the source code to one such 
machine used in a significant share of the market. Our analysis shows that this 
voting system is far below even the most minimal security standards applicable 
in other contexts. We identify several problems including unauthorized privilege 
escalation, incorrect use of cryptography, vulnerabilities to network threats, and 
poor software development processes [emphasis added]. We show that voters, 
without any insider privileges, can cast unlimited votes without being detected 
by any mechanisms within the voting terminal software. Furthermore, we show 
that even the most serious of our outsider attacks could have been discovered 
and executed without access to the source code. In the face of such attacks, the 
usual worries about insider threats are not the only concerns; outsiders can do 
the damage. That said, we demonstrate that the insider threat is also quite 
considerable, showing that not only can an insider, such as a poll worker, 
modify the votes, but that insiders can also violate voter privacy and match 
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votes with the voters who cast them. We conclude that this voting system is 
unsuitable for use in a general election. Any paperless electronic voting system 
might suffer similar flaws, despite any "certification" it could have otherwise 
received. We suggest that the best solutions are voting systems having a "voter-
verifiable audit trail," where a computerized voting system might print a paper 
ballot that can be read and verified by the voter. 

In the paper, the authors present a number of findings. Before presenting the 
technical information, a concise overview of the system (a forest-level view) is 
presented. The overview sets the stage for the technical results, many of which 
focus on the construction of the system and its architecture. Among the 
technical results is the following finding: 

3.2 Casting multiple votes 

In the Diebold system, a voter begins the voting process by inserting a smart 
card into the voting terminal. Upon checking that the card is "active," the voting 
terminal collects the user's vote and then deactivates the user's card; the 
deactivation actually occurs by rewriting the card's type, which is stored as an 8-
bit value on the card, from VOTER_CARD (0x01) to CANCELED_CARD (0x08). 
Since an adversary can make perfectly valid smart cards, the adversary could 
bring a stack of active cards to the voting booth. Doing so gives the adversary 
the ability to vote multiple times. More simply, instead of bringing multiple 
cards to the voting booth, the adversary could program a smart card to ignore 
the voting terminal's deactivation command. Such an adversary could use one 
card to vote multiple times. Note here that the adversary could be a regular 
voter, and not necessarily an election insider. 

Will the adversary's multiple-votes be detected by the voting system? To answer 
this question, we must first consider what information is encoded on the voter 
cards on a per voter basis. The only per voter information is a "voter serial 
number" (m_VoterSN in the CVoterInfo class). m_VoterSN is only recorded by 
the voting terminal if the voter decides not to place a vote (as noted in the 
comments in TSElection/Results.cpp, this field is recorded for uncounted 
votes for backward compatibility reasons). It is important to note that if a voter 
decides to cancel his or her vote, the voter will have the opportunity to vote 
again using that same card (and, after the vote has been cast, m_VoterSN will no 
longer be recorded). 

If we assume the number of collected votes becomes greater than the number of 
people who showed up to vote, and if the polling locations keep accurate counts 
of the number of people who show up to vote, then the back-end system, if 
designed properly, should be able to detect the existence of counterfeit votes. 
However, because m_VoterSN is only stored for those who did not vote, there 
will be no way for the tabulating system to distinguish the real votes from the 
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counterfeit votes. This would cast serious doubt on the validity of the election 
results. The solution proposed by one election official, to have everyone vote 
again, does not seem like a viable solution. 

Notice how the technical result is presented in terms of impact. The key to a 
good risk analysis is clearly stated impact statements. The only thing missing in 
the report is a mitigation strategy that is workable. The Diebold people appear to 
have their software security work cut out for them! 

Touchpoint Process: Architectural Risk Analysis 

Architectural risk analysis as practiced today is usually performed by experts in an ad hoc 
fashion. Such an approach does not scale, nor is it in any way repeatable or consistent. 
Results are deeply constrained by the expertise and experience of the team doing the 
analysis. Every team does its own thing. For these reasons, the results of disparate 
analyses are difficult to compare (if they are comparable at all). That's not so good. 

As an alternative to the ad hoc approach, Cigital uses the architectural risk analysis 
process shown in Figure 5-4. This process complements and extends the RMF of Chapter 
2. Though the process described here is certainly not the "be all, end all, one and only" 
way to carry out architectural risk analysis, the three subprocesses described here are 
extraordinarily powerful. 

Figure 5-4. A simple process diagram for architectural risk analysis. 
[View full size image] 
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A risk analysis should be carried out only once a reasonable, big-picture overview of the 
system has been established. The idea is to forget about the code-based trees of bugland 
(temporarily at least) and concentrate on the forest. Thus the first step of the process 
shown in the figure is to build a one-page overview of the system under analysis. 
Sometimes a one-page big picture exists, but more often it does not. The one-page 
overview can be developed through a process of artifact analysis coupled with interviews. 
Inputs to the process are shown in the leftmost column of Figure 5-4. 

Three critical steps (or subprocesses) make up the heart of this architectural risk analysis 
approach: 

1. Attack resistance analysis 
2. Ambiguity analysis 
3. Weakness analysis 

Don't forget to refer back to Figure 5-4 as you read about the three subprocesses. 

Attack Resistance Analysis 

Attack resistance analysis is meant to capture the checklist-like approach to risk analysis 
taken in Microsoft's STRIDE approach. The gist of the idea is to use information about 
known attacks, attack patterns, and vulnerabilities during the process of analysis. That is, 
given the one-page overview, how does the system fare against known attacks? Four 
steps are involved in this subprocess. 

1. Identify general flaws using secure design literature and checklists (e.g., cycling 
through the Spoofing, Tampering, ... categories from STRIDE). A knowledge 
base of historical risks is particularly useful in this activity. 

2. Map attack patterns using either the results of abuse case development (see 
Chapter 8) or a list of attack patterns. 

3. Identify risks in the architecture based on the use of checklists. 
4. Understand and demonstrate the viability of these known attacks (using 

something like exploit graphs; see the Exploit Graphs box ). 

Note that this subprocess is very good at finding known problems but is not very good at 
finding new or otherwise creative attacks. 

Example flaws uncovered by the attack resistance subprocess, in my experience, include 
the following. 

• Transparent authentication token generation/management: In this flaw, tokens 
meant to identify a user are easy to guess or otherwise simple to misuse. Web-
based programs that use "hidden" variables to preserve user state are a prime 
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example of how not to do this. A number of these flaws are described in detail in 
Exploiting Software [Hoglund and McGraw 2004]. 

• Misuse of cryptographic primitives: This flaw is almost self-explanatory. The best 
example is the seriously flawed WEP protocol found in 802.11b, which misused 
cryptography to such an extent that the security was completely compromised 
[Stubblefield, Ioannides, and Rubin 2004]. 

• Easily subverted guard components, broken encapsulation: Examples here are 
slightly more subtle, but consider a situation in which an API is subverted and 
functionality is either misused or used in a surprising new way. APIs can be 
thought of as classical "guards" in some cases, as long as they remain a choke 
point and single point of entry. As soon as they can be avoided, they cease to be 
useful. 

• Cross-language trust/privilege issues: Flaws arise when language boundaries are 
crossed but input filtering and state-preservation mechanisms fail. 

Exploit Graphs 
An exploit graph helps an analyst understand what kind of access and/or pattern 
is required to carry out an attack given a software risk. Flowcharts are very 
useful in describing an exploit and should include some basics such as attack 
delivery (payloads), gaining access, privilege escalation, subverting protections, 
descriptions of architectural failure, and discussion of any existing mitigations 
(and their effectiveness). Charts help. Figure 5-5 shows a simple exploit graph 
that illustrates a mobile code attack. 

Figure 5-5. An exploit graph showing one of the mobile code attacks 
described in Securing Java [McGraw and Felten 1999]. The section 

numbers refer to entries in an associated table (in this case, Table 5-1). 
John Steven of Cigital created this graph. 

[View full size image] 
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Table 5-1. A Partial Exploit Graph Table to Accompany Figure 5-5 

Step # Detail: How/What Conditions Protection 

Delivery 
1 

Deliver attack: get 
attack code onto 
machine with Jewel. 

Client must have 
Internet access. 

  

Delivery 
1.1 

Trick user to point 
browser to JSP. 

Browser must 
have "run JSP" 
enabled. 

Disable JSSP in 
browser. NOTE: doing 
so prevents other sites 
from working. 

Delivery 
1.2 

Send victim e-mail 
containing malicious 
JSP. 

User's mail 
reader must 
interpret JSP. 

Disable JSP execution in 
mail reader. 

Note: JSP refers to Java Server Page. 
 

Exploit graphs also require some explanation in text as briefly described earlier. 
Table 5-1 is a partial view (attack delivery only) of the table meant to 
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accompany Figure 5-5. 

Though attack graphs are not yet a mechanism in widespread use, they do help 
in a risk analysis. Their most important contribution lies in allowing an analyst 
to estimate the level of effort required to exploit a flaw. When it comes to 
exploit development, having a set of exploit graphs on hand can help determine 
which one exploit (usually of many) is the best to develop in the case that some 
kind of "proof" is required. Sometimes you will find that exploit development is 
required to convince skeptical observers that there is a serious problem that 
needs to be fixed. 
 

Ambiguity Analysis 

Ambiguity analysis is the subprocess capturing the creative activity required to discover 
new risks. This process, by definition, requires at least two analysts (the more the 
merrier) and some amount of experience. The idea is for each team member to carry out 
separate analysis activities in parallel. Only after these separate analyses are complete 
does the team come together in the "unify understanding" step shown in Figure 5-4. 

We all know what happens when two or more software architects are put in a room 
together ... catfight—often a catfight of world-bending magnitude. The ambiguity 
analysis subprocess takes advantage of the multiple points of view afforded by the art that 
is software architecture to create a critical analysis technique. Where good architects 
disagree, there lie interesting things (and sometimes new flaws). 

In 1998, when performing an architectural risk analysis on early Java Card systems with 
John Viega and Brad Arkin (their first), my team started with a process very much like 
STRIDE. The team members each went their solitary analysis ways with their own 
private list of possible flaws and then came together for a whiteboard brainstorming 
session. When the team came together, it became apparent that none of the standard-issue 
attacks considered by the new team members were directly applicable in any obvious 
fashion. But we could not very well declare the system "secure" and go on to bill the 
customer (Visa)! What to do?! 

As we started to describe together how the system worked (not how it failed, but how it 
worked), disagreements cropped up. It turns out that these disagreements and 
misunderstandings were harbingers of security risks. The creative process of describing 
to others how the system worked (well, at least how we thought it worked) was extremely 
valuable. Any major points of disagreement or any clear ambiguities became points of 
further analysis. This evolved into the subprocess of ambiguity analysis. 

Ambiguity analysis helps to uncover ambiguity and inconsistency, identify downstream 
difficulty (through a process of traceability analysis), and unravel convolution. 
Unfortunately, this subprocess works best when carried out by a team of very 
experienced analysts. Furthermore, it is best taught in an apprenticeship situation. 
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Perhaps knowledge management collections will make this all a bit less arbitrary (see 
Chapter 11). 

Example flaws uncovered by the ambiguity analysis subprocess in my experience include 
the following. 

• Protocol, authentication problems: One example involved key material used to 
(accidentally) encrypt itself in a complex new crypto system. It turns out that this 
mistake cut down the possible search space for a key from extremely large to 
manageably small.[10] This turned out to be a previously unknown attack, but it 
was fatal. 

[10] That is, breakable in some feasible time period with a standard machine. 

• Java Card applet firewall and Java inner class issues: Two examples. The first was 
a problematic object-sharing mechanism that suffered from serious transitive trust 
issues, the gist being that class A shared method foo with class B, and class B 
could then publish the method to the world (something A did not necessarily 
condone). The second involved the way that inner classes were actually 
implemented (and continue to be implemented) in various Java compilers. Turns 
out that package scoping in this case was somewhat counterintuitive and that 
inner classes had a privilege scope that was surprisingly large. 

• Type safety and type confusion: Type-safety problems in Java accounted for a 
good portion of the serious Java attacks from the mid-1990s. See Securing Java 
[McGraw and Felten 1999]. 

• Password retrieval, fitness, and strength: Why people continue to roll their own 
password mechanisms is beyond me. They do, though. 

Weakness Analysis 

Weakness analysis is a subprocess aimed at understanding the impact of external 
software dependencies. Software is no longer created in giant monolithic a.out globs (as 
it was in the good old days). Modern software is usually built on top of complex 
middleware frameworks like .NET and J2EE. Furthermore, almost all code counts on 
outside libraries like DLLs or common language libraries such as glibc. To make 
matters worse, distributed code—once the interesting architectural exception—has 
become the norm. With the rapid evolution of software has come a whole host of 
problems caused by linking in (or otherwise counting on) broken stuff. Leslie Lamport's 
definition of a distributed system as "one in which the failure of a computer you didn't 
even know existed can render your own computer unusable" describes exactly why the 
weakness problem is hard. 

Uncovering weaknesses that arise by counting on outside software requires consideration 
of: 
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• COTS (including various outside security feature packages like the RSA libraries 
or Netegrity's authentication modules) 

• Frameworks (J2EE, .NET, and any number of other middleware frameworks) 
• Network topology (modern software almost always exists in a networked 

environment) 
• Platform (consider what it's like to be application code on a cell phone or a smart 

card)[11] 

[11] Not to mention a smart card living in a cell phone. 

• Physical environment (consider storage devices like USB keys and iPods) 
• Build environment (what happens when you rely on a broken or poisoned 

compiler? what if your build machine is running a rootkit?) 

In the coming days of Service Oriented Architectures (SOAs), understanding which 
services your code is counting on and exactly what your code expects those services to 
deliver is critical. Common components make particularly attractive targets for attack. 
Common mode failure goes global. 

The basic idea here is to understand what kind of assumptions you are making about 
outside software, and what will happen when those assumptions fail (or are coerced into 
failing). When assumptions fail, weaknesses are often revealed in stark relief. A large 
base of experience with third-party software libraries, systems, and platforms is 
extremely valuable when carrying out weakness analysis. Unfortunately, no perfect 
clearinghouse of security information for third-party software exists. One good idea is to 
take advantage of public security discussion forums such as BugTraq 
<http://www.securityfocus.com/archive/1>, comp.risks <http://catless.ncl.ac.uk/Risks>, 
and security tracker <http://www.securitytracker.com>.[12] 

[12] Have you ever wondered whether the software you're working on (or counting on) has 
been successfully attacked? Check out the public mailing lists (BugTraq, VulnWatch 
<http://www.vulnwatch.org/>, comp.risks) to see. You may be surprised. 

Example flaws uncovered by the weakness analysis subprocess in my experience include 
the following. 

• Browser and other VM sandboxing failures: Browsers are overly complex pieces 
of software rivaled in complexity only by operating systems. Browsers have so 
many moving parts that finding unexplored niches and other "between the seams" 
flaws is easy. 

• Insecure service provision—RMI, COM, and so on: Protocols and 
communications systems are often a standard feature of modern software. When 
Java's RMI was found to fail open <http://www.cs.princeton.edu/~balfanz>, the 
systems counting on RMI were all subject to the same kind of attack. 

• Debug (or other operational) interfaces: Debugging code is always as useful to the 
attacker as it is to the maintainer. Don't send error reports to your (mis)user. 
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• Unused (but privileged) product "features": If you put overly powerful features 
into your design, don't be surprised when they are turned against you. See 
Building Secure Software for a good story of what happened when old-fashioned 
bulletin board systems allowed a user to invoke emacs [Viega and McGraw 
2001]. 

• Interposition attacks—DLLs, library paths, client spoofing: Person-in-the-middle 
attacks are very popular, mostly because they are very effective. Same goes for 
PATH hacking, spoofing, and other low-hanging fruit. Carefully consider what 
happens when an attacker gets between one component and the other components 
(or between one level of the computing system and the others). 

By applying the simple three-step process outlined here, you can greatly improve on a 
more generic checklist-based approach. There is no substitute for experience and 
expertise, but as software security knowledge increases, more and more groups should be 
able to adopt these methods as their own. 

Getting Started with Risk Analysis 

This whole risk analysis thing seems a bit hard; but risk analysis does not really have to 
be hard. Sometimes when faced with a seemingly large task like this, it's difficult to get 
the ball rolling. To counter that problem, Appendix C presents a simple exercise in 
armchair risk analysis. The idea is to apply some of the ideas you have learned in this 
chapter to complete a risk analysis exercise on a pretend system (riddled with security 
flaws). I hope you find the exercise interesting and fun.[13] 

[13] Please try this at home! Hint: Try doing the exercise with a group of friends and a 
bottle of good wine. 

Start with something really simple, like the STRIDE model [Howard and LeBlanc 2003]. 
Develop a simple checklist of attacks and march down the list, thinking about various 
attack categories (and the related flaws that spawn them) as you go. Checklists are not a 
complete disaster (as the existence of the attack resistance subprocess shows). In fact, in 
the hands of an expert, checklists (like the 48 attack patterns in Exploiting Software 
[Hoglund and McGraw 2004]) can be very powerful tools. One problem with checklists 
is that you are not very likely to find a new, as-yet-to-be-discovered attack if you stick 
only to the checklist.[14] Another problem is that in the hands of an inexperienced newbie, 
a checklist is not a very powerful tool. Then again, newbies should not be tasked with 
architectural risk analysis. 

[14] This is important because (smart) attackers use checklists too . . . in order to avoid 
doing something obvious that will get them caught. On the other hand, script kiddies will 
bumble right into your defenses, like a roach wandering into a roach motel. 

Architectural Risk Analysis Is a Necessity 



 179

Risk analysis is, at best, a good general-purpose yardstick by which you can judge the 
effectiveness of your security design. Since around 50% of security problems are the 
result of design flaws, performing a risk analysis at the design level is an important part 
of a solid software security program. 

Taking the trouble to apply risk analysis methods at the design level of any application 
often yields valuable, business-relevant results. The process of risk analysis identifies 
system-level vulnerabilities and their probability and impact on the organization. Based 
on considering the resulting ranked risks, business stakeholders can determine whether to 
mitigate a particular risk and which control is the most cost effective. 
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Chapter 6. Software Penetration Testing[1] 
[1] Parts of this chapter appeared in original form in IEEE Security & Privacy magazine 
co-authored with Brad Arkin and Scott Stender [Arkin, Stender, and McGraw 2005] 

[View full size image] 

 

You can't make an omelet without breaking eggs. 

—Anonymous 

Quality assurance and testing organizations are tasked with the broad objective of 
ensuring that a software application fulfills its functional business requirements. Such 
testing most often involves running a series of dynamic functional tests late in the 
lifecycle to ensure that the application's features have been properly implemented. 
Sometimes use cases and requirements drive this testing. But no matter what does the 
driving, the result is the same—a strong emphasis on features and functions. Because 
security is not a feature or even a set of features, security testing (especially penetration 
testing) does not fit directly into this paradigm. 

Security testing poses a unique problem. A majority of security defects and 
vulnerabilities in software are not directly related to security functionality. Instead, 
security issues involve often unexpected but intentional misuses of an application 
discovered by an attacker. If we characterize functional testing as "testing for 
positives"—as in verifying that a feature properly performs a specific task—then 
penetration testing is in some sense "testing for negatives." That is, a security tester must 
probe directly and deeply into security risks (possibly driven by abuse cases and 
architectural risks) in order to determine how the system behaves under attack. (Chapter 7 
discusses how these tests can be driven by attack patterns.) 
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At its heart, security testing needs to make use of both white hat and black hat concepts 
and approaches: ensuring that the security features work as advertised (a white hat 
undertaking) and that intentional attacks can't easily compromise the system (a black hat 
undertaking). That said, almost all penetration testing relies on black hat methods over 
white hat methods.[2] In other words, thinking like a bad guy is so essential to good 
penetration testing that leaving it out leaves penetration testing impotent. 

[2] One critical exception to this rule occurs when a penetration tester finds out that 
security functionality does not work as specified and uses this as the basis for attack. The 
upshot is that a security tester must ensure that the application not only does not do what 
it is not supposed to do but also does do what it is supposed to do (with regard to security 
features). 

In any case, testing for a negative poses a much greater challenge than verifying a 
positive. A set of successfully executed, plausible positive tests usually yields a high 
degree of confidence that a software component will perform functionally as desired. 
However, enumerating actions with the intention to produce a fault and reporting whether 
and under which circumstances the fault occurs is not a sound approach to proving the 
negative outcome does not exist. Got that? What I'm saying is that it's really easy to test 
whether a feature works or not, but it is very difficult to show whether or not a system is 
secure enough under malicious attack. How many tests do you do before you give up and 
declare "secure enough"? 

If negative tests do not uncover any faults, this only offers proof that no faults occur 
under particular test conditions; this by no means proves that no faults exist. When 
applied to penetration testing where lack of security vulnerability is the negative we're 
interested in, this means that "passing" a software penetration test provides very little 
assurance that an application is immune to attack. One of the main problems with today's 
most common approach to penetration testing is a misunderstanding of this subtle point. 

As a result of this problem in testing philosophy, penetration testing often devolves into a 
feel-good exercise in pretend security. Things go something like this. A set of reformed 
hackers is hired to carry out a penetration test. We know all is well because they're 
reformed. (Well, they told us they were reformed, anyway.) The hackers work a while 
until they discover a problem or two in the software, usually relating to vulnerabilities in 
base technology such as an application framework or a basic misconfiguration problem. 
Sometimes this discovery activity is as simple as trawling BugTraq to look up known 
security issues associated with an essential technology linked into the system.[3] 

[3] See <http://www.securityfocus.com> for the BugTraq archive. 

The hackers report their findings. They look great because they found a "major security 
problem." The software team looks pretty good because they graciously agreed to have 
their baby analyzed and broken, and they even know how to fix the problem. The VP of 
Yadda Yadda looks great because the security box is checked. Everybody wins! 



 182

The problem? No clue about security risk. No idea whether the most critical security risks 
have been uncovered, how much risk remains in the system, and how many bugs are 
lurking in the zillions of lines of code. Finding a security problem and fixing it is fine. 
But what about the rest of the system? 

Imagine if we did normal software testing like this! The software is declared "code 
complete" and thrown over the wall to testing. The testers begin work right away, 
focusing on very basic edge conditions and known failure modes from previous testing 
on version one. They find one or two problems right off the bat. Then they stop, the 
problems get fixed, and the testing box gets checked off. Has the software been properly 
tested? Run this scenario by any professional tester, and once the tester is done laughing, 
think about whether penetration testing as practiced by most organizations works. 

Penetration Testing Today 

Penetration testing is the most frequently and commonly applied of all software security 
best practices. This is not necessarily a good thing. Often penetration testing is foisted on 
software development teams by overzealous security guys and everyone ends up angry. 
Plus the focus tends to be too much driven by an outside in approach. Better to adopt 
and implement the first two touchpoints (code review and architectural risk analysis) than 
to start with number three! 

One reason for the prevalence of penetration testing is that it appears to be attractive as a 
late-lifecycle activity and can be carried out in an outside in manner. Operations 
people not involved in the earlier parts of the development lifecycle can impose it on the 
software (but only when it's done). Once an application is finished, it is subjected to 
penetration testing as part of the final preoperations acceptance regimen. The testing is 
carried out by the infosec division. Because of time constraints, most assessments like 
this are performed in a "time-boxed" manner as a final security checklist item at the end 
of the lifecycle. 

One major limitation of this approach is that it almost always represents a too-little-too-
late attempt to tackle security at the end of the development cycle. As we have seen, 
software security is an emergent property of the system, and attaining it involves 
applying a series of touchpoints throughout the software lifecycle (see Chapter 3). 
Organizations that fail to integrate security throughout the development process are often 
unpleasantly surprised to find that their software suffers from systemic faults both at the 
design level and in the implementation. In other words, the system has zillions of security 
flaws and security bugs. In a late-lifecycle penetration testing paradigm, inside-the-code 
problems are uncovered too late, and options for remedy are severely constrained by both 
time and budget. 

Fixing things at this stage is, more often than not, prohibitively expensive and almost 
always involves Band-Aids instead of cures. Post-penetration-test security fixes tend to 
be particularly reactive and defensive in nature—adjusting the firewall ruleset, for 
example. Though these short-notice kludges may fix up inside problems temporarily, 
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they can be likened to putting a Band-Aid on a laceration. Tracking down the source of 
the problem and fixing things there is much more effective. 

The real value of penetration testing comes from probing a system in its final operating 
environment. Uncovering environment and configuration problems and concerns is the 
best result of any penetration test. This is mostly because such problems can actually be 
fixed late in the lifecycle. Knowing whether or not your WebSphere application server is 
properly set up and your firewall plays nicely with it is just as important to final security 
posture as is building solid code. Penetration testing gets to the heart of these 
environment and configuration issues quickly. (In fact, its weakness lies in not being able 
to get beyond these kinds of issues very effectively.) 

The success of an ad hoc software penetration test is dependent on many factors, few of 
which lend themselves to metrics and standardization. The first and most obvious 
variable is the skill, knowledge, and experience of the tester(s). Software security 
penetration tests (sometimes called application penetration tests) do not currently follow 
a standard process of any sort and therefore are not particularly amenable to a consistent 
application of knowledge (think checklists and boilerplate techniques). The upshot is that 
only skilled and experienced testers can successfully carry out penetration testing. For an 
example of what happens when not enough attention is paid during a penetration test, see 
the next box, An Example: Scrubbed to Protect the Guilty. 

Use of security requirements, abuse cases, security risk knowledge, and attack patterns in 
application design, analysis, and testing is rare in current practice. As a result, security 
findings are not repeatable across different teams and vary widely depending on the skill 
and experience of the tester(s). Furthermore, any test regimen can be structured in such a 
way as to influence the findings. If test parameters are determined by individuals 
motivated (consciously or not) not to find any security issues, it is very likely that 
penetration testing will result in a self-congratulatory exercise in futility.[4] 

[4] Put in more basic terms, don't let the fox guard the chicken house. If you do, don't be 
surprised if the fox finds absolutely no problems with the major hole in the northwest 
corner of the chicken yard. 

Results interpretation is also an issue. Typically, results take the form of a list of flaws, 
bugs, and vulnerabilities identified during the penetration testing. Software development 
organizations tend to regard these results as complete bug reports—comprehensive lists 
of issues to be addressed in order to make the system secure. Unfortunately, this 
perception does not factor in the time-boxed (or otherwise incomplete) nature of late-
lifecycle assessments. In practice, a penetration test can identify only a small 
representative sample of all of the possible security risks in a system (especially those 
problems that are environmental or involve operational configuration). If a software 
development organization focuses solely on a small (and limited) list of issues, it will end 
up mitigating only a subset of the security risks present (and possibly not even those that 
present the greatest risk). 
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All of these issues pale in comparison to the problem that penetration testing is often used 
as an excuse to declare security victory and "go home." Don't forget, when a penetration 
test concentrates on finding and removing a handful of issues (and even does so 
successfully), everyone looks good. Unfortunately, penetration testing done without any 
basis in security risk analysis leads to the "pretend security" problem with alarming 
consistency. 

An Example: Scrubbed to Protect the Guilty 
One major problem with application penetration testing as carried out today is 
that the testers are often very good, but not very software savvy network 
security people. If you have the same guys testing your network infrastructure 
setup (using Nessus) as are testing your applications, you might ask yourself 
what kind of value you're getting. It's not that network security people are dopes. 
They're not. It's just that results from a software penetration test need to be 
described in a coherent fashion so that real software people can act on them. 
Communicating with software people is difficult enough if you are one! If 
you're not ... woe is you. 

As a good example of the kind of silly results you get when you have the wrong 
people do an application penetration test, take a look at the following excerpt of 
results cut from a real penetration test and carried out by an experienced 
(network) penetration team. We'll call the company APPSECO to protect the 
guilty. 

Source Code Review of Input Validation Modules 

APPSECO conducted a manual security review of a selected set of input 
validation modules. The modules were provided to CLIENT by the 
SWVENDOR as an example of their new input validation architecture. 
APPSECO analyzed the logic flow, input bounds checking, input type and 
content validation, and error handling. The modules reviewed are listed in the 
table below: 

[List elided.] 

... 

Input Validation Modules 

The results of the code analysis indicate that input validation is ineffective. 
Further, the input validation modules introduce potential cross-site scripting 
vulnerabilities to the application. While some input is validated for type, 
content, and for authorization, much of the input is not. 
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Because only a portion of the code base was provided, APPSECO cannot make 
a definitive and complete statement regarding the effectiveness of the code in 
controlling user input and restricting user access. As such, conclusions 
regarding the effectiveness of the code and severity of vulnerabilities identified 
may change upon review of the code given access to the entire code base. For 
example, numerous validation functions are called within the validation modules 
for which no definition was provided. These include: [functions elided]. These 
and all other validation functions must be reviewed. 

I find it inexcusable to make claims like those found in the second paragraph 
given the kind of disclaimers in the third. No non-software person would look at 
parts of a system and say anything at all about what had been seen (short of 
identifying local bugs in API usage). Incidentally, later in the same report, a cut-
and-paste error in the description of a network access control problem calls out a 
different client. Hmm. 
 

One big benefit of penetration testing that is well worth mentioning is its adherence to a 
critical (even cynical) black hat stance. By taking on a system in its real production 
environment, penetration testers can get a better feel for operational and configuration 
issues often overlooked in software development. That's why penetration testing needs to 
be adjusted, not abandoned. For more on black box testing and why it is useful as an 
attacker technique, see Chapter 3 of Exploiting Software [Hoglund and McGraw 2004]. 

Coder's Corner 
Here's an interesting little problem published by Professor D. J. Bernstein from 
the University of Illinois at Chicago and attributed to his student Ariel Berkman. 
(The original posting can be found at 
<http://tigger.uic.edu/~jlongs2/holes/changepassword.txt>.) 

The posting describes a locally exploitable security hole in ChangePassword, 
which is a YP/Samba/Squid password-changing utility. 

If changepassword.cgi is installed on a multiuser computer, any user with an 
account on the computer can gain complete control of the computer through the 
utility. The attacker can read and modify all files, watch all processes, and 
perform other such nefarious activities. 

The bug occurs on line 317 of changepassword.c, which calls 

system("cd /var/yp && make &> /dev/null"); 
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without cleaning its environment in any way first. This is a big no-no. 

Unfortunately (or not, depending on your hat color) the Makefile arranges for 
changepassword.cgi to be setuid root. A malicious user can create an exploit 
as follows: 

set $PATH to point to an evil make program 

set $CONTENT_LENGTH to 512 

set $REQUEST_METHOD to POST 

feed form_user=u&form_pw=p&form_new1=x&form_new2=x& to 
changepassword.cgi, where u is the username and p is the password. 

The attacker's make program then runs with root privileges. 

In short, you can use this CGI script to change a password and to root the box, 
but not through the Web interface. Since this program doesn't clean up its 
environment properly before running, you can log into the machine, put a 
malicious command named make early on your path, execute the CGI script, and 
you're all done. 

This bug is interesting for a number of reasons. 

• It's a nice example of programmers' assumptions being violated. 
• It's a Web application, but you can't find the vulnerability using port 80 

nonsense. 
• Because the problem is related to the interaction between the program 

and the environment, exploitability is tied to the configuration of the 
machine. 

• Your QA environment might be okay and your production server might 
be vulnerable. 

• You're unlikely to find it with any sort of black box penetration test since 
the tester needs to look at the source code to find the problem. 

Software Penetration Testing—a Better Approach 

All is not lost—security penetration testing can be used effectively. The best approach 
bases penetration testing activities on security findings discovered and tracked from the 
beginning of the software lifecycle: during requirements analysis, architectural risk 
analysis, and so on. To do this, a penetration test must be structured according to 
perceived risk and offer some kind of metric relating the security posture of the software 
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at the time of the test to risk measurement. Results are less likely to be misconstrued and 
used to declare pretend security victory if they are related to business impact through 
proper risk management. (See Chapter 2, which describes a risk management framework 
amenable to feeding security testing.) 

Penetration testing is about testing a system in its final production environment. For this 
reason, penetration testing is best suited to probing configuration problems and other 
environmental factors that deeply impact software security. Driving tests that concentrate 
on these factors with some knowledge of risk analysis results is the most effective 
approach. Outside in testing is great as long as it is not the only testing you do. The 
modern approach that I describe throughout the remainder of this chapter is much more 
closely aligned with risk-based security testing (see Chapter 7) than it is with application 
penetration testing as practiced by most consulting shops today. Be careful what you ask 
for! 

Make Use of Tools 

Tools (including the static analysis tools discussed in Chapter 4) should definitely be 
used in penetration testing. Tools are well suited to finding known security vulnerabilities 
with little effort. Static analysis tools can vet software code, either in source or binary 
form, in an attempt to identify common implementation-level bugs such as buffer 
overflows. Dynamic analysis tools can observe a system as it executes. These tools can 
submit malformed, malicious, and random data to a system's entry points in an attempt to 
uncover faults—a process commonly referred to as fuzzing [Miller et al. 1995]. Faults are 
then reported to the tester for further analysis. When possible, use of these tools should 
be guided by risk analysis results and attack patterns. (See the following box, Tools for 
Penetration Testing.) 

Tool use carries two major benefits. First, when used effectively, tools can carry out a 
majority of the grunt work needed for basic software penetration testing (at the level of a 
fielded system). Of course, a tool-driven approach can't be used as a replacement for 
review by a skilled security analyst (especially since today's tools are by their nature not 
applicable at the design level), but a tool-based approach does help relieve the work 
burden of a reviewer and can thus drive down cost. Second, tool output lends itself 
readily to metrics. Software development teams can use these metrics to track progress 
over time as they move toward a security goal. Simple metrics in common use today do 
not offer a complete picture of the security posture of a system. Thus it is important to 
emphasize that a clean bill of health from an analysis tool does not mean that a system is 
defect free (recall the discussion of badness-ometers from Chapter 1). The value lies in 
relative comparison: If the current run of the tools reveals fewer defects than a previous 
run, progress has likely been made. 

Tools for Penetration Testing 
A number of tools purport utility for application security testing. Beware of 
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those tools that claim to be a "hacker in a box." For a rant about (super-lame) 
application security testing tools like that, see the box Application Security 
Testing Tools: Good or Bad in Chapter 1. If we leave aside silly tools that do 
things like send 50 a's over port 80 in an attempt to cause a buffer overflow, 
there are a number of very useful tools left. 

Fault Injection Tools 

Software fault injection has an interesting future as a potential security 
technology. I coauthored the first book on this technique with Jeff Voas. If 
you're up for a tedious read, check out Software Fault Injection [Voas and 
McGraw 1998]. 

One of the most interesting modern fault injection engines for security is the 
Cenzic tool. This tool uses browser shunts to intercept transactions and allow an 
analyst to play around with them. Though this kind of testing activity is possible 
with perl and a command-line interface, results collection and automation make 
the second-generation tools worth considering. Cenzic began its life as a hacker 
tool called Hailstorm written by Greg Hoglund. Greg has since abandoned 
Cenzic, but the company carries on. For more, see <http://www.cenzic.com>. 

James Whittaker and his merry band of security grad-students-turned-testers 
from Florida Tech created a company called Security Innovation. Whittaker 
takes malicious input to a new level. The Holodeck tool is useful for playback, 
security fault injection, and a number of other interesting tests. For more, see 
<http://www.sisecure.com>. 

Other Tools 

Also worth a look are application attack tools from SPI Dynamics 
<http://www.spidynamics.com> and Fortify Software 
<http://www.fortifysoftware.com>. 

Dan Geer reports that Dave Aitel and company are having considerable success 
using Immunity's CANVAS tool <http://www.immunitysec.com/products-
canvas.shtml>. 

Another fun little tool is a shim that allows you to capture all of the HTTP 
traffic your browser sees. One such tool is here 
<http://www.ieinspector.com/httpanalyzer/>. Since these tools run in the 
browser, you don't have to jump through any hoops to see HTTPS traffic. Nice 
for messing around with Web interfaces (as a way of "making the client 
invisible") [Hoglund and McGraw 2004]. 

The main thing to remember about all of these tools is that they are most 
valuable in the hands of an expert. Whatever you do, don't set your five-year-old 
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up with a power saw, or if you do, don't be too shocked by the messy results. 

Getting Past Fault Injection: The Attacker's Toolkit 

In Exploiting Software, Greg Hoglund and I go to great lengths to describe the 
attacker's toolkit. Tools commonly used by bad guys make great fodder for 
penetration testers. This is where your black hat gets its dark color. Any hacker 
(malicious or otherwise) worth his or her salt uses these tools. 

• Disassemblers and decompilers: The notion that source code is required 
for security attacks is ridiculous. People interested in really 
understanding the ins and outs of software use disassemblers and 
decompilers all the time. 

• Control flow and coverage tools: Though coverage tools were designed 
to help testers ascertain test effectiveness, they also make excellent 
attack tools. If you know that there is a vulnerability sitting deep in a 
target program, the next order of business is getting there. Control flow, 
data flow, and coverage analysis tools help. 

• APISPY32: A tool particular to Win32, but well worth a mention. This 
tool allows an analyst to know when a program uses outside DLLs 
and/or other libraries. This kind of information is useful for interposition 
attacks, DLL substitution attacks, and a whole lot of other fun. 

• Breakpoint setters and monitors: Debuggers are your friend. Breakpoints 
can even be set on target hardware to look for memory page access, 
device access, and the like. Understanding a program is much easier if 
you can watch it and freeze it at will. 

• Buffer overflow: You know all about this one, right? See Building 
Secure Software if you want to know how a buffer overflow attack really 
works in painstaking detail [Viega and McGraw 2001]. Advanced 
attacks are covered in Exploiting Software [Hoglund and McGraw 
2004]. Also see the new book The 19 Deadly Sins of Software Security 
[Howard, LeBlanc, and Viega 2005]. 

• Shell code: Payload anyone? The attacker's goal is to subvert control and 
run a program. This is the kind of program that gets run. See The 
Shellcoder's Handbook for more [Koziol et al. 2004]. 

• Rootkits: The ultimate weapon. At the apex of the attacker's toolkit is the 
rootkit. Rootkits hide away from standard system observers, employing 
hooks, trampolines, and patches to get their work done. Sophisticated 
rootkits run in such a way that other programs that usually monitor 
machine behavior can't easily detect them. A rootkit thus provides 
insider access only to people who know that it is running and available 
to accept commands. Kernel rootkits can hide files and running 
processes to provide a back door into the target machine. An excellent 
book, Rootkits: Subverting the Windows Kernel—the first book in the 
world on rootkits—was published in August 2005 [Hoglund and Butler 
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2005]. 

Other tools also worth a (much briefer) mention include the following: 

• Debuggers (user-mode) 
• Kernel debuggers 
• SoftIce 
• Fuzz 
• Boron tagging 
• The "depends" tool 
• Grammar rewriters 

 

Test More Than Once 

As it stands today, automated review is best suited to identifying the most basic of 
implementation defects. Human review is necessary to reveal flaws in the design or more 
complicated implementation-level vulnerabilities (of the sort that attackers can and will 
exploit). However, review by an expert is costly and, for reasons just described, can be 
ineffective if the "expert" is not. By leveraging the seven software security touchpoints 
described in this book, software penetration tests can be structured in such a way as to be 
cost effective and give a reasonable estimation of the security posture of the system. 

Penetration testing can benefit greatly from knowledge of the security risks built into a 
system. No design or implementation is perfect, and carrying risk is usually acceptable. 
Penetration testing can help you find out what this means to your fielded system. In fact, 
penetration testing in some sense collapses the "risk probability wave" into something 
much more tangible when testing clarifies ways that a risk can be exploited. That is, if 
you know what your likely risks are in the design, you can use penetration testing to 
figure out what impact this has on an actual fielded system. 

As noted earlier, static and dynamic analysis tools should be uniformly applied; this holds 
true at the subsystem level too. In most cases, no customization of basic static analysis 
tools is necessary for component-level tests. However, dynamic analysis tools will likely 
need to be written or modified for the target component. Such tools often involve data-
driven tests that operate at the API level. Any tool should include data sets known to 
cause problems, such as long strings, strange encodings, and control characters [Hoglund 
and McGraw 2004]. Furthermore, the design of the tool should reflect the security test's 
goal—to misuse the component's assets, to violate intercomponent assumptions, or to 
probe risks. Customizations are almost always necessary. 

Penetration testing should focus at the system level and should be directed at properties 
of the integrated software system. For efficiency's sake, testing should be structured in 
such a way as to avoid repeating unit-level testing (as described in Chapter 7), and should 
therefore be focused on aspects of the system that could not be probed during unit testing. 
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In order to be defined as penetration tests, system-level tests should analyze the system in 
its deployed environment. Such analysis may be targeted to ensure that suggested 
deployment practices are effective and reasonable, and that assumptions external to the 
system cannot be violated. 

Incorporating Findings Back into Development 

Perhaps the most common failure of the software penetration testing process is failure to 
identify lessons learned and propagate them back into the organization. As mentioned, it 
is tempting to view the results of a penetration test as a complete and final list of issues to 
be fixed rather than as a representative sample of faults in the system. Of course, even in 
this case, the existence of such a list does not do anything to actually fix the system. One 
of the major barriers to software security success is getting organizations to get around to 
fixing the problems found every day by security consultants. Don't for a minute believe 
that penetration testing results make you any more secure; only acting on them does. 

Mitigation strategy is thus a critical aspect of any penetration test. Rather than simply 
fixing only those issues identified, developers should carry out a root-cause analysis of 
the identified vulnerabilities. For example, if a majority of vulnerabilities are buffer 
overflows, the development organization should determine just how these bugs made it 
into the code base. In such a scenario, lack of developer training, misapplication (or 
nonexistence of) standard coding practices, poor choice of languages and libraries, 
intense schedule pressure, failure to use a source code analysis tool, or any combination 
thereof may ultimately represent an important cause. 

Once a root cause has been identified, mitigation strategies should be devised to address 
the identified vulnerabilities and any similar vulnerabilities in the software. Furthermore, 
best practices should be developed and implemented to address such vulnerabilities 
proactively in the future. (See Chapter 10 for a discussion of how this idea relates to a 
large-scale software security program.) 

Going back to the buffer overflow example, an organization may decide to train its 
developers and eliminate the use of potentially dangerous functions, such as strcpy(), in 
favor of safer string-handling libraries such as those found in the C++ Standard 
Templates Library (STL). Perhaps a static analysis tool can be used to enforce this 
decision. 

A good last step involves using test result information to measure progress against a goal. 
Where possible, tests for a mitigated vulnerability should be added to automated test 
suites (which can be used in regression testing). If the vulnerability resurfaces in the code 
base at some point in the future, any measures taken to prevent the vulnerability should 
be revisited and improved. As time passes, iterative penetration tests should reveal fewer 
and less severe defects in the system. If a penetration test reveals serious severe 
problems, the "representative sample" view of the results should give the development 
organization real reservations about deploying the system. 
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Using Penetration Tests to Assess the Application Landscape 

One of the major problems facing large organizations that have been creating software 
for years is the unmanageable pile of software they have created. How do you get started 
when you have over 1000 applications and nobody thought about software security until 
just recently? 

Penetration testing can help. One idea is to run a uniform, fixed-length, standardized 
penetration test against all of the apps and then rank them according to results. This 
would best be enhanced by a very basic risk analysis to pin down the business context 
(see Chapter 5). In this way, a very rough cut at ranking the application pile by security 
posture is possible. An approach like this results in a plan of attack that makes sense. No 
reason to work on the most secure application first. 

This idea can be expanded to cover sets of common components and libraries and their 
intersection with the application pile. The move toward Web Services and Service 
Oriented Architecture (SOA) means that much more attention must be paid to shared 
services. Put bluntly, shared services are also potential shared vulnerabilities and/or 
common points of failure. Getting things like state, messaging, and authentication right in 
the brave new world of SOA is a real challenge. 

Proper Penetration Testing Is Good 

Penetration testing is the most commonly applied mechanism used to inject security into 
the SDLC. Unfortunately, it is the most commonly misapplied mechanism as well. By 
adjusting penetration testing to account for results uncovered during testing at the unit 
level, driving outside in test creation from risk analysis, and driving the results back 
into an organization's SDLC, many common pitfalls can be avoided. Note that the 
approach described here is extremely useful and important, but also not very common. 
Ask lots of hard questions about any particular approach to penetration testing before you 
put too much credence in it, especially if security consultants are involved. 

Don't forget that the real value of penetration testing comes from its central role in vetting 
configuration and other essential environmental factors. Use penetration testing as a "last 
check" before code goes live instead of as a "first check" of security posture. 

As a measurement tool, penetration testing is most powerful when fully integrated into 
the development process in such a way that early-lifecycle findings are used to inform 
testing and that results find their way back into development and deployment practices. 
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Chapter 7. Risk-Based Security Testing[1] 
[1] Parts of this chapter appeared in original form in IEEE Security & Privacy magazine 
co-authored with Bruce Potter [Potter and McGraw 2004]. 

[View full size image] 

 

A good threat is worth a thousand tests. 

—Boris Beizer 

Security testing has recently moved beyond the realm of network port scanning to include 
probing software behavior as a critical aspect of system behavior (see the box From 
Outside In to Inside Out on page 189). Unfortunately, testing software security is a 
commonly misunderstood task. Security testing done properly goes much deeper than 
simple black box probing on the presentation layer (the sort performed by so-called 
application security tools, which I rant about in Chapter 1)—and even beyond the 
functional testing of security apparatus. 

Testers must carry out a risk-based approach, grounded in both the system's architectural 
reality and the attacker's mindset, to gauge software security adequately. By identifying 
risks in the system and creating tests driven by those risks, a software security tester can 
properly focus on areas of code where an attack is likely to succeed. This approach 
provides a higher level of software security assurance than is possible with classical black 
box testing. 

Security testing has much in common with (the new approach to) penetration testing as 
covered in Chapter 6. The main difference between security testing and penetration 
testing is the level of approach and the timing of the testing itself. Penetration testing is 
by definition an activity that happens once software is complete and installed in its 
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operational environment. Also, by its nature, penetration testing is focused outside in 
and is somewhat cursory. By contrast, security testing can be applied before the software 
is complete, at the unit level, in a testing environment with stubs and pre-integration.[2] 
Both approaches work best when they take risk analysis results, abuse cases, and 
functional security requirements into account. 

[2] This distinction is similar to the slippery distinction between unit testing and system 
testing. 

Security testing should start at the feature or component/unit level, prior to system 
integration. Risk analysis carried out during the design phase (see Chapter 5) should 
identify and rank risks and discuss intercomponent assumptions. At the component level, 
risks to the component's assets must be mitigated within the bounds of contextual 
assumptions. Tests should be structured in such a way as to attempt both unauthorized 
misuse of and access to target assets as well as violations of the assumptions the system 
writ large may be making relative to its components. A security fault may well surface in 
the complete system if tests like these are not devised and executed. 

Security unit testing carries the benefit of breaking system security down into a number 
of discrete parts. Theoretically, if each component is implemented safely and fulfills 
intercomponent design criteria, the greater system should be in reasonable shape (though 
this problem is much harder than it may seem at first blush [Anderson 2001]).[3] By 
identifying and leveraging security goals during unit testing, the security posture of the 
entire system can be significantly improved. 

[3] Ross Anderson refers to the idea of component-based distributed software and the 
composition problem as "programming the devil's computer." 

Security testing should continue at the system level and should be directed at properties 
of the integrated software system. This is precisely where penetration testing meets 
security testing, in fact. Assuming that unit testing has successfully achieved its goals, 
system-level testing should shift the focus toward identifying intracomponent failures and 
assessing security risk inherent at the design level. If, for example, a component assumes 
that only another trusted component has access to its assets, a test should be structured to 
attempt direct access to that component from elsewhere. A successful test can undermine 
the assumptions of the system and would likely result in a direct, observable security 
compromise. Data flow diagrams, models, and intercomponent documentation created 
during the risk analysis stage can be a great help in identifying where component seams 
exist. 

Finally, abuse cases developed earlier in the lifecycle (see Chapter 8) should be used to 
enhance a test plan with adversarial tests based on plausible abuse scenarios. Security 
testing involves as much black hat thinking as white hat thinking. 
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From Outside In to Inside Out 
Traditional approaches to computer and network security testing focus on 
network infrastructure, firewalls, and port scanning. This is especially true of 
network penetration testing (see Chapter 6) and its distant cousin, software 
penetration testing (sometimes called application penetration testing by 
vendors). Early approaches to application-level penetration testing were lacking 
because they attempted to test all possible programs with a fixed number of 
(lame) canned attacks. Better penetration testing approaches take architectural 
risks, code scanning results, and security requirements into account, but still 
focus on an outside in perspective. 

The notion behind old-school security testing is to protect vulnerable systems 
(and software) from attack by identifying and defending a perimeter. In this 
paradigm, testing focuses on an outside in approach. 

One classic example is the use of port scanning with tools such as Nessus 
<http://www.nessus.org/> or nmap <http://www.insecure.org/nmap/> to probe 
network ports and see which service is listening. Figure 7-1 shows a classic 
outside in paradigm focusing on firewall placement. In this figure, the LAN 
is separated from the Internet (or public network) by a firewall. The natural 
perimeter is the firewall itself, which is supposed to provide a choke point for 
network traffic and a position from which very basic packet-level enforcement 
is possible. Firewalls do things like "drop all packets to port 81" or "only allow 
traffic from specific IP addresses on specific ports through." 

Figure 7-1. The outside in approach. A firewall protects a LAN by 
blocking various network traffic on its way in; outside in security 

testing (especially penetration testing) involves probing the LAN with a 
port scanner to see which ports are "open" and which services are 
listening on those ports. A major security risk associated with this 

approach is that the services traditionally still available through the 
firewall are implemented with insecure software. 
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The problem is that this perimeter is only apparent at the network/packet level. 
At the level of software applications (especially geographically distributed 
applications), the perimeter has all but disappeared. That's because firewalls 
have been configured (or misconfigured, depending on your perspective) to 
allow advanced applications to tunnel right through them. 

A good example of this phenomenon is the SOAP protocol, which is designed 
(on purpose) to shuttle traffic through port 80 for various different applications. 
In some sense, SOAP is an anti-security device invented by software people so 
that they could avoid having to ask hard-nosed security people to open a firewall 
port for them. Once a tunnel like this is operational, the very idea of a firewall 
seems quaint.[*] In the brave new world of Service Oriented Architecture (SOA) 
for applications, we should not be surprised that the firewall is quickly 
becoming irrelevant. 

By contrast, I advocate an inside out approach to security, whereby software 
inside the LAN (and exposed on LAN boundaries) is itself subjected to rigorous 
risk management and security testing. This is just plain critical for modern 
distributed applications. 
 

[*] If you're having trouble getting through the firewall, just aim your messages through 
port 80, use a little SOAP, and you're back in business. 

What's So Different about Security? 
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Software security is about making software behave in the presence of a malicious attack 
even though, in the real world, software failures usually happen spontaneously—that is, 
without intentional mischief [Leveson 1995]. Not surprisingly, standard software testing 
literature is only concerned with what happens when software fails, regardless of intent. 
The difference between software safety and software security is therefore the presence of 
an intelligent adversary bent on breaking the system. Most safety-critical systems (and 
high-assurance systems) posit a white hat world. Fact is, we live in a world with plenty of 
black hats as well, and we need to address that (head on). 

Security is always relative to the information and services being protected, the skills and 
resources of adversaries, and the costs of potential assurance remedies; security is an 
exercise in risk management. Risk analysis, especially at the design level, can help us 
identify potential design-level security problems and their impact (see Chapter 5). Once 
identified and ranked, software risks can then help guide software security testing. Using 
a risk management framework, such as the RMF described in Chapter 2, allows us to 
track risks over time and thereby construct more relevant and more potent tests. 

A vulnerability is an error that an attacker can exploit. Many types of vulnerabilities 
exist, and computer security researchers have created taxonomies of them, one of the first 
being Carl Landwehr [Landwehr, Bull, and McDermott 1993]. Vulnerabilities arise from 
defects, which in turn fall into two broad categories—implementation-level bugs and 
design-level flaws. 

Attackers generally don't care whether a vulnerability is due to a flaw or a bug, although 
bugs tend to be easier to exploit [Koziol et al. 2004]. Because attacks are now becoming 
more sophisticated, the notion of which vulnerabilities actually matter is changing. 
Although timing attacks, including the well-known race condition, were considered 
exotic just a few years ago, they're common now [Bishop and Dilger 1996]. Similarly, 
two-stage buffer overflow attacks using trampolines were once the domain of software 
scientists but now appear in zero-day exploits [Hoglund and McGraw 2004]. On the 
horizon are arc injection attacks and other sophisticated control flow hacks [Pincus and 
Baker 2004]. I present a taxonomy of software security coding errors in Chapter 12. 
Thinking carefully about this taxonomy while developing a security test plan is a good 
tactic. 

Design-level vulnerabilities are the hardest defect category to handle, but they're also 
both prevalent and critical. Unfortunately, ascertaining whether a program has design-
level vulnerabilities requires great expertise, which makes finding such flaws not only 
difficult but also particularly hard to automate. Even though finding flaws is a difficult 
undertaking, I cover it in some detail in Chapter 5. 

Examples of design-level problems include error handling in object-oriented systems, 
object sharing and trust issues, unprotected data channels (both internal and external), 
incorrect or missing access control mechanisms, lack of auditing/logging or incorrect 
logging, and ordering and timing errors (especially in multithreaded systems). These sorts 
of flaws almost always lead to security risk. 
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Risk Management and Security Testing 

Software security practitioners perform many different tasks to manage software security 
risks, such as: 

• Creating security abuse/misuse cases 
• Listing normative security requirements (and security features and functions) 
• Performing architectural risk analysis 
• Building risk-based security test plans 
• Wielding static analysis tools 
• Performing security tests 
• Performing penetration testing in the final environment 
• Cleaning up after security breaches 

Three of these practices are particularly closely linked—architectural risk analysis, risk-
based security test planning, and security testing—because a critical aspect of security 
testing relies on directly probing security risks. Chapter 5 explains how to approach a 
software security risk analysis, the end product being a set of security-related risks ranked 
by business or mission impact. Chapter 2 explains how to keep track of security risks and 
properly manage them over time in an RMF. 

The pithy aphorism "Software security is not security software" provides an important 
motivator for security testing. Although security features, such as cryptography, strong 
authentication, and access control, play a critical role in software security, security itself 
is an emergent property of the entire system, not just the security mechanisms and 
features. A buffer overflow is a security problem regardless of whether it exists in a 
security feature or in the noncritical GUI. 

For this reason, security testing must necessarily involve two diverse approaches: 

1. Functional security testing: testing security mechanisms to ensure that their 
functionality is properly implemented 

2. Adversarial security testing: performing risk-based security testing motivated by 
understanding and simulating the attacker's approach 

Together, these two distinct activities are a mix of white hat (security functionality) and 
black hat (security attack) philosophies. Security testing must mix both approaches or it 
will fail to cover critical areas. 

Many developers erroneously believe that security involves only the liberal application 
and use of various security features, which leads to the incorrect belief that "adding SSL" 
is tantamount to securing an application. Software security practitioners bemoan the over-
reliance on "magic crypto fairy dust" as a reaction to this problem. Software testers 
charged with security testing often fall prey to the same thinking. 
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It's not that we shouldn't test the crypto fairy dust to determine its potency. It's just that 
most security attacks ignore the security mechanisms in favor of looking for software 
defects anywhere in the system. Security testing needs to cover the attacker's mindset just 
as well as it covers security functionality. 

 How to Approach Security Testing 

Like any other form of testing, security testing involves determining who should do the 
testing and what activities they should undertake. 

Who 

Because security testing involves two approaches, the question of who should do it has 
two answers. Standard testing organizations using a traditional approach can perform 
functional security testing. For example, ensuring that access control mechanisms work 
as advertised is a classic functional testing exercise. Since we basically know how the 
software should behave, we can run some tests and make sure that it does.[4] 

[4] This is not to trivialize the critical field of software testing. Testing is a difficult and 
painstaking activity that requires years of experience to do right. 

On the other hand, traditional QA staff will have more difficulty performing risk-based 
security testing. The problem is one of expertise. First, security tests (especially those 
resulting in complete exploit) are difficult to craft because the designer must think like an 
attacker. Second, security tests don't often cause direct security exploit and thus present 
an observability problem. Unlike in the movies, a security compromise does not usually 
result in a red blinking screen flashing the words "Full Access Granted." A security test 
could result in an unanticipated outcome that requires the tester to perform further 
sophisticated analysis. Bottom line: Risk-based security testing relies more on expertise 
and experience than we would like—and not testing experience, security experience. 

The software security field is maturing rapidly. I hope we can solve the experience 
problem by identifying best practices, gathering and categorizing knowledge, and 
embracing risk management as a critical software philosophy.[5] At the same time, 
academics are beginning to teach the next generation of builders a bit more about security 
so that we no longer build broken stuff that surprises us when it is spectacularly 
exploited. 

[5] The three pillars of software security. 

How 

Books, such as How to Break Software Security and Exploiting Software, help educate 
testing professionals on how to think like an attacker during testing [Whittaker and 
Thompson 2003; Hoglund and McGraw 2004]. Nevertheless, software exploits are 
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surprisingly sophisticated these days, and the level of discourse found in books and 
articles is only now coming into alignment. 

White and black box testing and analysis methods both attempt to understand software, 
but they use different approaches depending on whether the analyst or tester has access to 
source code. White box analysis involves analyzing and understanding both source code 
and the design. This kind of testing is typically very effective in finding programming 
errors (bugs when automatically scanning code and flaws when doing risk analysis); in 
some cases, this approach amounts to pattern matching and can even be automated with a 
static analyzer (the subject of Chapter 4). One drawback to this kind of testing is that 
tools might report a potential vulnerability where none actually exists (a false positive). 
Nevertheless, using static analysis methods on source code is a good technique for 
analyzing certain kinds of software. Similarly, risk analysis is a white box approach 
based on a thorough understanding of software architecture. 

Black box analysis refers to analyzing a running program by probing it with various 
inputs. This kind of testing requires only a running program and doesn't use source code 
analysis of any kind. In the security paradigm, malicious input can be supplied to the 
program in an effort to break it: if the program breaks during a particular test, then we 
might have discovered a security problem. Black box testing is possible even without 
access to binary code—that is, a program can be tested remotely over a network. If the 
tester can supply the proper input (and observe the test's effect), then black box testing is 
possible. 

Any testing method can reveal possible software risks and potential exploits. One 
problem with almost all kinds of security testing (regardless of whether it's black or white 
box) is the lack of it—most QA organizations focus on features and spend very little time 
understanding or probing nonfunctional security risks. Exacerbating the problem, the QA 
process is often broken in many commercial software houses due to time and budget 
constraints and the belief that QA is not an essential part of software development. 

Case studies can help make sense of the way security testing can be driven by risk 
analysis results. See the box An Example: Java Card Security Testing. 

An Example: Java Card Security Testing 
Doing effective security testing requires experience and knowledge. Examples 
and case studies like the one I present here are thus useful tools for 
understanding the approach. 

In an effort to enhance payment cards with new functionality—such as the 
ability to provide secure cardholder identification or remember personal 
preferences—many credit-card companies are turning to multi-application smart 
cards. These cards use resident software applications to process and store 
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thousands of times more information than traditional magnetic-stripe cards. 

Security and fraud issues are critical concerns for the financial institutions and 
merchants spearheading smart-card adoption. By developing and deploying 
smart-card technology, credit-card companies provide important new tools in 
the effort to lower fraud and abuse. For instance, smart cards typically use a 
sophisticated crypto system to authenticate transactions and verify the identities 
of the cardholder and issuing bank. However, protecting against fraud and 
maintaining security and privacy are both very complex problems because of the 
rapidly evolving nature of smart-card technology. 

The security community has been involved in security risk analysis and 
mitigation for Open Platform (now known as Global Platform, or GP) and Java 
Card since early 1997. Because product security is an essential aspect of credit-
card companies' brand protection regimen, companies like Visa and MasterCard 
spend plenty of time and effort on security testing and risk analysis. One central 
finding emphasizes the importance of testing particular vendor implementations 
according to our two testing categories: adherence to functional security design 
and proper behavior under particular attacks motivated by security risks. 

The latter category, adversarial security testing (linked directly to risk analysis 
findings), ensures that cards can perform securely in the field even when under 
attack. Risk analysis results can be used to guide manual security testing. As an 
example, consider the risk that, as designed, the object-sharing mechanism in 
Java Card is complex and thus is likely to suffer from security-critical 
implementation errors on any given manufacturer's card. Testing for this sort of 
risk involves creating and manipulating stored objects where sharing is 
involved. Given a technical description of this risk, building specific probing 
tests is possible. 

Automating Security Testing 

Over the years, Cigital has been involved in several projects that have identified 
architectural risks in the GP/Java Card platform, suggested several design 
improvements, and designed and built automated security tests for final products 
(each of which has multiple vendors). 

Several years ago, we began developing an automated security test framework 
for GP cards built on Java Card 2.1.1 and based on extensive risk analysis 
results. The end result is a sophisticated test framework that runs with minimal 
human intervention and results in a qualitative security testing analysis of a 
sample smart card. This automated framework is now in use at MasterCard and 
the U.S. National Security Agency. 

The first test set, the functional security test suite, directly probes low-level card 
security functionality. It includes automated testing of class codes, available 
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commands, and crypto functionality. This test suite also actively probes for 
inappropriate card behavior of the sort that can lead to security compromise. 

The second test set, the hostile applet test suite, is a sophisticated set of 
intentionally hostile Java Card applets designed to probe high-risk aspects of the 
GP on a Java Card implementation. 

Results: Nonfunctional Security Testing Is Essential 

Most cards tested with the automated test framework (but not all) pass all 
functional security tests, which we expect because smart-card vendors are 
diligent with functional testing (including security functionality). Because smart 
cards are complex embedded devices, vendors realize that exactly meeting 
functional requirements is an absolute necessity for customers to accept the 
cards. After all, they must perform properly worldwide. 

However, every card submitted to the risk-based testing paradigm exhibited 
some manner of failure when tested with the hostile applet suite. Some failures 
pointed directly to critical security vulnerabilities on the card; others were less 
specific and required further exploration to determine the card's true security 
posture. 

As an example, consider that risk analysis of Java Card's design documents 
indicates that proper implementation of atomic transaction processing is critical 
for maintaining a secure card. Java Card has the capability of defining 
transaction boundaries to ensure that if a transaction fails, data roll back to a 
pre-transaction state. In the event that transaction processing fails, transactions 
can go into any number of possible states, depending on what the applet was 
attempting. In the case of a stored-value card, bad transaction processing could 
allow an attacker to "print money" by forcing the card to roll back value 
counters while actually purchasing goods or services. This is called a "torn 
transaction" attack in credit-card risk lingo. 

When creating risk-based tests to probe transaction processing, we directly 
exercised transaction-processing error handling by simulating an attacker 
attempting to violate a transaction—specifically, transactions were aborted or 
never committed, transaction buffers were completely filled, and transactions 
were nested (a no-no according to the Java Card specification). These tests were 
not based strictly on the card's functionality—instead, security test engineers 
intentionally created them, thinking like an attacker given the results of a risk 
analysis. 

Several real-world cards failed subsets of the transaction tests. The 
vulnerabilities discovered as a result of these tests would allow an attacker to 
terminate a transaction in a potentially advantageous manner—a critical test 
failure that wouldn't have been uncovered under normal functional security 
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testing. Fielding cards with these vulnerabilities would allow an attacker to 
execute successful attacks on live cards issued to the public. Because of proper 
risk-based security testing, the vendors were notified of the problems and 
corrected the code responsible before release. 
 

Coder's Corner 
Let's take a look at one of the tests that we built for Java Card security testing. 
This test set as a whole probes whether shareable objects behave properly on a 
card. 

First, the interface specification: 

package tests.config1.jcre.JcreTest010_1; 
import javacard.framework.Shareable; 
import ssg.framework.*; 
 
public interface shareableInterface extends Shareable { 
   public void shareObject(); 
} 
 

This little glob of code implements the shared interface and sets up the test 
harness. 

[View full width] 
package tests.config1.jcre.JcreTest010_1; 
 
import javacard.framework.*; 
import ssg.framework.*; 
 
public class JcreTest010_1a extends Applet implements 
 shareableInterface 
{ 
   static byte[] shareableObjectBuffer; 
 
   private JcreTest010_1a() 
   { 
     shareableObjectBuffer = new byte[10]; 
     for(byte i=0; i < 10; i++) 
       shareableObjectBuffer[i] = 0x11; 
       register(); 
   } 
 
   public void shareObject() { 
     for(byte i=0; i < 10; i++) 
       shareableObjectBuffer[i] = 0x22; 
   } 
 
   public void testFunc() { 
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     for(byte i=0; i < 10; i++) 
       shareableObjectBuffer[i] = 0x33; 
   } 
 
   public Shareable getShareableInterfaceObject(AID client_aid, 
 byte parameter) 
   { 
     /*for(byte i=0; i < 10; i++) 
       shareableObjectBuffer[i] = 0x33;*/ 
       return (this); 
   } 
 
   public static void install(byte[] bArray, short bOffset, byte 
 bLength) 
   { 
     new JcreTest010_1a(); 
   } 
public void process(APDU apdu) 
   { 
     byte[] apdu_buffer = apdu.getBuffer(); 
     apdu.setOutgoing(); 
     apdu.setOutgoingLength((short)10); 
 
     Util.arrayCopy(shareableObjectBuffer, (short)0, 
apdu_buffer, 
 (short)0, 
                    (short)10); 
 
     for(byte i=0; i < 10; i++) 
       shareableObjectBuffer[i] = 0x11; 
 
     apdu.sendBytes((short)0, (short)10); 
   } 
} 
 

Then we can run tests like this. (I show you only one of the five tests related to 
shareable interfaces just to keep things simple.) 

[View full width] 
package tests.config1.jcre.JcreTest010_2; 
 
import javacard.framework.*; 
import ssg.framework.*; 
import tests.config1.jcre.JcreTest010_1.*; 
 
public class JcreTest010_2a extends Applet 
{ 
 
   byte [] serverAID = 
{74,99,114,101,84,101,115,116,48,49,48,49,97}; 
   byte [] AIDValue; 
 
   private JcreTest010_2a() 
   { 
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     AIDValue = new byte[16]; 
       register(); 
   } 
 
   public static void install( byte[] bArray, short bOffset, 
byte 
 bLength ) 
   { 
       new JcreTest010_2a(); 
   } 
 
   public void process(APDU apdu) 
   { 
     AID serverAIDObject = JCSystem.lookupAID(serverAID, 
(short)0, 
                           (byte)serverAID.length); 
 
 
     if(serverAIDObject == null) 
     ISOException.throwIt(ISO7816.SW_WRONG_P1P2); // 0x6B00 
 
 
     if((serverAIDObject.equals(serverAID, (short)0,  
(byte)serverAID.length)) == 
         false) 
     ISOException.throwIt(ISO7816.SW_CORRECT_LENGTH_00); // 
0x6C00 
 
     shareableInterface sio = (shareableInterface) 
(JCSystem.getAppletShareableInterfaceObject(serverAIDObject,  
(byte)0)); 
 
 
if(sio == null) { 
     byte length = serverAIDObject.getBytes(AIDValue, (short)0); 
     byte[] apdu_buffer = apdu.getBuffer(); 
     apdu.setOutgoing(); 
     apdu.setOutgoingLength((short)length); 
     Util.arrayCopy(AIDValue, (short)0, apdu_buffer, (short)0,  
(short)length); 
     apdu.sendBytes((short)0, (short)length); 
     ISOException.throwIt(ISO7816.SW_INS_NOT_SUPPORTED); // 
0x6D00 
     } 
 
      sio.shareObject(); 
 
   } 
 
} 
 

What we found in practice on one of the many real cards we tested was that the 
shareable interface tests all worked fine. What failed was the test teardown 
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this failed, we did some investigation by hand and uncovered some interesting 
issues. 
 

There is no silver bullet for software security; even a reasonable security testing regimen 
is just a start. Unfortunately, security continues to be sold as a product, and most 
defensive mechanisms on the market do little to address the heart of the problem, which 
is bad software. Instead, they operate in a reactive mode: Don't allow packets to this or 
that port, watch out for files that include this pattern in them, throw partial packets and 
oversized packets away without looking at them. Network traffic is not the best way to 
approach the software security predicament because the software that processes the 
packets is the problem. By using a risk-based approach to software security testing, 
testing professionals can help solve security problems while software is still in 
production. 

Of course, any testing approach is deeply impacted by software process issues. Because 
of eXtreme Programming's (XP) "test first" philosophy, adopting a risk-based approach 
may be difficult if you are in an XP shop. See the following box, eXtreme Programming 
and Security Testing. 

Thinking about (Malicious) Input 

Put simply, the biggest problems in software security exist because software takes input 
(see the taxonomy of coding errors in Chapter 12). Whether to trust input (including the 
very format that the input takes) is a critical question that all software builders must 
ponder. 

Exploiting Software is filled with examples of programs that break when malformed or 
maliciously formed input leads to security compromise [Hoglund and McGraw 2004]. 
From the much-ballyhooed buffer overflow (which involves putting too much input in 
too small a place) to the likewise overhyped SQL injection attack and cross-site scripting 
(XSS) attacks, trusting input turns out to be the common root cause. 

Carefully handling input is paramount to software security. Note that input includes 
things like register settings, environment variables, file contents, and even network 
configuration. If your program consumes data from "out there," you need to think 
carefully about who can dink around with the stuff your program eats. 

Attacker toolkits (briefly described in Chapter 6) focus plenty of attention on input, with 
a plethora of fault injection tools, grammar generators, re-players, and the like. By its 
very nature, penetration testing is obsessed with input as well (mostly because crafting 
malicious input is the main way to break a system from the outside). If your program 
accepts input over the network, it needs to be very skeptical of what it is getting. 
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eXtreme Programming and Security Testing 
XP takes an interesting approach to testing, often referred to as "test first" or 
"test-driven design." Ironically, this approach encourages coding to the tests—
an activity that was explicitly discouraged by testing gurus before XP came 
along. Test-driven design is not a disaster. In fact, coding to the tests may work 
for standard software "features." I bet you can guess the problem though—
security is not a feature. 

Tests based too closely on features can fail to probe deeply into more subtle user 
needs that are nonfunctional in nature. Probing security features only gets us so 
far. Once again, this is a problem of testing for a negative. 

Though unit tests and user stories in XP are supposed to specify the design, they 
simply don't do this well enough to get to design flaw issues. The code is the 
design in XP, but finding design flaws by staring at large piles of code is not 
possible. In fact, refactoring aside, top-down design does not really happen 
explicitly in some XP shops. That means there is no good time to consider 
security flaws explicitly. 

By using acceptance tests (devised in advance of coding) as release criteria, XP 
practitioners keep their eyes on the functional ball. However, this myopic focus 
on functionality causes a propensity to overlook nonfunctional requirements and 
emergent situations. Security fits there. 

One solution to this problem might be to focus more attention on abuse cases 
early in the lifecycle. This would cohere nicely with XP's user stories. Perhaps 
some "attacker stories" should be devised as well and used to create security 
tests. 

For more on my opinions about XP and software security, see my talk, "XP and 
Software Security?! You Gotta Be Kidding," delivered at XP Universe in 2003 
<http://www.cigital.com/presentations/xpuniverse/>. 
 

Using a black-list approach (which tries to enumerate all possible bad input) is silly and 
will not work. Instead, software needs to defend its input space with a white-list approach 
(and a Draconian white-list approach, for that matter). If your program enforces 
statements like "Accept only input of 32-bits as an Integer" (something that is easy to do 
in a modern type-safe language), you're better off right off the bat than with a system that 
accepts anything but tries to filter out return characters. Make sure that your testing 
approach delves directly into the black-list/white-list input-filtering issue. 

Microsoft pays plenty of attention to malicious input in its approach to software security. 
You should too. (See Writing Secure Code [Howard and LeBlanc 2003].) 
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Getting Over Input 

Don't get too caught up in solving only the input problem. Testing around malicious input 
is a necessary but not sufficient condition. Security testing needs to get past input myopia 
by focusing on data structures, components, APIs, program state, and so on. 

The forest-level view created during architectural risk analysis (see Chapter 5) is very 
useful in planning security testing. In addition to building tests around risks that remain 
in the system, testers should consider things like: 

• Sockets 
• Pipes 
• The Win32 Registry 
• Files 
• Remote procedure calls (RPCs) 
• Command-line arguments 
• And so on 

Time is a critical issue to think about in modern software systems. There are two major 
aspects of time to consider. The first has to do with program state and state preservation. 
Because some modern software protocols in common use (like HTTP) are stateless, a 
variety of hacks and kludges around the state preservation problem have been devised. 
Many of these kludges are inherently insecure. Security testers must consider what 
happens when state is changed by an attacker. This can be as simple as changing a 
"hidden" variable in a URL or as complex as de-serializing an object, manipulating it, 
and re-serializing it. 

The second aspect of time that is essential to think about is related to state, but only 
indirectly. When multiple processes interact and share some kind of data structure (either 
by querying the environment or by using locks and semaphores), a new line of attack is 
opened up in the form of changing the environment that is being queried or otherwise 
messing around with locks. Time-of-check–time-of-use (TOCTOU) race conditions are 
always worth considering when testing a multithreaded system. Even more subtle data 
races are also an important and often overlooked category of errors to consider. 

One problem is that most developers are unfamiliar with the effects of multithreading on 
their systems. That means they often overlook subtle time-based attacks. I believe that 
timing attacks (both data races and starvation attacks) are a future attack category that 
will be much more commonly encountered than they are now. We've begun to see hints 
of this already (for more, see the taxonomy in Chapter 12). 

Leapfrogging the Penetration Test 

Getting inside a program and thinking about control flow and data flow is an excellent 
strategy for devising a solid testing regimen. Penetration testing, because of its 
outside in bias, only begins to scratch the surface of an inside-the-software testing 
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approach. Security testing goes beyond penetration testing by adopting a clear inside
out approach focused on software guts. 

Books like The Shellcoder's Handbook, How to Break Software Security, and Exploiting 
Software help software professionals understand the mind of the attacker and the kinds of 
program understanding tools commonly used by attackers [Koziol et al. 2004; Whittaker 
and Thompson 2003; Hoglund and McGraw 2004]. This is a critical undertaking for 
security testers. Unless a security tester thinks like a bad guy (black hat firmly on head), 
security testing will not be effective. 

Software is so broken today that simple penetration testing usually works. Getting past 
the obvious is only necessary when the low-hanging fruit discovered during simple 
penetration testing is taken care of. Then things get tricky fast. Be prepared for things to 
get tricky. Then plan to adopt risk-based security testing. 
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Chapter 8. Abuse Cases[1] 
[1] Parts of this chapter appeared in original form in IEEE Security & Privacy magazine 
co-authored with Paco Hope and Annie Anton [Hope, McGraw, and Anton 2004]. 

[View full size image] 

 

To kill, you must know your enemy, and in this case my enemy is a varmint. And a 
varmint will never quit—ever. They're like the Viet Cong—Varmint Cong. So you have 
to fall back on superior intelligence and superior firepower. And that's all she wrote. 

—Bill Murray (As Carl Spackler In Caddyshack) 

Software development is all about making software do something. People who build 
software tend to describe software requirements in terms of what a system will do when 
everything goes right—when users are cooperative and helpful, when environments are 
pristine and friendly, and when code is defect free. The focus is on functionality (in a 
more perfect world). As a result, when software vendors sell products, they talk about 
what their products do to make customers' lives easier—improving business processes or 
doing something else positive. 

Following the trend of describing the positive, most systems for designing software also 
tend to describe features and functions. UML, use cases, and other modeling and design 
tools allow software people to formalize what the software will do. This typically results 
in a description of a system's normative behavior, predicated on assumptions of correct 
usage. In less fancy language, this means that a completely functional view of a system is 
usually built on the assumption that the system won't be intentionally abused. But what if 
it is? By now you should know that if your software is going to be used, it's going to be 
abused. You can take that to the bank. 
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Consider a payroll system that allows a human resources department to control salaries 
and benefits. A use case might say, "The system allows users in the HR management 
group to view and modify salaries of all employees." It might even go so far as to say, 
"The system will only allow a basic user to view his or her own salary." These are direct 
statements of what the system will do. 

Savvy software practitioners are beginning to think beyond features, touching on 
emergent properties of software systems such as reliability, security, and performance. 
This is mostly due to the fact that more experienced software consumers are beginning to 
say, "We want the software to be secure" or "We want the software to be reliable." In 
some cases, these kinds of wants are being formally and legally applied in service-level 
agreements (SLAs) and acceptance criteria regarding various system properties.[2] (See 
the box Holding Software Vendors Accountable for an explanation of SLAs and software 
security.) 

[2] Note that in many of these instances it is still left up to the software developer to define 
"secure" and "reliable" and then create secure and reliable software. 

The problem is that security, reliability, and other software -ilities are complicated. In 
order to create secure and reliable software, abnormal behavior must somehow be 
anticipated. Software types don't normally describe non-normative behavior in use cases, 
nor do they describe it with UML; but we really need some way to talk about and prepare 
for abnormal behavior, especially if security is our goal. To make this concrete, think 
about a potential attacker in the HR example. An attacker is likely to try to gain extra 
privileges in the payroll system and remove evidence of any fraudulent transaction. 
Similarly, an attacker might try to delay all the paychecks by a day or two and embezzle 
the interest that is accrued during the delay. The idea is to get out your black hat and 
think like a bad guy. 

Surprise! You've already been thinking like a bad guy as you worked through previous 
touchpoints. This chapter is really about making the idea explicit. When you were doing 
source code analysis with a tool, the tool pumped out a bunch of possible problems and 
suggestions about what might go wrong, and you got to decide which ones were worth 
pursuing. (You didn't even have to know about possible attacks because the tool took care 
of that part for you.) Risk analysis is a bigger challenge because you start with a blank 
page. Not only do you have to invent the system from whole cloth, but you also need to 
anticipate things that will go wrong. Same goes for testing (especially adversarial testing 
and penetration testing). The core of each of these touchpoints is in some sense coming 
up with a hypothesis of what might go wrong. That's what abuse cases are all about. 

Holding Software Vendors Accountable 
Jack Danahy of Ounce Labs <http://www.ouncelabs.com/> and others have 
been beating the vendor accountability drum in the software security space for 
several years. Danahy's approach to accountability centers around the idea of 



 212

legally binding vendors with SLAs. The good news is that some software 
consumers have begun to demand security warranties or SLAs from their 
software vendors. The bad news is that it is not exactly obvious what kinds of 
things should be covered in an SLA (and how to phrase those things). Ad hoc 
approaches are the status quo, but when it comes to the law, ad hoc approaches 
raise serious enforceability questions. 

A clear articulation of expectations is the answer, with emphasis on specific, 
measurable criteria for determining whether expectations have been met. 
Among the most obvious techniques is to set clear requirements and have a 
process for confirming (usually through testing) whether the requirements have 
been properly handled. Positive security requirements fit nicely here (negative 
ones are a bit trickier). 

Danahy suggests that SLA contractual language cover the following: 

1. Proper implementation of security features (think crypto and access 
control) 

2. Looking for known security flaws and confirming that they are not 
present 

3. Passing third-party validation and verification security tests agreed on in 
advance 

4. Use of source code analysis tools (see Chapter 4) 

In this regime, SLAs must include expectations of security in the acceptance 
requirements. The idea is that those vendors who do not address security 
directly will find themselves on the hot seat. When it comes to code 
development, consumers who outsource development should demand the right 
to review code. When bugs are found, they should be fixed. If the producer does 
not meet security obligations, the consumer should be allowed to terminate the 
business agreement. 
 

Abuse cases (sometimes called misuse cases as well) are a tool that can help you begin to 
think about your software the same way that attackers do. By thinking beyond the 
normative features and functions and also contemplating negative or unexpected events, 
software security professionals come to better understand how to create secure and 
reliable software. By systematically asking, "What can go wrong here?" or better yet, 
"What might some bad person cause to go wrong here?" software practitioners are more 
likely to uncover exceptional cases and frequently overlooked security requirements. 

Think about what motivates an attacker. Start here.... Pretend you're the bad guy. Get in 
character. Now ask yourself: "What do I want?" Some ideas: I want to steal all the 
money. I want to learn the secret ways of the C-level execs. I want to be root of my 
domain. I want to reveal the glory that is the Linux Liberation Front. I want to create 
general havoc. I want to impress my pierced girlfriend. I want to spy on my spouse. Be 
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creative when you do this! Bad guys want lots of different things. Bring out your inner 
villain. 

Now ask yourself: "How can I accomplish my evil goal given this pathetic pile of 
software before me? How can I make it cry and beg for mercy? How can I make it bend 
to my iron will?" There you have it. Abuse cases. 

Because thinking like an attacker is something best done with years of experience, this 
process is an opportune time to involve your network security guys (see Chapter 9). 
However, there are alternatives to years of experience. One excellent thought experiment 
(suggested by Dan Geer) runs as follows. I'll call it "engineer gone bad." Imagine taking 
your most trusted engineer/operator and humiliating her in public—throw her onto the 
street, and dare her to do anything about it to you or to your customers. If the humiliated 
street bum can do nothing more than head banging on the nearest wall, you've won. This 
idea, in some, cases may be even more effective than simply thinking like a bad guy—it's 
turning a good guy into a bad guy. 

The idea of abuse cases has a short history in the academic literature. McDermott and 
Fox published an early paper on abuse cases at ACSAC in 1999 [McDermott and Fox 
1999]. Later, Sindre and Opdahl wrote a paper that explained how to extend use case 
diagrams with misuse cases [Sindre and Opdahl 2000]. Their basic idea is to represent the 
actions that systems should prevent in tandem with those that it should support so that 
security analysis of requirements is easier. Alexander advocates using misuse and use 
cases together to conduct threat and hazard analysis during requirements analysis 
[Alexander 2003]. Others have since put more flesh on the idea of abuse cases, but, 
frankly, abuse cases are not as commonly used as they should be. 

Security Is Not a Set of Features 

Security is not a feature that can be added to software. There is no convenient "security" 
pull-down menu where security can be selected and magic things happen. Unfortunately, 
many software producers mistakenly rely solely on plonking functional security features 
and mechanisms, such as cryptography, somewhere in their software, and they assume 
that the security needs are in this way addressed everywhere. Too often product literature 
makes broad feature-based claims about security such as "Built with SSL" or "128-bit 
encryption included," and these represent the vendor's entire approach for securing the 
product. This is a natural and forgivable misconception, but it is still a concerning 
problem. 

Security is an emergent property of a system, not a feature. This is similar to how "being 
dry" is an emergent property of being inside a tent in the rain. The tent keeps people dry 
only if the poles are stabilized, vertical, able to support the weight of wet fabric, and so 
on. Likewise, the tent must have waterproof fabric that has no holes and is large enough 
to protect all the people who want to stay dry. Lastly, all the people who want to be dry 
must remain under the tent the entire time it is raining. Whereas it is important to have 
poles and fabric, it is not enough to say, "The tent has poles and fabric, thus it keeps you 
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dry!" This sort of claim, however, is analogous to the claims software vendors make 
when they highlight numbers of bits in keys and the use of particular encryption 
algorithms. It is true that cryptography of one kind or another is usually necessary in 
order to create a secure system, but security features alone are not sufficient for building 
secure software. 

Because security is not a feature, it can't be "bolted on" after other software features are 
codified. Nor can it be "patched in" after attacks have occurred in the field. Instead, 
security must be built in from the ground up—considered a critical part of the design 
from the very beginning (requirements specification) and included in every subsequent 
development phase all the way through fielding a complete system. 

Sometimes this involves making explicit tradeoffs when specifying system requirements. 
For example, ease of use may be paramount in a medical system meant to be used by 
secretaries in a doctor's office. Complex authentication procedures, such as obtaining and 
using a cryptographic identity, can be hard to use [Gutmann 2004]. But regulatory 
pressures from HIPPA and California's privacy regulations (SB 1386) force designers to 
negotiate a reasonable tradeoff. 

To extend this example, consider that authentication and authorization can't stop at the 
"front door" of a program. Technical approaches must go far beyond the obvious features, 
deep into the many-tiered heart of a software system to be secure enough. 

The best, most cost-effective approach to software security incorporates thinking beyond 
white hat normative features by donning a black hat and thinking like a bad guy, and 
doing this throughout the development process. Every time a new requirement, feature, or 
use case is created, someone should spend some time thinking about how that feature 
might be unintentionally misused or intentionally abused. Professionals who know how 
features are attacked and how to protect software should play an active role in this kind of 
analysis (see Chapter 9). 

What You Can't Do 

Attackers are not standard-issue customers. They are bad people with malicious intent 
who want your software to act in some unanticipated way—to their benefit. An attacker's 
goal is to think of something you didn't think of and exploit it in a way you didn't 
expect—to the gain of the attacker and probably to your detriment. If the development 
process doesn't address unexpected or abnormal behavior, then an attacker usually has 
plenty of raw material to work with. 

Attackers are creative. Despite this creativity, we can be sure that some well-known 
locations will always be probed in the course of attacks: boundary conditions, edges, 
intersystem communication, and system assumptions. Clever attackers always try to 
undermine the assumptions a system is built on. For example, if a design assumes that 
connections from the Web server to the database server are always valid, an attacker will 
try to make the Web server send inappropriate requests in order to access valuable data. If 
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software design assumes that Web browser cookies are never modified by the client 
before they are sent back to the requesting server (in an attempt to preserve some state), 
attackers will intentionally cause problems by modifying cookies. 

When we are the designers and analyzers of a system, we're in a great position to know 
our systems better than potential attackers do. We should leverage this knowledge to the 
benefit of security and reliability. We can do this by asking and answering some critical 
questions: 

• What assumptions are implicit in our system? 
• What kinds of things would make our assumptions false? 
• What kinds of attack patterns will an attacker bring to bear? 

Unfortunately, a system's creators rarely make the best security analysts for their own 
systems. This is precisely because it is very hard to consciously note and consider all 
assumptions (especially in light of thinking like an attacker). Fortunately, these 
professionals, instead, make excellent subject matter experts to be powerfully combined 
with security professionals. Together this team of system experts and security analysts 
can ferret out base assumptions in a system under analysis and think through the ways an 
attacker will approach the software. 

 Creating Useful Abuse Cases 

The simplest, most practical method for creating abuse cases is usually through a process 
of informed brainstorming. There exist a number of theoretical methods that involve fully 
specifying a system with rigorous formal models and logics, but such activities are 
extremely time and resource intensive. The good news is that formal methods are often 
unnecessary in the real world. A more practical approach that covers a lot of ground more 
quickly involves forming brainstorming teams that combine security and reliability 
experts with system designers. This approach relies heavily on experience and expertise. 

To guide such brainstorming, software security experts ask many questions that help 
identify the places where the system is likely to have weaknesses. This activity mirrors 
the kind of thinking that an attacking adversary performs. Abuse is always possible at the 
places where legitimate use is possible. Such brainstorming involves a careful look at all 
user interfaces (including environment factors) as well as functional security 
requirements and considers what things most developers assume a person can't or won't 
do. These can'ts and won'ts take many forms, such as: "Users can't enter more than 50 
characters because the JavaScript code won't let them." "The user doesn't understand the 
format of the cached data. They can't modify it." Attackers, unfortunately, make can'ts 
and won'ts happen with some regularity. 

All systems have more places that can be attacked than obvious front doors, of course. 
Where can a bad guy be positioned? On the wire? At a workstation? In the back office? 
Any communications line between two endpoints or two components is a place where an 
attacker can try to interpose. What can a bad guy do? Watch communications traffic? 
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Modify and replay such traffic? Read files stored on the workstation? Change registry 
keys or configuration files? Be the DLL? Be the "chip"? (Note that all of these kinds of 
attacks are person-in-the-middle attacks, sometimes called PIMs or interposition attacks.) 
Many of these attacks are elegantly explained in the book How to Break Software 
Security [Whittaker and Thompson 2003]. 

One of the goals of abuse cases is to decide and document a priori how the software 
should react to illegitimate use. The process of specifying abuse cases makes a designer 
differentiate appropriate use from inappropriate use very clearly. Approaching this 
problem involves asking the right questions. For example, how can the system distinguish 
between good and bad input? How can the system tell that a request is coming from a 
legitimate Java applet and not from a rogue application replaying traffic? Trying to 
answer questions like these helps software designers explicitly question design and 
architecture assumptions. This puts the designer squarely ahead of the attacker by 
identifying and fixing a problem before it can even be created! 

But No One Would Ever Do That! 

System architects and project managers often respond to the very idea of abuse cases by 
claiming, "But no one would do these things." Interestingly, these claims are correct if 
the worldview is limited to legitimate users. Virtually any system that has value, 
however, can be abused. Few systems operate securely in a free-for-all permissions 
environment, despite how much trust designers may want to place on the users. This 
problem is exacerbated by the rush to move software into a highly distributed, network-
based model. Limiting system activity to legitimate users may be possible on a secure 
proprietary network, but it is categorically impossible on the Internet. The fact is that 
malicious users do exist in both kinds of environment, and it is often straightforward to 
thwart a significant portion of them. 

Touchpoint Process: Abuse Case Development 

Unfortunately, abuse cases are only rarely used in practice even though the idea seems 
natural enough. Perhaps a simple process model will help clarify how to build abuse 
cases and thereby fix the adoption problem. Figure 8-1 shows a simple process model. 

Figure 8-1. A simple process diagram for building abuse cases. 
[View full size image] 
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Abuse cases are to be built by a team of requirements people and security analysts (called 
RAs and SAs in the picture). This team starts with a set of requirements, a set of standard 
use cases (or user stories), and a list of attack patterns.[3] This raw material is combined 
by the process I describe to create abuse cases. 

[3] Attack patterns à la Exploiting Software [Hoglund and McGraw 2004] are not the only 
source to use for thinking through possible attacks. A good low-octane substitute might 
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be the STRIDE model list of attack categories: Spoofing, Tampering, Repudiation, 
Information disclosure, Denial of service, and Elevation of privilege. Cycling through 
this list of six attack categories one at a time is likely to provide insight into your system. 
For more on STRIDE, see [Howard and LeBlanc 2003]. 

The first step involves identifying and documenting threats. Note that I am using the term 
threat in the old-school sense. A threat is an actor or agent who carries out an attack. 
Vulnerabilities and risks are not threats.[4] Understanding who might attack you is really 
critical. Are you likely to come under attack from organized crime like the Russian 
mafia? Or are you more likely to be taken down by a university professor and the 
requisite set of overly smart graduate students all bent on telling the truth? Thinking like 
your enemy is an important exercise. Knowing who your enemy is likely to be is an 
obvious prerequisite. 

[4] Microsoft folks use the term threat incorrectly (and also very loudly). When they say 
"threat modeling," they really mean "risk analysis." This is unfortunate. 

Given an understanding of who might attack you, you're ready to get down to the 
business of creating abuse cases. In the gray box in the center of Figure 8-1, the two 
critical activities of abuse case development are shown: creating anti-requirements and 
creating an attack model. 

Creating Anti-Requirements 

When developing a software system or a set of software requirements, thinking explicitly 
about the things that you don't want your software to do is just as important as 
documenting the things that you do want. Naturally, the things that you don't want your 
system to do are very closely related to the requirements. I call them anti-requirements. 
Anti-requirements are generated by security analysts, in conjunction with requirements 
analysts (business and technical), through a process of analyzing requirements and use 
cases with reference to the list of threats in order to identify and document attacks that 
will cause requirements to fail. The object is explicitly to undermine requirements. 

Anti-requirements provide insight into how a malicious user, attacker, thrill seeker, 
competitor (in other words, a threat) can abuse your system. Just as security requirements 
result in functionality that is built into a system to establish accepted behavior, anti-
requirements are established to determine what happens when this functionality goes 
away. When created early in the software development lifecycle and revisited throughout, 
these anti-requirements provide valuable input to developers and testers. 

Because security requirements are usually about security functions and/or security 
features, anti-requirements are often tied up in the lack of or failure of a security function. 
For example, if your system has a security requirement calling for use of crypto to protect 
essential movie data written on disk during serialization, an anti-requirement related to 
this requirement involves determining what happens in the absence of that crypto. Just to 
flesh things out, assume in this case that the threat in question is a group of academics. 
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Academic security analysts are unusually well positioned to crack crypto relative to thrill-
seeking script kiddies. Grad students have a toolset, lots of background knowledge, and 
way too much time on their hands. If the crypto system fails in this case (or better yet, is 
made to fail), giving the attacker access to serialized information on disk, what kind of 
impact will that have on the system's security? How can we test for this condition? 

Abuse cases based on anti-requirements lead to stories about what happens in the case of 
failure, especially security apparatus failure. 

Coder's Corner 
Here is a systematic approach to anti-requirements suggested by Fabio 
Arciniegas. This approach formalizes the idea of anti-requirements by focusing 
on the three key aspects of requirements: 

1. Input 
2. Output 
3. Importance 

Use cases and functional specifications are often presented as shall/given duets. 
For example: The system shall produce a unique identifier valid for N days into 
the future given a present time, a valid authorization token, and N. One way of 
creating anti-requirements from requirements is to validate the limits of the 
given part against a set of weighted failures in the shall part. The game of 
systematically approaching what can go wrong can be played by defining the 
goal (distance 0) and a weighted perimeter of failure around it: 

Distance 0: Valid response 

Distance 1: Denied request 

------------------------------------- Threshold 

Distance 2: Non-unique ID returned 

Distance 3: System crash 

The combinatory game involves breaking assumptions in the given part of the 
requirement by asking various questions: What if N < 0? What if N < 0 and 
authorization is invalid? and so on. Any combination of failed input that results 
in an output beyond the threshold is a major concern. 

This approach not only provides a systematic way to develop anti-requirements 
from requirements but it also is useful for generating a contractual basis for 
unacceptable misbehavior; this is something that is fundamental if you are 
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outsourcing development—at least if you want to avoid the retort, "But it does 
what you said it should, given the input you said it would have!". 
 

Creating an Attack Model 

An attack model comes about by explicit consideration of known attacks or attack types. 
Given a set of requirements and a list of threats, the idea here is to cycle through a list of 
known attacks one at a time and to think about whether the "same" attack applies to your 
system. Note that this kind of process lies at the heart of Microsoft's STRIDE model 
[Howard and LeBlanc 2003]. Attack patterns are extremely useful for this activity. An 
incomplete list of attack patterns can be seen in the box Attack Patterns from Exploiting 
Software [Hoglund and McGraw 2004] on pages 218 through 221. To create an attack 
model, do the following: 

• Select those attack patterns relevant to your system. Build abuse cases around 
those attack patterns. 

• Include anyone who can gain access to the system because threats must 
encompass all potential sources of danger to the system. 

Together, the resulting attack model and anti-requirements drive out abuse cases that 
describe how your system reacts to an attack and which attacks are likely to happen. 
Abuse cases and stories of possible attacks are very powerful drivers for both 
architectural risk analysis and security testing. 

The simple process shown in Figure 8-1 results in a number of useful artifacts. The 
simple activities are designed to create a list of threats and their goals (which I might call 
a "proper threat model"), a list of relevant attack patterns, and a unified attack model. 
These are all side effects of the anti-requirements and attack model activities. More 
important, the process creates a set of ranked abuse cases—stories of what your system 
does under those attacks most likely to be experienced. 

As you can see, this is a process that requires extensive use of your black hat. The more 
experience and knowledge you have about actual software exploit and real computer 
security attacks, the more effective you will be at building abuse cases (see Chapter 9). 

An Abuse Case Example 

Cigital reviewed a client-server application that manipulated a financially sensitive 
database, finding a classic software security problem. In this case, the architecture was set 
up so that the server counted on a client-side application to manage all of the data access 
permissions. No permissions were enforced on the server itself. In fact, only the client 
had any notion of permissions and access control. To make matters worse, a complete 
copy of the sensitive database (only parts of which were to be viewed by a given user 
with a particular client) was sent down to the client. The client program ran on a garden-
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variety desktop PC. This means that a complete copy of sensitive data expressly not to be 
viewed by the user was available on that user's PC in the clear. 

If the user looked in the application's cache on the hard disk and used the unzip utility, 
the user could see all sorts of sensitive information that should not have been allowed to 
be seen. It turns out that the client also enforced which messages were sent to the server, 
and the server honored these messages independent of the user's actual credentials. The 
server was assuming that any messages coming from the client had properly passed 
through the client software's access control system (and policy) and were, therefore, 
legitimate. By either intercepting network traffic, corrupting values in the client 
software's cache, or building a hostile client, a malicious user could inject data into the 
database that no user was even supposed to read (much less write). 

Attack Patterns from Exploiting Software 
Attack patterns are extremely useful in generating valid abuse cases. Exploiting 
Software includes the identification and description of the 48 attack patterns and 
1 fragment listed here [Hoglund and McGraw 2004]. This is an incomplete list 
of attack patterns, which as a catalog of knowledge is in a nascent stage. For 
examples and stories corresponding to these attack patterns, see Exploiting 
Software. Don't forget that these attack patterns are described from the point of 
view of the attacker. 

Make the Client Invisible 

Talk directly with the server, masquerading as the client. Explore the input 
space. 

Target Programs That Write to Privileged OS Resources 

Look for programs that write to system directories of registry keys. 

Use a User-Supplied Configuration File to Run Commands That Elevate 
Privilege 

Configuration files are excellent targets since they control high-privilege 
programs. System-wide configuration files are particularly interesting. 

Make Use of Configuration File Search Paths 

Try to put a malicious config file in the search path ahead of the default config 
file. 

Direct Access to Executable Files 
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Run programs with privilege. Look for such programs on Web servers 
especially. 

Embedding Scripts within Scripts 

Take advantage of the hundreds of languages, compilers, and interpreters (as 
well as backwards compatibility constraints) to slip through filters. Forgotten 
nooks and crannies are most interesting. 

Leverage Executable Code in Nonexecutable Files 

Inject code through a seemingly innocuous route and have a process load and 
execute the attack. 

Argument Injection 

When input filtering is poor or nonexistent, spin a shell and use it. 

Command Delimiters 

Use off-nominal characters (like semicolons) to string commands together. 

Multiple Parsers and Double Escapes 

Take advantage of several parser pass-throughs with double escapes. 

User-Supplied Variable Passed to Filesystem Calls 

Filesystem calls are a good attack site since user input is directly consumed. 
Pass in parameters. 

Postfix NULL Terminator 

Play with NULL and its various representations to break parsing. 

Postfix, Null Terminate, and Backslash 

Alternate representations of NULL can be used to bypass filters. 

Relative Path Traversal 

Take advantage of the current working directory to play relative path games. 

Client-Controlled Environment Variables 
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Supply environment variables before authentication. 

User-Supplied Global Variables (DEBUG=1, PHP Globals, and So Forth) 

PHP has bad defaults. Try them. 

Session ID, Resource ID, and Blind Trust 

Change IDs in midstream, or otherwise guess IDs. 

Analog In-Band Switching Signals (aka "Blue Boxing") 

Play specific control commands across a normal link. When command and data 
lines are shared, this can be huge fun. 

Attack Pattern Fragment: Manipulating Terminal Devices 

Use shell commands to aim things at other terminals. 

Simple Script Injection 

Take advantage of stored data problems to inject scripts and pollute data. 

Embedding Scripts in Nonscript Elements 

Put scripts into HTML tags that are less obvious. 

XSS in HTTP Headers 

Play with HTTP headers. 

HTTP Query Strings 

Inject scripts into HTTP variables. 

User-Controlled Filenames 

Put HTML into filenames. 

Passing Local Filenames to Functions That Expect a URL 

Use local filenames that expect to consume a URL. 

Meta-characters in E-mail Headers 
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E-mail headers are often consumed by client software. Try things. 

Filesystem Function Injection, Content Based 

Take advantage of headers in media files (and other files) to get elsewhere in the 
filesystem. 

Client-Side Injection, Buffer Overflow 

Aim buffer overflow attacks at clients through a malicious server. 

Cause Web Server Misclassification 

Take advantage of filename extension silliness. 

Alternate Encoding of the Leading Ghost Characters 

Use multiple encoding attacks to avoid filters. 

Using Slashes in Alternate Encoding 

Slash characters are interesting because they are related to the filesystem. Use 
both kinds of slashes. 

Using Escaped Slashes in Alternate Encoding 

Escape slashes to escape filtering. 

Unicode Encoding 

Unicode breaks filters. 

UTF-8 Encoding 

UTF-8 breaks filters. 

URL Encoding 

HEX breaks filters. URLs can be represented in many ways. 

Alternative IP Addresses 

Use alternate encodings for IP numbers. 
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Slashes and URL Encoding Combined 

Combine encoding attacks. 

Web Logs 

Escape characters are translated before being placed in a log. Build fake entries. 

Overflow Binary Resource Files 

Modify sound, graphics, video, or font files (with a hex editor). 

Overflow Variables and Tags 

Take advantage of bad tag/variable parsing. 

Overflow Symbolic Links 

Try links to avoid access restrictions. 

MIME Conversion 

Play with conversion and translation issues. 

HTTP Cookies 

Use cookies as an attack vector. 

Filter Failure through Buffer Overflow 

Make a filter fail open. 

Buffer Overflow with Environment Variables 

Use environment variables as an attack vector. 

Buffer Overflow in an API Call 

Use API calls as an attack vector. Buffer overflows in libraries are very 
valuable. 

Buffer Overflow in Local Command-Line Utilities 

Use command-line programs as attack vectors. 
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Parameter Expansion 

Parameter expansion can lead to buffer overflow. 

String Format Overflow in syslog() 

The syslog function is often misused. 
 

For this simple example, we'll choose to think about a legitimate user (gone bad) as the 
threat. The Make the Client Invisible attack pattern is particularly relevant to this system 
(as are a number of others). In this case, the server trusts the client to provide correct 
messages. However, this trust is mostly unfounded since creating a malicious client 
(either by sniffing traffic and building an attack generator or by reverse-engineering the 
real client) is so easy. This attack pattern leads to an abuse case describing what happens 
when a malicious client interacts with the server. 

From the anti-requirements side of the story, we consider what happens when an attacker 
bypasses the access control "security mechanism" built into the client software. In this 
case, the mechanism is laid bare to attack on a standard PC belonging to the attacker. The 
resulting abuse case describes why this security mechanism is inadequate and most likely 
results in a major design change. 

Abuse Cases Are Useful 

Determining the can'ts and won'ts is often difficult for those who think only about 
positive features. Some guidance exists in the form of attack patterns. Attack patterns are 
like patterns in sewing—a blueprint for creating a kind of attack. Everyone's favorite 
software security example, the buffer overflow, follows several different standard 
patterns. Patterns allow for a fair amount of variation on a theme. They can take into 
account many dimensions, including timing, resources required, techniques, and so forth. 
Attack patterns can be used to guide abuse case development. 

Security requirements specify the security apparatus for software systems. In addition to 
capturing and describing relevant attacks, abuse cases allow an analyst to think carefully 
through what happens when these functional security mechanisms fail or are otherwise 
compromised. 

Clearly, generating abuse cases is important. The main benefit of abuse cases is that they 
provide essential insight into a system's assumptions and how attackers will approach and 
undermine them. Of course, like all good things, abuse cases can be overused (and 
generated forever with little impact on actual security). A solid approach to this technique 
requires a combination of security expertise and subject matter expertise to prioritize 
abuse cases as they are generated and to strike the right balance between cost and value 



 227

Chapter 9. Software Security Meets Security 
Operations[1] 
[1] Parts of this chapter appeared in original form in IEEE Security & Privacy magazine 
coauthored with Ken van Wyk [van Wyk and McGraw 2005]. 

[View full size image] 

 

A foolish consistency is the hobgoblin of little minds. 

—Ralph Waldo Emerson 

Traditionally, software development efforts at large corporations have been about as far 
removed from information security as they were from HR or any other particular business 
function. Not only that, but software development also has a tendency to be highly 
distributed among business units, and for that reason not even practiced in a cohesive, 
coherent manner. In the worst cases, roving bands of developers are traded like Pokémon 
cards in a fifth-grade classroom between busy business unit executives trying to get 
ahead. Suffice it to say, none of this is good. 

The disconnect between security and development results in software development 
efforts that lack any sort of contemporary understanding of technical security risks. 
Security concerns are myriad for applications in today's complex and highly connected 
computing environments. By blowing off the idea of security entirely, software builders 
ensure that software applications end up with way too many security weaknesses that 
could have and should have been avoided. 

This chapter presents various recommendations to solve this problem by bridging the gap 
between two disparate fields. The approach is born out of experience in two diverse 
fields—software security and information security.[2] Central among these 
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recommendations is the notion of using the knowledge inherent in information security 
organizations to enhance secure software development efforts. 

[2] To be completely honest, it is Ken van Wyk who brings vast experience in information 
security to this chapter. I'm just a software security guy. Ken cowrote the book Secure 
Coding [Graff and van Wyk 2003], which tackles software security from the point of 
view of operations-related security people. 

 Don't Stand So Close to Me 

Best practices in software security, such as the touchpoints described in this book, 
include a manageable number of simple security activities that are to be applied 
throughout any software development process. These activities are lightweight processes 
to be initiated at the earliest stages of software development (e.g., requirements and 
specifications) and then continued throughout the development process and on into 
deployment and operations. 

Although an increasing number of software shops and individual developers are adopting 
the software security touchpoints as their own, they often lack the requisite security 
domain knowledge required to do so. This critical knowledge arises from years of 
observing system intrusions, dealing with malicious hackers, suffering the consequences 
of software vulnerabilities, and so on. Put in this position, even the best-intended 
development efforts can fail to take into account real-world attacks previously observed 
on similar application architectures. Though books, such as Exploiting Software and The 
Shellcoder's Handbook, are starting to turn this knowledge gap around, the science of 
attack is a novel one [Hoglund and McGraw 2004; Koziol et al. 2004]. 

On the other hand, information security staff—in particular, incident handlers and 
vulnerability/patch specialists—have spent years responding to attacks against real 
systems and thinking about the vulnerabilities that spawned them. In many cases, they've 
studied application vulnerabilities and their resulting attack profiles in minute detail. 
However, few information security professionals are software developers, at least on a 
full-time basis, and their solution sets tend to be limited to reactive techniques such as 
installing software patches, shoring up firewalls, updating intrusion detection signature 
databases, and the like. It is very rare indeed to find information security professionals 
directly involved in major software development projects. 

Sadly, these two communities of highly skilled technology experts exist in nearly 
complete isolation. Their knowledge and experience bases, however, are largely 
complementary. Finding avenues for interdisciplinary cooperation is very likely to bear 
fruit in the form of fielded software that is better equipped to resist well-known and 
easily predicted attacks. A secondary benefit of any interdisciplinary cooperation is 
having information security personnel who develop a much better understanding of the 
applications that they are tasked with protecting. This knowledge will no doubt benefit 
security professionals during their normal job tasks. 
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Kumbaya (for Software Security) 

Software security is a significant and developing topic. The touchpoints described in this 
book are meant to be carried out by software security specialists in tandem with 
development teams. The issue at hand is how information security professionals can best 
participate in the software development process. If you are a CISSP, an operational 
security professional, or a network administrator, this Bud's for you. After a brief 
refresher paragraph on each touchpoint, I will introduce some recommendations relevant 
to both software developers and information security practitioners. The idea is to describe 
how best to leverage the complementary aspects of the two disciplines. 

• Requirements: Abuse Cases 

The concept of abuse case development is derived from use case development 
(see Chapter 8). In an abuse case, an application's deliberate misuse is considered 
and the corresponding effect is pondered. For example, when addressing user 
input, a series of abuse cases can be constructed that describe in some detail how 
malicious users can and will attempt to overflow input buffers, insert malicious 
data (e.g., using SQL insertion attacks), and basically ride herd over software 
vulnerability. An abuse case will describe these scenarios as well as how the 
application should respond to them. As with their use case counterparts, each 
abuse case is then used to drive a (non)functional requirement and corresponding 
test scenario for the software. 

Involving information security in abuse case development is such low-hanging 
fruit that the fruit itself is dirt splattered from the latest hard rain. Simply put, 
infosec pros come to the table with the (rather unfortunate) benefit of having 
watched and dissected years of attack data, built forensics tools,[3] created profiles 
of attackers, and so on. This may make them jaded and surly, but at least they 
intimately know what we're up against. Many abuse case analysis efforts begin 
with brainstorming or "whiteboarding" sessions during which an application's use 
cases and functional requirements are described while a room full of experts 
pontificate about how an attacker might attempt to abuse the system. Properly 
participating in these exercises involves carefully and thoroughly considering 
similar systems and the attacks that have been successful against them. Thorough 
knowledge of attack patterns and the computer security horror stories of days 
gone by brings this exercise to life. Getting past your own belly button is 
important to abuse case success, so consider other domains that may be relevant 
to the application under review while you're at it. Once again, real battle 
experience is critical. 

[3] See Dan Farmer and Wietse Venema's excellent new tome on forensics, 
Forensic Discovery [Farmer and Venema 2005]. 

Infosec people are likely to find (much to their amusement) that the software 
developers in the room are blissfully unaware of many of the attack forms seen 
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every day out beyond the network perimeter. Of course, many of the uninformed 
are also quite naturally skeptical unbelievers. While converting the unbelievers, 
great care should be taken not to succumb to the tendency toward hyperbole and 
exaggeration that is unfortunately common among security types. There's really 
nothing worse than a blustery security weenie on his high horse over some minor 
skirmish. Do not overstate the attacks that you've seen and studied. Instead, stick 
to the facts (ma'am) and be prepared to back your statements up with actual 
examples. Knowledge of actual software technology a plus. 

• Design: Business Risk Analysis 

Assessing the business impact likely to result from a successful compromise of 
the software is a critical undertaking (see Chapters 2 and 5). Without explicitly 
taking this on, a security analysis will fall short in the "who cares" department. 
Questions of cost to the parent organization sponsoring the software are 
considered relative to the project. This cost is understood in terms of both direct 
cost (think liability, lost productivity, and rework) as well as in terms of indirect 
cost (think reputation and brand damage). 

The most important people to consult when assessing software-induced business 
risks are the business stakeholders behind the software. In organizations that 
already practice business-level technology analysis, that fact tends to be quite well 
understood. The problem is that in a majority of these organizations, technology 
assessment of the business situation stops well before the level of software. A 
standard approach can be enhanced with the addition of a few simple questions: 
What do the people causing the software to be built think about security? What do 
they expect? What are they trying to accomplish that might be thwarted by 
successful attack? What worries them about security? The value that information 
security professionals can bring to answering these questions comes from a 
wealth of first hand experience seeing security impact when similar business 
applications were compromised. 

That puts them in a good position to answer other security-related questions: 
What sorts of costs have similar companies incurred from attacks? How much 
downtime was involved? What was the resulting publicity in each case? In what 
ways was the organization's reputation tarnished? Infosec people are in a good 
position to provide input and flesh out a conversation with relevant stories. Here 
again, great care should be taken to not overstate facts. When citing incidents at 
other organizations, be prepared to back up your claims with news reports and 
other third-party documentation. 

• Design: Architectural Risk Analysis 

Like the business risk analysis just described, architectural risk analysis assesses 
the technical security exposures in an application's proposed design and links 
these to business impact. Starting with a high-level depiction of the design, each 
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module, interface, interaction, and so on is considered against known attack 
methodologies and their likelihood of success (see Chapter 5). Architectural risk 
analyses are often usefully applied against individual subcomponents of a design 
as well as on the design as a whole. This provides a forest-level view of a 
software system's security posture. Attention to holistic aspects of security is 
paramount as at least 50% of security defects are architectural in nature. 

At this point we're beginning to get to the technical heart of the software 
development process. For architectural risk analysis to be effective, security 
analysts must possess a great deal of technology knowledge covering both the 
application and its underlying platform, frameworks, languages, functions, 
libraries, and so on. The most effective infosec team member in this situation is 
clearly the one who is a technology expert with solid experience around particular 
software tools. With this kind of knowledge under her belt, the infosec 
professional should again be providing real-world feedback into the process. For 
example, the analysis team might be discussing the relative strengths and 
weaknesses of a particular network encryption protocol. 

Information security can help by providing perspective to the conversation. All 
software has potential weaknesses, but has component X been involved in actual 
attacks? Are there known vulnerabilities in the protocol that the project is 
planning to use? Is a COTS component or platform a popular attacker target? Or, 
on the other hand, does it have a stellar reputation and only a handful of properly 
handled, published vulnerabilities or known attacks? Feedback of this sort should 
be extremely useful in prioritizing risk and weaknesses as well as deciding on 
what, if any, mitigation strategies to pursue. 

• Test Planning: Security Testing 

Just as testers typically use functional specifications and requirements to create 
test scenarios and test plans,[4] security-specific functionality should be used to 
derive tests against the target software's security functions (see Chapter 7). These 
kinds of investigations generally include tests that verify security features such as 
encryption, user identification, logging, confidentiality, authentication, and so on. 
Think of these as the "positive" security features that white hats are concerned 
with. 

[4] Especially those testers who understand the critical notion of requirements 
traceability <http://www.sei.cmu.edu/str/descriptions/reqtracing_body.html>. 

Thinking like a good guy is not enough. Adversarial test scenarios are the natural 
result of the process of assessing and prioritizing software's architectural risks 
(see Chapter 7). Each architectural risk and abuse case considered should be 
described and documented down to a level that clearly explains how an attacker 
might go about exploiting a weakness and compromising the software. Donning 
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your black hat and thinking like a bad guy is critical. Such descriptions can be 
used to generate a priority-based list of test scenarios for later adversarial testing. 

Although test planning and execution are generally performed by QA and 
development groups, testing represents another opportunity for infosec to have a 
positive impact. Testing—especially risk-based testing—not only must cover 
functionality but also should closely emulate the steps that an attacker will take 
when breaking a target system. Highly realistic scenarios (e.g., the security analog 
to real user) are much more useful than arbitrary pretend "attacks." Standard 
testing organizations, if they are effective at all, are most effective at designing 
and performing tests based around functional specifications. Designing risk-based 
test scenarios is a rather substantial departure from the status quo and one that 
should benefit from the experience base of security incident handlers. In this case, 
infosec professionals who are good at thinking like bad guys are the most 
valuable resources. The key to risk-based testing is to understand how bad guys 
work and what that means for the system under test. 

• Implementation: Code Review 

The design-centric activities described earlier focus on architectural flaws built 
into software design. They completely overlook, however, implementation bugs 
that may well be introduced during coding. Implementation bugs are both 
numerous and common (just like real bugs in the Virginia countryside) and 
include nasty creatures like the notorious buffer overflow, which owes its 
existence to the use (or misuse) of vulnerable APIs (e.g., gets(), strcpy(), and 
so on in C) (see Chapter 4). Code review processes, both manual and (even more 
important) automated with a static analysis tool, attempt to identify security bugs 
prior to the software's release. 

By its very nature, code review requires knowledge of code. An infosec 
practitioner with little experience writing and compiling software is going to be of 
little use during a code review. If you don't know what it means for a variable to 
be declared in a header or an argument to a method to be static/final, staring at 
lines of code all day isn't going to help. Because of this, the code review step is 
best left in the hands of the members of the development organization, especially 
if they are armed with a modern source code analysis tool. With the exception of 
information security people who are highly experienced in programming 
languages and code-level vulnerability resolution, there is no natural fit for 
network security expertise during the code review phase. This may come as a 
great surprise to those organizations currently attempting to impose software 
security on their enterprises through the infosec division. Even though the idea of 
security enforcement is solid, making enforcement at the code level successful 
when it comes to code review requires real hands-on experience with code (see 
the box Know When Enough Is Too Much). 

• System Testing: Penetration Testing 
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System penetration testing, when used appropriately, focuses on people failures 
and procedure failures made during the configuration and deployment of 
software. The best kinds of penetration testing are driven by previously identified 
risks and are engineered to probe risks directly in order to ascertain their 
exploitability (see Chapter 6). 

While testing software to functional specifications has traditionally been the 
domain of QA, penetration testing has traditionally been the domain of 
information security and incident-handling organizations. As such, the fit here for 
information security participation is a very natural and intuitive one. Of course, 
there are a number of subtleties that should not be ignored. As I describe in 
Chapter 6, a majority of penetration testing today focuses its attention on network 
topology, firewall placement, communications protocols, and the like. It is 
therefore very much an outside in approach that barely begins to scratch the 
surface of applications. Penetration testing needs to encompass a more inside
out approach that takes into account risk analyses and other software security 
results as it is carried out. This distinction is sometimes described as the 
difference between network penetration testing and application penetration 
testing. Software security is much more interested in the latter. Also worth noting 
is the use of various black box penetration tools. Network security scanners like 
Nessus, nmap, and other SATAN derivatives, are extremely useful since there are 
countless ways to configure (and misconfigure) complex networks and their 
various services. Application security scanners (which I lambaste in Chapter 1) 
are nowhere near as useful. If by an "application penetration test" you mean the 
process of running an application security testing tool and gathering results, you 
have a long way to go to make your approach hold water.[5] 

[5] It's worth noting here for non-software people how amusing the idea of a 
canned set of security tests (hacker in a box, so to speak) for any possible 
application is to software professionals. Software testing is not something that can 
be handled by a set of canned tests, no matter how large the can. The idea of 
testing any arbitrary program with, say, a few thousand tests determined in 
advance before the software was even conceived is ridiculous. I'm afraid that the 
idea of testing any arbitrary program with a few hundred application security tests 
is just as silly! 

Know When Enough Is Too Much 
In one large financial services organization (which shall remain nameless), the 
infosec people were spinning up an "application security" program. They did 
many things right. One thing that they got completely wrong, however, was 
having code review be carried out by infosec people who weren't even sure what 
a compiler was. 

The software guys very quickly determined the level of competence of the 
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security code review people, and they started gaming the system. In some cases 
they sent code for review that had nothing whatsoever to do with the system 
they were actually building. This was just plain deceitful and wrong, but the 
infosec people were too clueless to figure out what was going on. 

But even when things weren't taken quite to that extreme, they were bad. Dev 
was submitting code that would not build for review. This hampered infosec's 
ability to apply modern analysis techniques (since the code may or may not have 
actually even compiled). The infosec people had a very hard time 
comprehending how to push back since they weren't familiar with build 
processes, nightly builds, and the like. In the end, they had not specified what 
they needed for a successful review in terms that dev would understand. 

There are some big lessons to be learned here. The first is that dev is in a much 
better position to use code analysis tools than infosec is (though clearly some 
oversight is required so you don't end up with the fox guarding the chicken 
house). The second is that real software people need to be attached to and 
included in modern infosec organizations. The most knowledgeable network 
security people in the world will sometimes be at a total loss when it comes to 
software security. 

 

The good news about penetration testing and infosec involvement is that it is most 
likely already underway. The bad news is that infosec needs to up the level of 
software clue in order to carry out penetration testing most effectively. 

• Fielded System: Deployment and Operations 

The final steps in fielding secure software are the central activities of deployment 
and operations. Careful configuration and customization of any software 
application's deployment environment can greatly enhance its security posture. 
Designing a smartly tailored deployment environment for a program requires 
following a process that starts at the network component level, proceeds through 
the operating system, and ends with the application's own security configuration 
and setup. 

Many software developers would argue that deployment and operations are not even part 
of the software development process. Even if this view was correct, there is no way that 
operations and deployment concerns can be properly addressed if the software is so 
poorly constructed as to fall apart no matter what kind of solid ground it is placed on. Put 
bluntly, operations organizations have put up with some rather stinky software for a long 
time, and it has made them wary. If we can set that argument aside for a moment and 
look at the broader picture—that is, safely setting up the application in a secure 
operational environment and running it accordingly—then the work that needs doing can 
certainly be positively affected by information security. The best opportunities exist in 
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fine-tuning access controls at the network and operating system levels, as well as in 
configuring an event-logging and event-monitoring mechanism that will be most 
effective during incident response operations. Attacks will happen. Be prepared for them 
to happen, and be prepared to clean up the mess after they have.[6]  

[6] This kind of advice is pretty much a "no duh" for information security organizations. 
That's one reason why their involvement in this step is paramount. 

Come Together (Right Now) 

Let's pretend that the advice given in this chapter is sound. Even if you accept the 
recommendations wholesale as worthy, the act of aligning information security and 
software development is a serious undertaking (and not one for the faint of heart). Close 
cooperation with the development organization is essential to success. If infosec is 
perceived as the security police or "those people with sticks who show up every once in a 
while and beat us soundly for reasons we don't understand" by dev, you have a problem 
that must be addressed (see the box The Infosec Boogey Man). 

In many cases, dev is more than willing to accept guidance and advice from information 
security people who know what they're talking about. One problem is that dev doesn't 
know who in information security to talk to, who might help them, and who might just be 
a blowhard security weenie. To fix this problem, the first step for any information 
security professional who wants to help out with development efforts should be to reach 
out to the developers, roll up your sleeves, and offer to assist. 

Once you have made dev aware of your willingness to help, consider taking small steps 
toward the goals laid out in this chapter. Rather than trying to become involved in every 
phase of a giant world-changing endeavor all at once, try one at a time. Be careful to not 
overwhelm the overall system by attempting to make too many changes at the same time. 
(Much more about this and about adopting software security in large organizations can be 
found in Chapter 10.) 

The Infosec Boogey Man 
In too many organizations, infosec shows up at the end of a long and strenuous 
product development march, calls the baby ugly, and stops everything in its 
tracks. Though shipping ugly babies is not really a good idea, handling things 
this way engenders hard feelings among developers every time. Imagine busting 
your hump to get a product completed almost on time and just about kind of on 
budget (for months or sometimes years), and then having some outsiders come 
along and impose some kind of mysterious new requirements on your system 
that you never heard tell of before. To make matters worse, these new 
requirements are a serious imposition that will take time to address—heck, half 
of them require architectural-level changes. Does that make you feel all warm 
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and fuzzy? Of course not! 

In my work as a software security consultant I have seen the "ugly baby" 
problem rear its (um) ugly head far too often. Gaining the trust and 
understanding of the development organization is something that needs to 
happen early in the lifecycle. Waiting until the end to carry out a penetration test 
or even a hard-core risk analysis (which is likely to result in the exposure of 
gigantic security issues that need to be fixed) is just like showing up out of the 
blue and beating a victim with a stick. Software security is better introduced 
slowly, methodically, and gradually than with explosions, much trumpet-blaring 
fanfare, and thumping of chests. 
 

Another positive step is for the information security troops to take the time to learn as 
much as they can about software development in general and their organization's 
software development environment in particular. Study and learn about the types of 
applications that your software people develop; why they are working on them (i.e., what 
business purpose software is being built for); what languages, platforms, frameworks, and 
libraries are being used; and so on. Showing up with a clue is much better than showing 
up willing but clueless. Software people are not the most patient people on the planet, and 
often you have one and only one shot at getting involved. If you help, that's great. But if 
you hinder, that'll be the last time they talk to you. 

In the end, success or failure is as likely to be driven by the personalities of the people 
involved as anything else. Success certainly is not guaranteed, even with the best of 
intentions and the most careful planning. Beer helps. 

Coder's Corner 
Ken van Wyk tells an interesting story about an enterprise security assessment 
he performed for a major financial services company. During the assessment, he 
uncovered a software security problem that could easily have been avoided had 
there been better coordination between the software developers and the people 
who deployed and ran the software. 

The software that Ken was asked to review was an application that controlled a 
phone switch system running on a SCO UNIX system connected to the 
company's internal data network. He began by looking at the virtual 
environment that the application was running in. (By the way, this approach 
remains the quickest and easiest way of compromising an application.) In short 
order, Ken discovered that there were large numbers of OS-level weaknesses 
that enabled him to get shell access on the UNIX phone switch controller. Once 
he was "inside," things got worse. 
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Turns out that the software developers who wrote the controlling application 
had ported the application from MS-DOS to UNIX. By itself, that's fine, except 
for the fact that they had evidently taken the path of least resistance—get the 
application to run and then you're done. MS-DOS, being a single-user, single-
tasking operating system, didn't provide much of anything in the way of file 
access controls, whereas UNIX, being a multiuser, multitasking operating 
system, did. The software developers apparently failed to spend the time to learn 
much of anything about the OS that they were porting their application to. This 
was evident because all of the application's files and directories were left 
unprotected at the operating system level (all files were mode 666 or 777). 

The problem with this approach should be pretty obvious. Once logged into the 
phone switch controller, any user (or attacker) had complete read/write access to 
any component of the phone switch system, from its executable files to its 
configuration data. Ken "owned the farm," as we sometimes say in the security 
assessment world. 

All of this could have been easily avoided. The developers made several flawed 
assumptions about the operational environment of the phone switch controller. 
These flawed assumptions would have stood out in stark relief if the developers 
had spent just a few minutes talking with some IT security people when they 
were porting the application to UNIX. Further, putting in place even some basic 
file and directory access controls on the switch controller would have required 
only a modicum of UNIX filesystem knowledge. 

Effective access controls would have made a big difference, adding a very 
useful additional layer of protection for the application and its data. Of course, 
other security issues also required attention, but addressing the application's 
environment was the lowest of low-hanging fruit 

Future's So Bright, I Gotta Wear Shades 

The interesting thing about software security is that it appears to be in the earliest stages 
of development, much as the field of information security itself was ten years or so ago. 
The security activities I describe in this chapter only touch the tip of the best practice 
iceberg. The good news is that these best practices are emerging at all! Of course, the 
software security discipline will evolve and change with time, and best practices and 
advice will ebb and flow like the tide at the beach. But the advice here is likely to bear 
fruit for some time. 

The recommendations in this chapter are based on years of experience with a large dose 
of intuition thrown in for good measure. They are presented in the hopes that others will 
take them, consider them, adjust them, and attempt to apply them in their organizations. I 
believe that companies' software developers and information security staff can benefit 
greatly from the respective experiences of the other. 



 238

Much work will need to be done before the practical recommendations made here prove 
themselves to be as useful in practice as I believe that they will be. 
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Chapter 10. An Enterprise Software Security 
Program[1] 
[1] Parts of this chapter appeared in original form in IEEE Security & Privacy magazine 
co-authored with Dan Taylor [Taylor and McGraw 2005]. 

I have found no greater satisfaction than achieving success through honest dealing and 
strict adherence to the view that, for you to gain, those you deal with should gain as well. 

—Alan Greenspan 

Adopting software security in a large organization is a challenge that takes careful 
planning. Cultural change of any variety is difficult in big companies. Minefields 
surrounding software process (a religious choice),[2] development tools, programming 
language, platform, and other technical decisions only exacerbate the difficulty. 

[2] A number of very large enterprises I have worked with have washed their hands of 
process and have declared their agnosticism loudly (in many cases turning to the wild 
west for in-spiration). They've all had Big-5s come in and deploy three to six software 
development processes, but either the processes became immediate shelfware or nobody 
remembers who is supposed to be using which. Risk management is not practiced. 

Corporate politics is also an issue, with real courage required to foment software security 
change. Two political factors in particular impede progress. The first is momentum. In 
many cases, lines of business have depended on applications and systems for five or more 
years, and the applications have become set in stone. These organizations will not 
jeopardize the support to their top lines without having a huge multiyear program budget 
and executive sign-off on the risk. The second is territory-related "fear of change." 
Director and VP (line of business) budget and team size are at stake. It is hard to tell a 
Director he is losing all five database engineers and his $1.8 million annual maintenance 
budget when you hook the application up to the more secure (shared services) enterprise 
reporting interface. Regardless of these issues, leading software shops have been working 
hard to improve the way they develop software in order to build security in. 

In some circles, the term Secure Development Lifecycle (SDL) is used to describe the 
goal state of a software security program. For example, Microsoft uses this term to 
describe its adjusted software process. Because of the process-agnostic approach that I 
prescribe, any SDL is in the end a combination of your already-in-place software 
development lifecycle (SDLC) and the best practices described in Part II. That is, you 
already know how to build and ship software (though you may not be perfect), and what 
you really need to concentrate on is adjusting that existing approach to produce more 
secure software. This chapter is about how to begin to accomplish the cultural change 
necessary to put an SDL in place. We start the process by demonstrating the value of 
software security, showing initial success that will lubricate (fund and motivate) cultural 
change and building a clear, actionable roadmap for that change. 
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Software security initiatives are possible and are underway in a growing number of 
organizations. A number of programs have proven beneficial for those that have 
implemented them. This chapter describes one approach that works, with an emphasis on 
business process engineering that may be unfamiliar to technical practitioners. By 
following a number of commonsense steps, a software security improvement program has 
a greater chance of achieving its ultimate goal—software security that makes business 
sense. 

The Business Climate 

Market forces continue to pressure IT organizations to become as efficient as possible in 
order to stay competitive. As a cost-cutting maneuver, IT organizations were reorganized 
during the recent economic downturn and cut to the bone. Since no more obvious costs 
remain to be cut, more recent efficiency efforts focus on improving productivity instead 
of cutting costs. Although the situation sounds bleak, software development shops inside 
IT can take advantage of businesses' drive to improve productivity in order to build better 
software. By harnessing productivity momentum, efforts to formalize software process 
improvement programs and achieve productivity goals are flourishing. 

The regulatory and compliance environment is aligned with good security too, and in 
some cases, outweighs the productivity concerns. Many mid-level decision makers are 
very worried about compliance (or non-compliance, as the case may be). There's lots of 
bad press out there, and they don't want to be run over by it organizationally. 

Any organization can initiate a change, but few have experience in sustaining change 
over time—the ultimate end state for any software security improvement program. So 
where to start? How can we define and manage a change program in today's dynamic 
business environment? How can we prepare for and take advantage of natural change? 
How can we build a sustainable improvement program and a plan that is flexible enough 
to adapt over time? 

Priority one is aligning software development and operational processes with strategic 
business objectives. Sometimes technologists forget why they are doing what they are 
doing. Yet most software today is created to service business. Software security practices 
and mechanisms will succeed only to the extent that they have clear and explicit 
connections to the business mission. Recall our discussion of the RMF in Chapter 2. The 
stakes are high. In terms of pure technology, what is at stake may be some new 
authentication feature versus avoiding attack 57. But translated into risk-related business 
terms, when the technologist says the fizzbob-authentificator is broken, mitigation 
becomes a decision between a $13 million PKI installation and a $10 million Directory 
service. All the poor, outgunned VP knows is that there is some technical problem with 
user identity. Making the right decision is essential. Those technologists who understand 
that security is a risk management process that unfolds over time will have little trouble 
understanding that business concerns are a fundamental driver in balancing and refining 
security best practices. 
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A well-architected vision and plan based on industry standards and best practices is 
essential to a successful software security program. Throughout this book, I have covered 
a number of software security touchpoints that are process agnostic and can thus be 
adopted regardless of an organization's software development methodology. Because 
every organization is different, a software security improvement program plan that 
involves the adoption of these best practices must be tailored to the given business and 
technical situation. For example, organizations that focus more attention on code than on 
software architecture will likely benefit more quickly from the adoption of static analysis-
based code review than they will from architectural analysis. First things first. 

A well-defined roadmap lays out the specifics of how best to deploy software security 
best practices given a particular organization's approach to building (and even buying and 
integrating) software. Explicit strategic objectives drive prioritization of change to ensure 
that only those program initiatives that will provide the biggest and/or quickest return are 
addressed first. Executing such a roadmap is carried out in five basic steps. 

1. Build a plan that is tailored for you: Recognize the potential dependencies 
between various initiatives, and plan accordingly. Focus on developing the 
building blocks of change. Know how your organization develops software, and 
determine the best way to gradually adjust what you're doing to fold in security 
best practices. 

2. Roll out individual best practice initiatives carefully: Establish champions to drive 
and take ownership of each initiative. Coach and mentor as needed. Run a 
successful pilot in part of your company before you attempt to spread best 
practices far and wide. 

3. Train your people: Developers and architects remain blithely unaware of security 
and the critical role that they play in it. Training and mentorship is a necessity. 

4. Establish a metrics program: Apply a business-driven metrics scorecard to 
monitor progress and assess success. Metrics and measures (even relative metrics 
based on risk over time [see Chapter 2] or business metrics such as maintenance 
budget) are critical to making progress in any large organization. 

5. Establish and sustain a continuous improvement capability: Create a situation in 
which continuous improvement can be sustained by measuring results and 
periodically refocusing attention on the weakest aspects of your software security 
program. 

Building Blocks of Change 

Every cultural change program requires buy-in from both management and tactical 
technical people. Improvement programs will fail if either group is left out or even 
underemphasized. Every organization, every group within an organization, and every 
stakeholder will have a different sensitivity toward change. These differences must be 
understood and accounted for because variances in sensitivity deeply affect expectations. 
Disconnects in expectation may eventually end up forcing an organization into a least 
common denominator approach that lacks impact. Some common pitfalls are described in 
the box Overcoming Common Pitfalls. 
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Keeping things simple is good because this enables people to understand and support a 
program—but don't lose track of the big picture. Breaking a major change program down 
into logical segments of work, with specific deliverables tied to each segment (which we 
also call an initiative), is a proven tactical approach. In practice, we find that a reasonable 
time range for any given initiative is three to four months. A stepwise approach 
minimizes risk while enabling an organization to test the waters as it gauges receptivity to 
change. 

Overcoming Common Pitfalls 
Education, accountability, and clear objectives are critical components to any 
successful software security initiative. Over the years I have observed some 
initiatives succeed and others fail. A set of common pitfalls is something to 
familiarize yourself with and keep squarely in mind. Think carefully about 
avoiding these problems as you initiate a software security program. 

Over-reliance on Late-Lifecycle Testing 

In many cases, large organizations get a first taste of software security through 
penetration testing. This can quickly devolve into an inefficient penetrate-and-
patch exercise that is too expensive to be workable. Addressing software 
security exclusively as a testing problem fails because vulnerabilities created 
during the development phase are uncovered too late. Identifying and 
eliminating security issues only during the final testing phase fits into the bad 
habit cycle of "Develop broken stuff and then fix it." Testing for quality is 
essential, but producing quality is the real goal. How about "Develop pretty 
good stuff and make sure it's good!"? 

A test logically probes some activity (making it observable) and is used to make 
sure that the activity was successful. As such, a test can only confirm a desired 
result; it does not by itself produce that result. If a development team builds a 
complex piece of software and does absolutely nothing during the effort to 
mitigate software security vulnerabilities, what results do you suppose testing 
will unveil? Imagine giving a high-school calculus test to fourth graders 
working their way through fractions—of course they will fail. By analogy, the 
same thing happens when we apply security testing at the end of the lifecycle. 
There is a good reason that just about every single piece of enterprise software 
fails today when tested for security vulnerabilities. Frankly, the dev teams didn't 
know what they were doing. 

Of course testing is important—but value will be realized only once you have 
built something worth testing. 

Related to this problem is the obvious fact that test results alone do nothing to 
fix problems. All too often, risk analysis and security testing results are filed 
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away in the "do one day" drawer and forgotten. When that happens, security 
problems persist. 

Management without Measurement 

A basic premise of management theory is: You can't manage what you don't 
measure. This is certainly applicable to building secure software. Unfortunately, 
I commonly encounter organizations that exhibit a lack of objectives and 
measures to support their software security initiatives. Many companies insist 
they are creating secure software—and slogans to that affect abound. But when 
asked how they measure their effectiveness, they are at a loss. Simply 
demanding that developers create secure code only states a truism without 
providing any urgency to follow through. No developer sets out in the morning 
to create insecure code—but they do it anyway. The desire to do it right is 
naturally present. The missing piece is identifying what is to be done and 
measuring to ensure that it is. 

Training without Assessment 

Training not only developers but everyone involved with creating secure 
software is an essential activity. Unfortunately, a number of companies I have 
worked with felt that once a training program had been put in place, nothing 
more needed to be done. Nothing was done to impose objectives, measures, and 
testing around software security. Training by itself is not very useful unless 
there is follow-through on the bigger picture. 

Lack of High-Level Commitment 

Make no mistake; implementing an SDL is a serious undertaking. Getting 
everyone on board requires a sustained effort. Microsoft is no exception. After 
the Gates memo in January 2002 (see Chapter 1), Microsoft made a staunch 
public commitment to improve the security of its operating system. 

The company was serious about reaching its goal. Microsoft built metrics to 
track progress. It hired and empowered some of the world's leading software 
security authorities. There was a strong management edict to get it right. Any 
developer at Microsoft who created a security vulnerability after completing the 
corporate security training program faced "serious consequences." As a result, 
after an incredible investment of over $300 million, Microsoft has enjoyed 
considerable success rolling out its own SDL. 

At Microsoft, the wealthiest and most powerful software company in the world 
with its nearly limitless resources and expertise, the effort to adopt an SDL 
required the involvement and support of the Chairman of the Board, not to 
mention an incredible amount of effort and diligence on the part of engineers 
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and managers throughout the organization. 

Without this commitment from the highest levels, even the most powerful 
grassroots efforts can hit the wall. I witnessed this myself at a huge Silicon 
Valley technology producer that is a household name. The managers in the 
executive suite had lost touch with the builders and did not understand why they 
needed to put their weight behind software security. The initiative lost steam 
and was not able to get the budget it needed to succeed. 

Ask yourself: Who is the executive champion behind software security in your 
corporation, and how will they get the job done? 
 

In terms of breaking a program down, my approach recommends a mixed method of 
planning for dependencies blended with a sequence of initiatives that builds on itself. 
Dependencies can be used to adjust the general sequence to account for those items likely 
to require some dependent task prior to being kicked off. For example, building a set of 
measurement tools will be directly dependent on the software development methodology 
that is used. If an early segment includes the selection and/or adoption of a given 
methodology, tool choice issues should be deferred to a later segment because they 
require an in-place methodology to be effective. 

A clear sequence of initiatives allows an organization to achieve a specific level of 
adoption, test the waters, measure and validate accomplishments, and set the stage for the 
next level. Cigital follows a change program maturity path sequence with the following 
six phases: 

1.  Stop the bleeding. 

2.  Harvest the low-hanging fruit.

3.  Establish a foundation. 

4.  Craft core competencies. 

5.  Develop differentiators. 

6.  Build out nice-to-haves. 

Phase 1: Stop the bleeding is targeted at those areas of software development programs 
that are known to be problem areas. If particular security bugs like buffer overflows are 
causing the biggest problem, a good phase 1 approach might involve the adoption of a 
code scanning tool and an associated process for its use. If there are tens of thousands of 
security-critical applications with unknown risks, a good phase 1 approach might be to 
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carry out a flyover risk analysis process and organize the applications in order of 
criticality/security exposure so that the plan addresses those applications most at risk 
first. 

Phase 2: Harvest the low-hanging fruit is focused on finding quick wins that are 
instrumental in getting buy-in from the organization and in helping a change program 
build momentum. Note that this phase and its predecessor are good barometers for 
determining the organization's receptivity toward change. 

Phase 3: Establish a foundation is about setting in place components that provide building 
blocks for future initiatives. Typical areas addressed in this phase include creating change 
control programs, building a root-cause analysis function, and setting up critical feedback 
loops. One such feedback loop identifies and cycles any security problems discovered 
through the application of best practices, such as code review, back into training (in order 
to teach developers how to avoid common security problems in the first place). 

Phase 4: Craft core competencies is driven by both current strengths and desired strengths 
of the organization. If an organization has a strong reputation for creating solid 
architecture documentation, it will likely be more receptive to architectural risk analysis 
than it may be to abuse case development. This phase explicitly involves the adoption of 
software security best practices in a manner tailored to the strengths of the organization. 

Phase 5: Develop differentiators in order to emphasize and highlight those capabilities 
that separate the organization from everyone else in the marketplace. Measurement and 
metrics systems put in place with a software security improvement program can be used 
to demonstrate how well things are going from a security perspective. This can serve as 
an important differentiator in the market. 

Phase 6: Build out nice-to-haves involves adopting those capabilities that are not 
necessarily aligned to a given strategic business objective but bring value by achieving 
some improvement in productivity. These are left for last for obvious reasons. 

Building an Improvement Program 

Once a specific and actionable plan is set, a pragmatic approach should drive each 
initiative. Developing a clear understanding of what will be built during each part of the 
program; who will own it; and how they will build, deploy, and continue to improve it 
over time is essential. 

The general framework and plan discussed earlier should include a number of factors, 
including (but not limited to): 

• Tools 
• Processes 
• Decision criteria and associated actions 
• Templates 
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• Examples and blueprints 
• Best practices 
• Guidelines 
• Metrics and measures 

All of these concerns should be related and described in terms of who, what, and when, 
especially in large organizations. Additionally, there are a number of drivers required that 
can help align the framework with the strategic business direction. These include current 
software architectures, security policies and guidelines, and regulatory requirements, to 
name just a few. An all-encompassing enterprise information architecture and associated 
enterprise architecture roadmap (including data sensitivity classifications and 
user/role/privilege maps across lines of business) is an absolutely essential anchor for 
framework-based adoption and change. 

The most important decision for ensuring success in a cultural change program is the 
selection of champions—those individuals who will build, deploy, and own each 
initiative going forward. For example, should an initiative involve the adoption of static 
analysis tools for code review, a champion well versed in security analysis of 
implementations, the target language(s), and effective use of source code tools is 
necessary. Ideally, these individuals are not freshly trained in the area they are meant to 
own; rather, they should have a hand in developing the initiative and its components 
(including processes, success measures, and so on). A champion needs to be motivated; 
driven; and, most important, supported by the management team. Champions must be 
good communicators and part-time cheerleaders, and they must possess a strong 
capability to train and mentor others. 

For each initiative, the assigned champion will drive the build, pilot, and deployment 
activities throughout the organization. The champion will also be responsible for 
monitoring, measuring, and improving the initiative over time. It's important to 
understand and distinguish a technical champion from a business sponsor. In this case, I 
mean a technical champion. 

Establishing a Metrics Program 

The importance of measurement and metrics is hard to overstate. Measurement provides 
critical insight to management, allowing management to support strategic decision-
making processes. Measures are numeric values assigned to a given artifact, software 
product, or process. A metric is a combination of two or more measures that together 
provide some business-relevant meaning. For example, when considered separately "lines 
of code" and "number of security breaches" are two distinct measures that provide very 
little business meaning because there is no context for their values. A metric made up as 
"number of breaches / lines of code" provides a more interesting relative value. A 
comparative metric like this can be used to compare and contrast a given system's 
"security defect density" against a previous version or similar systems and thus provide 
management with useful data for decision making. 
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Ideally, metrics and measures will focus on four primary areas: project, process, product, 
and organization. The first three are specific to a given artifact or activity in a software 
development effort, while the purpose of the latter is to determine trends across the three 
other areas. 

Establishing a metrics capability is a challenging undertaking. Early standard software 
process approaches focused on sequentially building a level of sufficiency in four areas 
and in a particular order: process, controls, metrics, and improvement. Unfortunately, 
following these basic steps in the prescribed order implies that metrics are not addressed 
until late in the program. By then it may be too late. In this case, processes and controls 
put in place early may not be properly designed to provide the kinds of metrics that are 
needed later. In those cases, some significant rework may be required to achieve business 
alignment. 

All metrics should render decision criteria based on strategic business objectives. For that 
reason, business objectives must be articulated first and used to guide the entire program, 
from process and control development onward. 

A Three-Step Enterprise Rollout 

Figure 10-1 shows a simple three-step rollout plan for establishing an enterprise-wide, 
metrics-based software security program. This approach can be adapted for use in rolling 
out any large initiative. The three fundamental steps are (1) assess and plan, (2) build and 
pilot, and (3) propagate and improve. 

Figure 10-1. A three-step rollout plan for enterprise adoption of software 
security best practices, based on establishing clear measurements and metrics up 

front. 
[View full size image] 

 
 

Step 1 involves getting a handle on the current state of the business. This includes 
understanding the goals of the program writ large, collecting data to assess current state, 
and then comparing current state to goal state. This is in some sense a gap analysis. As an 
example, rollout step 1 in a large software security program will include understanding 
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the in-place SDLC and assessing how well it covers the touchpoints discussed in this 
book. If code review is currently practiced only at the unit level by developers who are 
not using a static analysis tool, a clear gap has been identified between the goal (state-of-
the-art software security) and reality. Since there are likely to be a large number of 
application development projects underway simultaneously in any large company, 
developing a rating system to assess each project is an important part of baselining. This 
leads to a measurement and metrics regimen that can be evenly applied throughout the 
rollout. Note that some of these measures can be taken from software artifacts as briefly 
described earlier. 

Counterintuitively, it may be best to begin rollout step 2, build and pilot, by identifying a 
software project that is ahead of the game. That is, because you want to maximize the 
possibility of pilot success, starting with the project with the smallest gap may make 
things easier. For example, if the software project chosen for pilot is already using static 
analysis tools for reliability (looking for null pointers and other simple bugs), adopting a 
security-related source code analysis tool is likely to be fairly straightforward for the 
project team. Because we have a set of measurements in place, we can assess progress 
over time in rollout step 2 and refine our measurement system. Note that in almost all 
cases, training programs will need to be developed that clearly describe both the goals of 
the improvement program and how to actually carry out the new best practice. The 
material in Part II of this book should be particularly useful. 

A successful pilot program provides an excellent real-world case study of the adoption of 
a best practice in one part of the enterprise. This success story provides "proof in the 
pudding" that a best practice, like code review with a source code security scanner, can 
be successful in the organization. Rollout step 3, propagate and improve, involves taking 
the best practice wide. By relying on the baseline gap analysis results from step 1, we can 
logically approach the problem of wide adoption. Our measurement program helps keep 
tabs on progress and is extremely useful in alerting us of adoption issues as they crop up. 
The training program developed in step 2 is a critical part of the widespread adoption of a 
best practice in a company. Also helpful is an information portal for software 
professionals to use as a resource as they adopt various software security touchpoints. 

By following this straightforward rollout plan, a very large organization can transform its 
existing SDLC (or more likely SDLCs, plural) with the addition of best practices for 
software security. The idea of an SDL is thereby a combination of your SDLC with the 
software security touchpoints. This key point bears repeating. Presumably your 
organization already knows how to make software and has already been shipping it for 
years. There is no reason to throw out everything you're already doing and start from 
scratch. Instead, your already-in-place SDLC can be adjusted by adding touchpoints. My 
process-agnostic approach, based around software artifacts, makes this possible. 

Continuous Improvement 

The targeted end state for any improvement program (security or otherwise) is a 
sustainable ability to evolve and to change with the business climate. Improvement 
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programs are focused on enabling an organization to develop consistent, effective 
standards that can be replicated throughout the organization over time. 

As any organization carries out its day-to-day software development and maintenance 
functions, it will execute many processes. A critical foundation for continuous 
improvement is introspective in nature: Each process must be carefully analyzed, 
assessed with respect to the need for change, adjusted as appropriate, and reinstantiated 
after it is refreshed. This feedback cycle is critical for ensuring that any given initiative 
stays relevant. Process for process' sake is a well-known pitfall that should be avoided. A 
feedback loop additionally helps to confirm that best practices like the touchpoints are in 
fact being followed. Unfortunately, many organizations have a tendency to become lazy 
and slip back into old habits. Control processes help counter this tendency. 

A critical feature for the success of continuous improvement involves the periodic 
auditing and explicit reformulation of the organization's strategic objectives to ensure that 
they have not changed too much over time. If business needs have moved far enough to 
push processes and procedures off track, then the entire software security initiative needs 
to be reevaluated. 

All modern businesses are surrounded by change. Any business that does not embrace 
change will fall victim to the tides of the market. Businesses that successfully manage 
change become flexible and nimble enough to adjust to rapid market movement; to 
remain competitive; and, ultimately, to establish sustainable differentiators that improve 
their strategic position. 

What about COTS (and Existing Software Applications)? 

In this book, I am primarily interested in discussing how to build secure software by 
adjusting and updating existing software development processes. The touchpoints are 
described as simple best practices that can be added to any existing SDLC. That's all fine 
and good for new projects, but to solve the software security problem, we need to think 
hard about existing applications, integrated software, and commercial off-the-shelf 
software (COTS) as well. 

Fortunately, the problem of existing applications is very easily addressed. That's because 
all of the touchpoints, as software security assurance activities, can be carried out against 
existing software applications as long as you have some artifacts. You'll most certainly 
have executable binaries, so that's a guaranteed starting place. But you're likely to have 
other software artifacts, including source code, defect reports, architectural descriptions, 
and so on. By referring to these artifacts along with the running system itself, you can 
assess the security posture of an existing application and begin working toward making it 
more secure. 

I am assuming that the existing application will be found lacking in its security. This is 
not a necessary condition, but it is one so commonly encountered that I treat it as a 
default. Getting a handle on a large pile of software applications (say, on the order of 
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1000 or so) is always an essential part of the baselining program described earlier. By 
measuring all of the applications with the same measuring stick (say, some kind of 
outside in penetration testing or application security testing), we can get a rough 
estimate of which applications need the most help. In my experience, a cursory 
architectural risk analysis and a quick code review with a tool (the top two touchpoints) 
provide the most actionable data. Don't forget that business impact is a critical factor 
here. 

Assessing the state of existing software applications is a critical software security 
practice. The best approach is to perform a very high-level holistic analysis mixing both 
code review with a tool and architectural risk analysis to determine security posture (see 
Chapter 5). This can be done as part of routine maintenance schedules in order to be less 
disruptive in a large organization. 

The COTS problem is more of a challenge. Because COTS vendors are often reluctant to 
provide the necessary software artifacts needed to determine security posture, using the 
touchpoints against COTS is not as effective.[3] One approach is to attempt to bind the 
vendor legally (see Chapter 1). The Reagan-esque "trust but verify" idea applies in spades 
though, so taking a look yourself is almost always a good idea. You'll always have 
executables, so that starting point exists. The hacker techniques discussed in Exploiting 
Software are also extremely useful when confronted with the COTS analysis problem 
[Hoglund and McGraw 2004]. 

[3] It never hurts to ask, though. Some vendors will provide source code and other 
artifacts if pressed (especially if the organization asking for artifacts is a key customer). 
Believe it or not, you can force a "go/no go" decision through your organization by using 
the "Who cares?" question-answering tactics from Chapter 2. 

A closely related issue involves the kind of modern enterprise software most commonly 
encountered in large businesses today: software that has both COTS components and 
middleware glue. In this common situation, it pays to have a coherent enterprise security 
framework in place that governs software security policy from development through 
integration and also covers purchasing. 

An Enterprise Information Architecture 

Figure 10-2 shows an overview of a generic enterprise information architecture (IA). 
Please note that any such IA must be adjusted to account for the software situation found 
in the large company where this architecture is to be applied. The IA is not a one-size-
fits-all solution, but rather a large-scale "map" that describes goal state. The IA concept is 
designed to help large organizations think through what knowledge objects are necessary 
to apply for each touchpoint. 

Figure 10-2. An enterprise information architecture, including critical software 
security documents, processes, and contracts.[4] See the text on previous page for 

definitions of abbreviations. 
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[View full size image] 

 
 

[4] Thanks to John Steven, who created the IA concept and built this picture. 

The IA in Figure 10-2 includes several critical sections. Starting at the bottom, a number 
of essential documents labeled "Collateral" in the picture describe the security vision, 
document policy, and point to standards and requirements. For our purposes, the most 
interesting pieces of collateral are design patterns and code samples. These two essential 
knowledge categories are extremely useful in constructive software activities. Design 
patterns provide reference architectures (best tied back into policy and standards) and 
may address particular platforms such as .NET or J2EE. Code samples are similarly 
anchored in policy and standards, but they include actual usable code samples, possibly 
even to the level of class files with standardized APIs. These components allow software 
professionals to understand what their goal is (not the use of security features, per se, but 
the use of secure coding design and implementation techniques). Positive examples also 
make excellent fodder for later assessment and measurement activities. 
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Moving up the picture, the part labeled "Contractual Artifacts" describes aspects of 
software projects that allow outsourced development to make sense. By governing a 
software development project with a clear master services agreement (MSA) and 
statement of work (SoW), especially if the documents include service-level agreement 
(SLA) and quality-of-service (QoS) callouts to security, we can hold outsource vendors 
accountable for software security. Evidence can be provided in terms of risk analysis 
reviews, test results, code scanning results, and so on. 

Moving one set of boxes higher, we encounter activities most useful when buying 
software. These are loosely analogous to the touchpoints described in this book, but they 
are more readily applicable to software purchase. Note that the black hat best practices 
are particularly useful when buying software. Developing threat models, abuse cases, and 
security requirements while thinking hard about attack patterns is possible even if you are 
standing outside the "box of code" with little wherewithal to get in the box. 

Architectural review is also possible on COTS products, depending on the documentation 
provided with the code. In the case of open source adoption, you're in better shape. But 
even when proprietary software is involved, a wealth of information useful to security 
analysis is often available. In any case, the level of analysis can be dialed in to reflect the 
information available for the product under review. Penetration testing (see Chapter 6) is 
almost always useful in assessing a COTS product, especially if it is based on risk 
analysis results. 

Finally, at the top of Figure 10-2 we come to the all-familiar touch-points described in 
this book. These best practices are best applied when building software (or analyzing 
existing applications for which you have a nice set of software artifacts). As you can see, 
the IA as a whole is applicable to a very diverse set of software circumstances, ranging 
from code you build yourself all the way to off-the-shelf code that you simply integrate 
into your environment. 

Figure 10-3 shows another view of the same IA, this time annotated with various labels. 
As you can see, the IA labels align with our previous description. The labels help to show 
how an overall security IA can be used to govern software processes, both for 
outsourcing situations and for bespoke building situations. 

Figure 10-3. An IA annotated to describe different software situations, from 
buying software to building it. The tie to organizational policy is a key aspect of 
the IA but necessitates a very mature security organization that has described its 

vision and policy.[5] 
[View full size image] 



 255

 
 

[5] Thanks to John Steven, who conceived of the IA and built this picture. 

This IA is annotated to indicate the impact that collateral has on defining process and 
vice versa. It is meant to imply that process (like the famous touchpoints) can't succeed 
without proper knowledge backup. The good news is that even if you find yourself in an 
organization with looming process problems, you can still enjoy initial success with the 
touchpoints. This success comes through building out the knowledge and sneaking the 
risk management methodology and activities into it. 

I have found that those enterprises with more mature corporate governance policies and 
procedures are better able to comprehend and actualize an IA like this. Those software 
houses with a smaller handle on policy (and usually a correspondingly larger software 
clue) are best suited to approach software security through the touchpoints. Those 
enterprise development shops driven by a top-down governance structure are more likely 
to see success through clear description and imposition of a corporate IA. 

Adopting a Secure Development Lifecycle 

An SDL is a combination of your existing SDLC and the best practices described in this 
book. There is no reason to wipe the software slate clean in order to adopt software 
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security best practices. You know how to build software. The trick to effective software 
security is to adapt your current approach according to a process-agnostic plan. 

A critical challenge facing software security today is the dearth of experienced 
practitioners. Approaches that rely solely on apprenticeship as a method of propagation 
are unlikely to scale quickly enough to address the increasingly more serious problem, so 
as the field evolves and best practices are established, business process engineering can 
play a central role in encapsulating and spreading the emerging discipline more 
efficiently. 
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Chapter 11. Knowledge for Software Security[1] 
[1] Parts of this chapter appeared in original form in IEEE Security & Privacy magazine as 
two articles, one coauthored with Sean Barnum [Barnum and McGraw 2005] and one 
with Nancy Mead [Mead and McGraw 2005]. 

Knowledge is power. 

—Francis Bacon 

Knowledge management can play a central role in encapsulating and spreading the 
emerging discipline of software security more efficiently. This chapter is about the kinds 
of security knowledge that can be used to provide a solid foundation for software security 
practices. 

Knowledge is more than simply a list of things we know or a collection of facts. Simply 
put, information and knowledge aren't the same thing, and it is important to understand 
the difference. Knowledge is information in context—information put to work using 
processes and procedures. A checklist of potential security bugs in C and C++ is 
information; the same information built into a static analysis tool is knowledge. 

At this nascent stage of the game in software security, a number of early adopters have 
created various checklists for use when thinking about software security and application 
security. One of the problems with these lists is that they have a tendency to combine 
categories of information in hard-to-grok ways. For example, a "Top Ten Things to 
Know about Application Security" document that treats "Apply the Principle of Least 
Privilege" the same as "Avoid Buffer Overflows," "Monitor BugTraq," and "Use a Code 
Scanning Tool" combines lots of good ideas in an incoherent package. It is better to 
organize software security knowledge into coherent chunks. 

The first hurdle along these lines to overcome is the propensity to think of software 
security as a coding issue. I like to refer to this kind of approach as the "bug parade." 
Sure, there are hundreds of bugs that can lead to security problems (especially in 
languages like C and C++). But simply developing a checklist of coding issues to avoid 
in C and having your developers read it will not solve the software security problem.[2] If 
instead of making a static list, we build a database of coding issues and create a tool to 
help us uncover these problems, then we're getting somewhere. This is precisely what is 
happening with the static analysis space. 

[2] If you want to experience firsthand why reading rules is tedious, check out Appendix 
B. 
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Of course, by now we know that we must address bugs (of the sort that a tool can easily 
find) and flaws (which require a smart human to find). We ignore flaws by declaring 
them "too hard to deal with at this time" at our peril. 

The second hurdle is the incorrect belief that software security is really about adopting 
various security features and/or conventions. One place where this is going particularly 
wrong is in the creation of generic classes for filtering input. We all know by now that a 
black-list solution to the input-filtering problem (trying to identify all possible malicious 
input) is inferior to a white-list solution (ensuring that only input that plays by certain 
rules is allowed). The problem is that black lists are potentially infinite every time—there 
is no way to anticipate future malicious input. Consider for a moment the encoding 
problem and various Unicode attacks discussed in Exploiting Software and you'll see 
what I mean [Hoglund and McGraw 2004]. 

Given a thorough understanding of a program (say, when you're building it), you are in a 
perfect position to create a correct input-filtering approach since you know precisely what 
kind of input you are expecting. Wrongheaded thinking has led to the idea of "security 
classes" that you can buy and link into your code. In the case of generic filtering 
capability, this idea is unlikely to work. Of course, there is nothing wrong with adopting 
great coding practices and even borrowing solid code to use. In any event, as this book 
demonstrates, software security is more about assurance than it is about features. Some 
people call the feature-based approach to software security a "cookbook" approach. 
Cookbooks can certainly help you with recipes, but just reading cookbooks without ever 
turning on your stove and actually tasting stuff won't make you a good cook. Experience 
is the most powerful teacher. 

The third and final major hurdle is overuse of the checklist. Checklists are great in the 
hands of an expert. They serve as reminders of things to think about. However, checklists 
are by their very definition incomplete. Consider the STRIDE model from Writing 
Secure Code [Howard and LeBlanc 2003]. The activity of thinking carefully about 
Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, and 
Elevation of privilege while you ponder system security is a great idea. The problem is 
that there are definitely more than six categories of attack. If you limit your thinking to a 
checklist, you will likely overlook interesting risks that lead to new attacks. Attackers 
know this well, and they will go out of their way to game this problem. For example, no 
virus writer worth his salt will release a new virus without first running every available 
commercial antivirus checker against it as an acceptance test. (Not to imply that there 
aren't plenty of really dumb virus writers out there.) 

The way around these hurdles is to organize and apply software security knowledge with 
care. 

This chapter may be too academic or research oriented for some. Software security 
practitioners and software security scientists will certainly want to develop the catalogs 
we cite (or participate in group exercises to develop a common set of open catalogs for 
all). But large organizations worried about adopting software security programs (as 
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described in Chapter 10) will be better served with the information architecture covered 
there. This chapter is more about the intellectual exercise of organizing and cataloging 
knowledge than it is about making that knowledge actionable in an enterprise. 

Experience, Expertise, and Security 

Software developers place a high premium on knowledge. Experience is king, and 
expertise is very valuable. The software field is in a perpetual state of change, and 
keeping on top of all possible new technologies is very difficult, if not impossible. 
Developers show great respect for those who master aspects of the expanding field and 
are able to help bring others along. This is the kind of phenomenon that drives topnotch 
developer conferences like SD West and SD Best Practices (called SD East by most 
people)—find both here <http://www.sdexpo.com/>. 

Similarly, software security practitioners place a premium on knowledge and experience. 
In a field where most practitioners are still being exposed to the basics (think checklists 
and basic coding rules), the value of master craftsmen who have "been there and done 
that," learned a number of lessons the hard way, and are able to transfer that experience 
to others is very high. 

The bad news is that there aren't enough master craftsmen in software security to 
apprentice and train all software developers, software architects, and software security 
newbies effectively. The good news is that critical software security knowledge and 
expertise can be compiled from those in the know and then shared widely. This 
possibility yields a potentially higher return than the pervasive one-to-one method of 
apprenticeship practiced today. Through the aggregation of knowledge from a number of 
experienced craftsmen, knowledge management can provide a new software security 
practitioner access to the knowledge and expertise of all the masters, not just one or two. 

Software security knowledge is multifaceted and can be applied in diverse ways. As the 
software lifecycle unfolds, security knowledge can be directly and dynamically applied 
through the use of knowledge-intensive best practices like the touchpoints in this book. 
During professional training and resource development, security knowledge can be drawn 
on for pedagogical application, sparking stories and anecdotes. During academic training, 
security knowledge can inform basic coding and design curricula. All of these activities 
are beginning to happen in software security. For this reason, a sophisticated knowledge 
management approach is necessary. 

Security Knowledge: A Unified View 

Security knowledge can be organized according to the taxonomy introduced in the box 
Software Security Unified Knowledge Architecture. Seven knowledge catalogs 
(principles, guidelines, rules, vulnerabilities, exploits, attack patterns, and historical risks) 
are grouped into three knowledge categories (prescriptive knowledge, diagnostic 
knowledge, and historical knowledge). 
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Two of the seven catalogs are likely to be familiar to software developers with only a 
passing familiarity with software security—vulnerabilities and exploits. These catalogs 
have been in common use for quite some time and have even resulted in collection and 
cataloging efforts serving the security community.[3] Similarly, principles—stemming 
from the seminal work of Saltzer and Schroeder [1975]—and rules—identified and 
captured in static analysis tools, such as ITS4 (see Appendix B)—are fairly well 
understood. Knowledge catalogs only more recently identified include guidelines (often 
built into prescriptive frameworks for technologies such as .NET and J2EE), attack 
patterns [Hoglund and McGraw 2004], and historical risks. Together, these various 
knowledge catalogs provide a basic foundation for a unified knowledge architecture 
supporting software security. 

[3] Mitre's CVE <http://www.cve.mitre.org/>, the CERIAS database 
<https://cirdb.cerias.purdue.edu/coopvdb/public/>, and CERT's alert data 
<http://www.cert.org> are three popular collections. 

Software Security Unified Knowledge 
Architecture 
Figure 11-1 shows a basic software security knowledge schema relating the 
seven catalogs. 

Figure 11-1. The basic schema displayed here shows one way to 
organize and interrelate software security knowledge. There are seven 
distinct knowledge catalogs, which can be divided into three knowledge 

categories. 
[View full size image] 
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The category prescriptive knowledge includes three knowledge catalogs: 
principles, guidelines, and rules. These sets span a continuum of abstraction 
from high-level architectural principles at the level of philosophy (e.g., the 
principle of least privilege [Saltzer and Schroeder 1975]) to very specific and 
tactical code-level rules (e.g., avoid the use of the library function gets() in C). 
Guidelines fall somewhere in the middle of this continuum (e.g., make all Java 
objects and classes final(), unless there's a good reason not to [McGraw and 
Felten 1999]). As a whole, the prescriptive knowledge category offers advice for 
what to do and what to avoid when building secure software. 

The category diagnostic knowledge includes three knowledge catalogs: attack 
patterns, exploits, and vulnerabilities. Rather than prescriptive statements of 
practice, diagnostic knowledge helps practitioners (including operations people) 
recognize and deal with common problems that lead to security attack. 
Vulnerability knowledge includes descriptions of software vulnerabilities 
experienced and reported in real systems (often with a bias toward operations). 
Exploits describe how instances of vulnerabilities are leveraged into particular 
security compromise for particular systems. Attack patterns describe common 
sets of exploits in a more abstract form that can be applied across multiple 
systems. Such diagnostic knowledge is particularly useful in the hands of a 
security analyst, though its value as a resource to be applied during development 
is considerable (e.g., consider the utility of attack patterns to abuse case 
development). 

The category historical knowledge includes the knowledge catalog historical 
risks and, in some cases, vulnerabilities (e.g., the collection in the CVE 
<http://www.cve.mitre.org/>). Rather than derivations or abstractions, this 
catalog represents detailed descriptions of specific issues uncovered in real-
world software development efforts and must include a statement of impact on 
the business or mission proposition. As a resource, this knowledge offers 
tremendous value in helping to identify similar issues in new software efforts 
without starting from scratch. It also provides a continuing source for 
identifying new instances of other knowledge catalogs described here: 
principles, guidelines, rules, vulnerabilities, and attack patterns. 
 

Table 11-1 provides a bird's-eye view of each knowledge catalog. Each entry includes a 
brief description, a sample schema for tracking instances, and a short list of software 
artifacts (arising from most software lifecycles) that the knowledge impacts the most. The 
idea here is to create a number of inter-related catalogs for use throughout the software 
lifecycle. 

Table 11-1. A Bird's-Eye View of Software Security Knowledge Catalogs 
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Knowledge 
Catalog Description 

Sample High-Level 
Schema 

Relevant SDLC 
Artifacts 

Principles A principle is a 
statement of general 
security wisdom 
derived from 
experience. Though 
principles exist at the 
level of philosophy, 
they stem from real-
world experience 
building secure 
systems. Principles 
are useful for both 
diagnosing 
architectural flaws in 
software and 
practicing good 
security engineering. 

• Title 
• Definition (1..n) 

o Description 
o Examples 
o Reference 

• Related guidelines 
• Related rules 

• Security 
requiremen
ts 

• Software 
architectur
e 

• Software 
design 

Guidelines A guideline is a 
recommendation for 
things to do or to 
avoid during software 
development, 
described at the 
semantic level. 
Guidelines exist for a 
specific technical 
context (e.g., J2EE, 
.NET, Linux kernel 
module, and so on). 
Guidelines are best 
enforced and 
evaluated through 
human analysis. 
Guidelines can help 
uncover both 
architectural flaws 
and implementation 
bugs. 

• Context description 
(platform, OS, 
language, and so 
on) 

• Title 
• Type 
• Objective 
• Development 

scenario 
• Description 
• Related API 
• Reference 
• Related principles 
• Related rules 

• Security 
requiremen
ts 

• Software 
design 

• Code 

Rules A rule is a 
recommendation for 
things to do or to 
avoid during software 

• Context description 
(platform, OS, 
language, and so 
on) 

• Code 
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Table 11-1. A Bird's-Eye View of Software Security Knowledge Catalogs 

Knowledge 
Catalog Description 

Sample High-Level 
Schema 

Relevant SDLC 
Artifacts 

development, 
described at the level 
of syntax. A rule can 
be verified through 
lexical scanning or 
constructive parsing 
of software (source or 
binary). Rules exist 
for specific 
programming 
languages (e.g., C, 
C++, PHP, Java, and 
so on). Rules can help 
uncover 
implementation bugs. 

• ID 
• Title 
• Attack category 
• Vulnerability 

kingdom 
• Location 
• Description 
• Method of attack 
• Solution 
• Signature 
• Example (1..n) 
• Reference (1..n) 
• Related principles 
• Related guidelines 

Attack 
patterns 

An attack pattern is a 
generalized pattern 
developed by 
reasoning over large 
sets of software 
exploits. Attack 
patterns are useful for 
identifying and 
qualifying the risk 
that a given exploit 
will occur in a 
software system. 
They are also useful 
in designing misuse 
and abuse cases and 
specific security tests.

• Context description 
(platform, OS, 
language, and so 
on) 

• Title 
• Attack category 
• Description 
• Example (1..n) 
• Reference 
• Related guidelines 
• Related rules 

• Abuse 
cases 

• Software 
design 

• Security 
test plan 
(and tests) 

• Penetration 
tests 

Historical 
risks 

A historical risk is a 
risk identified in the 
course of an actual 
software development 
effort. At its core, a 
risk is a pairing of a 
condition/event with 
a quantification of the 

• Title 
• Type 

(business/technical) 
• Subcategory 

(taxonometric 
sorting) 

• Author 
• Owner 

• Software 
architectur
e 

• Software 
design 

• Test plans 
• Deployed 
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Table 11-1. A Bird's-Eye View of Software Security Knowledge Catalogs 

Knowledge 
Catalog Description 

Sample High-Level 
Schema 

Relevant SDLC 
Artifacts 

likelihood that it will 
occur and a 
quantification of the 
impact it will have. 
Historical risks are 
good resources for 
early identification of 
potential issues in a 
software development 
effort, for potential 
clues to effective 
mitigations, and for 
improvements to the 
consistency and 
quality of risk 
management in the 
software development 
process. 

• Project 
• Risk status 
• Likelihood 
• Impact 
• Severity 
• Risk context 
• Risk description 
• Realization 

indicators 
• Impact description 
• Estimated impact 

date 
• Potential cost 
• Contingency 

plan/workaround 
• Related business 

goals 
• Related risks 
• Related mitigations 
• Diagnostic methods

software 

Vulnerabilities A vulnerability is the 
result of a defect in 
software that can be 
used by an attacker to 
gain access to or 
negatively affect the 
security of a 
computer system. 

• Context description 
(platform, OS, 
language, 
application, 
version, and so on) 

• Title 
• Description 
• Severity 
• Vulnerability type 
• Loss type 
• Reference 

• Code 
• Software 

architectur
e 

• Software 
design 

• Penetration 
tests 

• Fielded 
system 

Exploits An exploit is a 
particular instance of 
an attack on a 
computer system that 
leverages a specific 
vulnerability or set of 

• Context description 
(platform, OS, 
language, 
application, 
version, and so on) 

• Title 

• Penetration 
tests 

• Fielded 
system 
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Table 11-1. A Bird's-Eye View of Software Security Knowledge Catalogs 

Knowledge 
Catalog Description 

Sample High-Level 
Schema 

Relevant SDLC 
Artifacts 

vulnerabilities. • Description 
• Preconditions 
• Motivation 
• Exposure type 
• Exploit code 
• Blocking solution 
• Related 

vulnerabilities 

 

Work on fleshing out the knowledge catalogs identified here has been underway for some 
time by various groups. Makers of static analysis tools have pushed the envelope when it 
comes to rules, for example, while work sponsored by the Department of Homeland 
Security (and carried out by Cigital and SEI) has focused on principles and guidelines. 
The results of these efforts are available on the Web at <http://buildsecurityin.us-
cert.gov/portal/> and should prove very useful for software security practitioners. More 
on the DHS effort can be found later in this chapter. 

 

Security Knowledge and the Touchpoints 

Software security knowledge can be successfully applied at various stages throughout the 
entire SDLC. One effective way to apply such knowledge is through the use of software 
security best practices such as the touchpoints. For example, rules are extremely useful 
for static analysis and code inspection activities. 

Software security best practices and their associated knowledge catalogs can be applied 
regardless of the base software process being followed. Software development processes 
as diverse as the waterfall model, RUP, XP, Agile, spiral development, and CMMi (and 
any number of other processes) involve the creation of a common set of software artifacts 
(the most common artifact being code). Figure 11-2 shows an enhanced version of the 
touchpoints diagram that serves as the backbone of this book. In the figure, I identify 
those activities and artifacts most clearly impacted by the knowledge catalogs described 
here. 

Figure 11-2. Mapping of software security knowledge catalogs to various 
software artifacts and software security best practices (the touchpoints described 

in this book). 
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[View full size image] 

 
 

The box Two Example Catalog Entries: A Principle and a Rule (see page 270) and the 
preceding Table 11-1 provide an overview of each of the knowledge catalogs. Principles, 
given their philosophical level of abstraction, bring significant value to early-lifecycle 
activities including the definition of security requirements, performance of software 
architecture risk analysis, and design reviews. Rules, given their tactical, specific, 
syntactic nature, are primarily applicable during implementation of code review and are 
particularly well suited for inclusion in a static analysis tool. This opportunity for 
automation means that rules have an implicit requirement for encapsulation in a 
deterministic definition language so that they can be consumed by automated code 
scanning software. 

As you can see, this set of software security knowledge catalogs offers an excellent 
foundation for integrating security knowledge into the full SDLC. 

The Department of Homeland Security Build Security In Portal[4] 

[4] Known in government acronym speak as the DHS BSI PRTL. 

The U.S. Department of Homeland Security is developing a software security portal 
(along with the Carnegie Mellon Software Engineering Institute and Cigital). This portal 
aims to provide a common, accessible, well-organized set of information for practitioners 
wishing to practice software security. The portal effort is expressly aimed at the problem 
of encapsulating, expanding, and spreading software security knowledge. 
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Knowledge Catalog: Principle Item: Principle of 
Least Privilege 
Two Example Catalog Entries: A Principle and a Rule 

Description: 

Every program and every user of the system should operate using the least set of 
privileges necessary to complete the job. Primarily, this principle limits the 
damage that can result from an accident or error. It also reduces the number of 
potential interactions among privileged programs to the minimum for correct 
operation so that unintentional, unwanted, or improper uses of privilege are less 
likely to occur. Thus, if a question arises related to misuse of a privilege, the 
number of programs that must be audited is minimized. Put another way, if a 
mechanism can provide "firewalls," the principle of least privilege provides a 
rationale for where to install the firewalls. The military security rule of "need-to-
know" is an example of this principle. 

Concrete example: 

A good software specific example is a mail server which accepts mail from the 
Internet, and copies the messages into a spool directory; a local server will 
complete delivery. It needs rights to access the appropriate network port, to 
create files in the spool directory, and to alter those files (so it can copy the 
message into the file, rewrite the delivery address if needed, and add the 
appropriate "Received" lines). It should surrender the right to access the file as 
soon as it has completed writing the file into the spool directory, because it does 
not need to access that file again. The server should not be able to access any 
user's files, or any files other than its own configuration files. 

The excerpts above are from the book Computer Security: Art and Science by 
Matt Bishop [Bishop 2003] and are reprinted with permission from Addison-
Wesley Professional. 

References: [Bishop 2003; Saltzer and Schroeder 1975; Viega and McGraw 
2001] 

Knowledge Catalog: Rule 

Item: Use of creat() 

Context: C/C++ 
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Attack Category: TOCTOU—time of check–time of use 

Description: 

The creat(char *pathname,mode_t theMode) function either creates a new 
file or prepares to rewrite using pathname as the filename. The call 
creat(theName,theMode) is equivalent to 

open(theName,O_WRONLY | O_CREAT | O_TRUNC, theMode) 
 

If the file exists, the length is truncated to zero and the mode and owner are 
unchanged. 

This function is a problem because it is possible to unintentionally delete a file 
or enter a potentially unstable race condition. 

creat() is vulnerable to TOCTOU attacks. Using automated scanning tools, the 
existence of a call to this function should be flagged regardless of whether a 
"check" function precedes it. 

Method of Attack: 

The creat() call is a "use" category call that when preceded by a "check" 
category call can indicate a TOCTOU vulnerability. 

Solution: 

Consider using a safer set of steps for opening and creating files as outlined in 
Building Secure Software [Viega and McGraw 2001, p. 220]. If this call must 
be used, create a directory only accessible by the UID of the running program, 
and only manipulate files in that directory. 

Signature: Presence of the creat() function. 

Code Example: 

char filename[] = "rightFile.txt"; 
strcpy(filename,"wrongfile.txt"); 
creat(filename,theMode); 
 

In this case, the contents of the file passed into the creat() function are 
destroyed.If the results of the function call are used before completion, then the 
results can also be unstable. 
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References: [Viega and McGraw 2001] and Microsoft Developer Network 
Library (MSDN) 
 

Like this book, the Build Security In (BSI) Software Assurance Initiative seeks to alter 
the way that software is developed by building security in from the start so that it's less 
vulnerable to attack. BSI is a project of the Strategic Initiatives Branch of the Department 
of Homeland Security's National Cyber Security Division (NCSD). NCSD sponsors 
development and collection of software assurance and software security information that 
will help software developers and architects create secure systems. 

As part of the initiative, a BSI content catalog will be available on the US-CERT Web 
site <http://buildsecurityin.us-cert.gov/portal/>. This portal is intended for software 
developers and software development organizations who want information and practical 
guidance on how to produce secure and reliable software. The catalog is based on the 
principle that software security is fundamentally a software engineering problem that we 
must address systematically throughout the SDLC. The catalog contains and links to a 
broad range of information about best practices, tools, and knowledge. 

Figure 11-3 identifies aspects of software assurance currently covered in the catalog. 
Material is divided into three major categories: best practices, tools, and foundational 
knowledge. This is an alternative way of organizing software security content with 
reference to artifacts. 

Figure 11-3. The organizing concept for the BSI portal. The alignment of this 
view shows not only best practices (as Figure 11-2 does) but also knowledge and 

tools. 
[View full size image] 
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The categorization is the result of merging an earlier collaboration framework with ideas 
presented in the lifecycle touchpoints diagram that serves as the skeleton of this book. 
The National Cyber Security Taskforce's report also identified additional practices to 
produce secure software—see <http://www.cyberpartnership.org/init-soft.html>. The BSI 
portal will supplement the taskforce's practices with process models and references to 
appropriate tools, measurement, and other resources. 

Although the team creating the portal won't achieve complete content coverage 
immediately, DHS has launched the portal with some content in each area shown in 
Figure 11-3. The BSI team will use feedback received on this content (as well as input 
from industry) to prioritize further work on the catalog. 

The portal includes several types of information, categorized for efficient search and 
utility as follows. 

Best practices: A significant portion of the BSI effort is devoted to best practices that can 
provide the biggest return considering the current best thinking, available technology, and 
industry practice. This list will grow as more resources become available, more practices 
are proven, changes occur in the industry environment, and technology progresses. This 
book covers a number of critical best practices in some detail. 

Knowledge: Software defects with security ramifications—including implementation 
bugs such as buffer overflows and design flaws such as inconsistent error handling—
promise to be with us for years. Recurring patterns of software defects leading to 
vulnerabilities have been identified by long-time software security practitioners, and the 
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BSI team is documenting detailed instructions on how to produce software without these 
defects. This work shows up in Figure 11-3 as "Guidelines" and "Coding rules." 

The BSI team has also identified principles that provide high-level direction for avoiding 
security problems in design, such as the principle of least privilege and the principle of 
compartmentalization. The BSI team is collaborating with the National Institute of 
Standards and Technology (NIST), the International Organization for Standardization 
(ISO), and the Institute of Electrical and Electronics Engineers (IEEE) on standards 
activities focused on developing safe and secure subsets of languages and software 
assurance style guides. 

Tools: The BSI portal includes information about which tools developers and security 
analysts can use to detect and/or remove common vulnerabilities. Of particular interest 
are static analysis tools that help developers look for common security-critical problems 
in source code. The best current commercial tools support languages like Java, CLR, 
C++, C, and PHP. 

Business case: Even with extensive technical content, a business case is required to 
convince industry to adopt secure software development best practices and educate 
consumers about the need for software assurance. Therefore, each documented best 
practice addresses the business case for use of that practice. In addition, we've included 
an overall business case framework. 

Dynamic navigation: The extent to which users will find the content accessible as well as 
useful will determine how this portal will impact real-world development practices and, 
thus, overall systems security. The BSI team is making the content approachable in 
several different ways. For example, a software engineer might use the catalog to 
determine applicable security guidelines, an architect might use security principles to 
determine how to design an n-tier application in a secure fashion, and a development 
team leader might use the information to justify software assurance techniques to 
management by building a business case. Because the repository will be structured and 
designed to evolve as well as support usage by a variety of user types, it includes a 
dynamic navigation interface. 

Once practical guidance and reference materials are available for the day-to-day work 
most development organizations do, the BSI team plans to identify and organize content 
for practical guidance and reference materials for enterprise-level security concerns. 

Although the portal is currently in a nascent stage, the BSI team welcomes feedback on 
this effort. Information on providing feedback can be found on the portal itself; 
community involvement and use is crucial to its success 

Knowledge Management Is Ongoing 

Efforts to identify and define knowledge constructs for software security are in their 
infancy. My hope is that a wider population of thought leaders and key practitioners of 
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software security will help to refine and validate this knowledge architecture in an effort 
to build consensus and move toward standardization. Such discussion and collaboration 
are critical to the success of software security as a unified practice. As work continues to 
gain consensus, my colleagues and I will continue to collect real-world examples of 
content to build out the breadth and depth of catalogs. We will also work to identify 
further opportunities for directly applying these catalogs in the SDLC. 

Software Security Now 

There is really no better time to get into software security than now. The field is 
beginning to explode, mostly due to incredible commercial demand. Turns out that we've 
built boatloads of pretty bad software over the years, and now that security is being taken 
more seriously, there's one heck of a cleanup job to do. That's right, we can't solve the 
problem in "look ahead" mode only. We need to spend some time fixing what we've 
already built. The cool thing about the touchpoints is that many can be applied just as 
well to existing software as to new projects. For example, performing an architectural 
risk analysis on an existing system is well within the realm of possibility. 

Getting started in software security is easier than ever. Now there's an entire shelf full of 
software security books (see Chapter 13), best practices like the touchpoints have been 
identified, and organizations are looking to build capability. Knowledge managers are 
creating schemata and taxonomies of software security knowledge, making it much easier 
than it was just a few short years ago to get started. And the tools don't suck anymore. 

If you are a software person interested in security, consider becoming a software security 
person. We need you! 
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Chapter 12. A Taxonomy of Coding Errors[1] 
[1] Parts of this chapter appeared in original form in Proceedings of the NIST Workshop 
on Software Security Assurance Tools, Techniques, and Metrics coauthored with Katrina 
Tsipenyuk and Brian Chess [Tsipenyuk, Chess, and McGraw 2005]. 

A horse! A horse! My kingdom for a horse! 

—King Richard the Third (William Shakespeare) 

The purpose of any taxonomy like this one is to help software developers and security 
practitioners concerned about software understand common coding mistakes that impact 
security. The goal is to help developers avoid making mistakes and to more readily 
identify security problems whenever possible. A taxonomy like this one is most usefully 
applied in an automated tool that can spot problems either in real time (as a developer 
types into an editor) or at compile time (see Chapter 4). When put to work in a tool, a set 
of security rules organized according to this taxonomy is a powerful teaching mechanism. 
Because developers today are by and large unaware of security problems that they can 
(unknowingly) introduce into code, publication of a taxonomy like this should provide 
real, tangible benefits to the software security community. 

This approach represents a striking alternative to taxonomies of attack patterns (see 
Exploiting Software [Hoglund and McGraw 2004]) or simple-minded collections of 
specific vulnerabilities (e.g., Mitre's CVE <http://www.cve.mitre.org/>). Attack-based 
approaches are based on knowing your enemy and assessing the possibility of similar 
attack. They represent the black hat side of the software security equation. A taxonomy of 
coding errors is, strangely, more positive in nature. This kind of thing is most useful to 
the white hat side of the software security world. In the end, both kinds of approaches are 
valid and necessary. 

The goal of this taxonomy is to educate and inform software developers so that they 
better understand the way their work affects the security of the systems they build. 
Developers who know this stuff (or at least use a tool that knows this stuff) will be better 
prepared to build security in than those who don't. 

Though this taxonomy is incomplete and imperfect, it provides an important start. One of 
the problems of all categorization schemes like this is that they don't leave room for new 
(often surprising) kinds of vulnerabilities. Nor do they take into account higher-level 
concerns such as the architectural flaws and associated risks described in Chapter 5.[2] 
Even when it comes to simple security-related coding issues themselves, this taxonomy is 
not perfect. Coding problems in embedded control software and common bugs in high-
assurance software developed using formal methods are poorly represented here, for 
example. 
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[2] This should really come as no surprise. Static analysis for architectural flaws would 
require a formal architectural description so that pattern matching could occur. No such 
architectural description exists. (And before you object, UML doesn't cut it.) 

The bulk of this taxonomy is influenced by the kinds of security coding problems often 
found in large enterprise software projects. Of course, only coding problems are 
represented since the purpose of this taxonomy is to feed a static analysis engine with 
knowledge. The taxonomy as it stands is neither comprehensive nor theoretically 
complete. Instead it is practical and based on real-world experience. The focus is on 
collecting common errors and explaining them in such a way that they make sense to 
programmers. 

The taxonomy is expected to evolve and change as time goes by and coding issues (e.g., 
platform, language of choice, and so on) change. This version of the taxonomy places 
more emphasis on concrete and specific problems over abstract or theoretical ones. In 
some sense, the taxonomy may err in favor of omitting "big-picture" errors in favor of 
covering specific and widespread errors. 

The taxonomy is made up of two distinct kinds of sets (which we're stealing from 
biology). What is called a phylum is a type or particular kind of coding error; for 
example, Illegal Pointer Value is a phylum. What is called a kingdom is a collection of 
phyla that share a common theme. That is, kingdoms are sets of phyla; for example, Input 
Validation and Representation is a kingdom. Both kingdoms and phyla naturally emerge 
from a soup of coding rules relevant to enterprise software. For this reason, the taxonomy 
is likely to be incomplete and may be missing certain coding errors. 

In some cases, it is easier and more effective to talk about a category of errors than it is to 
talk about any particular attack. Though categories are certainly related to attacks, they 
are not the same as attack patterns. 

On Simplicity: Seven Plus or Minus Two 

I've seen lots of security taxonomies over the years, and they have all shared one 
unfortunate property—an overabundance of complexity. People are good at keeping track 
of seven things (plus or minus two).[3] I used this as a hard constraint and attempted to 
keep the number of kingdoms down to seven (plus one). I present these kingdoms in 
order of importance to software security. 

[3] The magic number seven plus or minus two comes from George Miller's classic paper 
"The Magic Number Seven, Plus or Minus Two," The Psychological Review, vol. 63, pp. 
81–97, 1956; see <http://www.well.com/user/smalin/miller.html>. 

Without further ado, here are the seven kingdoms (plus one): 

1. Input Validation and Representation 
2. API Abuse 
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3. Security Features 
4. Time and State 
5. Error Handling 
6. Code Quality 
7. Encapsulation 

• Environment 

A brief explanation of each follows. 

Input Validation and Representation 

Input validation and representation problems are caused by metacharacters, alternate 
encodings, and numeric representations. Of course, sometimes people just forget to do 
any input validation at all. If you do choose to do input validation, use a white list, not a 
black list [Hoglund and McGraw 2004]. 

Big problems result from trusting input (too much), including buffer overflows, cross-site 
scripting attacks, SQL injection, cache poisoning, and basically all of the low-hanging 
fruit that the script kiddies eat. 

API Abuse 

An API is a contract between a caller and a callee. The most common forms of API abuse 
are caused by the caller failing to honor its end of this contract. For example, if a program 
fails to call chdir() after calling chroot(), it violates the contract that specifies how to 
change the active root directory in a secure fashion. Another good example of library 
abuse is expecting the callee to return trustworthy DNS information to the caller. In this 
case, the caller abuses the callee API by making certain assumptions about its behavior 
(that the return value can be used for authentication purposes). Really bad people also 
violate the caller–callee contract from the other side. For example, if you subclass 
SecureRandom and return a not-so-random value, you're not following the rules. 

API abuse categories are very common. Check out Appendix B for a long, boring list of 
API problems that were built into ITS4 (an early code analysis tool). 

Security Features 

I've said this before, and I'll say it again: Software security is not security software. All 
the magic crypto fairy dust in the world won't make you secure. But it's also true that you 
can drop the ball when it comes to essential security features. Let's say you decide to use 
SSL to protect traffic across the network, but you really screw things up. Unfortunately, 
this happens all the time. When I chunk together security features, I'm concerned with 
such topics as authentication, access control, confidentiality, cryptography, privilege 
management, and all that other stuff on the CISSP exam. This stuff is hard to get right. 
You in the back, pay attention! 
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Time and State 

Distributed computation is about time and state. That is, in order for more than one 
component to communicate, state must be shared (somehow), and all that takes time. 
Playing with time and state is the biggest untapped natural attack resource on the planet 
right now. 

Most programmers anthropomorphize (or, more accurately, only solipsistically ponder) 
their work. They think about themselves—the single omniscient thread of control 
manually plodding along, carrying out the entire program in the same way that they 
themselves would do it if forced to do the job manually. That's really quaint. Modern 
computers switch between tasks very quickly, and in multi-core, multi-CPU, or 
distributed systems, two events may take place at exactly the same time.[4] Defects rush to 
fill the gap between the programmer's model of how a program executes and what 
happens in reality. These defects are related to unexpected interactions between threads, 
processes, time, and information. These interactions happen through shared state: 
semaphores; variables; the filesystem; the universe; and, basically, anything that can store 
information. 

[4] Looks like the Police were on to something with that Synchronicity album after all. 

One day soon, this kingdom will be number one. 

Error Handling 

Want to break software? Throw some junk at a program and see what errors you cause. 
Errors are not only a great source of "TMI" from a program, but they are also a source of 
inconsistent thinking that can be gamed. It gets worse, though. In modern object-oriented 
systems, the notion of exceptions has reintroduced the banned concept of goto right back 
on center stage. Alas. 

Errors and error handlers represent a class of programming contract. So, in some sense, 
errors represent the two sides of a special form of API; but security defects related to 
error handling are so common that they deserve a special kingdom all of their own. As 
with API Abuse, there are two ways to blow it here: first comes either forgetting to 
handle errors at all or handling them so roughly that they get all bruised and bloody. The 
second is producing errors that either give out way too much information (to possible 
attackers) or are so radioactive that nobody wants to handle them. 

Code Quality 

Security is a subset of reliability, just as all future TV shows are a subset of monkeys 
banging on zillions of keyboards. If you are able to completely specify your system and 
all of its positive and negative security possibilities, then security is a subset of reliability. 
In the real world, security deserves an entire budget of its own. If you've gotten this far 
into the book (lucky Chapter 12 plus or minus one), you probably agree that the current 



 277

state of the art requires some special attention for security. Poor code quality leads to 
unpredictable behavior. From a user's perspective that often manifests itself as poor 
usability. For an attacker, bad quality provides an opportunity to stress the system in 
unexpected ways. 

Encapsulation 

Encapsulation is about drawing strong boundaries between things and setting up barriers 
between them. In a Web browser this might mean ensuring that mobile code can't whack 
your hard drive arbitrarily (bad applet, kennel up). On a Web Services server that might 
mean differentiating between valid data that have been authenticated and run through the 
white-list and mystery data that were found sitting on the floor in the men's room under 
the urinal. Boundaries are critical. Some of the most important boundaries today come 
between classes with various methods. Trust and trust models require careful and 
meticulous attention to boundaries. Keep your hands off my stuff! 

Environment 

Another one of those pesky extra things. Turns out that software runs on a machine with 
certain bindings and certain connections to the bad, mean universe. Getting outside the 
software is important (write that down, you heard me say it here). This kingdom is the 
kingdom of outside in. It includes all of the stuff that is outside of your code but is 
still critical to the security of the software you create. 

The Phyla 

The big list in this section takes the following form: 

Kingdom 

• Phylum 

<explanatory sentence or two> 

I now introduce the phyla that fit under the seven (plus one) kingdoms. To better 
understand the relationship between kingdoms and phyla, consider a recently found 
vulnerability in Adobe Reader 5.0.x for UNIX. The vulnerability is present in a function 
UnixAppOpenFilePerform() that copies user-supplied data into a fixed-size stack buffer 
using a call to sprintf(). If the size of the user-supplied data is greater than the size of 
the buffer it is being copied into, important information, including the stack pointer, is 
overwritten. By supplying a malicious PDF document, an attacker can execute arbitrary 
commands on the target system. 

The attack is possible because of a simple coding error—the absence of a check that 
makes sure that the size of the user-supplied data is no greater than the size of the 
destination buffer. Developers will associate this check with a failure to code defensively 
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around the call to sprintf(). I classify this coding error according to the attack it 
enables—"Buffer Overflow." I chose Input Validation and Representation as the name of 
the kingdom the Buffer Overflow phylum belongs to because the lack of proper input 
validation is the root cause making the attack possible. 

The coding errors represented by phyla can all be detected by static source code analysis 
tools. Source code analysis offers developers an opportunity to get quick feedback about 
the code they write. I strongly advocate educating developers about coding errors by 
having them use a source code analysis tool (see Chapter 4). 

1. Input Validation and Representation 
o Buffer Overflow 

Writing outside the bounds of allocated memory can corrupt data, crash 
the program, or cause the execution of an attack payload. 

o Command Injection 

Executing commands from an untrusted source or in an untrusted 
environment can cause an application to execute malicious commands on 
behalf of an attacker. 

o Cross-Site Scripting 

Sending unvalidated data to a Web browser can result in the browser 
executing malicious code (usually scripts). 

o Format String 

Allowing an attacker to control a function's format string may result in a 
buffer overflow. 

o HTTP Response Splitting 

Writing unvalidated data into an HTTP header allows an attacker to 
specify the entirety of the HTTP response rendered by the browser. 

o Illegal Pointer Value 

This function can return a pointer to memory outside of the buffer to be 
searched. Subsequent operations on the pointer may have unintended 
consequences. 

o Integer Overflow 
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Not accounting for integer overflow can result in logic errors or buffer 
overflows. 

o Log Forging 

Writing unvalidated user input into log files can allow an attacker to forge 
log entries or inject malicious content into logs. 

o Path Traversal 

Allowing user input to control paths used by the application may enable an 
attacker to access otherwise protected files. 

o Process Control 

Executing commands or loading libraries from an untrusted source or in 
an untrusted environment can cause an application to execute malicious 
commands (and payloads) on behalf of an attacker. 

o Resource Injection 

Allowing user input to control resource identifiers may enable an attacker 
to access or modify otherwise protected system resources. 

o Setting Manipulation 

Allowing external control of system settings can disrupt service or cause 
an application to behave in unexpected ways. 

o SQL Injection 

Constructing a dynamic SQL statement with user input may allow an 
attacker to modify the statement's meaning or to execute arbitrary SQL 
commands. 

o String Termination Error 

Relying on proper string termination may result in a buffer overflow. 

o Struts: Duplicate Validation Forms 

Multiple validation forms with the same name indicate that validation 
logic is not up to date. 

o Struts: Erroneous validate() Method 
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The validator form defines a validate() method but fails to call 
super.validate(). 

o Struts: Form Bean Does Not Extend Validation Class 

All Struts forms should extend a Validator class. 

o Struts: Form Field without Validator 

Every field in a form should be validated in the corresponding validation 
form. 

o Struts: Plug-in Framework Not in Use 

Use the Struts Validator to prevent vulnerabilities that result from 
unchecked input. 

o Struts: Unused Validation Form 

An unused validation form indicates that validation logic is not up to date. 

o Struts: Unvalidated Action Form 

Every action form must have a corresponding validation form. 

o Struts: Validator Turned Off 

This action form mapping disables the form's validate() method. 

o Struts: Validator without Form Field 

Validation fields that do not appear in the forms they are associated with 
indicate that the validation logic is out of date. 

o Unsafe JNI 

Improper use of the Java Native Interface (JNI) can render Java 
applications vulnerable to security flaws in other languages. Language-
based encapsulation is broken. 

o Unsafe Reflection 

An attacker may be able to create unexpected control flow paths through 
the application, potentially bypassing security checks. 

o XML Validation 
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Failure to enable validation when parsing XML gives an attacker the 
opportunity to supply malicious input. 

2. API Abuse 
o Dangerous Function 

Functions that cannot be used safely should never be used. 

o Directory Restriction 

Improper use of the chroot() system call may allow attackers to escape a 
chroot jail. 

o Heap Inspection 

Do not use realloc() to resize buffers that store sensitive information. 

o J2EE Bad Practices: getConnection() 

The J2EE standard forbids the direct management of connections. 

o J2EE Bad Practices: Sockets 

Socket-based communication in Web applications is prone to error. 

o Often Misused: Authentication 

(See the complete entry on page 290 in this chapter.) 

o Often Misused: Exception Handling 

A dangerous function can throw an exception, potentially causing the 
program to crash. 

o Often Misused: Path Manipulation 

Passing an inadequately sized output buffer to a path manipulation 
function can result in a buffer overflow. 

o Often Misused: Privilege Management 

Failure to adhere to the principle of least privilege amplifies the risk posed 
by other vulnerabilities. 

o Often Misused: String Manipulation 
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Functions that manipulate strings encourage buffer overflows. 

o Unchecked Return Value 

Ignoring a method's return value can cause the program to overlook 
unexpected states and conditions. 

3. Security Features 
o Insecure Randomness 

Standard pseudo-random number generators cannot withstand 
cryptographic attacks. 

o Least Privilege Violation 

The elevated privilege level required to perform operations such as 
chroot() should be dropped immediately after the operation is 
performed. 

o Missing Access Control 

The program does not perform access control checks in a consistent 
manner across all potential execution paths. 

o Password Management 

Storing a password in plaintext may result in a system compromise. 

o Password Management: Empty Password in Configuration File 

Using an empty string as a password is insecure. 

o Password Management: Hard-Coded Password 

Hard-coded passwords may compromise system security in a way that 
cannot be easily remedied. 

o Password Management: Password in Configuration File 

Storing a password in a configuration file may result in system 
compromise. 

o Password Management: Weak Cryptography 

Obscuring a password with trivial encoding does not protect the password. 
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o Privacy Violation 

Mishandling private information, such as customer passwords or social 
security numbers, can compromise user privacy and is often illegal. 

4. Time and State 
o Deadlock 

Inconsistent locking discipline can lead to deadlock. 

o Failure to Begin a New Session upon Authentication 

Using the same session identifier across an authentication boundary allows 
an attacker to hijack authenticated sessions. 

o File Access Race Condition: TOCTOU 

The window of time between when a file property is checked and when 
the file is used can be exploited to launch a privilege escalation attack. 

o Insecure Temporary File 

Creating and using insecure temporary files can leave application and 
system data vulnerable to attack. 

o J2EE Bad Practices: System.exit() 

A Web application should not attempt to shut down its container. 

o J2EE Bad Practices: Threads 

Thread management in a Web application is forbidden in some 
circumstances and is always highly error prone. 

o Signal Handling Race Conditions 

Signal handlers may change shared state relied on by other signal handlers 
or application code causing unexpected behavior. 

5. Error Handling 
o Catch NullPointerException 

Catching NullPointerException should not be used as an alternative to 
programmatic checks to prevent dereferencing a null pointer. 

o Empty Catch Block 
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Ignoring exceptions and other error conditions may allow an attacker to 
induce unexpected behavior unnoticed. 

o Overly Broad Catch Block 

Catching overly broad exceptions promotes complex error-handling code 
that is more likely to contain security vulnerabilities. 

o Overly Broad Throws Declaration 

Throwing overly broad exceptions promotes complex error-handling code 
that is more likely to contain security vulnerabilities. 

o Unchecked Return Value 

Ignoring a method's return value can cause the program to overlook 
unexpected states and conditions. 

6. Code Quality 
o Double Free 

Calling free() twice on the same memory address can lead to a buffer 
overflow. 

o Inconsistent Implementations 

Functions with inconsistent implementations across operating systems and 
operating system versions cause portability problems. 

o Memory Leak 

Memory is allocated but never freed, leading to resource exhaustion. 

o Null Dereference 

The program can potentially dereference a null pointer, thereby raising a 
NullPointerException. 

o Obsolete 

The use of deprecated or obsolete functions may indicate neglected code. 

o Undefined Behavior 

The behavior of this function is undefined unless its control parameter is 
set to a specific value. 



 285

o Uninitialized Variable 

The program can potentially use a variable before it has been initialized. 

o Unreleased Resource 

The program can potentially fail to release a system resource. 

o Use After Free 

Referencing memory after it has been freed can cause a program to crash. 

7. Encapsulation 
o Comparing Classes by Name 

Comparing classes by name can lead a program to treat two classes as the 
same when they actually differ. 

o Data Leaking Between Users 

Data can "bleed" from one session to another through member variables of 
singleton objects, such as servlets, and objects from a shared pool. 

o Leftover Debug Code 

Debug code can create unintended entry points in an application. 

o Mobile Code: Object Hijack 

Attackers can use cloneable objects to create new instances of an object 
without calling its constructor. 

o Mobile Code: Use of Inner Class 

Inner classes are translated into classes that are accessible at package 
scope and may expose code that the programmer intended to keep private 
to attackers. 

o Mobile Code: Non-Final Public Field 

Non-final public variables can be manipulated by an attacker to inject 
malicious values. 

o Private Array-Typed Field Returned from a Public Method 
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The contents of a private array may be altered unexpectedly through a 
reference returned from a public method. 

o Public Data Assigned to Private Array-Typed Field 

Assigning public data to a private array is equivalent to giving public 
access to the array. 

o System Information Leak 

Revealing system data or debugging information helps an adversary learn 
about the system and form an attack plan. 

o Trust Boundary Violation 

Commingling trusted and untrusted data in the same data structure 
encourages programmers to mistakenly trust unvalidated data. 

• Environment 
o ASP .NET Misconfiguration: Creating Debug Binary 

Debugging messages help attackers learn about the system and plan a 
form of attack. 

o ASP .NET Misconfiguration: Missing Custom Error Handling 

An ASP .NET application must enable custom error pages in order to 
prevent attackers from mining information from the framework's built-in 
responses. 

o ASP .NET Misconfiguration: Password in Configuration File 

Do not hardwire passwords into your software. 

o Insecure Compiler Optimization 

Improperly scrubbing sensitive data from memory can compromise 
security. 

o J2EE Misconfiguration: Insecure Transport 

The application configuration should ensure that SSL is used for all 
access-controlled pages. 

o J2EE Misconfiguration: Insufficient Session-ID Length 
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Session identifiers should be at least 128 bits long to prevent brute-force 
session guessing. 

o J2EE Misconfiguration: Missing Error Handling 

A Web application must define a default error page for 404 errors and 500 
errors and to catch java. lang. Throwable exceptions to prevent 
attackers from mining information from the application container's built-in 
error response. 

o J2EE Misconfiguration: Unsafe Bean Declaration 

Entity beans should not be declared remote. 

o J2EE Misconfiguration: Weak Access Permissions 

Permission to invoke EJB methods should not be granted to the ANYONE 
role. 

More Phyla Needed 

This taxonomy includes coding errors that occur in a variety of programming languages. 
The most important among them are C and C++, Java, and the .NET family (including 
C# and ASP). Some of the phyla are language-specific because the types of errors they 
represent apply only to specific languages. One example is the Double Free phylum. This 
phylum identifies incorrect usage of low-level memory routines and is specific to C and 
C++ because neither Java nor the managed portions of the .NET languages expose low-
level memory APIs. 

In addition to being language-specific, some phyla are framework-specific. For example, 
the Struts phyla apply only to the Struts framework, and the J2EE phyla are only 
applicable in the context of the J2EE applications. Log Forging, on the other hand, is a 
more general phylum. 

The phylum list as it exists is certainly incomplete, but it is adaptable to changes in trends 
and discoveries of new defects that are bound to happen over time. The current list 
reflects a focus on finding and classifying security-related defects rather than more 
general quality or reliability issues. The Code Quality kingdom could potentially contain 
many more phyla, but the ones that are currently included are the most likely to affect 
software security directly. Finally, classifying errors that are most important to real-world 
enterprise developers is the most important goal of this taxonomy—most of the 
information here is derived from the literature, various colleagues, and hundreds of 
customers 

A Complete Example 
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Each phylum in the taxonomy is associated with a nice number of clear, fleshed-out 
examples similar in nature to the rules described in Chapter 4. An example of the 
kingdom API Abuse in the phylum Often Misused: Authentication is included here to 
give you some idea of the form that a complete entry takes. For more, see 
<http://vulncat.fortifysoftware.com>. 

Often Misused: Authentication 
(getlogin) 

Abstract 

The getlogin() function is easy to spoof. Do not rely on the name it returns. 

Explanation 

The getlogin() function is supposed to return a string containing the name of 
the user currently logged in at the terminal, but an attacker can cause 
getlogin() to return the name of any user who is logged in to the machine. Do 
not rely on the name returned by getlogin() when making security decisions. 

Example 1: The following code relies on getlogin() to determine whether or 
not a user is trusted. It is easily subverted. 

pwd = getpwnam(getlogin()); 
if (isTrustedGroup(pwd->pw_gid)) { 
allow(); 
} else { 
deny(); 
} 
 

Recommendations 

You should rely on a user's ID, not the username, for identification. The 
previous example can be rewritten as: 

pwd = getpwuid(getuid()); 
if (isTrustedGroup(pwd->pw_gid)) { 
allow(); 
} else { 
deny(); 
} 
 

If multiple users are allowed to share the same user ID (a dubious proposition 
from a security standpoint), a bit more care is required. The following example 
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checks to see whether the username returned by getlogin() matches the 
username associated with the user ID; the check ensures that if two users share 
the same ID, one user cannot act on behalf of the other. 

pwd = getpwuid(getuid()); 
pwdName = pwd->pw_name; 
/* Bail out if the name associated with the uid does not 
match the name associated with the terminal. */ 
if (strncmp(pwdName, getlogin(), MAX_NAM_LEN)) { 
printf("shared uid not supported\n"); 
deny(); 
return; 
} 
if (isTrustedGroup(pwd->pw_gid)) { 
allow(); 
} else { 
deny(); 
} 
 

Note: If the process is not being run from a terminal, getlogin() returns NULL 

Lists, Piles, and Collections 

The idea of collecting and organizing information about computer security vulnerabilities 
has a long history (see the box Academic Literature). More recently, a number of 
practitioners have developed "top ten" lists and other related collections based on 
experience in the field. The taxonomy introduced here negotiates a middle ground 
between rigorous academic studies and ad hoc collections based on experience. 

Two of the most popular and useful lists are the "19 Sins" and the "OWASP top ten." The 
first list, at one month old as I write this, is carefully described in the new book 19 
Deadly Sins of Software Security [Howard, LeBlanc, and Viega 2005]. The second is the 
"OWASP Top Ten Most Critical Web Application Security Vulnerabilities" available on 
the Web at <http://www.owasp.org/documentation/topten.html>. Both of these 
collections, though extremely useful and applicable, share one unfortunate property—an 
overabundance of complexity. My hard constraint to stick to seven things helps cut 
through the complexity. 

By discussing the 19 Sins and OWASP top ten lists with respect to the taxonomy here, I 
hope to illustrate and emphasize why simplicity is essential to any taxonomy. The main 
limitation of both lists is that they mix specific types of errors and vulnerability classes 
and talk about them all at the same level of abstraction. The 19 Sins include both "Buffer 
Overflows" and "Failing to Protect Network Traffic" categories at the same level, even 
though the first is a very specific coding error, while the second is a class comprised of 
various kinds of errors. Similarly, OWASP's top ten includes "Cross Site Scripting (XSS) 
Flaws" and "Insecure Configuration Management" at the same level. This is a serious 
problem that leads to confusion among practitioners. 
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My classification scheme consists of two hierarchical levels: kingdoms and phyla. 
Kingdoms represent classes of errors, while the phyla that comprise the kingdoms 
represent collections of specific errors. Even though the structure of my classification 
scheme is different from the structure of the 19 Sins and OWASP top ten lists, the 
categories that comprise these lists can be easily mapped to the kingdoms (as I show 
next). 

Academic Literature 
All scientific disciplines benefit from a method for organizing their topic of 
study, and software security is no different. The value of a classification scheme 
is indisputable. A taxonomy is necessary in order to create a common 
vocabulary and an understanding of the many diverse ways computer security 
fails. The problem of defining a taxonomy has been of great interest since the 
mid-1970s. Several classification schemes have been proposed since then 
[Bishop 2003]. An excellent Web resource at UC Davis can be found at 
<http://isis.cs.ucdavis.edu/vuln/links.php>. 

Vulnerabilities 

One of the first studies of computer security and privacy was the RISOS 
(Research into Secure Operating Systems) project [Abbott et al. 1976]. RISOS 
proposed and described seven categories of operating system security defects. 
The purpose of the project was to understand security problems in existing 
operating systems, including MULTICS, TENEX, TOPS-10, GECOS, 
OS/MVT, SDS-940, and EXEC-8, and to determine ways to enhance the 
security of these systems. 

The categories proposed in the RISOS project include the following: 

• Incomplete Parameter Validation 
• Inconsistent Parameter Validation 
• Implicit Sharing of Privileges/Confidential Data 
• Asynchronous Validation/Inadequate Serialization 
• Inadequate Identification/Authentication/Authorization 
• Violable Prohibition/Limit 
• Exploitable Logic Error 

The study shows that a small number of fundamental defects recur in different 
contexts. 

The objective of the Protection Analysis (PA) project was to enable anybody 
(with or without any knowledge about computer security) to discover security 
errors in the system by using a pattern-directed approach [Bisbey and 
Hollingworth 1978]. The idea was to use formalized patterns to search for 
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corresponding errors. The PA project was the first project to explore automation 
of security defect detection. However, the procedure for reducing defects to 
abstract patterns was not comprehensive, and the technique could not be 
properly automated. The database of vulnerabilities collected in the study was 
never published. 

Landwehr, Bull, and McDermott classified each vulnerability from three 
perspectives: genesis (how the problem entered the system), time (at which 
point in the production cycle the problem entered the system), and location 
(where in the system the problem is manifest) [Landwehr, Bull, and McDermott 
1993]. Defects by genesis were broken down into intentional and inadvertent, 
where the intentional class was further broken down into malicious and non-
malicious. Defects by time of introduction were broken down into development, 
maintenance, and operation, where the development class was further broken 
down into design, source code, and object code. Defects by location were 
broken down into software and hardware, where the software class was further 
broken down into operating system, support, and application. 

The advantage of this type of hierarchical classification is the convenience of 
identifying strategies to remedy security problems. For example, if most 
security issues are introduced inadvertently, increasing resources devoted to 
code reviews becomes an effective way of increasing the security of the system. 
The biggest disadvantage of this scheme is the inability to classify some existing 
vulnerabilities. For example, if it is not known how the vulnerability entered the 
system, it cannot be classified by genesis at all. 

The schemes discussed here have several limitations in common. One of them is 
the breadth of the categories, which makes classification ambiguous. In some 
cases, one issue can be classified in more than one category. The category 
names, while useful to some groups of researchers, are too generic to be quickly 
intuitive to a developer in the context of day-to-day work. Additionally, these 
schemes focus mostly on operating system security problems and do not classify 
the ones associated with user-level software security. Furthermore, these 
taxonomies mix implementation-level and design-level defects and are not 
consistent about defining the categories with respect to the cause or effect of the 
problem. 

Attacks 

A good list of attack classes is provided by Cheswick, Bellovin, and Rubin 
[2003]. The list includes the following: 

• Stealing Passwords 
• Social Engineering 
• Bugs and Back Doors 
• Authentication Failures 
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• Protocol Failures 
• Information Leakage 
• Exponential Attacks—Viruses and Worms 
• Denial-of-Service Attacks 
• Botnets 
• Active Attacks 

A thorough description with examples is provided for each class. These attack 
classes are applicable to a wide range of software, including user-level 
enterprise software. This fact distinguishes the list from other classification 
schemes. The classes are simple and intuitive. However, this list defines attack 
classes rather than categories of common coding errors that cause these attacks. 

A similar but more thorough list of attack patterns is introduced in Exploiting 
Software [Hoglund and McGraw 2004]. Attack-based approaches are based on 
knowing your enemy and assessing the possibility of similar attack. They 
represent the black hat side of the software security equation. A taxonomy of 
coding errors is, strangely, more positive in nature. This kind of thing is most 
useful to the white hat side of the software security world. In the end, both kinds 
of approaches are valid and necessary. 

Toward a Taxonomy 

The classification scheme proposed by Aslam is the only precise scheme 
discussed here [Aslam 1995]. In this scheme, each vulnerability belongs to 
exactly one category. The decision procedure for classifying an error consists of 
a set of questions for each vulnerability category. Aslam's system is well defined 
and offers a simple way for identifying defects by similarity. Another 
contribution of Aslam's taxonomy is that it draws on software fault studies to 
develop its categories. However, it focuses exclusively on implementation 
issues in the UNIX operating system and offers categories that are still too broad 
for my purpose. 

The most recent classification scheme on the scene is the unpublished PLOVER 
(Preliminary List of Vulnerability Examples for Researchers) project [Christey 
2005]. Twenty-eight main categories that comprise almost three hundred 
subcategories put Christey's classification scheme at the opposite end of the 
ambiguity spectrum than mine. Not surprisingly, the vulnerability categories are 
much more specific than in any of the taxonomies discussed here. 

PLOVER is an extension of Christey's earlier work in assigning CVE (Common 
Vulnerabilities and Exposures) names to publicly known vulnerabilities. An 
attempt to draw parallels between theoretical attacks and vulnerabilities known 
in practice is an important contribution and a big step forward from most of the 
earlier schemes. 
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Nineteen Sins Meet Seven Kingdoms 

1. Input Validation and Representation 

Sin: Buffer Overflows 

Sin: Command Injection 

Sin: Cross-Site Scripting 

Sin: Format String Problems 

Sin: Integer Range Errors 

Sin: SQL Injection 

2. API Abuse 

Sin: Trusting Network Address Information 

3. Security Features 

Sin: Failing to Protect Network Traffic 

Sin: Failing to Store and Protect Data 

Sin: Failing to Use Cryptographically Strong Random Numbers 

Sin: Improper File Access 

Sin: Improper Use of SSL 

Sin: Use of Weak Password-Based Systems 

Sin: Unauthenticated Key Exchange 

4. Time and State 

Sin: Signal Race Conditions 

Sin: Use of "Magic" URLs and Hidden Forms 

5. Error Handling 

Sin: Failure to Handle Errors 
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6. Code Quality 

Sin: Poor Usability 

7. Encapsulation 

Sin: Information Leakage 

• Environment 

The 19 Sins are an extremely important collection of software security problems at many 
different levels. By fitting them into the seven kingdoms, a cleaner organization begins to 
emerge. 

Seven Kingdoms and the OWASP Ten 

Top ten lists are appealing, especially since the cultural phenomenon that is David 
Letterman. The OWASP top ten list garners much attention because it is short and also 
useful. Once again, a level-blending problem is apparent in the OWASP list, but this is 
easily resolved by appealing to the seven kingdoms. 

1. Input Validation and Representation 

OWASP A1: Unvalidated Input 

OWASP A4: Cross-Site Scripting (XSS) Flaws 

OWASP A5: Buffer Overflows 

OWASP A6: Injection Flaws 

2. API Abuse 
3. Security Features 

OWASP A2: Broken Access Control 

OWASP A8: Insecure Storage 

4. Time and State 

OWASP A3: Broken Authentication and Session Management 

5. Error Handling 

OWASP A7: Improper Error Handling 
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6. Code Quality 

OWASP A9: Denial of Service 

7. Encapsulation 

• Environment 

OWASP A10: Insecure Configuration Management 

 Go Forth (with the Taxonomy) and Prosper 

The seven pernicious kingdoms are a simple, effective organizing tool for software 
security coding errors. With over 60 clearly defined phyla, the taxonomy here is both 
powerful and useful. Descriptions of the phyla can be found on the Web at 
<http://vulncat.fortifysoftware.com>. 

The classification scheme here is designed to organize security rules and thus be of help 
to software developers who are concerned with writing secure code and being able to 
automate detection of security defects. These goals make the taxonomy: 

• Simple 
• Intuitive to a developer 
• Practical (rather than theoretical and comprehensive) 
• Amenable to automatic identification of errors with static analysis tools 
• Adaptable with respect to changes in trends that happen over time 

Taxonomy work is ongoing. Your help is requested. 

Taxonomy Work Is Ongoing 
The taxonomy presented here results from the good work of Brian Chess and the 
Security Research Group at Fortify Software. This work was helped along 
immeasurably by Yekaterina Tsipenyuk and Jacob West. Further refinement and 
evolution is necessary. Please send feedback regarding this taxonomy to 
brian@fortifysoftware.com. 
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Chapter 13. Annotated Bibliography and References 
Those who cannot remember the past are condemned to repeat it. 

—George Santayana 

Annotated Bibliography: An Emerging Literature 

What follows is a noncomprehensive bibliography of software security publications. This 
list is heavily biased toward recent publications. The references here can serve as a 
springboard to the wider literature. Below each reference is a brief description of the 
work and its place in the literature. All opinions are mine. 

The bibliography is divided into three sections. First is a very short list of required 
reading (the top five list for software security). Second is a complete list of all references 
cited in this book. Third is a list of other important software security references not 
otherwise mentioned in this book. There are overlaps only between the required reading 
list and the other two lists. 

Required Reading: The Top Five 

This is a completely biased list of the top five publications to read in software security 
(presented in alphabetical order). If you have time to read only a handful of stuff, read 
everything on this list first. 

1. [Anderson 2001] Ross Anderson. Security Engineering: A Guide to Building 
Dependable Distributed Systems. John Wiley and Sons, New York, 2001. 
<http://www.cl.cam.ac.uk/~rja14/book.html> 

This is probably the best security book on the market. If you can buy only one 
other book relevant to software security, buy this one. Security Engineering is 
about building systems that remain dependable in the face of malicious attack, 
unintentional error, or accident. Anderson's treatment focuses on the tools, 
processes, and methods needed to design, implement, and test complete systems 
and to adapt existing systems as their environment evolves. 

2. [Hoglund and McGraw 2004] Greg Hoglund and Gary McGraw. Exploiting 
Software: How to Break Code. Addison-Wesley, Boston, MA, 2004. 
<http://www.exploitingsoftware.com> 

One of my three software security books. Exploiting Software goes way beyond 
the script kiddie hacking basics by describing the software attacker's toolkit and 
how it is commonly used by bad guys. This book includes hard-core information 
on real attacks against real software. It also introduces the notion of attack 
patterns. 
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3. [Howard and LeBlanc 2003] Michael Howard and David LeBlanc. Writing 
Secure Code, 2nd edition. Microsoft Press, Redmond, WA, 2003. Mike Howard's 
blog serves as the de facto site for this book 
<http://blogs.msdn.com/michael_howard/>. 

Writing Secure Code is a very good treatment of software security with an 
emphasis on code and implementation problems (bugs). The introduction of the 
STRIDE model is particularly noteworthy. If you're serious about software 
security, you need to read this book. 

4. [Saltzer and Schroeder 1975] Jerome Saltzer and Michael Schroeder. "The 
Protection of Information in Computer Systems," Proceedings of the IEEE 9(63), 
September 1975, pp. 1278–1308. 
<http://web.mit.edu/Saltzer/www/publications/protection/> 

An absolutely classic paper that everyone cites but few actually read. This paper 
introduces and discusses a number of central security principles. The paper itself 
is a pithy, short, essential read. (By the way, a treatment of the principles idea 
related to software security can be found in Building Secure Software.) 

5. [Viega and McGraw 2001] John Viega and Gary McGraw. Building Secure 
Software: How to Avoid Security Problems the Right Way. Addison-Wesley, 
Boston, MA, 2001. <http://www.buildingsecuresoftware.com/> 

One of my three software security books. Building Secure Software launched the 
field of software security. Though there is plenty of code in BSS, the book itself is 
really a philosophical treatment introducing the idea of building security in. 

References Cited in Software Security: Building Security In 

A complete alphabetical listing of all references in this book, including those references 
mentioned in footnotes. 

[Abbott et al. 1976] Robert Abbott, Janet Chin, James Donnelley, William Konigsford, 
Shigeru Tokubo, and Douglas Webb. "Security Analysis and Enhancements of Computer 
Operating Systems," NBSIR 76-1041, National Bureau of Standards, ICST, Washington, 
DC, 1976. 

Abbott introduces the RISOS taxonomy of computer security problems related to 
operating systems. Very early work in understanding security vulnerabilities. 

[Alexander 2003] Ian Alexander. "Misuse Cases: Use Cases with Hostile Intent," IEEE 
Software 20(1), January/February 2003, pp. 58–66. 

Alexander advocates using misuse and use cases together to conduct threat and hazard 
analysis during requirements analysis. 
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[Anderson 2001] Ross Anderson. Security Engineering: A Guide to Building Dependable 
Distributed Systems. John Wiley and Sons, New York, 2001. 

See entry in Required Reading. 

[Arkin, Stender, and McGraw 2005] Brad Arkin, Scott Stender, and Gary McGraw. 
"Software Penetration Testing," IEEE Security & Privacy 3(1), 2005, pp. 84–87. 

One of the original BSI articles from IEEE Security & Privacy magazine that sparked this 
book. See <http://www.computer.org/security> for subscription information. 

[Ashcraft and Engler 2002] Ken Ashcraft and Dawson Engler. "Using Programmer-
Written Compiler Extensions to Catch Security Holes," Proceedings of the IEEE 
Symposium on Security and Privacy, Oakland, CA, IEEE Computer Society Press, 2002, 
pp. 131–147. 

Engler's work on static analysis is now being commercialized by Coverity. This academic 
paper describes the bug-finding technology developed at UC Berkeley. 

[Aslam 1995] Taimur Aslam. "A Taxonomy of Security Faults in the UNIX Operating 
System." Master's Thesis, Purdue University, 1995. 

An early taxonomy focused on UNIX security problems. 

[Ball and Rajamani 2001] Tom Ball and Sriram Rajamani. "Automatically Validating 
Temporal Safety Properties of Interfaces," Proceedings of the 8th International SPIN 
Workshop on Model Checking of Software, Springer Lecture Notes in Computer 
Science, vol. 2057, 2001, pp. 103–122. 

The SLAM model checker uses predicate abstraction to examine program safety 
properties. Tom Ball now runs a research group at Microsoft. 

[Barnum and McGraw 2005] Sean Barnum and Gary McGraw. "Knowledge for Software 
Security," IEEE Security & Privacy 3(2), 2005, pp. 74–78. 

One of the original BSI articles from IEEE Security & Privacy magazine that sparked this 
book. See <http://www.computer.org/security> for subscription information. 

[Bisbey and Hollingworth 1978] Richard Bisbey and Dennis Hollingworth. "Protection 
Analysis Project Final Report," ISI/RR-78-13, DTIC AD A056816, USC/Information 
Sciences Institute, 1978. 

A description of the Protection Analysis (PA) project meant to enable anybody (with or 
without any knowledge about computer security) to discover security errors in a system 
by using a pattern-directed approach. Formalized patterns were used to search for 
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corresponding errors. The PA project was the first project to explore automation of 
security defect detection. 

[Bishop 2003] Matt Bishop. Computer Security: Art and Science. Addison-Wesley, 
Boston, MA, 2003. 

A decent though overly formal textbook on computer security. Matt Bishop is one of the 
pioneers of software security. Echoes of his philosophy of building security in are evident 
in this book. 

[Bishop and Dilger 1996] Matt Bishop and Mike Dilger. "Checking for Race Conditions 
in File Accesses," Computing Systems 9(2), 1996, pp. 131–152. 

Matt Bishop's seminal paper explains a simple static analysis tool for detecting time-of-
check–time-of-use (TOCTOU) defects. 

[Bush, Pincus, and Sielaff 2000] William Bush, Jonathan Pincus, and David Sielaff. "A 
Static Analyzer for Finding Dynamic Programming Errors," Software Practice and 
Experience, 30(7), June 2000, pp. 775–802. 

The only paper published about Prefix, the complicated precursor to Prefast invented by 
Jon Pincus and used internally at Microsoft for many years. 

[Cavusoglu, Mishra, and Raghunathan 2002] Huseyin Cavusoglu, Birendra Mishra, and 
Srinivasan Raghunathan. "The Effect of Internet Security Breach Announcements on 
Market Value of Breached Firms and Internet Security Developers," Technical Report 
from the University of Texas at Dallas School of Management, February 2002. 

A minor academic study indicating a link between security events and negative stock 
price movements. 

[Chen and Wagner 2002] Hao Chen and David Wagner. "MOPS: An Infrastructure for 
Examining Security Properties of Software," Proceedings of the 9th ACM Conference on 
Computer and Communications Security (CCS2002), Washington, DC, ACM Press, 
2002, pp. 235–244. 

MOPS takes a model-checking approach to look for violations of temporal safety 
properties. Developers can model their own safety properties, and some have used the 
tool to check for privilege management errors, incorrect construction of chroot jails, file 
access race conditions, and ill-conceived temporary file schemes. 

[Chess 2002] Brian Chess. "Improving Computer Security Using Extended Static 
Checking," Proceedings of the IEEE Symposium on Security and Privacy, Oakland, CA, 
IEEE Computer Society Press, 2002, pp. 118–130. 
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The Eau Claire tool uses a theorem prover to create a general specification-checking 
framework for C programs. It can help find common security problems like buffer 
overflows, file access race conditions, and format string bugs. Developers can use 
specifications to ensure that function implementations behave as expected. 

[Chess and McGraw 2004] Brian Chess and Gary McGraw. "Static Analysis for 
Security," IEEE Security & Privacy 2(6), 2004, pp. 76–79. 

One of the original BSI articles from IEEE Security & Privacy magazine that sparked this 
book. See <http://www.computer.org/security> for subscription information. 

[Cheswick and Bellovin 1994] Bill Cheswick and Steve Bellovin. Firewalls and Internet 
Security, 1st edition. Addison-Wesley, Reading, MA, 1994. 

The very first edition of a classic security tome. See the next entry for up-to-date 
information; especially note that the new edition is coauthored with Avi Rubin. 

[Cheswick, Bellovin, and Rubin 2003] Bill Cheswick, Steve Bellovin, and Avi Rubin. 
Firewalls and Internet Security, 3rd edition. Addison-Wesley, Boston, MA, 2003. 

A classic computer security book, now available in a revised and updated edition 
featuring Avi Rubin as coauthor. 

[Christey 2005] Steven Christey. "PLOVER—Preliminary List of Vulnerability 
Examples for Researchers," NIST Draft, August 2005 (unpublished). 

An unpublished attempt to categorize the CVE vulnerabilities into some kind of bottom-
up taxonomy. 

[Das, Lerner, and Seigle 2002] Manuvir Das, Sorin Lerner, and Mark Seigle. "ESP: Path-
Sensitive Program Verification in Polynomial Time," Proceedings of the ACM 
Conference on Programming Language Design and Implementation (PLDI2002), Berlin, 
Germany, ACM Press, 2002, pp. 57–68. 

The static analysis tool ESP is a large-scale property verification approach. 

[Davis et al. 2004] Noopur Davis, Samual Redwine, Gerlinde Zibuski, Gary McGraw, 
and Watts Humphrey. "Summary of National Cyber Security Summit Subgroup Report: 
Processes for Producing Secure Software." April 2004. 

A committee-produced paper describing the software security problem used to set 
national policy. The touchpoints were prominently included in this paper. The complete 
report can be found here: <http://www.cyberpartnership.org>. 

[Engler et al. 2000] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem. 
"Checking System Rules Using System-Specific, Programmer-Written Compiler 
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Extensions," Proceedings of the Symposium on Operating System Design and 
Implementation (OSDI), San Diego, CA, USENIX Association, October 2000. 

This paper introduces a set of small extensions that were used to find roughly 500 bugs in 
Linux, OpenBSD, and Xok. The engine behind Coverity is described in this paper. 

[Evans et al. 1994] David Evans, John Guttag, Jim Horning, and Yang Meng Tan. 
"LCLint: A Tool for Using Specifications to Check Code," Proceedings of the SIGSOFT 
Symposium on the Foundations of Software Engineering, New Orleans, LA, ACM Press, 
December 1994, pp. 87–96. 

LCLint is introduced, a simple tool that accepts ANSI C programs and some annotations 
to find and report inconsistencies. 

[Fagan 1976] Michael Fagan. "Design and Code Inspections to Reduce Errors in Program 
Development," IBM Systems Journal 15(3), 1976, pp. 182–211. 

The seminal work on manual code inspection. 

[Farmer and Venema 2005] Dan Farmer and Wietse Venema. Forensic Discovery. 
Addison-Wesley, Boston, MA, 2005. 

Dan Farmer and Wietse Venema (purveyors of SATAN and other great security stuff) 
recently released this long-awaited, excellent new tome on forensics. 

[Foster, Terauchi, and Aiken 2002] Jeffrey Foster, Tachio Terauchi, and Alex Aiken. 
"Flow-Sensitive Type Qualifiers," Proceedings of the ACM Conference on Programming 
Language Design and Implementation (PLDI2002), Berlin, Germany, ACM Press, 2002, 
pp. 1–12. 

One of the many papers on CQual. Inspired by Perl's taint mode, CQual uses type 
qualifiers to perform a taint analysis, which detects format string vulnerabilities in C 
programs. CQual requires a programmer to annotate a few variables as either tainted or 
untainted and then uses type inference rules (along with pre-annotated system libraries) to 
propagate the qualifiers. Once the qualifiers are propagated, the system can detect format 
string vulnerabilities by type checking. 

[Geer 1998] Dan Geer. "Risk Management Is Where the Money Is," The Digital 
Commerce Society of Boston, Boston, MA, November 1998. This paper has been widely 
reprinted, including RISKS 20.06 <http://catless.ncl.ac.uk/Risks/20.06.html>. 

An early discussion of the criticality of risk management to security. This paper provides 
a reasonable overview and history. 

[Geer et al. 2003] Dan Geer, Rebecca Bace, Peter Gutmann, Perry Metzger, Charles 
Pfleeger, John Quarterman, and Bruce Schneier. "CyberInsecurity: The Cost of 
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Monopoly, How the Dominance of Microsoft's Products Poses a Risk to Security." 
Published on the Web by the Computer & Communications Industry Association (CCIA), 
September 2003. <http://www.ccianet.org/papers/cyberinsecurity.pdf> 

The famous "monoculture" paper that caused Dan Geer to be fired from @stake. 
Computer security is so important that it is becoming political. This paper argues that by 
dominating the software market so completely, Microsoft is putting security at risk. 

[Ghosh, O'Connor, and McGraw 1998] Anup Ghosh, Tom O'Connor, and Gary McGraw. 
"An Automated Approach for Identifying Potential Vulnerabilities in Software," 
Proceedings of the IEEE Symposium on Security and Privacy, Oakland, CA, IEEE 
Computer Society Press, May 1998, pp. 104–114. 

FIST is a tool for software fault injection for security. This work inspired a number of 
commercial dynamic testing tools. 

[Gilb and Graham 1993] Tom Gilb and Dorothy Graham. Software Inspection. Addison-
Wesley, Reading, MA, 1993. 

After Fagan [1976], this book is the classic text on code review. 

[Graff and van Wyk 2003] Mark Graff and Kenneth van Wyk. Secure Coding: Principles 
and Practices. O'Reilly and Associates, Sebastopol, CA, 2003. 

One of the key books in software security, aimed at network and operations security 
types. This book explains the importance of software security to computer security 
people. 

[Gutmann 2004] Peter Gutmann. "Simplifying Public Key Management," IEEE 
Computer 37(2), February 2004, pp. 101–103. 

A paper explaining why many security errors exist because of user problems caused by 
overly complicated technology (ever try to use early versions of pgp?). Simplicity for 
users and consumers of software and software security technology is essential. 

[Henzinger et al. 2003] Thomas Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire 
Sutre. "Software Verification with BLAST," Proceedings of the 10th International 
Workshop on Model Checking of Software, Springer Lecture Notes in Computer 
Science, vol. 2648, 2003, pp. 235–239. 

A paper explaining the BLAST model checker, which uses predicate abstraction to 
examine program safety properties. 

[Hoglund and Butler 2005] Greg Hoglund and James Butler. Rootkits: Subverting the 
Windows Kernel. Addison-Wesley, Boston, MA, 2005. 
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The first complete book on the important topic of rootkits. Rootkits are the apex of the 
attacker's toolkit, and understanding how they really work is essential for today's software 
security professionals. Better get this book. 

[Hoglund and McGraw 2004] Greg Hoglund and Gary McGraw. Exploiting Software: 
How to Break Code. Addison-Wesley, Boston, MA, 2004. 
<http://www.exploitingsoftware.com> 

See entry in Required Reading. 

[Hope, McGraw, and Anton 2004] Paco Hope, Gary McGraw, and Annie Anton. "Misuse 
and Abuse Cases: Getting Past the Positive," IEEE Security & Privacy 2(3), 2004, pp. 
32–34. 

One of the original BSI articles from IEEE Security & Privacy magazine that sparked this 
book. See <http://www.computer.org/security> for subscription information. 

[Hovemeyer and Pugh 2004] Dave Hovemeyer and William Pugh. "Finding Bugs Is 
Easy," Companion of the 19th Annual ACM Conference on Object-Oriented 
Programming, Systems, Languages, and Applications (OOPSLA), Vancouver, Canada, 
ACM Press, 2004. 

Bill Pugh's FindBugs program is a very popular open source code analysis system for 
Java bytecode. 

[Howard and LeBlanc 2002] Michael Howard and David LeBlanc. Writing Secure Code, 
1st edition. Microsoft Press, Redmond, WA, 2002. 

See entry in Required Reading. 

[Howard and LeBlanc 2003] Michael Howard and David LeBlanc. Writing Secure Code, 
2nd edition. Microsoft Press, Redmond, WA, 2003. 

See entry in Required Reading. 

[Howard, LeBlanc, and Viega 2005] Michael Howard, David LeBlanc, and John Viega. 
19 Deadly Sins of Software Security. McGraw-Hill Osborne Media, New York, 2005. 

This book discusses in detail 19 serious software security problems. The 19 sins are not 
presented in a hierarchy. 

[Howard and Lipner 2003] Michael Howard and Steve Lipner. "Inside the Windows 
Security Push," IEEE Security & Privacy 1(1), 2003, pp. 57–61. 
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A description of Microsoft's Trustworthy Computing Initiative one year after the effort 
began. Microsoft's work provides a critical case study for the adoption of software 
security best practices in a large enterprise. 

[Jurjens 2001] Jan Jurjens. "Towards Secure Systems Development with UMLsec," 
Proceedings of FASE'01. Springer Lecture Notes in Computer Science, 2001. 

UMLsec is one way of thinking about security at the design level. This work is overly 
focused on security features. 

[Kernighan and Ritchie 1988] Brian Kernighan and Dennis Ritchie. The C Programming 
Language, 2nd edition. Prentice Hall, New York, 1988. 

The C bible. Unfortunately, this language has serious security problems. The string 
functions are particularly notorious for introducing buffer overflow conditions. And 
gets()? Ouch. The best software security advice about C is "don't use it." 

[Koziol et al. 2004] Jack Koziol, David Litchfield, Dave Aitel, Chris Anley, Sinan "noir" 
Eren, Neel Mehta, and Riley Hassell. The Shellcoder's Handbook: Discovering and 
Exploiting Security Holes. John Wiley & Sons, New York, 2004. 

One of the books helping to describe (in great technical detail) how software attacks 
work. This book makes an excellent companion to Exploiting Software. This is a black 
hat must-read. 

[Landwehr, Bull, and McDermott 1993] Carl Landwehr, Alan Bull, and John McDermott. 
"A Taxonomy of Computer Program Security Flaws, with Examples," Technical Report 
NRL/FR/5542—93/9591, United States Navy, Naval Research Laboratory, November 
1993. 

An important early taxonomy of computer security problems. This work set the stage for 
an escalation of excellent computer security research in the mid-1990s. 

[Larochelle and Evans 2001] David Larochelle and David Evans. "Statically Detecting 
Likely Buffer Overflow Vulnerabilities," Proceedings of the 10th Usenix Security 
Symposium (USENIX'01), Washington, DC, USENIX Association, 2001. 

Splint extends the lint concept into the security realm. By adding code annotations, 
developers can enable splint to find abstraction violations, unannounced modifications to 
global variables, and possible use-before-initialization errors. Splint can also reason about 
minimum and maximum array bounds accesses if it is provided with function pre- and 
postconditions. 

[Leveson 1995] Nancy Leveson. Safeware: System Safety and Computers. Addison-
Wesley, Reading, MA, 1995. 
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The classic book on software safety. Safety has a number of critical lessons to teach 
software security, only a few of which have been absorbed so far. 

[McDermott and Fox 1999] John McDermott and Chris Fox. "Using Abuse Case Models 
for Security Requirements Analysis," Proceedings of the 15th Annual Computer Security 
Applications Conference, Scottsdale, AZ, IEEE Computer Society Press, 1999, p. 55. 

The first paper on record about abuse cases. 

[McGraw 1998] Gary McGraw. "Testing for Security During Development: Why We 
Should Scrap Penetrate-and-Patch," IEEE Aerospace and Electronic Systems 13(4), 
1998, pp. 13–15. 

A paper describing why penetrate-and-patch is a failed approach. This paper represents 
some of my earliest thinking about software security. Note that it was published in a 
journal devoted to very high assurance systems (those that control aircraft). 

[McGraw 2003] Gary McGraw. "From the Ground Up: The DIMACS Software Security 
Workshop," IEEE Security & Privacy 1(2), 2003, pp. 59–66. 

The results of the first conference devoted entirely to software security. This intimate 
workshop of around 50 people helped to crystallize and define the emerging field of 
software security. Presentations and notes from the workshop are here 
<http://www.cigital.com/ssw/>. 

[McGraw 2004] Gary McGraw. "Software Security," IEEE Security & Privacy 2(2), 
2004, pp. 80–83. 

The first of the BSI articles from IEEE Security & Privacy magazine that sparked this 
book. See <http://www.computer.org/security> for subscription information. 

[McGraw 2005] Gary McGraw. "The 7 Touchpoints of Secure Software," Software 
Development, September 2005, pp. 42–43. 

A popular press treatment of the touchpoints that appeared in Software Development 
magazine. 

[McGraw and Felten 1996] Gary McGraw and Edward Felten. Java Security: Hostile 
Applets, Holes, and Antidotes. John Wiley & Sons, New York, 1996. 

The first book on Java security, written with Ed Felten, leader of the Princeton Team. 
This book made quite a splash when it appeared. See the next entry for Securing Java, the 
second edition. 
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[McGraw and Felten 1999] Gary McGraw and Edward Felten. Securing Java: Getting 
Down to Business with Mobile Code. John Wiley & Sons, New York, 1999. 
<http://www.securingjava.com/> 

The second edition of my book Java Security, updated with new attacks and advice. The 
complete book is available for free on the Web. Ed Felten ran the Princeton team of 
security researchers who consistently challenged assumptions about Java. 

[McGraw and Morrisett 2000] Gary McGraw and Greg Morrisett. "Attacking Malicious 
Code: A Report to the Infosec Research Council," IEEE Software 17(5), 
September/October 2000, pp. 33–41. 

Malicious code is a side effect of bad software. This paper introduced the trinity of 
trouble. This paper describes a U.S. government-sponsored set of workshops (which I set 
up and chaired) meant to dig deeply into the root causes of viruses, worms, and other 
nasty beasties. 

[Mead and McGraw 2005] Nancy R. Mead and Gary McGraw. "A Portal for Software 
Security," IEEE Security & Privacy 3(4), 2005, pp. 75–79. 

One of the original BSI articles from IEEE Security & Privacy magazine that sparked this 
book. See <http://www.computer.org/security> for subscription information. 

[Miller et al. 1995] Barton Miller, David Koski, Cjin Lee, Vivekananda Maganty, Ravi 
Murphy, Ajitkumar Natarajan, and Jeff Steidl. "Fuzz Revisited: A Re-examination of the 
Reliability of UNIX Utilities and Services," Technical Report CS-TR-95-1268, 
University of Wisconsin, April 1995. 

An excellent description of the fuzz tool, five years after it was first introduced (by the 
same authors). The simple idea of sending random input to UNIX commands and seeing 
what happens helped to spark dynamic testing approaches offered on the commercial 
market today. 

[Pincus and Baker 2004] Jon Pincus and Brandon Baker. "Beyond Stack Smashing: 
Recent Advances in Exploiting Buffer Overruns," IEEE Security & Privacy 2(4), 2004, 
pp. 20–27. 

An in-depth description of new buffer overflow attacks not yet commonly encountered in 
the wild. You know what that means—coming soon to software near you. This was the 
best paper in a special issue of IEEE Security & Privacy magazine, which I edited with 
Ivan Arce, devoted to attacking systems. 

[Potter and McGraw 2004] Bruce Potter and Gary McGraw. "Software Security Testing," 
IEEE Security & Privacy 2(5), 2004, pp. 81–85. 
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One of the original BSI articles from IEEE Security & Privacy magazine that sparked this 
book. See <http://www.computer.org/security> for subscription information. 

[Saltzer and Schroeder 1975] Jerome Saltzer and Michael Schroeder. "The Protection of 
Information in Computer Systems," Proceedings of the IEEE 9(63), September 1975, pp. 
1278–1308. 

See entry in Required Reading. 

[Sindre and Opdahl 2000] Guttorm Sindre and Andreas Opdahl. "Eliciting Security 
Requirements by Misuse Cases," Proceedings of the 37th International Conference on 
Technology of Object-Oriented Languages and Systems (TOOLS-37'00), Sydney, 
Australia, IEEE Press, 2000, pp. 120–131. 

Sindre and Opdahl explain how to extend use case diagrams with misuse cases. Their 
basic idea is to represent the actions that systems should prevent in tandem with those 
that systems should support so that security analysis of requirements is easier. 

[Stubblefield, Ioannides, and Rubin 2004] Adam Stubblefield, John Ioannides, and Avi 
Rubin. "A Key Recovery Attack on the 802.11b Wired Equivalent Privacy Protocol 
(WEP)," ACM Transactions on Information and System Security, May 2004, pp. 319–
332. 

WEP is a prime example of the widespread security risk brought about by architectural 
security flaws. 

[Swiderski and Snyder 2004] Frank Swiderski and Window Snyder. Threat Modeling. 
Microsoft Press, Redmond, WA, 2004. 

The unfortunately titled book explaining how Microsoft approaches security risk 
analysis. This book is worth a quick glance. 

[Taylor and McGraw 2005] Dan Taylor and Gary McGraw. "Adopting a Software 
Security Improvement Program," IEEE Security & Privacy 3(3), 2005, pp. 88–91. 

One of the original BSI articles from IEEE Security & Privacy magazine that sparked this 
book. See <http://www.computer.org/security> for subscription information. 

[Tsipenyuk, Chess, and McGraw 2005] Katrina Tsipenyuk, Brian Chess, and Gary 
McGraw. "Seven Pernicious Kingdoms: A Taxonomy of Software Security Errors," 
Proceedings of the NIST Workshop on Software Security Assurance Tools, Techniques, 
and Metrics (SSATTM), Los Angeles, CA, 2005. 

A paper introducing the seven pernicious kingdoms and associated phyla expounded in 
this book. A related BSI article from IEEE Security & Privacy magazine is also in the 
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works but was not published at the time of this writing. See 
<http://www.computer.org/security> for subscription information. 

[van Wyk and McGraw 2005] Kenneth R. van Wyk and Gary McGraw. "Bridging the 
Gap between Software Development and Information Security," IEEE Security & 
Privacy 3(4), 2005, pp. 64–68. 

One of the original BSI articles from IEEE Security & Privacy magazine that sparked this 
book. See <http://www.computer.org/security> for subscription information. 

[Verdon and McGraw 2004] Denis Verdon and Gary McGraw. "Risk Analysis in 
Software Design," IEEE Security & Privacy 2(4), 2004, pp. 79–84. 

One of the original BSI articles from IEEE Security & Privacy magazine that sparked this 
book. See <http://www.computer.org/security> for subscription information. 

[Viega et al. 2000a] John Viega, J. T. Bloch, Tadyoshi Kohno, and Gary McGraw. "ITS4: 
A Static Vulnerability Scanner for C and C++ Code," Proceedings of Annual Computer 
Security Applications Conference, New Orleans, LA, December 2000, pp. 257–267. 

An early ITS4 publication describing a simple source code security analysis tool. The 
paper includes a couple of case studies showcasing how to use ITS4. This paper won the 
best paper award at ACSAC in 2000 even though it is not really all that good. 

[Viega et al. 2000b] John Viega, Gary McGraw, Tom Mutdosch, and Ed Felten. 
"Statically Scanning Java Code: Finding Security Vulnerabilities," IEEE Software 17(5), 
September/October 2000, pp. 68–74. 

A paper describing a very simple static analysis tool written by Tom during a summer 
internship at Cigital. The Jscan prototype captured the guidelines from Securing Java 
[McGraw and Felten 1999] in a simple tool. 

[Viega and McGraw 2001] John Viega and Gary McGraw. Building Secure Software: 
How to Avoid Security Problems the Right Way. Addison-Wesley, Boston, MA, 2001. 
<http://www.buildingsecuresoftware.com/> 

See entry in Required Reading. 

[Voas and McGraw 1998] Jeff Voas and Gary McGraw. Software Fault Injection: 
Inoculating Programs against Errors. John Wiley & Sons, New York, 1998. 

The first book in the world on software fault injection, a technology pioneered by Jeff 
Voas, cofounder of Cigital. 

[Wagner et al. 2000] David Wagner, Jeffrey Foster, Eric Brewer, and Alexander Aiken. 
"A First Step Towards Automated Detection of Buffer Over-run Vulnerabilities," 
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Proceedings of the Year 2000 Network and Distributed System Security Symposium 
(NDSS), San Diego, CA, 2000, pp. 3–17. 

Wagner describes a tool that uses constraints to scan for buffer overflows in C code. The 
paper has an excellent analysis of the buffer overflow problem itself. This paper won the 
best paper award at ISOC NDSS in 2000 and most certainly deserved it. 

[Walsh 2003] Larry Walsh. "Trustworthy Yet?" Information Security Magazine, 
February 2003. <http://infosecuritymag.techtarget.com/2003/feb/cover.shtml> 

A skeptical look at Microsoft's Trustworthy Computing Initiative, one year into the 
program. 

[Whittaker and Thompson 2003] James Whittaker and Herbert Thompson. How to Break 
Software Security. Addison-Wesley, Boston, MA, 2003. 

A good, simple, black-hat-related book about probing software security through input. 
Whittaker is a master of compelling tools that are easy to understand and useful at the 
same time. 

[Wing 2003] Jeannette Wing. "A Call to Action: Look Beyond the Horizon," IEEE 
Security & Privacy 1(6), 2003, pp. 62–67. 

Jeannette wrote this interesting paper after a summer at Microsoft being exposed to 
software security in a large corporate software environment. Software security is listed 
among the top three major issues to work on in computer security. 

Government and Standards Publications Cited 

[IEC 61508] International Standards Organization, "IEC 61508"; Version 4.0 (1997). 
<http://www.iee.org> 

[NIST 800-30] U.S. Federal Government, NIST Special Publication 800-30, "Risk 
Management Guide for Information Technology Systems." 
<http://csrc.nist.gov/publications/nistpubs/> 

[NIST 800-37] U.S. Federal Government, NIST Special Publication 800-37, "Guide for 
the Security Certification and Accreditation of Federal Information Systems." 
<http://csrc.nist.gov/publications/nistpubs/> 

[NIST 800-53] U.S. Federal Government, NIST Special Publication 800-53, 
"Recommended Security Controls for Federal Information Systems." 
<http://csrc.nist.gov/publications/nistpubs/> 
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Other Important References 

There are plenty of other references not directly cited in this book that are worth a look. 
Though this list is by no means complete, it can serve as a springboard into the wider 
software security literature. 

[Aleph1 1996] Aleph One. "Smashing the Stack for Fun and Profit," Phrack 49, 
November 1996. 

A comprehensive study of classic stack-smashing attacks. This is among the earliest 
papers dedicated to software security. Phrack is an excellent black hat resource that is 
well worth checking out. 

[Amoroso 1994] Ed Amoroso. Fundamentals of Computer Security Technology. Prentice 
Hall, Englewood Cliffs, NJ, 1994. 

Introduction of threat trees, the Bell-LaPadula model, Biba integrity, and other basic 
models. An oldie, but a goodie. 

[Anderson and Kuhn 1996] Ross Anderson and Marcus Kuhn. "Tamper Resistance—A 
Cautionary Note," Proceedings of the Second Usenix Workshop on Electronic 
Commerce, Oakland, CA, USENIX Association, November 1996, pp. 1–11. 
<http://www.cl.cam.ac.uk/users/rja14/tamper.html> 

Attacking smart cards with interesting, surprising attacks. This great article shows how to 
think like an attacker (with your black hat on). 

[Anderson and Needham 1995] Ross Anderson and Roger Needham. "Programming 
Satan's Computer," Computer Science Today, Springer Lecture Notes in Computer 
Science, vol. 1000, 1995, pp. 426–441. 
<http://www.cl.cam.ac.uk/ftp/users/rja14/satan.ps.gz> 

Why programming distributed systems is really hard. 

[Arbaugh, Fithen, and McHugh 2000] Bill Arbaugh, Bill Fithen, and John McHugh. 
"Windows of Vulnerability: A Case Study Analysis," IEEE Computer 33(12), December 
2000, pp. 52–59. 

Ever wonder whether patching works? This paper shows conclusively that it doesn't work 
very well at all. The most surprising result describes how attack scripts appear to be 
developed well after patches are released. 

[Bell and LaPadula 1974] David Bell and Len LaPadula. "Secure Computer Systems," 
ESD-TR-73-278, Mitre Corporation; vols. I and II (November 1973), vol. III (April 
1974). 
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A classic paper describing principals (actors) and objects in a matrix of permissions. This 
is the seminal work behind access control lists and role-based access control. 

[Brooks 1995] Frederick Brooks, Jr. The Mythical Man-Month: Essays on Software 
Engineering, 2nd edition. Addison-Wesley, Reading, MA, 1995. 

Ever wonder why throwing more programmers at a software project only makes things 
take longer? Read this great book and find out why. 

[Brown 2000] Keith Brown. Programming Windows Security. Addison-Wesley, Boston, 
MA, 2000. 

Windows security APIs. Security features are important, too. 

[Cowan et al. 1998] Crispin Cowan, Calton Pu, David Maier, Heather Hinton, Peat 
Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. "Automatic Detection 
and Prevention of Buffer-Overflow Attacks," Proceedings of the 7th USENIX Security 
Symposium, San Antonio, TX, USENIX Association, January 1998, pp. 63–78. 

Stackguard was the clear inspiration for Microsoft's maligned /GS flag. Though I am not 
a fan of detecting or stopping buffer overflows dynamically, this is a great paper. 

[Denning 1998] Dorothy Denning. Information Warfare and Security, Addison-Wesley, 
Reading, MA, 1998. 

Possibly the ultimate black hat technique—war. This is a scary and relevant book well 
worth comprehending. 

[DOD 1985] Trusted Computer System Evaluation Criteria ("The Orange Book"). U.S. 
Department of Defense, 1985. 

A failed attempt, but a valiant attempt to codify security assurance. The problem with this 
approach to security is that computer systems are extensible, networked, and way more 
complicated than ever. 

[Ford 1994] Warwick Ford. Computer Communications Security: Principles, Standard 
Protocols, and Techniques. Prentice Hall, Englewood Cliffs, NJ, 1994. 

Network and communications security. Basic coverage of crypto, CIA, and some aspects 
of privacy. The Open Systems Interconnection (OSI) security architecture explained. 

[Forrest, Hofmeyr, and Somayaji 1997] Stephanie Forrest, Steven Hofmeyr, and Anil 
Somayaji. "Computer Immunology," Communications of the ACM 40(10), October 
1997, pp. 88–96. 

Why computer security might benefit by analogy with biology. 
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[Gamma et al. 1995] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 
Design Patterns. Addison-Wesley, Reading, MA, 1995. 

This is an instrumental software architecture book. This book led to the idea of attack 
patterns. 

[Garfinkel and Spafford 1996] Simson Garfinkel and Gene Spafford. Practical UNIX and 
Internet Security, 2nd edition. O'Reilly, Sebastopol, CA, 1996. 

A classic tome on UNIX security. UNIX root must-read, but applicable widely to other 
operating systems. 

[Gasser 1988] Morrie Gasser. Building a Secure Computer System. Van Nostrand 
Reinhold, New York, 1988. 

A very old but interesting read that anticipates the philosophy of building security in 
some twenty years earlier. 

[Goldberg and Wagner 1996] Ian Goldberg and Dave Wagner. "Randomness and the 
Netscape Browser," Dr. Dobbs Journal, no. 243, January 1996, pp. 66–70. 

A great case study in broken software and the resulting attacks. 

[Gollmann 1999] Dieter Gollmann. Computer Security. John Wiley & Sons, New York, 
1999. 

Probably the best basic security book (textbook style) out there. Use this to enhance 
Amoroso [1994]. By the way, we need a better basic computer security book. 

[Kahn 1996] David Kahn. The Code-Breakers (revised edition). Scribner, New York, 
1996. 

A historically accurate treatment of cryptography. Long, interesting, and worth slogging 
through. 

[Kaner and Pels 1998] Cem Kaner and David Pels. Bad Software: What to Do When 
Software Fails. John Wiley & Sons, New York, 1998. 

Ever wonder whether those software licenses that you click on stand up in court? This 
lawyer tells why they don't. 

[Knuth 1997] Donald Knuth. The Art of Computer Programming: Seminumerical 
Algorithms, 3rd Edition. Addison-Wesley, Reading, MA 1997. 

Knuth; alpha geek. What, you don't own this book and its two companions? For shame. 



 313

[Kocher 1999] Paul Kocher. "Differential Power Analysis," Advances in Cryptology—
Crypto 99, Springer Lecture Notes in Computer Science, vol. 1666, 1999, pp. 388–397. 

How smart cards leak critical security information through their power consumption. This 
is a great study in thinking outside the box to break a system. 

[Krusl 1998] Ivan Krsul. Software Vulnerability Analysis. Ph.D. Thesis, COAST TR 98-
09, Department of Computer Sciences, Purdue University, 1998. 

This thesis is one of the first modern attempts at a computer security vulnerability 
taxonomy. 

[LaMacchia et al. 2002] Brian LaMacchia, Sebastian Lang, Matther Lyons, Rui Martin, 
and Kevin Price. .NET Framework Security. Addison-Wesley, Boston, MA, 2002. 

From the guy who brought you .NET security. Good, but not very clear. 

[Maguire 1993] Steve Maguire. Writing Solid Code. Microsoft Press, Redmond, WA, 
1993. 

Too bad the Microsoft guys didn't eat their own dog food in 1993! Get this book. 
Internalize. 

[McClure, Scambray, and Kurtz 1999] Stuart McClure, Joel Scambray, and George 
Kurtz. Hacking Exposed: Network Security Secrets and Solutions. Osborne, New York, 
1999. 

The now-classic script kiddie book explaining black hat computer security to the masses. 
Not much software security in here, but an important book nonetheless. 

[McGraw 1999] Gary McGraw. "Software Assurance for Security," IEEE Computer 
32(4), April 1999, pp. 103–105. 

My first real paper on software security. This short article introduces the idea of software 
risk management for security. 

[Menezes, van Oorschot, and Vanstone 1997] Alfred Menezes, Paul van Oorschot, and 
Scott Vanstone. Handbook of Applied Cryptography. CRC Press, 1997. 
<http://www.cacr.math.uwaterloo.ca/hac/> 

The best applied cryptography book. Written by hard-core crypto guys. 

[Miller, Fredricksen, and So 1990] Barton Miller, Lars Fredricksen, and Bryan So. "An 
Empirical Study of the Reliability of UNIX Utilities," Communications of the ACM 
33(12), December 1990, pp. 32–44. 
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The first fuzz paper. See the second entry in the references cited for Software Security 
earlier in this chapter. 

[Necula and Lee 1998] George Necula and Peter Lee. "Safe, Untrusted Agents Using 
Proof-Carrying Code," Mobile Agents and Security, Springer Lecture Notes in Computer 
Science, vol. 1419, 1998, pp. 61–91. 

The seminal paper on proof-carrying code (also known as certified code). This paper 
describes a system very much likely to be fielded in the future. 

[Neumann 1995] Peter Neumann. Computer-Related Risks. Addison-Wesley, Reading, 
MA, 1995. 

From the comp.risks mailing list. This book explains (through a huge number of 
examples) just how dependent we are on computer technology and what can happen 
when it fails. 

[Rivest, Shamir, and Adleman 1978] Ron Rivest, Adi Shamir, and Leonard Adleman. "A 
Method for Obtaining Digital Signatures and Public-Key Cryptosystems," 
Communications of the ACM 21(2), February 1978, pp. 120–126. 

RSA. 

[Rubin 1999] Avi Rubin. The Whitehat Security Arsenal: Tackling the Threats. Addison-
Wesley, Reading, MA, 1999. 

A good-guy book describing computer security basics. This book even has white hats on 
its cover. 

[Schmid and Ghosh 1999] Matt Schmid and Anup Ghosh. "An Approach to Testing 
COTS Software for Robustness to Operating System Exceptions and Errors," 1999 
International Symposium on Software Reliability Engineering, Boca Raton, FL, IEEE 
Reliability Society, November 1–4, 1999. 

Software fault injection for COTS software. 

[Schneider 1998] Fred Schneider, ed. Trust in Cyberspace. National Academy Press, 
Washington, DC, 1998. 

Why computer security is essential. 

[Schneier 1996] Bruce Schneier. Applied Cryptography. John Wiley & Sons, New York, 
1996. 

Applied cryptography explained in layman's terms. 
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[Schneier 2000] Bruce Schneier. Secrets and Lies. John Wiley & Sons, New York, 2000. 

A great read, this book is pithy and fun. Need some stories to scare the pants off of upper 
management? Try this book. 

[Thompson 1984] Ken Thompson. "Reflections on Trusting Trust," Communications of 
the ACM 27(8), August 1984, pp. 761–763. <http://www.acm.org/classics/sep95/> 

This classic paper goes well with Saltzer and Schroeder's work on security principles. 
Once again, a paper that everyone cites and all too few read. Should you trust your C 
compiler? Probably not. 

[Whittaker 2002] James Whittaker. How to Break Software: A Practical Guide to 
Testing. Addison-Wesley, Boston, MA, 2002. 

Whittaker's first simple book on software testing. A good short read filled with 
compelling ideas. 

[Whitten 1999] Alma Whitten. "Why Johnny Can't Encrypt: A Usability Evaluation of 
PGP 5.0," Eighth USENIX Security Symposium, Washington, DC, USENIX 
Association, 1999, pp. 169–183. 

A great paper on usability (and un-usability) in computer security technology. 

[Winkler 1997] Ira Winkler. Corporate Espionage. Prima Publishing, 1997. Winkler's 
excellent treatment of the insider problem makes this book worth a read. 

[Zuse 1991] Horst Zuse. Software Complexity: Measures and Methods (Programming 
Complex Systems, No. 4). Walter de Gruyter, Inc., Berlin, 1991. 

The ultimate software metrics tome. Also useful as a doorstopper for the heaviest of 
doors. 

Software Security Puzzle Pieces 

As you can see by perusing the annotated references, software security exists at the 
intersection of several disciplines. The following areas of interest are focal points in the 
field of software security, both among practitioners and among scientists. 

• Reconciling security goals and software goals: software quality management in 
commercial practice 

• Security requirements engineering 
• Design for security, software architecture, architectural analysis 
• Security analysis, security testing, use of the Common Criteria 
• Guiding principles for software security, case studies in design and analysis, 

pedagogical approaches to teaching security architecture 
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• Software security education: educating students and commercial developers 
• Auditing software: implementation risks, architectural risks, automated tools, 

technology developments (code scanning, information flow, and so on) 
• Common implementation risks: buffer overflows, race conditions, randomness, 

authentication systems, access control, applied cryptography, trust management 
• Application security: protecting code postproduction, commercial technologies 
• Survivability and penetration resistance, type safety, dynamic policy enforcement 
• Denial-of-service protection for concurrent software 
• Penetrate-and-patch as an approach to securing software 
• Code obfuscation and digital content protection 
• Malicious code detection and analysis 

Much work remains to be done in each of these areas, but some basic practical solutions 
are becoming available in the market. 

Basic Science: Open Research Areas 

Most security researchers agree that we have a pressing problem. In "A Call to Action: 
Look Beyond the Horizon," Jeannette Wing includes "software design and security" as 
one of three critical areas to tackle if security research is to make progress [Wing 2003]. 
In "From the Ground Up: The DIMACS Software Security Workshop," I introduce the 
software security problem, discuss trends that demonstrate the problem's growth, and 
introduce the philosophy of proactively attacking the problem at the architectural level 
[McGraw 2003]. 

Much work remains to be done in software security, some of it basic and practical (e.g., 
working software security into the standard software development lifecycle as described 
by the touchpoints) and some of it far beyond current capabilities (e.g., automated 
analysis of software architecture for security flaws). Scientists and researchers from 
academic and commercial labs are working on some of the more difficult problems. 

The National Science Foundation suggests that the following eleven open questions be 
used as drivers for research. 

1. How to avoid building security flaws and security bugs into programs 
2. How to know when a system has been compromised 
3. How to design systems that can tolerate attack and carry out the intended mission 
4. How to design systems with security that can be reasonably managed 
5. How to provide reasonable protection of intellectual property 
6. How to support privacy enforcement technically 
7. How to get trustworthy computations from untrusted platforms 
8. How to prevent/withstand denial-of-service attacks 
9. How to quantify security tradeoffs 
10. How to reveal and minimize assumptions in security system designs 
11. How to build programs and systems and know exactly what they will do and what 

they are doing 
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There is clearly overlap among these problems, but the number of interesting 
subquestions raised by this list is large. 

Careful consideration must be given to design for security. Given a set of principles and 
properties that we wish a system to have, we must identify guidelines for design and rules 
for enforcement. Open questions along this line of thinking include: Can principles be 
refined to guidelines? How can guidelines be reduced to rules that can be enforced 
statically? What technologies are suited for automated analysis? 

Some concrete open research problems include the following: 

• Explain why the software security problem is growing. 
• Quantify, analyze, and explain bug/flaw categories. 
• Do cost/benefit analysis proving that early is good. 
• Untangle security software from software security at the requirements stage. 
• Explore how to teach software security most effectively both to students and to 

professionals. 
• Invent and apply measures and metrics. 

The field is young and there is much to do. Please help! 
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Appendix A. Fortify Source Code Analysis Suite 
Tutorial[1] 
[1] This appendix was created and is maintained by Fortify Software and is reprinted here 
with permission. 

A special demonstration version of the Fortify Source Code Analysis product is included 
with this book. Please note that the demonstration software includes only a subset of the 
functionality offered by the Source Code Analysis Suite. For example, this demonstration 
version scans for buffer overflow and SQL injection vulnerabilities but does not scan for 
cross-site scripting or access control vulnerabilities. 

The key you will need to unlock the demo on the CD is FSDMOBEBESHIPFSDMO. To 
prevent any confusion, this key is composed of letters exclusively. There are no numbers. 

This tutorial presents a set of lessons that cover a number of different source code 
analysis topics. Each lesson builds on the knowledge gained in the previous lessons, so 
the lessons should be taken on in the order they are presented. The final lesson allows 
you to practice what you have learned using a set of open source code bases. 

The tutorial provides an introduction to the Fortify Source Code Analysis Suite for Java, 
C/C++ (using gcc), and .NET projects (using Visual Studio). Specifically, we include 
information about how to use the Fortify Source Code Analysis Engine and the Fortify 
Audit Workbench (see Chapter 4). 

There are nine lessons in this tutorial: 

1. Introducing the Audit Workbench 
2. Auditing Source Code Manually 
3. Ensuring a Working Build Environment 
4. Running the Source Code Analysis Engine 
5. Exploring the Basic SCA Engine Command Line Arguments 
6. Understanding Raw Analysis Results 
7. Integrating with an Automated Build Process 
8. Using the Audit Workbench 
9. Auditing Open Source Applications 

By using this tutorial, you will learn how to audit programs for security in order to ferret 
out the kinds of vulnerabilities that cause real security problems. The kinds of problems 
that you can find are exactly like those uncovered and publicized by experienced security 
researchers and malicious hackers—sometimes becoming major news events. Who 
knows, you may even find yourself discovering previously unknown vulnerabilities in 
open source code that has been fielded for years! 
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The directories containing the files used in this tutorial are located in the 
Install_Directory/Tutorial directory, where Install_Directory is the directory in 
which the Fortify Source Code Analysis Suite is installed. See the CD accompanying this 
book. 

 1. Introducing the Audit Workbench 

This exercise examines the results of a successful source code security audit of the 
Washington University FTP daemon wu-ftpd version 2.6.0 that was performed using the 
Enterprise version of Fortify Software. In this exercise, you use the Audit Workbench to 
explore a results file that was generated by the Source Code Analysis Engine and 
annotated by a code auditor. 

The files for this lesson are located in the following directory: 

Install_Directory/Tutorial/understand_AWB 
 

1. Start Audit Workbench and load the audit. 
o Start Audit Workbench: 

 On Windows, navigate from the Start menu as follows: Start 
All Programs Fortify Software Fortify SCA Suite 3.1.1—
Demonstration Edition Audit Workbench. 

 On UNIX, enter auditworkbench at a command prompt. 
o Choose the Continue Audit option. 
o Select the wu-ftpd.fpr file. 

2. Examine the information displayed in the Project Summary dialog. Click Skip 
AuditGuide to close the Project Summary. 

3. Examine the information displayed in the navigation tree in the Navigator panel. 
o Expand the items in the tree to see the individual issues. 
o Click on the issues to see how the panels are populated for each issue. For 

example, notice that the Analyzer Trace panel shows data flow 
information when the issue is related to issues identified by the Data Flow 
Analyzer. 

o Examine the Summary and Detail panels for information about the issues. 
o Click the Hotlist, Warnings, and Info buttons to see how the issues are 

grouped by severity level. 
o Select different options in the "Group by" drop-down list to see the issues 

in the navigation tree grouped by file name, sink, source, taint flag, or 
category and analyzer (the default). 

o Locate and select the following issue: ftpd.c:5290 (Format String). 
4. Examine an issue. 

o Read the auditor's comments concerning the issue in the Summary panel 
and note the settings for the analysis, status, impact, and severity buckets 
that the auditor has selected for the issue. In this case, the auditor 



 321

considers the issue to be a remotely exploitable problem that could lead to 
a root compromise. 

o Click on the four code lines displayed in the Analysis Trace panel to see 
how the SCA Engine traced the malicious data through the program. 

o Examine the Details panel to read more about auditing format string 
problems. 

5. Explore other issues. 
o Click the Hotlist, Warning, and Info buttons to explore some of the other 

buckets. 
o Explore some of the other categories and the issues they contain for an 

overview of the types of problems that Fortify Software finds in C and 
C++ programs. 

6. Generate an audit report. 
o Select Generate Report from the Tools menu to generate a report. 
o Select Formatted Text from the "Export As" drop-down list. 
o Read the summary sections at the top of the report and some of the 

detailed findings that follow. 
o Click Cancel to return to the main audit view. 

Exercises for the Reader 

Beginner 

1. How many categories of security vulnerabilities are listed for this application? 
2. Starting with buffer overflow, how many vulnerability categories can you name? 
3. In your company, what categories of security vulnerabilities are most critical? 
4. Can you think of (or write) a line of code that would be acceptable in one program 

but would cause a serious security problem in another program? 

Advanced 

1. Describe a scenario in which a security issue that is not currently exploitable can 
become a critical security issue in the future. 

2. What are some common reasons that developers introduce security 
vulnerabilities? 

3. What makes one security issue more important than another? How do you 
determine the importance of a security issue? 

4. Once you have identified and corrected all exploitable security issues, what are 
the arguments for and against addressing nonexploitable security issues? 

2. Auditing Source Code Manually 

This exercise introduces the goals of auditing source code for security and spells out the 
steps involved in performing a basic audit. 



 322

Any kind of manual source code review requires patience, an eye for detail, and extensive 
knowledge about the types of problems that can cause a program to fail. A security audit 
is no different, but instead of thinking "what could go wrong?" the auditor must consider 
"what could an attacker force to go wrong?" The auditor's role is to pare down this 
infinite search space and identify the most dangerous problems and weaknesses in a 
program. Experience is invaluable but can only be gained through practice. 

This exercise demonstrates a simple manual audit process for a small Web application. 
The files for this lesson are located under two subdirectories in the following directory: 
Install_Directory/Tutorial/do_manual_audit. The webapp subdirectory contains a 
sample Web application for this lesson. The Answers subdirectory contains responses to 
the questions posed below. 

1. Examine the webapp application. Do not look for specific issues yet, just become 
familiar with the application by asking the same types of questions that an auditor 
starting a code audit would ask, such as: 

o How large is the application? 
o What are the technologies involved? 
o What is the basic design of the application? 
o Who are the likely attackers? 
o What would an attacker hope to achieve? 
o How are the developers trying to protect the application? 
o What sorts of techniques might an attacker use to subvert the application? 
o What risks would a successful attack pose to the company (e.g., customer 

confidence, public image, etc.)? 

Some vulnerabilities are easier to spot than others. Generally speaking, when the 
scope of an issue is limited to a single screen of source code, it is much easier to 
find than an issue that requires understanding the interaction between pieces of 
code from multiple (far-flung) locations. 

2. Examine the source code of the following Servlet: 
webapp/src/java/com/simpleco/CountServlet.java. 

o How and when is this code executed? 
o What can an attacker control? 
o Can an attacker violate the programmer's assumptions? 
o What is vulnerable about this Servlet? 

3. Examine each of the application files, consider the interaction between the various 
modules, and identify issues that render the application vulnerable. 

Exercises for the Reader 

Beginner 

1. How many vulnerability patterns can you consciously look for as you are 
manually auditing the code—5, 10, 100, 1,000? 



 323

2. What techniques would you use to keep track of paths across files? 
3. How often should a security audit be performed? If you performed an audit today 

and fixed the problems, what would your confidence be in the code 90, 120, or 
180 days later? How much new code would your developers write in 90, 120, or 
180 days? 

Advanced 

1. If you had to set up a process for manually auditing code in your company, how 
would you estimate the amount of effort and time required to do it effectively? 
How do the requirements scale as the size of the code base grows? 

2. What are the ideal skills for a security code auditor? How many people in your 
organization are well qualified? What jobs do they do today? 

3. Why do people perform security code audits rather than simply testing the 
software? 

4. If you cannot audit all of the code, how should you choose which section of code 
to audit? How confident are you about the results of the audit? 

5. Enumerate five programming styles or techniques that make auditing easier or 
harder. 

3. Ensuring a Working Build Environment 

To make it easy to integrate the Source Code Analysis Engine into your environment, the 
SCA Engine uses the same conventions as the tools you use to compile and build the 
application. The purpose of this exercise is to ensure that you are comfortable within your 
existing build environment before you attempt to integrate source analysis. 

For analyzing C and C++ programs, ensure that there is a compiler supported by Fortify 
Software installed on your computer. (See the README.txt on the CD for a list of 
supported compilers.) 

This exercise assumes that you are using gcc to compile C and C++. If you are using 
Windows and have not yet installed a supported compiler (such as Microsoft cl), you can 
install gcc as part of Cygwin <http://www.cygwin.com/>. 

Depending on how you typically build your project, it is likely that you will also need a 
build tool, such as make or ant, installed on your computer. 

Typical compilers and linkers search for and resolve certain symbols when building a 
working program. The SCA Engine is similar to a "security compiler" that operates on 
the source code base. As such, the SCA Engine functions optimally when it can resolve 
all of the symbols found in the program. 

The more code you analyze, the more comprehensive the results will be. C, C++, and 
.NET projects must compile completely in order for the SCA Engine to analyze them 
successfully. However, the architecture of the SCA Engine does make it capable of 
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analyzing individual or incomplete Java files if you choose to do so—albeit at the cost of 
reduced accuracy due to the unresolved symbols. 

1. Verify that you can compile a simple program without any errors. 
o For C and C++ source code: 

 Change to the following directory: 

Install_Directory/Samples/basic/stackbuffer 

 Enter the following command: 

gcc stackbuffer.c 

o For Java source code: 
 Change to the following directory: 

Install_Directory/Samples/basic/eightball 

 Enter the following command: 

javac EightBall.java 

o For .NET projects: 
 Open the following file in Visual Studio .NET: 
 Install_Directory\Samples\advanced\csharp\Sample1

\ 
Sample1.sln 

 Verify that the project is configured to build in debug mode. 
 Choose Rebuild Solution from the Build menu. 

2. Ensure that you can successfully build the project that you plan to use for source 
code analysis. 

o For C and C++ projects, you typically run the make or nmake utility. 
o For Java projects, you typically use ant. 
o For .NET projects, you typically use Visual Studio. 

4. Running the Source Code Analysis Engine 

This exercise introduces the Source Code Analysis Engine. You will verify that the SCA 
Engine is properly installed and analyze a few small programs. 

1. Run an analysis on a single source file: 
o For C and C++ source code: 

 Change to the following directory: 

Install_Directory/Samples/basic/stackbuffer 
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 Enter the following command: 

sourceanalyzer gcc stackbuffer.c 

 Compare the output with the expected results given at the end of 
this exercise. 

o For Java source code: 
 Change to the following directory: 

Install_Directory/Samples/basic/eightball 

 Enter the following command: 

sourceanalyzer EightBall.java 

 Compare the output with the expected results given at the end of 
this exercise. 

o For .NET code: 
 Change to the following directory: 

Install_Directory\Samples\advanced\csharp\Sample1 

 Enter the following command: 

sourceanalyzer Sample1.exe 

 Compare the output with the expected results given at the end of 
this exercise. 

Analysis Results of stackbuffer.c 

The following output shows the results of an analysis of stackbuffer.c: 

[Install_Directory\Samples\basic\stackbuffer] 
 
[BB73F23E46159FBE5ED3C1968C046828 : low : Unchecked Return Value : 
semantic ] 
stackbuffer.c(13) : read() 
 
[EDACF5BD763B329C8EE8AA50F8C53D08 : high : Buffer Overflow : data flow 
] 
stackbuffer.c(4) : -> memcpy(2) 
    stackbuffer.c(17) : -> doMemCpy(2) 
    stackbuffer.c(15) : <- scanf(1) 
 

Analysis Results of Eightball.java 

The following output shows the results of an analysis of EightBall.java: 
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[Install_Directory\Samples\basic\eightball] 
 
[F7A138CDE5235351F6A4405BA4AD7C53 : low : Unchecked Return Value : 
semantic ] 
EightBall.java(12) : Reader.read() 
 
[EFE997D3683DC384056FA40F6C7BD0E8 : medium : Resource Injection : data 
flow ] 
EightBall.java(12) : -> new FileReader(0) 
    EightBall.java(8) : <=> (filename) 
    EightBall.java(8) : <-> Integer.parseInt(0->return) 
    EightBall.java(6) : <=> (filename) 
    EightBall.java(4) : -> EightBall.main(0) 
 
[397D4B4A4FF20A0C13369B1D47844C53 : medium : Unreleased Resource : 
control flow ] 
    EightBall.java(12) : start -> loaded : <inline expression>.new 
FileReader(...) 
    EightBall.java(14) : loaded -> end_of_scope : #end_scope(<inline 
expression>) 
 

Analysis Results of Sample1.exe 

The following output shows the results of an analysis of Sample1.exe. Note: 
Sample1.exe was generated in the "Ensuring a Working Build Environment" section. 

[Install_Directory\Samples\advanced\csharp\Sample1] 
 
[C0EB5C44F4E926C3748984B3C4B869A5 : high : SQL Injection : data flow ] 
Sample1/Class1.cs(29) : -> new SqlDataAdapter(0) 
    Sample1/Class1.cs(19) : -> Sample1.Main(0) 
 
[3CC21A4EF4179833409BEC57C9420379 : high : SQL Injection : data flow ] 
Sample1/Class1.cs(31) : -> new SqlDataAdapter(0) 
    Sample1/Class1.cs(20) : <=> (tainted_query) 
    Sample1/Class1.cs(20) : <-> String.Concat(1->return) 
    Sample1/Class1.cs(20) : <-> String.Clone(this->return) 
    Sample1/Class1.cs(19) : ->  Sample1.Main(0) 
 
[8A25799D696115E0FD031CB294454B84 : medium : Unreleased Resource : 
control flow ] 
    Sample1/Class1.cs(24) : start -> loaded : conn.Open(. . .) 
    Sample1/Class1.cs(39) : loaded -> end_of_scope : #end_scope(conn) 
 

Exercises for the Reader 

Beginner 

1. What are the benefits of integrating the SCA Engine into your environment as a 
compiler? 

2. Why must you specify a compiler for C/C++ code but not for Java or .NET code? 
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3. Where is the log file used by the SCA Engine? 

Advanced 

1. If the SCA Engine cannot find some of the files for the software being built, what 
information is missing? Consider header files and source files. How will the 
missing information affect the results? 

2. How do you know whether or not the SCA Engine was able to find and read all of 
the required files? 

5. Exploring the Basic SCA Engine Command Line Arguments 

This exercise continues the introduction of the Source Code Analysis Engine. In this 
exercise, you will experiment with the basic command line arguments accepted by the 
SCA Engine. 

1. Consider the command line syntax: 
o For C and C++ source code, the syntax is: 
o sourceanalyzer [options] compiler [compiler-flags] 

files 

o For Java source code, the syntax is: 

sourceanalyzer -cp classpath [options] files 

o For a .NET executable, the syntax is: 

sourceanalyzer [options] –libdirs dirs executable 

2. Experiment with the following basic command line arguments using the sample 
programs from the previous exercise. 

o Compiler: 

For C and C++ code, the sourceanalyzer command is included in the 
compile line as a prefix to the actual build command, such as gcc or cl. 
For complex builds, the sourceanalyzer command is also used to 
intercept archiving commands, such as ar, and linking commands, such as 
link and ld. The SCA Engine interprets the flags passed in to the build 
command and adjusts its own operation accordingly, without affecting the 
actual build. 

For Java code, the compiler is implicitly javac. 

o Output Format: -format format 

This option specifies the output format. The default format is text. To 
select the Fortify Vulnerability Description Language (FVDL) format, 
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which is the Fortify Software XML-based vulnerability description 
language, specify -format fvdl. You can also specify fvdl-zip, which 
produces a zipped FVDL file. FVDL is more verbose than text and is used 
by the Fortify Audit Workbench and other tools. 

o Output Location: -f filename 

This option specifies a file location to which the output will be written. By 
default, if a file location is not specified, the output is written to the 
console. 

For a detailed description of the command line syntax and options supported by the SCA 
Engine, see the following topics in the Source Code Analysis Engine User's Guide: 

• "Using Source Code Analysis Engine from the Command Line" 
• "Using Source Code Analysis Engine Command Line Options" 

The Source Code Analysis Engine User's Guide is located at: 

Install_Directory/Documentation/SCA/index.htm 
 

The next lesson, "Understanding Raw Analysis Results," explains how to interpret the 
results produced by the SCA Engine. 

Exercises for the Reader 

Beginner 

1. If a single source code base is used to build multiple executable programs, how 
can you use the SCA Engine to evaluate the programs independently? 

6. Understanding Raw Analysis Results 

This exercise describes the Source Code Analysis Engine output. You will examine the 
different output formats and contents generated by the various analyzers. 

The SCA Engine produces two primary output formats: text and FVDL. The text format 
is human-readable and is designed for quick scans and easy verification of results. FVDL 
is an XML format that is consumed by Audit Workbench and other tools. 

• The Java source file for this lesson is: 

Tutorial/understand_results/StringSearch.java 

• The expected output from the SCA Engine is located in: 
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Install_Directory/Tutorial/understand_results/Answers 

1. Examine the text output format. Run the SCA Engine on 
StringSearch.java as follows: 

sourceanalyzer StringSearch.java 

The output shows three issues. 

Issue 1 

[C9FE6AF8A29314E2DC22F0E9191802F8 : low : Unchecked Return 
Value : semantic ] 
   StringSearch.java(18) : FileInputStream.read(0) 

Issue 2 

[2AE729678F97328125F563C53BEB1524 : medium : Resource 
Injection : data flow ] 
   StringSearch.java(16) :  -> new FileInputStream(0) 
   StringSearch.java(14) : <=> (searchIn) 
   StringSearch.java(6)  :  -> StringSearch.main(0) 

Issue 3 

[3A8FE7972DB6C28956AC54DF8E63424D : medium : Unreleased 
Resource : control flow ] 
   StringSearch.java(16) : start -> loaded : fos.new 
FileInputStream(...) 
   StringSearch.java(21) : loaded -> end_of_scope : 
#end_scope(fos) 

The first line of the text output is the common root directory of all the files 
that have reported vulnerabilities, such as: 

[/opt/FortifySoftware/SCAS3.1-
EE/Tutorial/understand_results] 

The first line of each issue has the following format: 

[Instance ID : severity : category : analyzer ] 

For example, Issue 1 reports that on line 18 in the StringSearch.java 
file, the return value of FileInputStream.read() is not checked. The 
issue details also indicate that this was detected by the Semantic Analyzer 
and that, by default, it was assigned the severity low. 

If the SCA Engine has more information about a particular issue, it 
includes the information on subsequent lines. 
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For example, Issue 2 reports that line 16 in StringSearch.java contains 
a potential resource injection vulnerability that could allow an attacker to 
control a resource used by the application. The subsequent lines of output 
show that the value, potentially controlled by an attacker, enters the 
program at line 6 as the first argument to StringSearch.main(). This 
issue is identified by the Data Flow Analyzer and assigned a medium risk. 

Values that cause data flow issues can pass through several hops between 
where they enter the program and the point at which the program uses the 
data as part of a sensitive operation. 

The Control Flow Analyzer can also provide additional information about 
an issue. Issue 3 reports that the resource created on line 16 was not 
properly released before it went out of scope. In other words, the code 
fails to call close() on the resource. 

2. Rerun the analysis engine, this time producing FVDL output. Use the -
format option to create the FVDL and the -f option to send the output to 
an XML results file, as follows: 

3. sourceanalyzer -format fvdl -f results.fvdl 
StringSearch.java 

4. Open and inspect results.fvdl in a text editor. Note that it contains all 
of the information found in the text output, plus the following information 
in the preamble: 

 Date and time of the analysis. 
 Number of lines of code analyzed. 

Note also that the first issue corresponds to the first issue in the text output. It has the 
same information regarding location and category, plus it shows the unique identifier for 
the vulnerability class. The vulnerability class identifier references a description of the 
vulnerability class, located at the end of the FVDL file. The unique instance ID 
unambiguously refers to this vulnerability. 

Exercises for the Reader 

Beginner 

1. How many of the Fortify vulnerability categories can you describe in detail? 

Advanced 

1. Write a piece of code containing an issue that is identified by each of the different 
analyzers. 

2. Give an example in which a single issue will be found more than once. 
3. Give an example in which a single issue will be found by more than one analyzer. 
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4. What is the cost of being wrong about an issue (that is, calling a finding a 
vulnerability when it is not, and calling a finding benign when it is a 
vulnerability)? 

7. Integrating with an Automated Build Process 

This exercise demonstrates how to integrate the Source Code Analysis Engine with an 
existing build process. 

• For C and C++ code, build processes typically use some form of the make utility, 
such as gmake or nmake, and a project-specific Makefile to build the project. 

• For Java code, projects are typically built using the ant utility and a build.xml 
file. 

The SCA Engine mirrors the way the compiler processes the source code of an 
application. This means that source code that is excluded due to conditional compilation 
(#ifdef) and code that is not included in the build is automatically excluded by the SCA 
Engine. Thus, extraneous and misleading results that are not part of the actual application 
are avoided.[2] 

[2] And problems not found in one build path but found in another can slip by auditors. 

Integrating with a Makefile 

1. Edit a Makefile to invoke the SCA Engine during the build process. An easy way 
to cause a Makefile to invoke the SCA Engine is to locate the CC variable in the 
Makefile and insert the sourceanalyzer command and any options before the 
actual compiler name. Consider the following Makefile segment: 

2. 6:  #### Tools 
3. 7: 
4. 8:  CC = gcc 
5. 9:  AR = ar sr 
6. 10: LINK = ld 
7. 11: 

12: #### Options 

The following shows the addition of the SCA Engine to the Makefile: 

5:  #### Tools: introduced sourceanalyzer command and 
6:  #### buildid/projectid=345 
7: 
8:  CC = sourceanalyzer -b 345 -c gcc 
9:  AR = sourceanalyzer -b 345 -c ar sr 
10: LINK = sourceanalyzer -b 345 -c ld 
11: 
12: #### Options 

The command line options specify the following: 
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o -b specifies the build ID, in this case 345. 
o -c specifies that the SCA Engine runs the compiler as well as performs the 

translation. 

This modified Makefile causes the SCA Engine to generate an intermediate 
security representation of the source files and the dependencies of the build 
process. It also invokes the compiler and build commands so that there is no 
interference with the regular build output. However, actual security analysis is 
performed as a separate step. 

8. Run the build as you normally would, but follow it with a command to perform 
the security analysis with a reference to the build ID: 

make; sourceanalyzer -scan -b 345 -f /bld/results.fvdl -format 
fvdl 

The command line options specify the following: 

o -scan specifies that the SCA Engine should perform an analysis on the 
provided build ID. 

o -b specifies the build ID, in this case 345. 
o -f specifies the file to which the results are written. 
o -format controls the output format (fvdl, fvld-zip, or text). 

The output file is specified as an absolute path because most make projects enter 
and exit various directories during the build, and compilations that occur in each 
directory create their own output files. If you specify an absolute path for the 
output file, all results for the make are generated in one FVDL file. 

If an output file with the same name already exists and the -append option is 
specified, the output is appended to the existing file. If the -append option is not 
included, the existing results are overwritten. To keep data from different analysis 
runs separately identifiable, rename or delete the output file before running each 
make. 

9. To see the details, including resolution suggestions, open the results.fvdl file 
in Audit Workbench. 

Integrating with an ant Build File 

1. Ensure that the Install_Directory is included in the PATH environment 
variable. 

2. Add the following to either ant's lib directory or to your CLASSPATH: 

Install_Directory/Core/lib/sourceanalyzer.jar 
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Note: In ant 1.6 and above, it is also possible to pass the path to 
sourceanalyzer.jar on the command line through the -lib parameter. 

o Set the build.compiler property using either the command line or the 
property tag. 

The command line syntax is: 

>$ant -Dbuild.compiler="com.fortify.dev.ant.SCACompiler" 
-Dsourceanalyzer.buildid=Build_ID 

The property tag syntax is: 

<property name="build.compiler" 
value="com.fortify.dev.ant.SCACompiler"/> 
<property name="sourceanalyzer.buildid" value="Build_ID"/> 

Tip: When build files are used on systems without the SCA Engine, use the ant 
<available> task to define build.compiler: 

<available classname="com.fortify.dev.ant.SCACompiler" 
property="build.compiler" 
value="com.fortify.dev.ant.SCACompiler"/> 

3. Perform the following steps to use the sourceanalyzer task to select files to be 
scanned or to run analysis. Include a typedef for the task in the build file as 
follows: 

4. <typedef name="sourceanalyzer" 
classname="com.fortify.dev.ant.SourceanalyzerTask"/> 

You can now include the sourceanalyzer task in any target. 

5. Specify parameters, or define attributes in nested elements for the 
sourceanalyzer task. Valid parameters are listed in the Source Code Analysis 
Engine User's Guide. 

The following is an example of running ant from the command line: 

>$ ant -Dcom.fortify.dev.ant.SCACompiler.args=" \ -f resultsFile.fvdl 
       -format fvdl" 
 

The following is an example of modifying the build.xml sourceanalyzer task: 

<sourceanalyzer buildid="${sourceanalyzer.buildid}" 
           scan="true" 
           resultsfile="results_file.fvdl" 
           format="fvdl" 
           rules="rules_file.xml" 
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           filter="filter_file.xml" /> 
 

Advanced Command Line Syntax for Java 

Using the command line syntax for Java makes it easy to scan Java and J2EE code bases. 
In many cases, a J2EE project can be accurately analyzed without integrating with the 
build process. The syntax is: 

sourceanalyzer -cp classpath [options] srcfile-specifier1 srcfile-
specifier2 ... 
 

For example, the following command invokes the analysis of the source code of a typical 
Web-based J2EE application: 

sourceanalyzer -cp "app_directory\WEB-INF\lib\*.jar;app_directory\WEB-
INF\classes" 
               -f results.fvdl -format fvdl . 
 

Note: The dot at the end of the statement specifies the current directory. 

Run the preceding command from the directory where the build.xml file is located. In 
this case it is assumed that the source files are located in a directory that is below the 
current directory. If the source files are located in a different location, use that as the 
srcfile-specifier instead of the current directory. 

If there are multiple jar file directories under WEB-INF, you can also specify the 
following as part of the classpath: "app_directory\WEB-INF\**\*.jar" 

Exercises for the Reader 

1. How often do you do a build? How often do you perform system tests? What are 
the benefits of doing a security analysis with every build? 

2. Assuming you cannot review the results from sourceanalyzer every time you 
build, how can you use the information that comes from sourceanalyzer in each 
build? 

8. Using the Audit Workbench 

This exercise describes how to use the Audit Workbench to review results obtained from 
the Source Code Analysis Engine and generate audit reports based on those results. 

The J2EE application for this lesson is located at Tutorial/use_AWB/webapp. 
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The SCA Engine has already analyzed the source code, and the FVDL output is located at 
Tutorial/use_AWB/webapp.fvdl file. 

1. Start the Audit Workbench. 
o For Window systems, select Start All Programs Fortify Software 

Fortify SCA Suite 3.1.1—Demonstration Edition Audit 
Workbench. 

o For UNIX systems, if your installation directory is on the path, enter 
auditworkbench on the command line; otherwise enter the fully qualified 
path to Audit Workbench. 

2. Select the New Audit option. 
3. Select and load the following file: Tutorial/use_AWB/webapp.fvdl 
4. Name the new project "SimpleCo Web Application." 
5. Examine the information in the Project Summary dialog box. 
6. Click Continue to AuditGuide >> and answer the questions that follow. When you 

are finished, AuditGuide limits the issues that Audit Workbench displays to the 
ones that are relevant to the application being audited. 

7. Examine the information in the Navigator panel. 
o The three severity buttons, Hotlist, Warnings, and Info, display the 

number of detected issues for each severity type and control the contents 
of the navigation tree. 

o The items that appear in the navigation tree vary according to which 
"Group by" option is selected. 

o When expanded, the navigation tree lists the files in which issues were 
detected and the vulnerability categories. 

o The pair of numbers in square brackets shown next to each item in the 
expanded tree indicates how many of the issues have been audited (the 
number on the left) and how many issues there are total (the number on 
the right). 

o The "group by" feature allows you to group and display issues by category 
and analyzer (the default), file name, sink function, source function, and 
taint flag. 

o The Search field allows you to limit the displayed issues to those 
containing the search string. 

8. Audit the first issue. 
o Expand the first element in the LoginPkg.sql:26 navigation tree, and 

examine the information that populates the other panels. 
 The Source Code Viewer panel displays the section of code in 

LoginPkg.sql containing the issue. 
 The Analysis Trace panel in the lower left corner displays the flow 

of tainted data through the program. 
 The Summary panel displays the issue's vulnerability category and 

location (file name and line number) and an abstract summary of 
the issue. It also allows you to enter comments, change status, 
move it to another issue bucket, specify its impact, suppress the 
issue, and (if integrated with a bug tracking system) file a bug. 
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o Click the Details tab to examine the following information about the issue: 
vulnerability category, description, auditing tips, and reference. 

9. Audit the remaining issues following the same steps. 
10. Save your work. On the File menu, select Save Project. 
11. Generate and export an audit report as follows: 

o Select Generate report in the Tools menu. 
o Select Raw XML from the "Export as" drop-down menu and click OK. 
o Open the report that you exported in an XML viewer or text editor and 

verify that your comments and settings are present. 

Exercises for the Reader 

Beginner 

1. Assuming that an attacker does not have your source code, what advantages do 
you have in finding vulnerabilities? 

2. How do you envision feeding back vulnerabilities found in Audit Workbench to 
the developers who will fix them? 

3. If you only had the text output for a large project, how would you go through it 
without Audit Workbench? 

4. If the Source Code Analysis Engine runs on a build server but you run Audit 
Workbench on your local machine, will you run into problems? How will you 
solve them? 

Advanced 

1. How many Source Code Analysis vulnerability categories can you describe in 
detail along with example exploitable code? 

2. What kind of comments do you tend to use most often when you are auditing? 
3. In the last 30 days, how many of these vulnerability categories have appeared on 

BugTraq? 
4. Name some vulnerability categories that have appeared on BugTraq that are not 

Fortify Source Code Analysis vulnerability categories. 
5. Do you think an external attacker viewing the program as a black box would 

name vulnerability categories in the same manner as an internal auditor who is 
analyzing the source code (white box) from the inside, or would they be different? 
Why? 

9. Auditing Open Source Applications 

Now you know how to use the Fortify Source Code Analysis Suite, and you are ready to 
embark on your own independent security audits, equipped with analysis capabilities that 
would have typically taken a source code auditor many years to learn. This final exercise 
allows you to practice using the Source Code Analysis Engine and Audit Workbench by 
auditing open source projects. 
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The following subdirectories are located at 
Install_Directory/Tutorial/do_open_source_audit: 

• splc— A small J2EE application that provides a Web interface for managing 
inventory. 

• webgoat— A set of Java servlets developed by the Open Web Application 
Security Project (OWASP) to illustrate various Web security issues. 

• wu-ftpd-2.6.0— The Washington University FTP daemon (also used in 
"Introducing the Audit Workbench"). 

• Answers— Contains subdirectories for each of the four projects listed above with 
notes, output, and security findings. 

Note: These projects can be evaluated independently and in any order. 

splc 

1. Use ant to build splc. 
2. When you are certain that the project is building correctly, add the 

sourceanalyzer command to the build process, perform an "ant clean," and 
rebuild. 

Note: For help, see the "Integrating with an Automated Build Process" exercise. 

3. Analyze the resulting FVDL with Audit Workbench. Note that the application 
contains suspicious use of sockets. 

4. Compare your results to those in the 
Install_Directory/Tutorial/do_open_source_audit/Answers/splc 
directory. 

webgoat 

1. Use ant to build webgoat. 
2. Once you are satisfied that the project is building correctly, add the 

sourceanalyzer command to the build process, perform an "ant clean," and 
build again. 

Note: For help, see the "Integrating with an Automated Build Process" exercise. 

3. Analyze the resulting FVDL with Audit Workbench. 
4. Compare your results to those in the 

Install_Directory/Tutorial/do_open_source_audit/Answers/webgoat 
directory. 

wu-ftpd-2.6.0 

1. Use the configure command to create a makefile for wu-ftpd. You may need to 
add options to the configure command, as in the following example: 
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./configure -host localhost --disable-dns 

2. Build wu-ftpd using the make utility. 
3. When you are certain that the project is building correctly, add the 

sourceanalyzer command to the build process. 

Note: For help, see the "Integrating with an Automated Build Process" exercise. 

Rerun the configure command, as follows: 

rm config.cache config.h config.log config.status 
CC="sourceanalyzer -b wu-ftpd -c gcc" 
./configure -host localhost --disable-dns 

4. Run the SCA Engine: 
5. make clean 
6. make 

sourceanalyzer -scan -b wu-ftpd -format fvdl -f wu-ftpd.fvdl 

7. Analyze the results using Audit Workbench. 
8. Compare your results to those located at 

Install_Directory/Tutorial/do_open_source_audit/Answers/wu-ftpd-
2.6.0. 

Note: This demo does not utilize the full set of rules, therefore your output will 
contain only summary results in some cases. 

Exercises for the Reader 

Advanced 

1. Return to the first lesson, "Introducing the Audit Workbench," and locate the 
Buffer Overflow in the wu-ftpd-2.6.0 file using the SCA Engine and Audit 
Workbench. 

2. What other methods for identifying security vulnerabilities can you name? How 
do they overlap or complement source code analysis? 

Answers 
For answers to the questions in this tutorial, see this book's Web site at 
<http://www.swsec.com>. 
 
 
 
 
 



 339

Appendix B. ITS4 Rules 
ITS4 <http://www.cigital.com/its4/> and its counterparts RATS and Flawfinder provided 
an early set of software security rules built into very basic static analysis tools. See 
Chapter 4 for more on static analysis tools and their use. 

The rules shown here are enforced in ITS4 by essentially greping through source code 
looking for simple patterns—an approach filled with potential false positives. Not 
surprisingly, most of these rules are about APIs in UNIX- or Windows-based systems. 
What follows is a complete list of the kinds of rules that were built into ITS4. RATS 
added several hundred more rules of a very similar nature.[1] 

[1] A Venn diagram of rules overlap for early tools can be seen in Figure 4-1 (of Chapter 
4). 

The rules shown here were taken from Cigital's extensive knowledge base of software 
security rules. Only three (of many more) fields are shown. Every basic security scanner 
should include these rules. Any scanner that doesn't is not worth its salt. Consider this the 
tiniest minimum set of security rules that every static analysis tool should cover. A better 
minimum set would include all rules from ITS4, RATS, and SourceScope (see Chapter 
4). 

This is not an endorsement of ITS4, which is ancient technology that should no longer be 
used. Instead, the idea is to give you an idea of the kinds of rules that static analysis tools 
enforce. 

Surgeon General's Warning 
Use of ITS4 by clueless security people in the name of imposing software 
security on unsuspecting developers may cause a severe allergic reaction. 
 
API Kingdom Description 

access Time and State The access() function should not be 
used to attempt to eliminate the need to 
change to a less privileged mode. 

  The access() function allows one to 
check the permissions of a file. access() 
is vulnerable to TOCTOU attacks. It's 
commonly accepted that one should never 
use access() as a way of avoiding 
changing to a less privileged mode. 
Because this is the typical usage, this 
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function should be avoided. 

  On Windows platforms the APIs 
_access and _waccess are synonymous 
with access. 

acct Time and State acct can be abused if an arbitrary path is 
passed as an argument, specifically if 
NULL is passed in. 

au_to_path Time and State Vulnerable to malicious changes to path 
passed as a parameter. 

basename Time and State Note: dirname and basename functions 
should be analyzed together. 

  The basename() function returns the last 
component from the pathname pointed to 
by path, deleting any trailing "/" 
characters. If path consists entirely of "/" 
characters, a pointer to the string "/" is 
returned. If path is a null pointer or the 
empty string, a pointer to the string "."is 
returned.  

bcopy Input Validation 
and 
Representation 

Many functions are susceptible to off-by-
one and bounds-checking errors. 

  There are many generic types of errors 
that can apply to usage of a wide variety 
of functions. These include: 

  • Using a function that does not 
permit one to specify the size of a 
buffer to prevent overflows. 

• Mis-specifying the size of a buffer 
or the amount of data to be 
written. Off-by-one errors are 
common. 

• Failing to plan for correct 
behavior when input is larger than 
expected. 

• Failing to allow space for a 
terminating null character. 

• Failing to ensure that a 
terminating null character is 
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present; many standard functions 
consistently experience this 
failure. 

• Specifying the size of a buffer or 
the amount of data to be 
transferred using incorrect units. 
This is particularly a problem with 
multibyte strings. On the 
Windows platform, these 
functions tend to include a "W" in 
the name. 

• Assuming the wrong semantics 
for a parameter that controls data 
transfer and prevents buffer 
overflows. Because various 
functions use the buffer size, 
buffer size minus one, the 
remaining space in the buffer, etc., 
it is important to understand the 
bounding semantics for each 
function. 

  Note that while some functions, such as 
strcpy(), are intrinsically dangerous, 
even the "safe" functions like strncpy() 
are still susceptible to subtle errors if 
bounds checks are not done properly. 

bind Time and State Potential race condition with access, 
according to CERT/CC. Also, bind(s, 
INADDR_ANY, ) followed by 
setsockopt(s, SOL_SOCKET, 
SO_REUSEADDR) leads to potential packet-
stealing vulnerability. 

catopen Input Validation 
and 
Representation 

The catopen() function is vulnerable to 
manipulations that will substitute a 
different catalog file than the expected 
one. 

  The catopen(char *name, int oflag) 
function is used to open a message 
catalog and returns a catalog descriptor. 
The first argument is the name of the 
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message catalog to be opened. If it 
contains a /, then the name is a pathname, 
otherwise it is a basename. The second 
input is used to specify locale differences.

  The function implicitly uses the values of 
environment variables, even when the 
name argument contains a /. It can do 
vaguely printf()-like substitutions on 
the filename. It does things like replacing 
%L with the value of the LANG 
environment variable.  

chdir API Abuse Call chdir("/") after using the 
chroot() function. 

  The chroot() function establishes a 
virtual root directory for the owning 
process. This may be used to limit the 
amount of filesystem access a potential 
hacker could use if he or she gained 
control of the process. Programs like ftp 
and httpd commonly make use of this 
function. 

  One weakness of the chroot() function 
is that it does not work as advertised 
unless a chdir("/") call is issued after 
the chroot(). Otherwise, the current 
working directory could be outside the 
isolated hierarchy and provide the 
attacker with access via relative paths. 

  Use of chroot is desirable but should 
also be a flag to indicate that one needs to 
carefully check to ensure that related 
security issues are addressed. 

chgrp Time and State The chown() function sets the owner ID 
and group ID of the file specified by path 
or referenced by the open file descriptor 
fildes to owner and group, respectively. 
If owner or group is specified as -1, 
chown() does not change the 
corresponding ID of the file. 
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  The lchown() function sets the owner ID 
and group ID of the named file in the 
same manner as chown(), unless the 
named file is a symbolic link. In this case, 
lchown() changes the ownership of the 
symbolic link file itself, while chown() 
changes the ownership of the file or 
directory to which the symbolic link 
refers. 

  The fchownat() function sets the owner 
ID and group ID of the named file in the 
same manner as chown(). If, however, 
the path argument is relative, the path is 
resolved relative to the fildes argument 
rather than the current working directory. 
If the fildes argument has the special 
value FDCWD, the path resolution reverts 
back to the current working directory 
relative. If the flag argument is set to 
SYMLNK, the function behaves like 
lchown() with respect to symbolic links. 
If the path argument is absolute, the 
fildes argument is ignored. If the path 
argument is a null pointer, the function 
behaves like fchown(). 

  If chown(), lchown(), fchown(), or 
fchownat() is invoked by a process other 
than super-user, the set-user-ID and set-
group-ID bits of the file mode, S_ISUID 
and S_ISGID, respectively, are cleared. 

  chown() is vulnerable to TOCTOU 
attacks. The existence of a call to this 
function should be flagged regardless of 
whether a "check" function precedes it. 

chmod Time and State The chmod() and fchmod() functions set 
the access permission portion of the mode 
of the file whose name is given by path or 
referenced by the open file descriptor files 
to the bit pattern contained in mode. This 
function is used to change the read/write 
permissions of a file. 
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  Note: The functions of the chmod class 
have significantly differing functionality 
and warrant individual description. 

  lchmod(), while having the same 
function signature as chmod, differs from 
chmod in that it does not follow symbolic 
links. 

  fchmod(), while performing the same 
function as chmod, operates on a file 
descriptor, and not a filename. 

  chmod() is vulnerable to TOCTOU 
attacks. The existence of a call to this 
function should be flagged regardless of 
whether a "check" function precedes it. 

chown Time and State The chown() function sets the owner ID 
and group ID of the file specified by path 
or referenced by the open file descriptor 
fildes to owner and group, respectively. 
If owner or group is specified as -1, 
chown() does not change the 
corresponding ID of the file. 

  The lchown() function sets the owner ID 
and group ID of the named file in the 
same manner as chown(), unless the 
named file is a symbolic link. In this case, 
lchown() changes the ownership of the 
symbolic link file itself, while chown() 
changes the ownership of the file or 
directory to which the symbolic link 
refers. 

  The fchownat() function sets the owner 
ID and group ID of the named file in the 
same manner as chown(). If, however, 
the path argument is relative, the path is 
resolved relative to the fildes argument 
rather than the current working directory. 
If the fildes argument has the special 
value FDCWD, the path resolution reverts 
back to current working directory relative. 
If the flag argument is set to SYMLNK, 
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the function behaves like lchown() with 
respect to symbolic links. If the path 
argument is absolute, the fildes 
argument is ignored. If the path argument 
is a null pointer, the function behaves like 
fchown(). 

  If chown(), lchown(), fchown(), or 
fchownat() is invoked by a process other 
than super-user, the set-user-ID and set-
group-ID bits of the file mode, S_ISUID 
and S_ISGID, respectively, are cleared. 

  chown() is vulnerable to TOCTOU 
attacks. The existence of a call to this 
function should be flagged regardless of 
whether a "check" function precedes it. 

chroot Time and State Unset root SUID after calling chroot(). 

  The chroot() function establishes a 
virtual root directory for the owning 
process. This may be used to limit the 
amount of filesystem access a potential 
hacker could use if he or she gained 
control of the process. Programs like ftp 
and httpd commonly make use of this 
function. 

  The chroot() function requires root 
(super-user) access to call. If the 
programmer continues to run as root after 
the chroot() call, he or she opens up a 
potential vulnerability window for an 
attacker to use elevated privilege. 

  Use of chroot is desirable, but should 
also be a flag to indicate that one needs to 
carefully check to ensure that related 
security issues are addressed. 

copylist Time and State Care must be taken when accessing files 
from passed-in filenames. 

creat Time and State The creat function creates a new 
ordinary file or prepares to rewrite an 
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existing file named by the pathname 
pointed to by path. 

  If the file exists, the length is truncated to 
0 and the mode and owner are unchanged.

  If the file does not exist, the file's owner 
ID is set to the effective user ID of the 
process. The group ID of the file is set to 
the effective group ID of the process, or if 
the S_ISGID bit is set in the parent 
directory, then the group ID of the file is 
inherited from the parent directory. The 
access permission bits of the file mode 
are set to the value of mode modified as 
follows: 

  If the group ID of the new file does not 
match the effective group ID or one of the 
supplementary group IDs, the S_ISGID 
bit is cleared. 

  All bits set in the process's file mode 
creation mask (see umask(2)) are 
correspondingly cleared in the file's 
permission mask. 

  The "save text image after execution bit" 
of the mode is cleared (see chmod(2) for 
the values of mode). 

  Upon successful completion, a write-only 
file descriptor is returned and the file is 
open for writing, even if the mode does 
not permit writing. The file pointer is set 
to the beginning of the file. The file 
descriptor is set to remain open across 
exec functions (see fcntl(2)). A new 
file may be created with a mode that 
forbids writing. 

  The call creat(path, mode) is 
equivalent to: 

  open(path, O_WRONLY | O_CREAT | 
O_TRUNC, mode)  
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  This function is a problem because it is 
possible to unintentionally delete a file or 
enter a potentially unstable race 
condition. 

  creat() is vulnerable to TOCTOU 
attacks. The existence of a call to this 
function should be flagged regardless of 
whether a "check" function precedes it. 

cuserid API Abuse cuserid() generates a character-string 
representation of the username 
corresponding to the effective user ID of 
the process. If s is a NULL pointer, this 
representation is generated in an internal 
static area, the address of which is 
returned. Otherwise, s is assumed to point 
to an array of at least L_cuserid 
characters; the representation is left in this 
array. The constant L_cuserid is defined 
in the <stdio.h> header file. 

  cuserid() should be considered 
obsolete. 

  This function has been or will be 
deprecated in several systems (e.g., 
HPUnix, ISO POSIX-1). 

  Additionally this function has changed 
capability within a given OS (HP). 

  Therefore, in all cases, convert to 
getpwuid (getuid()), getpwuid 
(geteuid()), or getlogin(), depending 
on which username is desired. 

db_ initialize Time and State Watch out when files are passed in as 
pathnames. 

dbm_open Time and State Can be involved in a race condition if you 
open things after a poor check. For 
example, don't check to see if something 
is not a symbolic link before opening it. 
Open it, then check by querying the 
resulting object. Don't run tests on 
symbolic filenames. 
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dbminit Time and State TOCTOU problems when opening a file. 

dirname Time and State Note: dirname, basename functions 
should be analyzed together. 

  The dirname() function takes a pointer 
to a character string that contains a 
pathname, and returns a pointer to a string 
that is a pathname of the parent directory 
of that file. Trailing '/' characters in the 
path are not counted as part of the path. 

  If path does not contain a '/', then 
dirname() returns a pointer to the string 
".". If path is a null pointer or points to an 
empty string, dirname() returns a pointer 
to the "." string . 

  A call to dirname() should be flagged if 
the argument (the directory name) is used 
previously in a "check" category call. 

dlopen Time and State Take care when accessing files from 
passed-in pathnames; they are vulnerable 
to symbolic linking. 

drand48 erand48 Security Feature The random function is a Linear 
Congruential Generator (LCG) used to 
create pseudorandom integers. That by 
itself is not a security issue. However, 
how the numbers are used can be a 
problem. The algorithm that generates the 
numbers is well known, the range of 
numbers generated is very small (in a 
cryptographic context), and the generated 
numbers can be guessed with reasonable 
ease. Hence, if the pseudorandom 
numbers are used as the basis for 
encryption computations, then it becomes 
a security problem. There is simply not 
enough randomness or entropy in the 
pseudorandom numbers generated by the 
LCGs for them to be used in high-security 
encryption. 

execl execle execlp API Abuse The exec() class of functions is used for 
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executing a file as a process image. 

  The exec() family of calls is vulnerable 
to TOCTOU attacks. 

  A call to an exec() family function 
should be flagged if the first argument 
(the directory or filename) is used earlier 
in a "check" category call. 

  Path-searching exec functions are 
susceptible to malicious programs 
inserted into the search path. 

  The APIs execlp, execvp, popen, and 
system are usually implemented through 
a shell or exhibit shell-like characteristics. 
If user input can affect the arguments to 
the function, a malicious user could 
change or add commands to be run. 

  These functions search the path if a full 
path to the program is not specified. 
When using these functions, always 
specify the full path to the program. The 
Windows _exec and system family of 
functions is also vulnerable in the same 
manner. Also be sure to include the file 
extension (.exe, .com, .bat) to 
prevent unwanted matches. 

execv execve execvp API Abuse The exec() class of functions is used for 
executing a file as a process image. 

  The exec() family of calls is vulnerable 
to TOCTOU attacks. 

  A call to an exec() family function 
should be flagged if the first argument 
(the directory or filename) is used earlier 
in a "check" category call. 

  Path-searching exec functions are 
susceptible to malicious programs 
inserted into the search path. 

  The APIs execlp, execvp, popen, and 
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system are usually implemented through 
a shell or exhibit shell-like characteristics. 
If user input can affect the arguments to 
the function, a malicious user could 
change or add commands to be run. 

  These functions search the path if a full 
path to the program is not specified. 
When using these functions, always 
specify the full path to the program. The 
Windows _exec and system family of 
functions is also vulnerable in the same 
manner. Also be sure to include the file 
extension (.exe, .com, .bat) to 
prevent unwanted matches. 

fattach fchmod 
fchown fdetatch 

Time and State Care must be taken when accessing files 
passed in pathnames. ACL-based race 
conditions are possible. 

fdopen Time and State Can be involved in a race condition if you 
open things after a poor check. For 
example, you don't check to see if 
something is not a symbolic link before 
opening it. Open it, then check by 
querying the resulting object. Don't run 
tests on symbolic filenames. 

fgetc Input Validation 
and 
Representation 

Be careful not to introduce a buffer 
overflow when using a loop. 

fgets Input Validation 
and 
Representation 

Low risk of buffer overflows. 

fopen Time and State The fopen() function, used to open files, 
is vulnerable to several attacks. 

  First, if proper checks are not made, an 
attacker could replace an important file, 
such as a password file, causing the 
program to read and process incorrect 
data. The function is also vulnerable to 
TOCTOU attacks, where an attacker can 
modify a file between execution of a 
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check function and a use function. 

  Note: On Windows platforms, the APIs 
_tfopen and _wfopen are synonymous 
with fopen. 

fprintf Input Validation 
and 
Representation 

The printf family of functions is 
susceptible to a variety of format string 
and buffer overflow attacks. Flag any 
instance of the printf() family of 
functions in the code. Determine whether 
or not the format string is being provided 
through some input channel. If it is using 
a single argument, this is a definite 
vulnerability. Replace the code with the 
"fix" section. 

  If the first argument is a string literal 
constant, this rule does not apply. 

  If the first argument is a variable string, 
try to determine if it is user supplied. If 
so, it will be more difficult to determine 
whether it is vulnerable to the threat or 
not. If it is influenced by any data that 
comes into the current function, it should 
be flagged as a (potentially false positive) 
vulnerability. 

  All of these functions have potential 
format string problems. Some (as marked) 
also have potential BO problems when 
they write their output to strings. 

fread Input Validation 
and 
Representation 

Check to make sure malicious input can 
have no ill effect. 

freopen Time and State The freopen() function first attempts to 
flush the stream and close any file 
descriptor associated with stream. Failure 
to flush or close the file successfully is 
ignored. The error and end-of-file 
indicators for the stream are cleared. 

  The freopen() function opens the file 
whose pathname is the string pointed to 
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by filename and associates the stream 
pointed to by stream with it. The mode 
argument is used just as in fopen(). 

  freopen() is vulnerable to TOCTOU 
attacks. A call to freopen() should be 
flagged if the first argument (the directory 
or filename) is used earlier in a "check" 
category call. 

  On Windows platforms the APIs 
_freopen, _tfreopen, and _wfreopen 
are synonymous with freopen. 

fscanf Input Validation 
and 
Representation 

The scanf family of functions scans 
input according to a format as described 
below. This format may contain 
conversion specifiers; the results from 
such conversions, if any, are stored 
through the pointer arguments. The scanf 
function reads input from the standard 
input stream stdin, fscanf reads input 
from the stream pointer stream, and 
sscanf reads its input from the character 
string pointed to by str. 

  The vulnerability of the scanf() function 
resides in the fact that it has no bounds-
checking capability. If the string that is 
being accepted is longer than the buffer 
size, the characters will overflow into the 
adjoining memory space. This is a classic 
buffer overflow security vulnerability 
problem. 

  scanf() function is susceptible to buffer 
overflow.  

fstat ftok ftw Time and State Verify file states before file operations; 
they are susceptible to races. (Also make 
sure that buffers are large enough.) 

fwprintf Input Validation 
and 
Representation 

The printf family of functions is 
susceptible to a variety of format string 
and buffer overflow attacks. Flag any 
instance of the printf() family of 
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functions in the code. Determine whether 
or not the format string is being provided 
through some input channel. If it is using 
a single argument, this is a definite 
vulnerability. Replace the code with the 
"fix" section. 

  If the first argument is a string literal 
constant, this rule does not apply. 

  If the first argument is a variable string, 
try to determine if it is user supplied. If 
so, it will be more difficult to determine 
whether it is vulnerable to the threat or 
not. If it is influenced by any data that 
comes into the current function, it should 
be flagged as a (potentially false positive) 
vulnerability. 

  All of these functions have potential 
format string problems. Some (as marked) 
also have potential BO problems when 
they write their output to strings. 

getattr Time and State Subject to race on reference to device by 
name. 

getc Input Validation 
and 
Representation 

The getc() function is used to get the 
next character from the standard input 
stream. (The function returns the 
character read as an unsigned char cast to 
an int or EOF on end of file or error.) 
Other similar functions get the next 
character from other input streams (e.g., 
from files). 

  The getc() function, in isolation, is not a 
security risk. However, the function is 
often misused when filling buffers. Often, 
programmers will repeatedly call getc() 
and copy the characters into a buffer until 
a certain character is encountered, without 
checking the current position in the 
buffer. This can easily cause a buffer 
overflow. 
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  Also, it is easy to forget to include the 
null terminator at the end of the string in 
the buffer. Otherwise, the unterminated 
string can cause problems such as access 
violations. 

getchar Input Validation 
and 
Representation 

The getc() function is used to get the 
next character from the standard input 
stream. (The function returns the 
character read as an unsigned char cast to 
an int or EOF on end of file or error.) 
Other similar functions get the next 
character from other input streams (e.g., 
from files). 

  The getc() function, in isolation, is not a 
security risk. However, the function is 
often misused when filling buffers. Often, 
programmers will repeatedly call getc() 
and copy the characters into a buffer until 
a certain character is encountered, without 
checking the current position in the 
buffer. This can easily cause a buffer 
overflow. 

  Also, it is easy to forget to include the 
null terminator at the end of the string in 
the buffer. Otherwise, the unterminated 
string can cause problems such as access 
violations. 

getenv Input Validation 
and 
Representation 

Value of variables stored in character 
array, return value size unknown. 

getlogin  The results of getlogin() should not be 
trusted. 

  The getlogin() function returns a 
pointer to a string that contains the name 
of the user associated with the calling 
process. The function is not reentrant, 
meaning that if it is called from another 
process, the contents are not locked out 
and the value of the string can be changed 
by another process. This makes it very 
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risky to use because the username can be 
changed by other processes, so the results 
of the function cannot be trusted. 

  Also, according to the Linux man page: 
"Unfortunately, it is often rather easy to 
fool getlogin(). Sometimes it does not 
work at all, because some program 
messed up the utmp file. Often, it gives 
only the first 8 characters of the login 
name. The user currently logged in on the 
controlling tty of our program need not be 
the user who started it. Avoid 
getlogin() for security-related 
purposes." 

  Guidance: Using names for security 
purposes is not advised. Names are easy 
to forge and can have overlapping user 
IDs, potentially causing confusion or 
impersonation. 

getopt getopt_long 
getopt_long_only 

Input Validation 
and 
Representation 

Some implementations of getopt() are 
vulnerable to internal buffer overflows. 

  The getopt(int argc, char *const 
argv[], const char *optstring) 
function is used to parse the command 
line parameters. The level of security risk 
is implementation dependent, in that for 
some C packages, it is possible for a 
buffer overflow to occur. The third 
argument of the function is a list of option 
characters. If the option character is 
followed by a colon, then the option 
requires an argument; two consecutive 
colons means the argument is optional. 
This is used to specify options, such as -
w, in the command line. 

  Flag instances of getopt(), and 
getopt_long(). Look for nearby bounds 
checks. 

  There is a portability issue for old 
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platforms. Check documentation for your 
particular platform. 

getpass Input Validation 
and 
Representation 

Some versions of getpass() allow 
overflow of an internal buffer. 

  The getpass function is designed to 
accept a password from the console, 
which is a null-terminated string. The 
echo is off, so it will not appear on the 
screen. It can lead to a buffer overflow 
problem, but that is very implementation 
dependent. In some implementations of 
the function, there is a maximum length 
defined for the password, and in other 
implementations, the password can be of 
arbitrary length. 

gets Input Validation 
and 
Representation 

The gets() function is intrinsically 
unsafe and should not be used. 

  The gets() function reads characters 
from stdin and stores them in a buffer 
until a newline or EOF character is 
encountered. There is no way to specify 
the size of the buffer, so this function is 
very vulnerable to buffer overflows. 

jrand48 Security Feature The random function is a Linear 
Congruential Generator (LCG) used to 
create pseudorandom integers. That by 
itself is not a security issue. However, 
how the numbers are used can be a 
problem. The algorithm that generates the 
numbers is well known, the range of 
numbers generated is very small (in a 
cryptographic context), and the generated 
numbers can be guessed with reasonable 
ease. Hence, if the pseudorandom 
numbers are used as the basis for 
encryption computations, then it becomes 
a security problem. There is simply not 
enough randomness or entropy in the 
pseudorandom numbers generated by the 
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LCGs for them to be used in high-security 
encryption. 

krb_recvauth 
krb_set_tkt_string 

Time and State Kerberos functions related to keys and all 
are susceptible to races. 

kvm_open Encapsulation Susceptible to races. 

lchown Time and State The chown() function sets the owner ID 
and group ID of the file specified by path 
or referenced by the open file descriptor 
fildes to owner and group, respectively. 
If owner or group is specified as -1, 
chown() does not change the 
corresponding ID of the file. 

  The lchown() function sets the owner ID 
and group ID of the named file in the 
same manner as chown(), unless the 
named file is a symbolic link. In this case, 
lchown() changes the ownership of the 
symbolic link file itself, while chown() 
changes the ownership of the file or 
directory to which the symbolic link 
refers. 

  The fchownat() function sets the owner 
ID and group ID of the named file in the 
same manner as chown(). If, however, 
the path argument is relative, the path is 
resolved relative to the fildes argument 
rather than the current working directory. 
If the fildes argument has the special 
value FDCWD, the path resolution reverts 
back to current working directory relative. 
If the flag argument is set to SYMLNK, 
the function behaves like lchown() with 
respect to symbolic links. If the path 
argument is absolute, the fildes 
argument is ignored. If the path argument 
is a null pointer, the function behaves like 
fchown(). 

  If chown(), lchown(), fchown(), or 
fchownat() is invoked by a process other 
than super-user, the set-user-ID and set-
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group-ID bits of the file mode, S_ISUID 
and S_ISGID, respectively, are cleared. 

  chown() is vulnerable to TOCTOU 
attacks. The existence of a call to this 
function should be flagged regardless of 
whether a "check" function precedes it. 

link Time and State Can lead to Process/File interaction race 
conditions (TOCTOU). 

lrand48 Security Feature The random function is a Linear 
Congruential Generator (LCG) used to 
create pseudorandom integers. That by 
itself is not a security issue. However, 
how the numbers are used can be a 
problem. The algorithm that generates the 
numbers is well known, the range of 
numbers generated is very small (in a 
cryptographic context), and the generated 
numbers can be guessed with reasonable 
ease. Hence, if the pseudorandom 
numbers are used as the basis for 
encryption computations, then it becomes 
a security problem. There is simply not 
enough randomness or entropy in the 
pseudorandom numbers generated by the 
LCGs for them to be used in high-security 
encryption. 

lstat Time and State The stat() function obtains information 
about the file pointed to by path. Read, 
write, or execute permission of the named 
file is not required, but all directories 
listed in the pathname leading to the file 
must be searchable. 

  lstat() is like stat() except in the case 
where the named file is a symbolic link, 
in which case lstat() returns 
information about the link, while stat() 
returns information about the file the link 
references. 

  fstat() obtains the same information 
about an open file known by the file 
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descriptor fd. 

  stat() is used in combination with other 
functions that manipulate the file being 
queried (e.g., mkdir is vulnerable to 
TOCTOU attacks). 

  A call to stat() should be flagged if the 
first argument (the directory name) is 
used later in a use category call. 

mbstowcs Input Validation 
and 
Representation 

Internal stack allocated buffer can be 
overflowed on some versions. Also watch 
for the NULL terminator. 

memcpy Input Validation 
and 
Representation 

Many functions are susceptible to off-by-
one and bounds-checking errors. 

  There are many generic types of errors 
that can apply to usage of a wide variety 
of functions. 

  These include: 

  • Using a function that does not 
permit one to specify the size of a 
buffer to prevent overflows. 

• Mis-specifying the size of a buffer 
or the amount of data to be 
written. Off-by-one errors are 
common. 

• Failing to plan for correct 
behavior when input is larger than 
expected. 

• Failing to allow space for a 
terminating null character. 

• Failing to ensure that a 
terminating null character is 
present; many standard functions 
consistently experience this 
failure. 

• Specifying the size of a buffer or 
the amount of data to be 
transferred using incorrect units. 
This is particularly a problem with 
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multibyte strings. On the 
Windows platform, these 
functions tend to include a "W" in 
the name. 

• Assuming the wrong semantics 
for a parameter that controls data 
transfer and prevents buffer 
overflows. Because various 
functions use the buffer size, 
buffer size minus one, the 
remaining space in the buffer, etc., 
it is important to understand the 
bounding semantics for each 
function. 

  Note that while some functions, such as 
strcpy(), are intrinsically dangerous, 
even the "safe" functions like strncpy() 
are still susceptible to subtle errors if 
bounds checks are not done properly. 

mkdir mkdirp Time and State The mkdir() function attempts to create a 
new empty directory. It is generally 
vulnerable to classic TOCTOU attacks. 

  A call to mkdir() should be flagged if the 
first argument (the directory) is used 
earlier in a "check" category call. 

mknod Time and State The mknod function creates a new file (or 
directory or special file) called pathname 
with theMode as the mode. The file type 
and permissions of the new file are 
initialized from the mode. mknod() is 
often used to create device files. 

  mknod() is vulnerable to TOCTOU 
attacks. 

  A call to mknod() should be flagged if the 
first argument (the filename) is used 
previously in a "check" category call. 

mkstemp Time and State Unique temporary filenames may not 
have correct file modes. Use with care. 
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mktemp Time and State The mktemp(char *template) creates a 
unique temporary file using the input 
template. The last six characters of the 
template must be XXXXXX, and these 
are replaced with a string that will make 
the filename unique. THIS FUNCTION 
SHOULD NOT BE USED. 

  Some implementations replace the 
XXXXXX combination with the current 
process ID followed by a single letter. 
With only 26 possible values, it is 
relatively easy for an attacker to guess the 
filename and access the contents. It is also 
possible for a race condition to exist 
between testing whether the name exists 
and opening the file. 

  mktemp() is vulnerable to TOCTOU 
attacks. A call to mktemp() should be 
unilaterally flagged. 

  If this call must be used and if a "check 
present" is done, then a race condition is 
possible. This function creates a file; as 
such there is a vulnerability (based on the 
above description) that the filename can 
be "guessed." 

mount Time and State Can lead to Process/File interaction race 
conditions (and runs as root). 

mrand48 Security Feature The random function is a Linear 
Congruential Generator (LCG) used to 
create pseudorandom integers. That by 
itself is not a security issue. However, 
how the numbers are used can be a 
problem. The algorithm that generates the 
numbers is well known, the range of 
numbers generated is very small (in a 
cryptographic context), and the generated 
numbers can be guessed with reasonable 
ease. Hence, if the pseudorandom 
numbers are used as the basis for 
encryption computations, then it becomes 
a security problem. There is simply not 
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enough randomness or entropy in the 
pseudorandom numbers generated by the 
LCGs for them to be used in high-security 
encryption. 

nftw nis_getserv -
list nis_mkdir 
nis_ping nis_rmdir 
nlist 

Time and State Susceptible to race conditions. Watch for 
file substitution. 

nrand48 Security Feature The random function is a Linear 
Congruential Generator (LCG) used to 
create pseudorandom integers. That by 
itself is not a security issue. However, 
how the numbers are used can be a 
problem. The algorithm that generates the 
numbers is well known, the range of 
numbers generated is very small (in a 
cryptographic context), and the generated 
numbers can be guessed with reasonable 
ease. Hence, if the pseudorandom 
numbers are used as the basis for 
encryption computations, then it becomes 
a security problem. There is simply not 
enough randomness or entropy in the 
pseudorandom numbers generated by the 
LCGs for them to be used in high-security 
encryption. 

open Time and State The open function establishes a 
connection between a file and a file 
descriptor. Pathname is the name of the 
file to open, and fileFlags is the bitwise 
OR of a series of constants used to 
specify the file access modes. An optional 
additional input is used to specify the 
permissions, such as read-only. 

  open() is vulnerable to TOCTOU 
attacks. 

  A call to open() should be flagged if the 
first argument (the directory or filename) 
is used earlier in a "check" category call. 

opendir Time and State The opendir() function opens a 
directory stream corresponding to the 
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directory name and returns a pointer to 
the directory stream. The stream is 
positioned at the first entry in the 
directory. 

  opendir() is vulnerable to TOCTOU 
attacks. 

  A call to opendir() should be flagged if 
the argument (the directory name) is used 
previously in a "check" category call. 

openlog Time and State Can lead to Process/File interaction race 
conditions (TOCTOU category B). 

pathconf Time and State The pathconf function is used to provide 
methods for the application to determine 
the current value of a configurable limit 
or option that is associated with a file or 
directory. The first input is the name of a 
file or directory, and the second input is a 
constant that represents the configurable 
system limit or option to be returned. 

  pathconf() is vulnerable to TOCTOU 
attacks. The existence of a call to this 
function should unilaterally be flagged. 

pathfind Time and State Can lead to Process/File interaction race 
conditions (TOCTOU problems). 

popen Encapsulation Path-searching exec functions are 
susceptible to malicious programs 
inserted into the search path. 

  The APIs execlp, execvp, popen, and 
system are usually implemented through 
a shell or exhibit shell-like characteristics. 
If user input can affect the arguments to 
the function, a malicious user could 
change or add commands to be run. 

  These functions search the path if a full 
path to the program is not specified. 
When using these functions, always 
specify the full path to the program. The 
Windows _exec and system family of 
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functions is also vulnerable in the same 
manner. Also be sure to include the file 
extension (.exe, .com, .bat) to 
prevent unwanted matches. 

printf Input Validation 
and 
Representation 

The printf family of functions is 
susceptible to a variety of format string 
and buffer overflow attacks. Flag any 
instance of the printf() family of 
functions in the code. Determine whether 
or not the format string is being provided 
through some input channel. If it is using 
a single argument, this is a definite 
vulnerability. Replace the code with the 
"fix" section. 

  If the first argument is a string literal 
constant, this rule does not apply. 

  If the first argument is a variable string, 
try to determine if it is user supplied. If 
so, it will be more difficult to determine 
whether it is vulnerable to the threat or 
not. If it is influenced by any data that 
comes into the current function, it should 
be flagged as a (potentially false positive) 
vulnerability. 

  All of these functions have potential 
format string problems. Some (as marked) 
also have potential BO problems when 
they write their output to strings. 

rand random Security Feature The random function is a Linear 
Congruential Generator (LCG) used to 
create pseudorandom integers. That by 
itself is not a security issue. However, 
how the numbers are used can be a 
problem. The algorithm that generates the 
numbers is well known, the range of 
numbers generated is very small (in a 
cryptographic context), and the generated 
numbers can be guessed with reasonable 
ease. Hence, if the pseudorandom 
numbers are used as the basis for 
encryption computations, then it becomes 
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a security problem. There is simply not 
enough randomness or entropy in 
pseudorandom numbers generated by 
LCGs for them to be used in high-security 
encryption. 

read Input Validation 
and 
Representation 

The read function attempts to read nbyte 
bytes from the file associated with the 
open file descriptor, fildes, into the 
buffer pointed to by buf. 

  If nbyte is 0, read will return 0 and have 
no other results. 

  On files that support seeking (e.g., a 
regular file), the read starts at a position 
in the file given by the file offset 
associated with fildes. The file offset is 
incremented by the number of bytes 
actually read. 

  Files that do not support seeking (e.g., 
terminals) always read from the current 
position. The value of a file offset 
associated with such a file is undefined. 

  If fildes refers to a socket, read is 
equivalent to recv (3SOCKET) with no 
flags set. 

  No data transfer will occur past the 
current end-of-file. If the starting position 
is at or after the end-of-file, 0 will be 
returned. If the file refers to a device 
special file, the result of subsequent read 
requests is implementation-dependent. 

  If the value of nbyte is greater than 
SSIZE_MAX, the result is 
implementation-dependent. 

  The developer must ensure that the buffer 
is large enough to hold the number of 
bytes read. This is most commonly a 
problem when an input file stream 
contains a "count" for number of bytes to 
follow. If the attacker can corrupt this and 
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specify a number of bytes significantly 
larger than the amount of buffer space 
available, the attacker could overrun a 
buffer. 

readlink Time and State Can lead to Process/File interaction race 
conditions (TOCTOU category A). 

realpath Input Validation 
and 
Representation 
plus Time and 
State 

realpath expands all symbolic links and 
resolves references to '/./', '/../', and extra 
'/' characters in the null-terminated string 
named by path and stores the 
canonicalized absolute pathname in the 
buffer of size PATH_MAX named by 
resolved_path. The resulting path will 
have no symbolic link, '/./', or '/../' 
components. 

  Never use this function (or do so at very 
high potential risk). It is broken by design 
since it is impossible to determine a 
suitable size for the output buffer. 
According to POSIX a buffer of size 
PATH_MAX suffices, but PATH_MAX 
need not be a defined constant and may 
have to be obtained using pathconf(). 
And asking pathconf() does not really 
help, since on the one hand, POSIX warns 
that the result of pathconf() may be 
huge and unsuitable for mallocing 
memory. And on the other hand, 
pathconf() may return -1 to signify that 
PATH_MAX is not bounded. 

  The libc4 and libc5 implementation 
contains a buffer overflow (fixed in libc-
5.4.13). Thus, suid programs like mount 
need a private version. 

recv recvfrom 
recvmsg 

Input Validation 
and 
Representation 

May receive input from untrusted source. 
May cause buffer overflow. 

remove Time and State The remove() function makes a 
file/directory inaccessible by that name. 
An attempt to open that file/directory 
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using that name does not work unless you 
recreate it. If the file is open, the 
subroutine does not remove it. 

  If the file has multiple links, the link 
count of files linked to the removed file is 
reduced by 1. 

  For files, remove() is identical to 
unlink(). For directories, remove() is 
identical to rmdir(). 

  remove() is vulnerable to TOCTOU 
attacks. 

  A call to remove() should be flagged if 
the first argument (the directory or 
filename) is used earlier in a "check" 
category call. 

rename Time and State The rename() function changes the name 
of a file. The old argument points to the 
pathname of the file to be renamed. The 
new argument points to the new pathname 
of the file. 

  If old and new both refer to the same 
existing file, the rename() function 
returns successfully and performs no 
other action. 

  If old points to the pathname of a file that 
is not a directory, new must not point to 
the pathname of a directory. If the link 
named by new exists, it will be removed 
and old will be renamed to new. In this 
case, a link named new must remain 
visible to other processes throughout the 
renaming operation and will refer to 
either the file referred to by new or the 
file referred to as old before the operation 
began. 

  If old points to the pathname of a 
directory, new must not point to the 
pathname of a file that is not a directory. 
If the directory named by new exists, it 
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will be removed and old will be renamed 
to new. In this case, a link named new 
will exist throughout the renaming 
operation and will refer to either the file 
referred to by new or the file referred to 
as old before the operation began. Thus, if 
new names an existing directory, it must 
be an empty directory. 

  The new pathname must not contain a 
path prefix that names old. Write access 
permission is required for both the 
directory containing old and the directory 
containing new. If old points to the 
pathname of a directory, write access 
permission is required for the directory 
named by old, and, if it exists, the 
directory named by new. 

  If the directory containing old has the 
sticky bit set, at least one of the following 
conditions must be true: 

  • The user must own old. 
• The user must own the directory 

containing old. 
• Old must be writable by the user. 

  A call to rename() should be flagged if 
either argument is referenced earlier in a 
"check" category call. 

rmdir rmdirp Time and State The rmdir function attempts to remove a 
directory. It is generally vulnerable to 
classic TOCTOU attacks. 

  A call to rmdir() should be flagged if the 
first argument (the directory) is used 
earlier in a "check" category call. 

scandir Time and State The scandir() function scans the 
directory dir, calling filter() on each 
directory entry. Entries for which 
filter() returns non-zero are stored in 
strings allocated via malloc(); sorted 
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using qsort() with the comparison 
function compar(); and collected in array 
namelist, which is allocated via 
malloc(). If filter is NULL, all entries 
are selected. 

  The alphasort() and versionsort() 
functions can be used as the comparison 
function compar(). The former sorts 
directory entries using strcoll(3); the 
latter using strverscmp(3) on the strings 
(*a)->d_name and (*b)->d_name. 

  This function is in essence a TOCTOU 
security vulnerability. It can be used to 
return information about the directory 
structure of a system. If an attacker can 
select the value of dirname (due to the 
classic "check"/"use" scenario), then it is 
possible for the attacker to determine 
what directories exist on a system. 

  A call to scandir() should be flagged if 
the argument (the directory name) is used 
previously in a "check" category call. 

scanf Input Validation 
and 
Representation 

The scanf family of functions scans 
input according to a format as described 
below. This format may contain 
conversion specifiers; the results from 
such conversions, if any, are stored 
through the pointer arguments. The scanf 
function reads input from the standard 
input stream stdin, fscanf reads input 
from the stream pointer stream, and 
sscanf reads its input from the character 
string pointed to by str. 

  The vulnerability of the scanf() function 
resides in the fact that it has no bounds-
checking capability. If the string that is 
being accepted is longer than the buffer 
size, the characters will overflow into the 
adjoining memory space. This is a classic 
buffer overflow security vulnerability 
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problem. 

  The scanf() function is susceptible to 
buffer overflow. 

select Input Validation 
and 
Representation 

Adding a +1 to MAX_FDS can cause a 1-
bit heap overflow. 

snprintf Input Validation 
and 
Representation 

Many functions are susceptible to off-by-
one and bounds-checking errors. 

  There are many generic types of errors 
that can apply to usage of a wide variety 
of functions. 

  These include: 

  • Using a function that does not 
permit one to specify the size of a 
buffer to prevent overflows. 

• Mis-specifying the size of a buffer 
or the amount of data to be 
written. Off-by-one errors are 
common. 

• Failing to plan for correct 
behavior when input is larger than 
expected. 

• Failing to allow space for a 
terminating null character. 

• Failing to ensure that a 
terminating null character is 
present; many standard functions 
consistently experience this 
failure. 

• Specifying the size of a buffer or 
the amount of data to be 
transferred using incorrect units. 
This is particularly a problem with 
multibyte strings. On the 
Windows platform, these 
functions tend to include a "W" in 
the name. 

• Assuming the wrong semantics 
for a parameter that controls data 
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transfer and prevents buffer 
overflows. Because various 
functions use the buffer size, 
buffer size minus one, the 
remaining space in the buffer, etc., 
it is important to understand the 
bounding semantics for each 
function. 

  Note that while some functions, such as 
strcpy(), are intrinsically dangerous, 
even the "safe" functions like strncpy() 
are still susceptible to subtle errors if 
bounds checks are not done properly. 

socket API Abuse Watch for cases when root process allows 
its children to inherit privilege. An 
inherited socket could enable privileged 
connections from untrusted machines. 

sprintf Input Validation 
and 
Representation 

The sprintf function is used to build 
strings by embedding format field 
specifiers in a string and having the data 
converted into the equivalent string form 
and then substituted for the specifier. 

  {v} sprintf() is susceptible to buffer 
overflow if used improperly. Mark any 
instance of vsprintf() and sprintf() 
as vulnerabilities. Replace calls with {v} 
snprintf() or change the format string. 

  Check the format string to see if it 
includes "%.111s" formatting limit. 

  The return result of sprintf() tells how 
many characters were actually written. If 
the number of chars is larger than the 
original buffer, that means memory has 
been overwritten and the program state is 
invalid. 

srand srand48 Security Feature The random function is a Linear 
Congruential Generator (LCG) used to 
create pseudorandom integers. That by 
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itself is not a security issue. However, 
how the numbers are used can be a 
problem. The algorithm that generates the 
numbers is well known, the range of 
numbers generated is very small (in a 
cryptographic context), and the generated 
numbers can be guessed with reasonable 
ease. Hence, if the pseudorandom 
numbers are used as the basis for 
encryption computations, then it becomes 
a security problem. There is simply not 
enough randomness or entropy in 
pseudorandom numbers generated by 
LCGs for them to be used in high-security 
encryption. 

sscanf Input Validation 
and 
Representation 

The scanf family of functions scans 
input according to a format as described 
below. This format may contain 
conversion specifiers; the results from 
such conversions, if any, are stored 
through the pointer arguments. The scanf 
function reads input from the standard 
input stream stdin, fscanf reads input 
from the stream pointer stream, and 
sscanf reads its input from the character 
string pointed to by str. 

  The vulnerability of the scanf() function 
resides in the fact that it has no bounds-
checking capability. If the string that is 
being accepted is longer than the buffer 
size, the characters will overflow into the 
adjoining memory space. This is a classic 
buffer overflow security vulnerability 
problem. 

  The scanf() function is susceptible to 
buffer overflow. 

stat Time and State The stat() function obtains information 
about the file pointed to by path. Read, 
write, or execute permission of the named 
file is not required, but all of the 
directories listed in the pathname leading 
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to the file must be searchable. 

  lstat() is like stat() except in the case 
where the named file is a symbolic link, 
in which case lstat() returns 
information about the link, while stat() 
returns information about the file the link 
references. 

  fstat() obtains the same information 
about an open file known by the file 
descriptor fd. 

  stat() is used in combination with other 
functions that manipulate the file being 
queried (e.g., mkdir is vulnerable to 
TOCTOU attacks). 

  A call to stat() should be flagged if the 
first argument (the directory name) is 
used later in a use category call. 

statvfs Time and State Can lead to Process/File interaction race 
conditions (TOCTOU). 

strcadd Input Validation 
and 
Representation 

Low risk of buffer overflows. 

strcat Input Validation 
and 
Representation 

The strcat() function is unsafe and 
should not be used. 

  The strcat() function will concatenate 
two strings by placing the second input on 
the end of the first. If the space in the first 
buffer is not capable of storing both 
strings, the data of the second string will 
overflow into the adjacent memory space. 

strccpy Input Validation 
and 
Representation 

Many functions are susceptible to off-by-
one and bounds-checking errors. 

  There are many generic types of errors 
that can apply to usage of a wide variety 
of functions. 
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  These include: 

  • Using a function that does not 
permit one to specify the size of a 
buffer to prevent overflows. 

• Mis-specifying the size of a buffer 
or the amount of data to be 
written. Off-by-one errors are 
common. 

• Failing to plan for correct 
behavior when input is larger than 
expected. 

• Failing to allow space for a 
terminating null character. 

• Failing to ensure that a 
terminating null character is 
present; many standard functions 
consistently experience this 
failure. 

• Specifying the size of a buffer or 
the amount of data to be 
transferred using incorrect units. 
This is particularly a problem with 
multibyte strings. On the 
Windows platform, these 
functions tend to include a "W" in 
the name. 

• Assuming the wrong semantics 
for a parameter that controls data 
transfer and prevents buffer 
overflows. Because various 
functions use the buffer size, 
buffer size minus one, the 
remaining space in the buffer, etc., 
it is important to understand the 
bounding semantics for each 
function. 

  Note that while some functions, such as 
strcpy(), are intrinsically dangerous, 
even the "safe" functions like strncpy() 
are still susceptible to subtle errors if 
bounds checks are not done properly. 
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strcpy Input Validation 
and 
Representation 

The string copy library functions are 
vulnerable to buffer overflow attack. 

  strcpy() is the classic buffer overflow 
attack. Any variant of strcpy or any 
routine that behaves like it, copying a C-
string from one buffer to another, is 
vulnerable to the same misuse and attack 
patterns. 

  The destination buffer must be big 
enough to hold the source string plus the 
null (\0) terminating character. Even if the 
destination buffer is large enough, there is 
a chance that the source buffer might not 
be null terminated and thus might 
overrun. Many of the string copy 
functions do not check buffer sizes and 
simply look for a null character to 
determine end of input. This gives an 
attacker an opportunity to send input 
larger than the buffer size, overflowing 
the buffer. The attacker can exploit this to 
implement a denial-of-service (DoS) or 
buffer overflow attack. 

streadd strecpy Input Validation 
and 
Representation 

The strecpy() and streadd() functions 
are dangerous unless care is taken to 
allocate a large enough output buffer. 

  The strecpy(char *theTarget, const 
char *theSource, const char 
*exceptions) function is used to copy 
an input string into a target, expanding 
nongraphic characters to their escape 
sequence representations. The string is 
copied until a null byte is encountered. 
The third argument is a list of characters 
that are not to be expanded. A pointer to 
the first byte of the target buffer is 
returned. 

  This function is a security risk because 
there is the potential to overflow the 
target buffer. The risk for this function is 
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greater than that for the functions that 
compress because a simple test of the size 
of the source string is not enough to 
guarantee that the target is large enough. 

strncpy Input Validation 
and 
Representation 

Many functions are susceptible to off-by-
one and bounds-checking errors. 

  There are many generic types of errors 
that can apply to usage of a wide variety 
of functions. 

  These include: 

  • Using a function that does not 
permit one to specify the size of a 
buffer to prevent overflows. 

• Mis-specifying the size of a buffer 
or the amount of data to be 
written. Off-by-one errors are 
common. 

• Failing to plan for correct 
behavior when input is larger than 
expected. 

• Failing to allow space for a 
terminating null character. 

• Failing to ensure that a 
terminating null character is 
present; many standard functions 
consistently experience this 
failure. 

• Specifying the size of a buffer or 
the amount of data to be 
transferred using incorrect units. 
This is particularly a problem with 
multibyte strings. On the 
Windows platform, these 
functions tend to include a "W" in 
the name. 

• Assuming the wrong semantics 
for a parameter that controls data 
transfer and prevents buffer 
overflows. Because various 
functions use the buffer size, 
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buffer size minus one, the 
remaining space in the buffer, etc., 
it is important to understand the 
bounding semantics for each 
function. 

  Note that while some functions, such as 
strcpy(), are intrinsically dangerous, 
even the "safe" functions like strncpy() 
are still susceptible to subtle errors if 
bounds checks are not done properly. 

strtrns Input Validation 
and 
Representation 

The strtrns function will take 
currentString and replace every instance 
of oldsegment with newsegment. The 
constructed string will be placed in 
newString. 

  This function is a security risk because it 
is possible to overflow the newString 
buffer. If the currentString buffer is larger 
than the newString buffer, then an 
overflow will occur. 

  Flag all instances of strtrns() as a 
potential vulnerability. 

  Identify bounds checks for the function. 

swprintf Input Validation 
and 
Representation 

The printf family of functions is 
susceptible to a variety of format string 
and buffer overflow attacks. Flag any 
instance of the printf() family of 
functions in the code. Determine whether 
or not the format string is being provided 
through some input channel. If it is using 
a single argument, this is a definite 
vulnerability. Replace the code with the 
"fix" section. 

  If the first argument is a string literal 
constant, this rule does not apply. 

  If the first argument is a variable string, 
try to determine if it is user supplied. If 
so, it will be more difficult to determine 
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whether it is vulnerable to the threat or 
not. If it is influenced by any data that 
comes into the current function, it should 
be flagged as a (potentially false positive) 
vulnerability. 

  All of these functions have potential 
format string problems. Some (as marked) 
also have potential BO problems when 
they write their output to strings. 

symlink Time and State Can lead to Process/File interaction race 
conditions (TOCTOU Category A). 

syslog Input Validation 
and 
Representation 

syslog() has internal buffer limitations, 
so size of input should be bounded. 

  syslog() is used to log system messages. 
It has internal buffer limitations that are 
implementation dependent. 

system Encapsulation Path-searching exec functions are 
susceptible to malicious programs 
inserted into the search path. 

  The APIs execlp, execvp, popen, and 
system are usually implemented through 
a shell or exhibit shell-like characteristics. 
If user input can affect the arguments to 
the function, a malicious user could 
change or add commands to be run. 

  These functions search the path if a full 
path to the program is not specified. 
When using these functions, always 
specify the full path to the program. The 
Windows _exec and system family of 
functions is also vulnerable in the same 
manner. Also be sure to include the file 
extension (.exe, .com, .bat) to 
prevent unwanted matches. 

t_open Time and State The first step in initializing a transport 
endpoint. Watch for sensitive data going 
to untrusted parties. 



 379

API Kingdom Description 

Incorrect temporary file usage can lead to 
TOCTOU and accessibility 
vulnerabilities. A call to tmpfile should 
be flagged. 

tempnam Time and State 

Temporary filenames created by the 
tmpnam family of functions can be easily 
guessed by an attacker. 

tmpfile Time and State Incorrect temporary file usage can lead to 
TOCTOU and accessibility 
vulnerabilities. A call to tmpfile should 
be flagged. 

Incorrect temporary file usage can lead to 
TOCTOU and accessibility 
vulnerabilities. A call to tmpfile should 
be flagged. 

tmpnam Time and State 

Temporary filenames created by the 
tmpnam family of functions can be easily 
guessed by an attacker. 

tmpnam_r Time and State Temporary filenames created by the 
tmpnam family of functions can be easily 
guessed by an attacker. 

truncate Time and State Can lead to Process/File interaction race 
conditions (TOCTOU problems). 

ttyname API Abuse It is possible to return a nonterminated 
string. 

umask Encapsulation Setting a liberal umask can be bad when 
you exec an untrusted process. 

umount Time and State Can lead to Process/File interaction race 
conditions (TOCTOU CATEGORY A). 

unlink Time and State The unlink() function removes a link to 
a file. If path names a symbolic link, 
unlink() removes the symbolic link 
named by path and does not affect any 
file or directory named by the contents of 
the symbolic link. Otherwise, unlink() 
removes the link named by the pathname 
pointed to by path and decrements the 



 380

API Kingdom Description 

link count of the file referenced by the 
link. 

  The unlinkat() function also removes a 
link to a file. See fsattr(5). If the flag 
argument is 0, the behavior of 
unlinkat() is the same as unlink() 
except in the processing of its path 
argument. If path is absolute, unlinkat() 
behaves the same as unlink() and the 
dirfd argument is unused. If path is 
relative and dirfd has the value 
AT_FDCWD, defined in <fcntl.h>, 
unlinkat() also behaves the same as 
unlink(). Otherwise, path is resolved 
relative to the directory referenced by the 
dirfd argument. 

  If the flag argument is set to the value 
AT_REMOVEDIR, defined in 
<fcntl.h>, unlinkat() behaves the 
same as rmdir(2) except in the 
processing of the path argument as 
described above. 

  When the file's link count becomes 0 and 
no process has the file open, the space 
occupied by the file will be freed and the 
file is no longer accessible. If one or more 
processes have the file open when the last 
link is removed, the link is removed 
before unlink() or unlinkat() returns, 
but the removal of the file contents is 
postponed until all references to the file 
are closed. 

  The path argument must not name a 
directory unless the process has 
appropriate privileges and the 
implementation supports using unlink() 
and unlinkat() on directories. 

  Upon successful completion, unlink() 
and unlinkat() will mark for update the 
st_ctime and st_mtime fields of the 
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parent directory. If the file's link count is 
not 0, the st_ctime field of the file will 
be marked for update. 

utime utimes Time and State Changes timestamps. Watch use by 
setuid or setgid programs. 

utmpname utmpxname Time and State Any setuid program that runs as root or 
other authorized user can modify location 
of the files. 

vfscanf Input Validation 
and 
Representation 

The scanf family of functions scans 
input according to a format as described 
below. This format may contain 
conversion specifiers; the results from 
such conversions, if any, are stored 
through the pointer arguments. The scanf 
function reads input from the standard 
input stream stdin, fscanf reads input 
from the stream pointer stream, and 
sscanf reads its input from the character 
string pointed to by str. 

  The vulnerability of the scanf() function 
resides in the fact that it has no bounds-
checking capability. 

  If the string that is being accepted is 
longer than the buffer size, the characters 
will overflow into the adjoining memory 
space. This is a classic buffer overflow 
security vulnerability problem. 

  The scanf() function is susceptible to 
buffer overflow. 

vfwprintf Input Validation 
and 
Representation 

The printf family of functions is 
susceptible to a variety of format string 
and buffer overflow attacks. Flag any 
instance of the printf() family of 
functions in the code. Determine whether 
or not the format string is being provided 
through some input channel. If it is using 
a single argument, this is a definite 
vulnerability. Replace the code with the 
"fix" section. 
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  If the first argument is a string literal 
constant, this rule does not apply. 

  If the first argument is a variable string, 
try to determine if it is user supplied. If 
so, it will be more difficult to determine 
whether it is vulnerable to the threat or 
not. If it is influenced by any data that 
comes into the current function, it should 
be flagged as a (potentially false positive) 
vulnerability. 

  All of these functions have potential 
format string problems. Some (as marked) 
also have potential BO problems when 
they write their output to strings. 

vscanf Input Validation 
and 
Representation 

The scanf family of functions scans 
input according to a format as described 
below. This format may contain 
conversion specifiers; the results from 
such conversions, if any, are stored 
through the pointer arguments. The scanf 
function reads input from the standard 
input stream stdin, fscanf reads input 
from the stream pointer stream, and 
sscanf reads its input from the character 
string pointed to by str. 

  The vulnerability of the scanf() function 
resides in the fact that it has no bounds-
checking capability. If the string that is 
being accepted is longer than the buffer 
size, the characters will overflow into the 
adjoining memory space. This is a classic 
buffer overflow security vulnerability 
problem. 

  The scanf() function is susceptible to 
buffer overflow.  

vsnprintf Input Validation 
and 
Representation 

Many functions are susceptible to off-by-
one and bounds-checking errors. 

  There are many generic types of errors 
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that can apply to usage of a wide variety 
of functions. 

  These include: 

  • Using a function that does not 
permit one to specify the size of a 
buffer to prevent overflows. 

• Mis-specifying the size of a buffer 
or the amount of data to be 
written. Off-by-one errors are 
common. 

• Failing to plan for correct 
behavior when input is larger than 
expected. 

• Failing to allow space for a 
terminating null character. 

• Failing to ensure that a 
terminating null character is 
present; many standard functions 
consistently experience this 
failure. 

• Specifying the size of a buffer or 
the amount of data to be 
transferred using incorrect units. 
This is particularly a problem with 
multibyte strings. On the 
Windows platform, these 
functions tend to include a "W" in 
the name. 

• Assuming the wrong semantics 
for a parameter that controls data 
transfer and prevents buffer 
overflows. Because various 
functions use the buffer size, 
buffer size minus one, the 
remaining space in the buffer, etc., 
it is important to understand the 
bounding semantics for each 
function. 

  Note that while some functions, such as 
strcpy(), are intrinsically dangerous, 
even the "safe" functions like strncpy() 
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are still susceptible to subtle errors if 
bounds checks are not done properly. 

vsprintf Input Validation 
and 
Representation 

The sprintf function is used to build 
strings by embedding format field 
specifiers in a string and having the data 
converted into the equivalent string form 
and then substituted for the specifier. 

  {v}sprintf() is susceptible to buffer 
overflow if used improperly. Mark any 
instance of vsprintf() and sprintf() 
as vulnerabilities. Replace calls 
with{v}snprintf() or change the format 
string. 

  Check the format string to see if it 
includes "%.111s" formatting limit. 

vsscanf Input Validation 
and 
Representation 

The return result of sprintf() tells how 
many characters were actually written. If 
the number of chars is larger than the 
original buffer, that means memory has 
been overwritten and the program state is 
invalid. 

  The scanf family of functions scans 
input according to a format as described 
below. This format may contain 
conversion specifiers; the results from 
such conversions, if any, are stored 
through the pointer arguments. The scanf 
function reads input from the standard 
input stream stdin, fscanf reads input 
from the stream pointer stream, and 
sscanf reads its input from the character 
string pointed to by str. 

  The vulnerability of the scanf() function 
resides in the fact that it has no bounds-
checking capability. If the string that is 
being accepted is longer than the buffer 
size, the characters will overflow into the 
adjoining memory space. This is a classic 
buffer overflow security vulnerability 
problem. 
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  The scanf() function is susceptible to 
buffer overflow. 

vswprintf Input Validation 
and 
Representation 

The printf family of functions is 
susceptible to a variety of format string 
and buffer overflow attacks. Flag any 
instance of the printf() family of 
functions in the code. Determine whether 
or not the format string is being provided 
through some input channel. If it is using 
a single argument, this is a definite 
vulnerability. Replace the code with the 
"fix" section. 

  If the first argument is a string literal 
constant, this rule does not apply. 

  If the first argument is a variable string, 
try to determine if it is user supplied. If 
so, it will be more difficult to determine 
whether it is vulnerable to the threat or 
not. If it is influenced by any data that 
comes into the current function, it should 
be flagged as a (potentially false positive) 
vulnerability. 

  All of these functions have potential 
format string problems. Some (as marked) 
also have potential BO problems when 
they write their output to strings. 

vwprintf Input Validation 
and 
Representation 

NON-CONSTANT FORMAT STRINGS 
can often be attacked. 

wprintf Input Validation 
and 
Representation 

The printf family of functions is 
susceptible to a variety of format string 
and buffer overflow attacks. Flag any 
instance of the printf() family of 
functions in the code. Determine whether 
or not the format string is being provided 
through some input channel. If it is using 
a single argument, this is a definite 
vulnerability. Replace the code with the 
"fix" section. 
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  If the first argument is a string literal 
constant, this rule does not apply. 

  If the first argument is a variable string, 
try to determine if it is user supplied. If 
so, it will be more difficult to determine 
whether it is vulnerable to the threat or 
not. If it is influenced by any data that 
comes into the current function, it should 
be flagged as a (potentially false positive) 
vulnerability. 

  All of these functions have potential 
format string problems. Some (as marked) 
also have potential BO problems when 
they write their output to strings. 

 

As you can see by perusing this list, the kind of information that a simple tool gives back 
is valuable but not very useful as a large list. Using a tool to look for the myriad possible 
problems is really the only way to go. 

Modern static analysis tools use much better techniques and much more thorough 
analyses than yesteryear's grep-based scanners like ITS4 and RATS. Nevertheless, the 
ruleset that was included in ITS4 is still applicable. The knowledge itself ages well. All 
static analysis tools should provide coverage on this basic ruleset. If your static analysis 
tool doesn't, you should get a new one. 

Many more static analysis rules are available on the Building Security In portal from the 
U.S. Department of Homeland Security <http://buildsecurityin.us-cert.gov/portal/>. 
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Appendix C. An Exercise in Risk Analysis: 
Smurfware[1] 
[1] This exercise was developed by Michal Propieszalski and has been used at Cigital to 
teach architectural risk analysis for several years. 

The following simple study can give you a flavor of what it is like to do an architectural 
risk analysis (see Chapter 5). Even though this example is beyond contrived, working 
through it (especially if you follow the process described in this book) is an excellent 
pedagogical tool. Try doing this exercise with a group. Drink some wine. And don't 
cheat! 

SmurfWare SmurfScanner Risk Assessment Case Study 

Instructions 

This case study presents a real-world architecture and description of a software system. 
Please read through the description, look at the architecture diagram, and then answer the 
questions given. Thinking about how the system works (and how your understanding 
differs from someone else's) will frequently result in finding ways to break it. 

SmurfWare SmurfScanner Architecture and Implementation 
Description 

The Smurfs are developing a new biometric authentication device to keep non-Smurfs out 
of the Smurfland network. The biometric device is being dubbed the SmurfScanner by 
Papa Smurf. The SmurfScanner is a hardware device that scans a user's skin color for 
blueness. Since only Smurfs have that unique Saturday morning cartoon blue color, if the 
device can successfully identify the unique blue, then this will do for making a 
determination as to whether or not a person really is a Smurf (or at least we make this 
assumption for the purpose of this exercise, be it based in actual fact or not). 

The SmurfScanner is attached to a PC running MicroSmurf Windoze XP via serial port. 
Along with an all-blue user manual and a blue SmurfWare coffee mug, the SmurfScanner 
comes with software that allows it to act as the login screen manager in Windoze. To 
even get to the login screen, a user's Smurfness has to be established by the 
SmurfScanner. Once calibrated by the manager application, the SmurfScanner returns 
whether or not a user is sufficiently blue. The software architecture of this system is 
represented by the diagram in Figure C-1. Each box represents a separate process running 
on either the PC or the hardware of the SmurfScanner device. 

Figure C-1. The SmurfWare SmurfScanner architecture has a number of 
serious security flaws. Can you identify some? 

[View full size image] 
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SmurfScanner Architecture Component Description 

SmurfScanner Crypto Helper: Since actual authentication traffic between the scanner and 
the software has to be encrypted and integrity has to be ensured, the software package 
provides an API for making encrypted calls, such as IsUserASmurf(), to the 
SmurfScanner. The caller gets to decide whether to use the proprietary but extensively 
tested (by two Smurf crypto experts) Smurfcrypto library or the equally solid Microsmurf 
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Windoze implementation of crypto. The Helper exists in both the PC and the 
SmurfScanner hardware to facilitate two-way integrity and privacy. 

SmurfScanner Common Command Layer: The SmurfScanner formats higher-level API 
calls into a format that the serial driver can understand, be they encrypted or not. 

SmurfScanner Manager: Since this application is rarely used, crypto was deemed 
unnecessary. Instead, the Smurfs hard-coded a hash of Smurfette's body weight in 
milligrams in both the SmurfScanner and the Embedded I/O Manager so that the 
SmurfScanner's Embedded I/O Manager would recognize that the privileged commands 
were coming from only the SmurfScanner Manager application. The Manager application 
appends this hash to every command sent to the scanner. The Smurfs chose this secret 
method because Smurfette's body weight is a well-known fact within the entire Smurf 
community but not known at all outside of it. The Manager application is used to set up 
the scanner's calibration and to run diagnostics in case it is malfunctioning. The scanner 
must be calibrated for local light conditions with a sample Smurf before use. The 
Manager is also used to initialize the Helper apps on both the PC and the scanner with 
secrets to allow the integrity and privacy functionality to work. The secrets are a hash of 
the system clock. 

SmurfScanner Embedded I/O Manager: This app sorts encrypted versus unencrypted 
commands and forwards them to either the Helper or directly to the Logic Layer. 
Commands are sent directly to the Logic Layer when the I/O Manager recognizes the 
Smurfette body weight shared secret hash. 

SmurfScanner Logic Layer: This layer takes the hardware measurement of a user's 
blueness and compares it to the calibrated value and returns a yes or no, thus performing 
authentication on a Smurf. The Logic Layer also does other things like calibrate the 
scanner based on data received from the Manager app, track usage, and run diagnostics. 

SmurfScanner Business Application: It is critical to understand the business context in 
order to estimate impact (in such a way as to answer the "Who cares?" question). In this 
case, the SmurfScanner is being used to protect SmurfTunes from use by non-Smurfs. 
SmurfTunes is set up to deliver Saturday morning cartoon theme songs to SmurfPod 
personal digital listening devices. 

Questions 

1. What are the business goals and associated risks for the SmurfTunes system? 

2. What goals could an attacker have in mind when thinking about attacking this 
system? 

3. What are the implementation bugs and architectural flaws in this system that 
could be used for attack? 
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4. How can these technical problems be stated as risks (and then ranked)? 

5. What ways could an attacker exploit technical weaknesses to achieve attack 
goals? 

6. Given your answers to the preceding questions, list at least three risks posed by 
this software system and rank them starting with the greatest first. 

Tons of extra credit for performing this exercise by following the risk analysis process 
from Chapter 5. 

DO NOT CHEAT. Work out answers before you look at the ones I provide. 

Answers 

Some of the questions have more correct answers than the ones listed here. 

1. What are the business goals and associated risks for the SmurfTunes system? 

A1:  Provide digital Saturday morning cartoon music with Smurfs only. 

Loss of digital IP (value). 

Provide music on demand. 

Store and retrieve essential Smurf theme song data. 

2. What goals could an attacker have in mind when thinking about attacking this 
system? 

A2:  Theft of Saturday morning cartoon music. 

Determine what others are listening to. 

Cause a certain song to become a "hit." 

Substitute theme song from the Brady Bunch for the Smurf theme song. 

Deny service to all SmurfTunes. 

3. What are the implementation bugs and architectural flaws in this system that 
could be used for attack? 

A3:  SmurfScanner Manager and the I/O Manager use a hard-coded shared secret 
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that has low entropy and could be reverse-engineered. SmurfScanner Manager 
commands are not protected from tampering since they use no encryption. The 
Manager seeds the helper apps with low-entropy system clock output. 

The software components in the system don't authenticate with each other, 
hence it would be easy for an attacker to substitute a malicious component on 
the PC side. 

The Smurfcrypto is roll-your-own crypto, which is weak, and an attacker app 
can choose which crypto to use. 

The SmurfScanner Common Command Layer does not authenticate calls made 
to it, hence it provides an effective and easy means to a denial-of-service 
attack. 

4. How can these technical problems be stated as risks (and then ranked)? 

A4:  Left as an exercise for the reader. Think about the business goals and risks you 
already identified. 

5. What ways could an attacker exploit technical weaknesses to achieve attack 
goals? 

A5:  Denial of service using Common Command Layer functionality. 

Recalibration of the scanner to allow the evil "Red Smurfs" onto the network 
through reverse-engineering the Manager's secret and recalibrating the scanner 
on the fly. 

Substitution of a software component and sniffing to steal usage data. Guessing 
of the secret seed input to facilitate theft of encrypted data. One could also use 
this method to make the device return the wrong outputs and hence cause 
problems for legit Smurf users. 

6. Given your answers to the preceding questions, list at least three risks posed by 
this software system and rank them starting with the greatest first. 

A6:  Again, left as an exercise for the reader. This answer depends on your ranking 

SmurfWare SmurfScanner Design for Security 

Instructions 

Given your answers from the SmurfScanner Risk Assessment, draw a new software 
architecture diagram for the SmurfScanner system that mitigates the risk. Also, list the 
other things you could do to secure the application. 
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Answers (Incomplete) 

The various processes should only accept commands from the other processes explicitly 
shown in the diagram. Each piece of software should be signed by SmurfWare, and this 
signature should be used to verify the caller. 

• SmurfScanner Manager communications should be encrypted. 
• There should be only one solid crypto implementation in the solution. 
• The first time the device is used, the password for the Manager-level functions 

should be set by the Manager app. The password should be used from that point 
on. The hard-coded shared secret should be eliminated. 

• The Crypto Helper should be seeded with something more entropic, such as 
mouse movements, not the system clock. 

• A sample fixed architecture is depicted in Figure C-2. 

Figure C-2. The SmurfWare SmurfScanner architecture with some adjustments 
for security. Not all possible fixes are shown in this picture, but many of the 

most critical ones are. 
[View full size image] 



 393

 
 
 
 
 
 
 
 
 
 
 



 394

Appendix D. Glossary 
A number of terms in this book are used very loosely out there in the world. I provide this 
small glossary to pin things down a bit more. 

Artifact (especially, software artifact)— 

Those documents and objects created in the course of building software. The 
touchpoints in this book are software security best practices meant to be applied 
to common software artifacts including requirements, use cases, design 
documents, architecture documents, test plans, test results, code, executables, and 
feedback from the field. 

 

Attack pattern— 

Like a design pattern, only applicable to attacks. A high-level description of a set 
of software attacks. See Chapter 8. 

 

Bug— 

A bug is an implementation-level software problem. Bugs may exist in code but 
never be executed. Though the term bug is applied quite generally by many 
software practitioners, I reserve use of the term to encompass fairly simple 
implementation errors. Bugs are implementation-level problems that can be easily 
discovered and remedied. See Chapter 1. 

 

COTS— 

Commercial off-the-shelf software. 

 

Defect— 

Both implementation vulnerabilities and design vulnerabilities are defects. A 
defect is a problem that may lie dormant in software for years only to surface in a 
fielded system with major consequence. 
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Exploit— 

A script or plan that executes against a vulnerability, leading to security 
compromise. 

 

Flaw— 

A design-level or architectural software defect. High-level defects cause 50% of 
software security problems. See Chapter 1. 

 

Risk— 

Flaws and bugs lead to risk. Risks are not failures. Risks capture the probability 
that a flaw or a bug will impact the purpose of the software (i.e., risk = probability 
x impact). Risk measures must also take into account the potential damage that 
can occur. A very high risk is not only likely to happen but also likely to cause 
great harm. Risks can be managed by technical and non-technical means. See 
Chapter 1. 

 

Software security— 

The idea of engineering software so that it continues to function correctly under 
malicious attack. 

 

SDL— 

Secure Development Lifecycle. 

 

SDLC— 

Software development lifecycle. 

 

Threat— 
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The actor or agent who is the source of danger. Within information security, this 
is invariably the danger posed by a malicious agent (e.g., fraudster, attacker, 
malicious hacker) for a variety of motivations (e.g., financial gain, prestige). 
Threats carry out attacks on the security of the system (e.g., SQL injection, 
TCP/IP SYN attacks, buffer overflows, denial of service). Unfortunately, 
Microsoft has been misusing the term threat as a substitute for risk. This has led to 
some confusion in the commercial security space. See Chapter 5. 

 

Touchpoint— 

Process-agnostic software security best practice applied on a software artifact. 

 

Vulnerability— 

A defect or weakness in system security procedures, design, implementation, or 
internal controls that can be exercised and result in a security breach or a violation 
of security policy. A vulnerability may exist in one or more of the components 
making up a system. See Chapter 5. 
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