
Software teSting
An ISTQB–ISEB Foundation Guide

Second Edition
Brian Hambling (Editor), Peter Morgan, Angelina Samaroo,

Geoff Thompson and Peter Williams

This bestselling software testing title is the official textbook
of the ISTQB–ISEB Foundation Certificate in Software Testing.
It covers the 2010 update to the exam syllabus and is ideal for
those with some experience of software testing who wish to
cement their knowledge with industry-recognised techniques
and theory. The book includes self-assessment exercises,
sample examination questions and worked examples.

•	 The	bestselling	software	testing	title
•	 The	official	textbook	of	the	ISTQB–ISEB	Foundation		 	 	
	 Certificate	in	Software	Testing	
•	 Complete	overview	of	tools	and	techniques

About the Authors
The authors are all experienced ISEB examination setters and
markers and know the ISTQB–ISEB syllabus in depth. The editor
Brian Hambling has experienced software development from
a developer’s, a project manager’s and a quality manager’s
perspective in a career spanning over 30 years.

You	might	also	be	interested	in:

SoFTwarE	TESTIng:	an	ISEB	Intermediate	Certificate
Brian Hambling and Angelina Samaroo

Invaluable for anyone
involved in testing and
would lift the game of
most VV&T staff
(including designers
doing their ‘informal’
reviews and tests) and
their project managers.
It is succinctly and
clearly written with
no nonsense. An
unreserved 5 for
value for money.
IT Training Magazine
(review of previous edition)

Information	Technology

softw
A

re testin
g: An ISTQB - ISEB Foundation Guide

B
rian H

am
bling (Editor)

Software
teSting
An ISTQB–ISEB
Foundation Guide
Second Edition

Brian Hambling (Editor)

SoftwareTesting_layout_4.indd 1 20/9/10 16:22:45

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page x

SOFTWARE TESTING
An ISTQB–ISEB Foundation Guide
Second Edition

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page i

BCS THE CHARTERED INSTITUTE FOR IT

Our mission as BCS, The Chartered Institute for IT, is to enable the information
society. We promote wider social and economic progress through the advancement
of information technology, science and practice. We bring together industry,
academics, practitioners and government to share knowledge, promote new
thinking, inform the design of new curricula, shape public policy and inform
the public.

Our vision is to be a world-class organisation for IT. Our 70,000 strong membership
includes practitioners, businesses, academics and students in the UK and
internationally. We deliver a range of professional development tools for practitioners
and employees. As leading IT qualification body, we offer a range of widely recognised
qualifications.

Further Information
BCS The Chartered Institute for IT,
First Floor, Block D,
North Star House, North Star Avenue,
Swindon, SN2 1FA, United Kingdom.
T +44 (0) 1793 417 424
F +44 (0) 1793 417 444
www.bcs.org/contactus

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page ii

SOFTWARE TESTING
An ISTQB–ISEB Foundation Guide
Second Edition

Brian Hambling (Editor), Peter Morgan, Angelina
Samaroo, Geoff Thompson and Peter Williams

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page iii

iv

© 2010 British Informatics Society Limited

The right of Brian Hambling, Peter Morgan, Angelina Samaroo, Geoff Thompson and Peter Williams to be
identified as authors of this work has been asserted by them in accordance with sections 77 and 78 of the
Copyright, Designs and Patents Act 1988.

All rights reserved. Apart from any fair dealing for the purposes of research or private study, or criticism or
review, as permitted by the Copyright Designs and Patents Act 1988, no part of this publication may be
reproduced, stored or transmitted in any form or by any means, except with the prior permission in writing
of the publisher, or in the case of reprographic reproduction, in accordance with the terms of the licences
issued by the Copyright Licensing Agency. Enquiries for permission to reproduce material outside those
terms should be directed to the publisher.

All trade marks, registered names etc. acknowledged in this publication are the property of their respective
owners. BCS and the BCS logo are the registered trade marks of the British Computer Society charity
number 292786 (BCS).

Published by British Informatics Society Limited (BISL), a wholly owned subsidiary of BCS, The Chartered
Institute for IT, First Floor, Block D, North Star House, North Star Avenue, Swindon, SN2 1FA, UK.
www.bcs.org

ISBN 978-1-906124-76-2

British Cataloguing in Publication Data.
A CIP catalogue record for this book is available at the British Library.

Disclaimer:
The views expressed in this book are of the authors and do not necessarily reflect the views of BCS or BISL
except where explicitly stated as such. Although every care has been taken by the authors and BISL in the
preparation of the publication, no warranty is given by the authors or BISL as publisher as to the accuracy or
completeness of the information contained within it and neither the authors nor BISL shall be responsible or
liable for any loss or damage whatsoever arising by virtue of such information or any instructions or advice
contained within this publication or by any of the aforementioned.

Typeset by Lapiz Digital Services, Chennai, India.
Printed at CPI Antony Rowe Ltd, Chippenham, UK.

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page iv

v

Figures and tables vii
Abbreviations ix
Authors xi

INTRODUCTION 1
Nature and purpose of the book 1
Purpose of Foundation 1
The Certified Tester Foundation Level syllabus 2
Relationship of the book to the syllabus 3
How to get the best out of this book 5

1 THE FUNDAMENTALS OF TESTING 7
Background 7
Introduction 7
Why software fails 10
Keeping software under control 12
What testing is and what testing does 14
General testing principles 16
Fundamental test process 20
The psychology of testing 25
Code of ethics 27
Summary 28
References 28

2 LIFE CYCLES 34
Introduction 34
Software development models 36
Test levels 41
Test types 49
Maintenance testing 51
Summary 52

3 STATIC TESTING 57
Introduction 57
Background to static techniques 59
Reviews and the test process 59
Static analysis by tools 68
Summary 70

CONTENTS

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page v

4 TEST DESIGN TECHNIQUES 74
Introduction 74
The test development process 76
The idea of test coverage 80
Categories of test case design techniques 81
Specification-based (black-box) techniques 82
Structure-based (white-box) techniques 97
Experience-based techniques 118
Choosing test techniques 120
Summary 121

5 TEST MANAGEMENT 129
Introduction 129
Risk and testing 132
Test organisation 135
Test approaches (test strategies) 140
Test planning and estimation 142
Test progress monitoring and control 150
Incident management 156
Configuration management 159
Summary 160

6 TOOL SUPPORT FOR TESTING 167
Introduction 167
What Is a test tool? 169
Test tools 173
Introducing a tool into an organisation 204
Summary 208

7 THE EXAMINATION 215
The examination 215
Revision techniques 219
Review 220

Index 221

vi

CONTENTS

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page vi

vii

Figure 0.1 Syllabus map 4
Figure 1.1 Effect of an error 11
Figure 1.2 Resources triangle 13
Figure 1.3 Effect of identification time on cost of errors 19
Figure 1.4 Fundamental test process 21
Figure 1.5 Iteration of activities 22
Figure 2.1 Waterfall model 36
Figure 2.2 V-model for software development 38
Figure 2.3 Iterative development 40
Figure 2.4 Top-down control structure 44
Figure 2.5 Bottom-up integration 45
Figure 3.1 Stages of a formal review 62
Figure 3.2 Formality of reviews 65
Figure 4.1 State transition diagram of the hill-walker’s watch 93
Figure 4.2 State transition diagram 95
Figure 4.3 Use case example 96
Figure 4.4 Flow chart for a sequential program 101
Figure 4.5 Flow chart for a selection (decision) structure 101
Figure 4.6 Flow chart for an iteration (loop) structure 101
Figure 4.7 Flow chart representation for Example 4.5 103
Figure 4.8 Control flow graph showing subgraphs as nodes 106
Figure 4.9 Control flow graph with subgraphs expanded 106
Figure 4.10 Flow chart for Program Coverage Example 109
Figure 4.11 The hybrid flow graph 109
Figure 4.12 Paths through the hybrid flow graph 110
Figure 4.13 Paths through the hybrid flow graph 112
Figure 4.14 Paths through the hybrid flow graph 116
Figure 4.15 Flow chart for Exercise 4.6 126
Figure 4.16 Control flow graph for Exercise 4.6 127
Figure 5.1 Levels of independent testing 136
Figure 5.2 Test plans in the V-model 143
Figure 5.3 iTesting Executive Dashboard 152
Figure 5.4 Incidents planned/raised 153
Figure 6.1 Test tool payback model 170
Figure 6.2 Hotel system architecture 172
Figure 6.3 An integrated set of tools 174
Figure 6.4 Test execution tools payback model 188
Figure 6.5 Test harness for middleware 189
Figure 6.6 Test tool implementation process 209

FIGURES AND TABLES

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page vii

Table 1.1 Comparative cost to correct errors 18
Table 4.1 ST for the hill-walker’s watch 94
Table 5.1 Features of independent testing 137
Table 5.2 Test plan sections 144
Table 5.3 Test summary report outline 154
Table 5.4 Test incident report outline 158
Table 6.1 Configuration traceability 178
Table 6.2 Hotel system extract (20/10/2006) 184
Table 6.3 Hotel system extract (5/11/2006) 185
Table 6.4 Exit criteria 191
Table 6.5 Types of test tool 199

FIGURES AND TABLES

viii

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page viii

ix

ABBREVIATIONS

AUT Application Under Test

BACS Bankers Automated Clearing Services

CASE Computer-Aided Software Engineering

CMMi Capability Maturity Model Integration

DLL Dynamic Link Library

FTP Fundamental Test Process

GUI Graphical User Interface

ISEB Information Systems Examination Board

ISTQB International Software Testing Qualications Board

MISRA Motor Industry Software Reliability Association

RAD Rapid Application Development

RUP Rational Unified Process

SDLC Software Development Life Cycle

SIGiST Special Interest Group in Software Testing

SQL Structured Query Language

ST State Table

TPI Test Process Improvement

UML Unified Modeling Language

XML Extensible Markup Language

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page ix

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page x

xi

AUTHORS

Brian Hambling has experienced software development from a developer’s,
project manager’s and quality manager’s perspective in a career spanning over
35 years. He has worked in areas as diverse as real-time avionics, legacy systems
maintenance and e-business strategies. He contributed to the development of
software quality standards while at the Ministry of Defence and later became the
head of systems and software engineering at The University of Greenwich. He
was technical director of ImagoQA and general manager of Microgen IQA, a spe-
cialist company providing consultancy in software testing and quality assurance
primarily to the financial services sector. He is now concentrating on writing.

Peter Morgan is a freelance testing practitioner. He has been working as a
hands-on tester for a number of years, often on projects with over 30 testers.
He has worked for organisations including Fujitsu Services, Nationwide Building
Society, Hutchison 3G and BT Syntegra. He is a member of the Information
Systems Examination Board (ISEB) software testing accreditation and examina-
tion panels, and has presented papers at several testing conferences, including
EuroSTAR. He has a degree from the London School of Economics and is an
active member of BCS and especially its Special Interest Group in Software
Testing (SIGiST).

Angelina Samaroo began her career in the defence sector, where she worked
on the Tornado ADV. In 1995 she was awarded Chartered Engineer status by
the Royal Aeronautical Society. Early in her career she took an interest in
developing staff, managing the training of new engineers across the company,
to the standards laid down by the IEE (now the IET). She is an instructor for the
ISEB Foundation and Practitioner Courses in Software Testing. She has also
instructed delegates in other aspects of testing, such as unit testing, user
acceptance testing and managing testing projects, in the UK, Europe, North
America and Australia.

Geoff Thompson has been involved in testing for nearly 25 years, specialising
in test strategy, test management and process improvement. He is currently
consultancy director of the consulting organisation Experimentus Ltd. He has
been involved in developing software testing qualifications since 1997, working
first with ISEB and then with ISTQB (International Software Testing Qualifica-
tion Board), an organisation he founded in 2002. He is the chair of the UK Testing
Board, chair of the TMMi Foundation Management Executive, and is also the
vice-chairman of the BCS SIGiST Committee. He was awarded the UK Test
Excellence Award in 2008.

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page xi

Peter Williams previously worked in methods and systems improvement before
moving into systems development and subsequently software testing. He has
been a self-employed contract test manager or consultant in both financial
services and the public sector. He has evaluated test processes and subsequently
implemented improvements, at various organisations, including test
management and execution tools as appropriate. He has an MSc in computing
from the Open University and is chairman of the Examinations Panel for the
ISEB Foundation Certificate in Software Testing.

xii

AUTHORS

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page xii

1

INTRODUCTION

NATURE AND PURPOSE OF THE BOOK

The Information Systems Examination Board (ISEB) of BCS (www.bcs.org.uk/iseb)
instigated the Foundation Certificate in Software Testing in 1998; since then over
40,000 Foundation Certificates have been awarded. An intermediate level qualifi-
cation was introduced in 2007 as a step towards the more advanced Practitioner
qualification.

The International Software Testing Qualifications Board (ISTQB) (www.istqb.org)
was set up in 2001 to offer a similar certification scheme to as many countries
as wished to join this international testing community. The UK was a founding
member of ISTQB and, in 2005, adopted the ISTQB Foundation Certificate
Syllabus as the basis of examinations for the Foundation Certificate in the UK.
The Foundation Certificate is now an entry qualification for the ISTQB Advanced
Certificate. The Certified Tester Foundation Level Syllabus has been updated
and released in a 2010 version, and this book relates to the 2010 version of the
syllabus.

This book has been written specifically to help potential candidates for the
ISTQB–ISEB Certified Tester Foundation Level examination. The book is
therefore structured to support learning of the key ideas in the syllabus quickly
and efficiently for those who do not plan to attend a course, and to support
structured revision for anyone preparing for the exam.

In this introductory chapter we will explain the nature and purpose of the
Foundation Level and provide an insight into the way the syllabus is structured
and the way the book is structured to support learning in the various syllabus
areas. Finally we offer guidance on the best way to use this book, either as a
learning resource or as a revision resource.

PURPOSE OF FOUNDATION

The Certified Tester Foundation Level Certificate is the first level of a hierarchy
of ISTQB–ISEB certificates in software testing, and leads naturally into the next
level, known as the Intermediate Certificate in Software Testing, which in turn
leads on to the ISTQB Advanced Level, followed by the various ISTQB Expert
Level examinations.

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 1

The Foundation Level provides a very broad introduction to the whole discipline of
software testing. As a result coverage of topics is variable, with some only briefly
mentioned and others studied in some detail. The arrangement of the syllabus and
the required levels of understanding are explained in the next section.

The authors of the syllabus have aimed it at people with varying levels of experi-
ence in testing, including those with no experience at all. This makes the certificate
accessible to those who are or who aim to be specialist testers, but also to those who
require a more general understanding of testing, such as project managers and
software development managers. One specific aim of this qualification is to prepare
certificate holders for the next level of certification, but the Foundation Level has
sufficient breadth and depth of coverage to stand alone.

THE CERTIFIED TESTER FOUNDATION LEVEL SYLLABUS

Syllabus content and structure
The syllabus is broken down into six main sections, each of which has associated
with it a minimum contact time that must be included within any accredited
training course:

1) Fundamentals of testing (155 minutes)

2) Testing throughout the software life cycle (115 minutes)

3) Static techniques (60 minutes)

4) Test design techniques (285 minutes)

5) Test management (170 minutes)

6) Tool support for testing (80 minutes)

The relative timings are a reliable guide to the amount of time that should be
spent studying each section of the syllabus. These timings are further broken
down for each topic within a section.

Each section of the syllabus also includes a list of learning objectives that
provides candidates with a guide to what they should know when they have
completed their study of a section and a guide to what can be expected to be
asked in an examination. The learning objectives can be used to check that
learning or revision is adequate for each topic. In the book, which is structured
around the syllabus sections, we have presented the learning objectives for each
section at the beginning of the relevant chapter, and the summary at the end of
each chapter confirms how those learning objectives have been addressed.

Finally, each topic in the syllabus has associated with it a level of understanding,
represented by the legend K1, K2, K3 or K4:

Level of understanding K1 is associated with recall, so that a topic labelled
K1 contains information that a candidate should be able to remember but not
necessarily use or explain.

2

SOFTWARE TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 2

Level of understanding K2 is associated with the ability to explain a topic or
to classify information or make comparisons.

Level of understanding K3 is associated with the ability to apply a topic in a
practical setting.

Level of understanding K4 is associated with the ability to analyse a situation
or a set of information to determine what action to take.

The level of understanding influences the level and type of questions that can
be expected to be asked about that topic in the examination. More detail about
the question style and about the examination is given in Chapter 7. Example
questions, written to the level and in the formats used in the examination, are
included within each chapter to provide generous examination practice.

Syllabus map
The syllabus can usefully be viewed as a mind map, as shown in Figure 0.1.
In this representation the main sections of the syllabus, corresponding to
chapters in the book, provide the first level of ordering. The next level provides
the breakdown into topics within each section. In most cases the syllabus breaks
topics down even further, but this level of breakdown is omitted from the diagram
for clarity. Figure 0.1 enables the entire syllabus to be viewed and is potentially
useful as a tracking mechanism to identify visually which parts of the syllabus
need most attention and which parts you feel are well understood. By recognising
the relative strengths and weaknesses by topic within sections it is easier to
understand the nature and extent of the weakness. For example, problems
with certain black-box techniques that are not also associated with white-box
techniques and experience-based techniques should give confidence in the overall
section on test case design techniques. It is also possible to identify how many
marks are ‘at risk’ from this weakness so that you can plan where to spend most
revision time and, perhaps, decide which weaknesses you feel able to leave until
after the examination.

RELATIONSHIP OF THE BOOK TO THE SYLLABUS

The book is structured into chapters that mirror the sections of the syllabus so
that you can work your way through the whole syllabus or select topics that are
of particular interest or concern. The structure enables you to go straight to
the place you need, with confidence either that what you need to know will
be covered there and nowhere else, or that relevant cross references will be
provided.

Each chapter of the book incorporates the learning objectives from the syllabus
and identifies the required level of understanding for each topic. Each chapter
also includes examples of typical examination questions to enable you to assess
your current knowledge of a topic before you read the chapter, and further
questions at the end of each chapter to provide practice in answering typical
examination questions. Topics requiring K3 level of understanding are presented
with worked examples as a model for the level of application expected from real

INTRODUCTION

3

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 3

4

SOFTWARE TESTING

Fi
gu

re
 0

.1
Sy

lla
bu

s
m

ap

Te
st

in
g

th
ro

ug
ho

ut
 th

e
so

ftw
ar

e
life

 c
yc

le

Tool s
uppor

t fo
r t

es
tin

g

Tes
t m

an
ag

em
en

t

T
es

t d
es

ig
n

te
ch

ni
qu

es
F

un
da

m
en

ta
ls

 o
f t

es
tin

g

Static techniques

Stru
ctu

re
-b

as
ed

 or
 w

hit
e-

bo
x t

ec
hn

iqu
es

Specification-based or black-box techniques

Choosing test techniques
Cate

go
rie

s o
f te

st
de

sig
n t

ec
hn

iqu
es

Id
en

tif
yin

g
te

st
 c

on
di

tio
ns

 a
nd

 d
es

ig
ni

ng
 te

st
 c

as
es

T
es

t o
rg

an
is

at
io

n

T
es

t p
la

nn
in

g
an

d
es

tim
at

io
n

T
es

t p
ro

gr
es

s
m

on
ito

rin
g

an
d

co
nt

ro
l

Ex
pe

rie
nc

e-
ba

se
d

te
ch

ni
qu

es

S
ta

tic
 a

na
ly

si
s

by
 to

ol
s

S
ta

tic
 te

ch
ni

qu
es

 a
nd

 th
e

te
st

 p
ro

ce
ss

R
ev

ie
w

 p
ro

ce
ss

T
yp

es
 o

f t
es

t t
oo

l
E

ffe
ct

iv
e

us
e

of
 to

ol
s:

po
te

nt
ia

l b
en

ef
its

 a
nd

 r
is

ks

In
tr

od
uc

in
g

a
to

ol
 in

to
 a

n
or

ga
ni

sa
tio

n

P
sy

ch
ol

og
y

of
 te

st
in

gFu
nd

am
en

ta
l t

es
t p

ro
ce

ss

C
od

e
of

 e
th

ic
s

G
en

er
al

 te
st

in
g

pr
in

ci
pl

es

C
on

fig
ur

at
io

n
m

an
ag

em
en

t

In
ci

de
nt

 m
an

ag
em

en
t

T
es

t t
yp

es
: t

he
 ta

rg
et

s
of

 te
st

in
g

M
ai

nt
en

an
ce

 te
st

in
g

S
of

tw
ar

e
de

ve
lo

pm
en

t m
od

el
s

T
es

t l
ev

el
s

W
hy

 is
 te

sti
ng

 n
ec

es
sa

ry
?

W
ha

t is
 te

sti
ng

?

T
he

 IS
T

Q
B

 2
01

0
C

er
tif

ie
d

T
es

te
r

F
ou

nd
at

io
n

Le
ve

l
S

yl
la

bu
s

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 4

examination questions. Answers are provided for all questions, and the rationale
for the correct answer is discussed for all practice questions.

A final chapter explains the Foundation Level examination strategy and provides
guidance on how to prepare for the examination and how to manage the
examination experience to maximise your own performance.

HOW TO GET THE BEST OUT OF THIS BOOK

This book is designed for use by different groups of people. If you are using the
book as an alternative to attending an accredited course you will probably find
the first method of using the book described below to be of greatest value. If you
are using the book as a revision aid you may find the second approach more
appropriate. In either case you would be well advised to acquire a copy of the
syllabus (available from www.istqb.org) and a copy of the sample examination
paper (available from ISEB) as reference documents, though neither is essential
and the book stands alone as a learning and revision aid.

Using the book as a learning aid
For those of you using the book as an alternative to attending an accredited course
the first step is to familiarise yourself with the syllabus structure and content by
skim reading the opening sections of each chapter where the learning objectives
are identified for each topic. You may then find it helpful to turn to Chapter 7 and
become familiar with the structure of the examination and the types and levels of
questions that you can expect in the examination. From here you can then work
through each of the six main chapters in any sequence before returning to
Chapter 7 to remind yourself of the main elements of the examination.

For each chapter begin by attempting the self-assessment questions at the
beginning to get initial confirmation of your level of confidence in the topics
covered by that chapter. This may help you to prioritise how you spend your
time. Work first through the chapters where your knowledge is weakest,
attempting all the exercises and following through all the worked examples.
Read carefully through the chapters where your knowledge is less weak but
still not good enough to pass the exam. You can be more selective with exer-
cises and examples here, but make sure you attempt the practice questions at
the end of the chapters. For the areas where you feel strong you can use the
chapter for revision, but remember to attempt the practice questions to
confirm positively your initial assessment of your level of knowledge. Every
chapter contains a summary section that reiterates the learning objectives,
so reading the first and last sections of a chapter will help you to understand
how your current level of knowledge relates to the level required to pass the
examination. The best confirmation of this is to attempt questions at the
appropriate K level for each topic; these are provided in the book.

5

INTRODUCTION

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 5

Using the book as a revision aid
If you are using this book for final revision, perhaps after completing an
accredited course, you might like to begin by using a selection of the example
questions at the end of each chapter as a ‘mock examination’. The information
in Chapter 7 will enable you to construct a properly balanced mock exam of
your own. Your mock exam will provide some experience of answering typical
questions under the same time pressures that you will experience in the real
examination, and this will provide you with a fairly reliable guide to your
current state of readiness to take the real examination. You can also discover
which areas most need revision from your performance in the mock exam, and
this will guide you as you plan your revision.

Revise first where you feel weakest. You can use the opening sections of each
chapter, containing the learning objectives and the self-assessment questions,
together with the summary at the end of each chapter to refine further your
awareness of your own weaknesses. From here you can target your studies very
accurately. Remember that every K3 topic will have at least one worked example
and some exercises to help you build your confidence before tackling questions at
the level set in the real examination.

You can get final confirmation of your readiness to take the real examination by
taking the sample examination paper provided by ISEB.

6

SOFTWARE TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 6

7

1 THE FUNDAMENTALS OF TESTING

BACKGROUND

If you were buying a new car, you would not expect to take delivery from the
showroom with a scratch down the side of the vehicle. The car should have five
wheels, a steering wheel, an engine and all the other essential components,
and it should come with appropriate documentation, with all pre-sales checks
completed and passed satisfactorily. The car you receive should be the car
described in the sales literature; it should have the correct engine size, the
correct colour scheme, and whatever extras you have ordered, and performance
in areas such as fuel consumption and maximum speed should match published
figures. In short, a level of expectation is set by brochures, by your experience of
sitting in the driving seat, and probably by a test drive. If your expectations are
not met you will feel justifiably aggrieved.

This kind of expectation seems not to apply to new software installations;
examples of software being delivered not working as expected, or not working
at all, are common. Why is this? There is no single cause that can be rectified
to solve the problem, but one important contributing factor is the inadequacy
of the testing to which software applications are exposed.

Software testing is neither complex nor difficult to implement, yet it is a
discipline that is seldom applied with anything approaching the necessary
rigour to provide confidence in delivered software. Software testing is costly
in human effort or in the technology that can multiply the effect of human
effort, yet is seldom implemented at a level that will provide any assurance
that software will operate effectively, efficiently or even correctly.

This book explores the fundamentals of this important but neglected discipline
to provide a basis on which a practical and cost-effective software testing regime
can be constructed.

INTRODUCTION

In this opening chapter we have three very important objectives to achieve. First,
we will introduce you to the fundamental ideas that underpin the discipline of

Peter Morgan

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 7

software testing, and this will involve the use and explanation of some new
terminology. Secondly, we will establish the structure that we have used
throughout the book to help you to use the book as a learning and revision
aid. Thirdly, we will use this chapter to point forward to the content of later
chapters.

We begin by defining what we expect you to get from reading this chapter. The
learning objectives below are based on those defined in the Software Foundation
Certificate syllabus (ISTQB, 2010), so you need to ensure that you have achieved
all of these objectives before attempting the examination.

Learning objectives
The learning objectives for this chapter are listed below. You can confirm that
you have achieved these by using the self-assessment questions at the start of
the chapter, the ‘Check of understanding’ boxes distributed throughout the text,
and the example examination questions provided at the end of the chapter. The
chapter summary will remind you of the key ideas.

The sections are allocated a K number to represent the level of understanding
required for that section; where an individual topic has a lower K number than
the section as a whole, this is indicated for that topic; for an explanation of the
K numbers see the Introduction.

Why is testing necessary? (K2)

Describe, with examples, the way in which a defect in software can cause
harm to a person, to the environment or to a company.

Distinguish between the root cause of a defect and its effects.

Give reasons why testing is necessary by giving examples.

Describe why testing is part of quality assurance and give examples of
how testing contributes to higher quality.

Recall the terms error, defect, fault, failure and the corresponding terms
mistake and bug. (K1)

What is testing? (K2)

Recall the common objectives of testing. (K1)

Provide examples for the objectives of testing in different phases of the
software life cycle.

Differentiate testing from debugging.

General testing principles (K2)

Explain the fundamental principles in testing.

8

SOFTWARE TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 8

Fundamental test process (K1)

Recall the five fundamental test activities and respective tasks from planning
to test closure.

The psychology of testing (K2)

Recall the psychological factors that influence the success of testing. (K1)

Contrast the mindset of a tester and of a developer.

Self-assessment questions
The following questions have been designed to enable you to check your current
level of understanding for the topics in this chapter. The answers are given at the
end of the chapter.

Question SA1 (K1)
A bug or defect is:

a. a mistake made by a person;
b. a run-time problem experienced by a user;
c. the result of an error or mistake;
d. the result of a failure, which may lead to an error?

Question SA2 (K1)
The effect of testing is to:

a. increase software quality;
b. give an indication of the software quality;
c. enable those responsible for software failures to be identified;
d. show there are no problems remaining?

Question SA3 (K1)
What is retesting?

a. Running the same test again in the same circumstances to reproduce the
problem.

b. A cursory run through a test pack to see if any new errors have been
introduced.

c. Checking that the predetermined exit criteria for the test phase have been met.
d. Running a previously failed test against new software/data/documents to see

if the problem is solved.

THE FUNDAMENTALS OF TESTING

9

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 9

WHY SOFTWARE FAILS

Examples of software failure are depressingly common. Here are some you may
recognise:

The first launch of the European Space Agency Ariane 5 rocket in June 1996
failed after 37½ seconds. A software error caused the rocket to deviate from
its vertical ascent, and the self-destruct capabilities were enacted before the
then unpredictable flight path resulted in a bigger problem.

When the UK Government introduced online filing of tax returns, a user
could sometimes see the amount that a previous user earned. This was
regardless of the physical location of the two applicants.

In November 2005, information on the UK’s top 10 wanted criminals was
displayed on a website. The publication of this information was described
in newspapers and on morning radio and television and, as a result,
many people attempted to access the site. The performance of the
website proved inadequate under this load and the website had to be
taken offline. The publicity created performance peaks beyond the
capacity of the website.

When a well-known online book retailer first went live, ordering a negative
number of books meant that the transaction sum involved was refunded to
the ‘purchaser’. Development staff had not anticipated that anyone would
attempt to purchase a negative number of books. Code was developed to allow
refunds to customers to be made by administrative staff – but self-requested
refunds are not valid.

A small, one-line, change in the billing system of an electrical provider blacked
out the whole of a major US city.

What is it about these examples that make them so startling? Is it a sense that
something fairly obvious was missed? Is it the feeling that, expensive and
important as they were, the systems were allowed to enter service before they
were ready? Do you think these systems were adequately tested? Obviously they
were not, but in this book we want to explore why this was the case and why
these kinds of failure continue to plague us.

To understand what is going on we need to start at the beginning, with the people
who design systems. Do they make mistakes? Of course they do. People make
mistakes because they are fallible, but there are also many pressures that make
mistakes more likely. Pressures such as deadlines, complexity of systems and
organisations, and changing technology all bear down on designers of systems
and increase the likelihood of errors in specifications, in designs and in software
code. These errors are where major system failures usually begin. If a document
with an error in it is used to specify a component the component will be faulty
and will probably exhibit incorrect behaviour. If this faulty component is built
into a system the system may fail. While failure is not always guaranteed, it is
likely that errors in specifications will lead to faulty components and faulty
components will cause system failure.

10

SOFTWARE TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 10

An error (or mistake) leads to a defect, which can cause an observed failure
(Figure 1.1).

There are other reasons why systems fail. Environmental conditions such as
the presence of radiation, magnetism, electronic fields or pollution can affect
the operation of hardware and firmware and lead to system failure.

If we want to avoid failure we must either avoid errors and faults or find them
and rectify them. Testing can contribute to both avoidance and rectification,
as we will see when we have looked at the testing process in a little more
detail. One thing is clear: if we wish to influence errors with testing we need
to begin testing as soon as we begin making errors – right at the beginning
of the development process – and we need to continue testing until we are
confident that there will be no serious system failures – right at the end of the
development process.

Before we move on, let us just remind ourselves of the importance of what we
are considering. Incorrect software can harm:

people (e.g. by causing an aircraft crash in which people die, or by causing a
hospital life support system to fail);

companies (e.g. by causing incorrect billing, which results in the company
losing money);

the environment (e.g. by releasing chemicals or radiation into the
atmosphere).

Software failures can sometimes cause all three of these at once. The scenario of
a train carrying nuclear waste being involved in a crash has been explored to help
build public confidence in the safety of transporting nuclear waste by train. A
failure of the train’s on-board systems or of the signalling system that controls
the train’s movements could lead to catastrophic results. This may not be likely
(we hope it is not) but it is a possibility that could be linked with software failure.
Software failures, then, can lead to:

Loss of money

Loss of time

THE FUNDAMENTALS OF TESTING

11

Figure 1.1 Effect of an error

Error

Defect

Failure

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 11

Loss of business reputation

Injury

Death

KEEPING SOFTWARE UNDER CONTROL

With all of the examples we have seen so far, what common themes can
we identify? There may be several themes that we could draw out of the
examples, but one theme is clear: either insufficient testing or the wrong
type of testing was done. More and better software testing seems a
reasonable aim, but that aim is not quite as simple to achieve as we might
expect.

Exhaustive testing of complex systems is not possible
With the Ariane 5 rocket launch, a particular software module was reused from
the Ariane 4 programme. Only part of the functionality of the module was
required, but the module was incorporated without changes. The unused
functionality of the reused module indirectly caused a directional nozzle to move
in an uncontrolled way because certain variables were incorrectly updated.
In an Ariane 4 rocket the module would have performed as required, but in the
Ariane 5 environment this malfunction in an area of software not even in use
caused a catastrophic failure. The failure is well documented, but what is clear is
that conditions were encountered in the first few seconds after the launch that
were not expected, and therefore had not been tested.

If every possible test had been run, the problem would have been detected.
However, if every test had been run, the testing would still be running now,
and the ill-fated launch would never have taken place; this illustrates one
of the general principles of software testing, which are explained below.
With large and complex systems it will never be possible to test everything
exhaustively; in fact it is impossible to test even moderately complex
systems exhaustively.

In the Ariane 5 case it would be unhelpful to say that not enough testing was
done; for this particular project, and for many others of similar complexity,
that would certainly always be the case. In the Ariane 5 case the problem
was that the right sort of testing was not done because the problem had not
been detected.

Testing and risk
Risk is inherent in all software development. The system may not work or the
project to build it may not be completed on time, for example. These uncer-
tainties become more significant as the system complexity and the implica-
tions of failure increase. Intuitively, we would expect to test an automatic
flight control system more than we would test a video game system. Why?
Because the risk is greater. There is a greater probability of failure in the

12

SOFTWARE TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 12

more complex system and the impact of failure is also greater. What we test,
and how much we test it, must be related in some way to the risk. Greater
risk implies more and better testing.

There is much more on risk and risk management in Chapter 5.

Testing and quality
Quality is notoriously hard to define. If a system meets its users’ requirements
that constitutes a good starting point. In the examples we looked at earlier the
online tax returns system had an obvious functional weakness in allowing one
user to view another user’s details. While the user community for such a system
is potentially large and disparate, it is hard to imagine any user that would find
that situation anything other than unacceptable. In the top 10 criminals example
the problem was slightly different. There was no failure of functionality in this
case; the system was simply swamped by requests for access. This is an example
of a non-functional failure, in that the system was not able to deliver its services
to its users because it was not designed to handle the peak load that materialised
after radio and TV coverage.

Of course the software development process, like any other, must balance compet-
ing demands for resources. If we need to deliver a system faster (i.e. in less time),
for example, it will usually cost more. The items at the corners (or vertices) of the
triangle of resources in Figure 1.2 are time, money and quality. These three affect
one another, and also influence the features that are or are not included in the
delivered software.

One role for testing is to ensure that key functional and non-functional
requirements are examined before the system enters service and any defects
are reported to the development team for rectification. Testing cannot directly
remove defects, nor can it directly enhance quality. By reporting defects it
makes their removal possible and so contributes to the enhanced quality of
the system. In addition, the systematic coverage of a software product in
testing allows at least some aspects of the quality of the software to be
measured. Testing is one component in the overall quality assurance activity
that seeks to ensure that systems enter service without defects that can lead
to serious failures.

13

Figure 1.2 Resources triangle

Time

QualityMoney

Features

THE FUNDAMENTALS OF TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 13

Deciding when ‘enough is enough’
How much testing is enough, and how do we decide when to stop testing?

We have so far decided that we cannot test everything, even if we would wish
to. We also know that every system is subject to risk of one kind or another
and that there is a level of quality that is acceptable for a given system.
These are the factors we will use to decide how much testing to do.

The most important aspect of achieving an acceptable result from a finite and
limited amount of testing is prioritisation. Do the most important tests first so
that at any time you can be certain that the tests that have been done are
more important than the ones still to be done. Even if the testing activity is
cut in half it will still be true that the most important testing has been done.
The most important tests will be those that test the most important aspects of
the system: they will test the most important functions as defined by the
users or sponsors of the system, and the most important non-functional
behaviour, and they will address the most significant risks.

The next most important aspect is setting criteria that will give you an
objective test of whether it is safe to stop testing, so that time and all the
other pressures do not confuse the outcome. These criteria, usually known as
completion criteria, set the standards for the testing activity by defining areas
such as how much of the software is to be tested (this is covered in more detail
in Chapter 4) and what levels of defects can be tolerated in a delivered
product (which is covered in more detail in Chapter 5).

Priorities and completion criteria provide a basis for planning (which will
be covered in Chapter 2 and Chapter 5) but the triangle of resources in
Figure 1.2 still applies. In the end, the desired level of quality and risk may
have to be compromised, but our approach ensures that we can still determine
how much testing is required to achieve the agreed levels and we can still be
certain that any reduction in the time or effort available for testing will not
affect the balance – the most important tests will still be those that have
already been done whenever we stop.

WHAT TESTING IS AND WHAT TESTING DOES

So far we have worked with an intuitive idea of what testing is. We have
recognised that it is an activity used to reduce risk and improve quality by
finding defects, which is all true. However, we need to understand a little

14

CHECK OF UNDERSTANDING

(1) Describe the interaction between errors, defects and failures.

(2) Software failures can cause losses. Give three consequences of software
failures.

(3) What are the vertices of the ‘triangle of resources’?

SOFTWARE TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 14

15

more about how software testing works in practice before we can think about
how to implement effective testing.

Testing and debugging
Testing and debugging are different kinds of activity, both of which are very
important. Debugging is the process that developers go through to identify the
cause of bugs or defects in code and undertake corrections. Ideally some check
of the correction is made, but this may not extend to checking that other areas of
the system have not been inadvertently affected by the correction. Testing, on
the other hand, is a systematic exploration of a component or system with the
main aim of finding and reporting defects. Testing does not include correction of
defects – these are passed on to the developer to correct. Testing does, however,
ensure that changes and corrections are checked for their effect on other parts of
the component or system.

Effective debugging is essential before testing begins to raise the level of
quality of the component or system to a level that is worth testing, i.e. a
level that is sufficiently robust to enable rigorous testing to be performed.
Debugging does not give confidence that the component or system meets its
requirements completely. Testing makes a rigorous examination of the behav-
iour of a component or system and reports all defects found for the develop-
ment team to correct. Testing then repeats enough tests to ensure that defect
corrections have been effective. So both are needed to achieve a quality result.

Static testing and dynamic testing
Static testing is the term used for testing where the code is not exercised. This
may sound strange, but remember that failures often begin with a human error,
namely a mistake in a document such as a specification. We need to test these
because errors are much cheaper to fix than defects or failures (as you will see).
That is why testing should start as early as possible, another basic principle
explained in more detail later in this chapter. Static testing involves techniques
such as reviews, which can be effective in preventing defects, e.g. by removing
ambiguities and errors from specification documents; this is a topic in its own
right and is covered in detail in Chapter 3. Dynamic testing is the kind that
exercises the program under test with some test data, so we speak of test
execution in this context. The discipline of software testing encompasses both
static and dynamic testing.

Testing as a process
We have already seen that there is much more to testing than test execution.
Before test execution there is some preparatory work to do to design the tests
and set them up; after test execution there is some work needed to record the
results and check whether the tests are complete. Even more important than this
is deciding what we are trying to achieve with the testing and setting clear objec-
tives for each test. A test designed to give confidence that a program functions
according to its specification, for example, will be quite different from one
designed to find as many defects as possible. We define a test process to ensure
that we do not miss critical steps and that we do things in the right order. We will
return to this important topic later, where we explain the fundamental test
process in detail.

THE FUNDAMENTALS OF TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 15

Testing as a set of techniques
The final challenge is to ensure that the testing we do is effective testing. It might
seem paradoxical, but a good test is one that finds a defect if there is one present.
A test that finds no defect has consumed resources but added no value; a test that
finds a defect has created an opportunity to improve the quality of the product.
How do we design tests that find defects? We actually do two things to maximise
the effectiveness of the tests. First we use well-proven test design techniques, and
a selection of the most important of these is explained in detail in Chapter 4. The
techniques are all based on certain testing principles that have been discovered
and documented over the years, and these principles are the second mechanism
we use to ensure that tests are effective. Even when we cannot apply rigorous
test design for some reason (such as time pressures) we can still apply the general
principles to guide our testing. We turn to these next.

GENERAL TESTING PRINCIPLES

Testing is a very complex activity, and the software problems described earlier
highlight that it can be difficult to do well. We now describe some general testing
principles that help testers, principles that have been developed over the years
from a variety of sources. These are not all obvious, but their purpose is to guide
testers, and prevent the types of problems described previously. Testers use these
principles with the test techniques described in Chapter 4.

Testing shows the presence of bugs
Running a test through a software system can only show that one or more defects
exist. Testing cannot show that the software is error free. Consider whether the top
10 wanted criminals website was error free. There were no functional defects, yet
the website failed. In this case the problem was non-functional and the absence of
defects was not adequate as a criterion for release of the website into operation.

In Chapter 2, we will discuss retesting, when a previously failed test is rerun, to
show that under the same conditions, the reported problem no longer exists. In this
type of situation, testing can show that one particular problem no longer exists.

Although there may be other objectives, usually the main purpose of testing is to
find defects. Therefore tests should be designed to find as many defects as possible.

Exhaustive testing is impossible
If testing finds problems, then surely you would expect more testing to find
additional problems, until eventually we would have found them all. We discussed
exhaustive testing earlier when looking at the Ariane 5 rocket launch, and

16

SOFTWARE TESTING

CHECK OF UNDERSTANDING

(1) Describe static testing and dynamic testing.

(2) What is debugging?

(3) What other elements apart from ‘test execution’ are included in ‘testing’?

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 16

concluded that for large complex systems, exhaustive testing is not possible.
However, could it be possible to test small pieces of software exhaustively, and only
incorporate exhaustively tested code into large systems?

Consider a small piece of software where one can enter a password, specified to
contain up to three characters, with no consecutive repeating entries. Using only
western alphabetic capital letters and completing all three characters, there are
26 × 26 × 26 input permutations (not all of which will be valid). However, with a
standard keyboard, there are not 26 × 26 × 26 permutations, but a much higher
number, 256 × 256 × 256, or 224. Even then, the number of possibilities is higher.
What happens if three characters are entered, and the ‘delete last character’ right
arrow key removes the last two? Are special key combinations accepted, or do
they cause system actions (Ctrl + P, for example)? What about entering a charac-
ter, and waiting 20 minutes before entering the other two characters? It may be
the same combination of keystrokes, but the circumstances are different. We can
also include the situation where the 20-minute break occurs over the change-
of-day interval. It is not possible to say whether there are any defects until all
possible input combinations have been tried.

Even in this small example, there are many, many possible data combinations
to attempt.

Unless the application under test (AUT) has an extremely simple logical
structure and limited input, it is not possible to test all possible combinations
of data input and circumstances. For this reason, risk and priorities are used
to concentrate on the most important aspects to test. Both ‘risk’ and ‘priorities’
are covered later in more detail. Their use is important to ensure that the
most important parts are tested.

Early testing
When discussing why software fails, we briefly mentioned the idea of early
testing. This principle is important because, as a proposed deployment date
approaches, time pressure can increase dramatically. There is a real danger that
testing will be squeezed, and this is bad news if the only testing we are doing is
after all the development has been completed. The earlier the testing activity is
started, the longer the elapsed time available. Testers do not have to wait until
software is available to test.

Work-products are created throughout the software development life cycle
(SDLC). As soon as these are ready, we can test them. In Chapter 2, we will see
that requirement documents are the basis for acceptance testing, so the creation
of acceptance tests can begin as soon as requirement documents are available. As
we create these tests, it will highlight the contents of the requirements. Are indi-
vidual requirements testable? Can we find ambiguous or missing requirements?

17

THE FUNDAMENTALS OF TESTING

Exhaustive testing – a test approach in which all possible data combinations
are used. This includes implicit data combinations present in the state of the
software/data at the start of testing.

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 17

18

Many problems in software systems can be traced back to missing or incorrect
requirements. We will look at this in more detail when we discuss reviews in
Chapter 3. The use of reviews can break the ‘error–defect–failure’ cycle. In early
testing we are trying to find errors and defects before they are passed to the next
stage of the development process. Early testing techniques are attempting to
show that what is produced as a system specification, for example, accurately
reflects that which is in the requirement documents. Ed Kit (Kit, 1995) discusses
identifying and eliminating errors at the part of the SDLC in which they are
introduced. If an error/defect is introduced in the coding activity, it is preferable to
detect and correct it at this stage. If a problem is not corrected at the stage in
which it is introduced, this leads to what Kit calls ‘errors of migration’. The result
is rework. We need to rework not just the part where the mistake was made, but
each subsequent part where the error has been replicated. A defect found at
acceptance testing where the original mistake was in the requirements will
require several work-products to be reworked, and subsequently to be retested.

Studies have been done on the cost impacts of errors at the different development
stages. Whilst it is difficult to put figures on the relative costs of finding defects at
different levels in the SDLC, Table 1.1 does concentrate the mind!

This is known as the cost escalation model.

What is undoubtedly true is that the graph of the relative cost of early and late
identification/correction of defects rises very steeply (Figure 1.3).

The earlier a problem (defect) is found, the less it costs to fix.

The objectives of various stages of testing can be different. For example, in the
review processes, we may focus on whether the documents are consistent and no
errors have been introduced when the documents were produced. Other stages of
testing can have other objectives. The important point is that testing has defined
objectives.

Table 1.1 Comparative cost to correct errors

Stage error is found Comparative cost

Requirements $1
Coding $10

Program testing $100

System testing $1,000

User acceptance testing $10,000

Live running $100,000

SOFTWARE TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 18

19

Defect clustering
Problems do occur in software! It is a fact. Once testing has identified (most of)
the defects in a particular application, it is at first surprising that the spread
of defects is not uniform. In a large application, it is often a small number of
modules that exhibit the majority of the problems. This can be for a variety of
reasons, some of which are:

System complexity.

Volatile code.

The effects of change upon change.

Development staff experience.

Development staff inexperience.

This is the application of the Pareto principle to software testing: approximately
80 per cent of the problems are found in about 20 per cent of the modules. It is
useful if testing activity reflects this spread of defects, and targets areas of the
application under test where a high proportion of defects can be found. However,
it must be remembered that testing should not concentrate exclusively on these
parts. There may be fewer defects in the remaining code, but testers still need to
search diligently for them.

The pesticide paradox
Running the same set of tests continually will not continue to find new defects.
Developers will soon know that the test team always tests the boundaries of con-
ditions, for example, so they will test these conditions before the software is deliv-
ered. This does not make defects elsewhere in the code less likely, so continuing to
use the same test set will result in decreasing effectiveness of the tests. Using
other techniques will find different defects.

For example, a small change to software could be specifically tested and an
additional set of tests performed, aimed at showing that no additional problems
have been introduced (this is known as regression testing). However, the software
may fail in production because the regression tests are no longer relevant to the

Figure 1.3 Effect of identification time on cost of errors

C
os

t

Time

THE FUNDAMENTALS OF TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 19

requirements of the system or the test objectives. Any regression test set needs to
change to reflect business needs, and what are now seen as the most important
risks. Regression testing will be discussed later in this chapter, but is covered in
more detail in Chapter 2.

Testing is context dependent
Different testing is necessary in different circumstances. A website where infor-
mation can merely be viewed will be tested in a different way to an e-commerce
site, where goods can be bought using credit/debit cards. We need to test an air
traffic control system with more rigour than an application for calculating the
length of a mortgage.

Risk can be a large factor in determining the type of testing that is needed. The
higher the possibility of losses, the more we need to invest in testing the software
before it is implemented. A fuller discussion of risk is given in Chapter 5.

For an e-commerce site, we should concentrate on security aspects. Is it possible
to bypass the use of passwords? Can ‘payment’ be made with an invalid credit
card, by entering excessive data into the card number? Security testing is an
example of a specialist area, not appropriate for all applications. Such types of
testing may require specialist staff and software tools. Test tools are covered in
more detail in Chapter 6.

Absence of errors fallacy
Software with no known errors is not necessarily ready to be shipped. Does the
application under test match up to the users’ expectations of it? The fact that no
defects are outstanding is not a good reason to ship the software.

Before dynamic testing has begun, there are no defects reported against the code
delivered. Does this mean that software that has not been tested (but has no
outstanding defects against it) can be shipped? We think not!

FUNDAMENTAL TEST PROCESS

We previously determined that testing is a process, discussed above. This process
is detailed in what has become known as the fundamental test process, a key
element of what testers do, and is applicable at all stages of testing.

The most visible part of testing is running one or more tests: test execution. We
also have to prepare for running tests, analyse the tests that have been run, and

SOFTWARE TESTING

20

CHECK OF UNDERSTANDING

(1) Why is ‘zero defects’ an insufficient guide to software quality?

(2) Give three reasons why defect clustering may exist.

(3) Briefly justify the idea of early testing.

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 20

see whether testing is complete. Both planning and analysing are very necessary
activities that enhance and amplify the benefits of the test execution itself. It is
no good testing without deciding how, when and what to test. Planning is also
required for the less formal test approaches such as exploratory testing, covered
in more detail in Chapter 4.

The fundamental test process consists of five parts that encompass all aspects of
testing (Figure 1.4):

(1) Planning and control.

(2) Analysis and design.

(3) Implementation and execution.

(4) Evaluating exit criteria and reporting.

(5) Test closure activities.

Although the main activities are in a broad sequence, they are not undertaken in
a rigid way. An earlier activity may need to be revisited. A defect found in test
execution can sometimes be resolved by adding functionality that was originally
not present (either missing in error, or the new facilities are needed to make the
other part correct). The new features themselves have to be tested, so even
though implementation and execution are in progress, the ‘earlier’ activity of
analysis and design has to be performed for the new features (Figure 1.5).

We sometimes need to do two or more of the main activities in parallel. Time
pressure can mean that we begin test execution before all tests have been designed.

21

Figure 1.4 Fundamental test process

Test planning and control

Test analysis and design

Test implementation
and execution

Evaluating exit criteria
and reporting

Test closure activities

THE FUNDAMENTALS OF TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 21

Test planning and control
Planning is determining what is going to be tested, and how this will be achieved.
It is where we draw a map; how activities will be done; and who will do them.
Test planning is also where we define the test completion criteria. Completion
criteria are how we know when testing is finished. Control, on the other hand, is
what we do when the activities do not match up with the plans. It is the ongoing
activity where we compare the progress against the plan. As progress takes place,
we may need to adjust plans to meet the targets, if this is possible. Therefore we
need to undertake both planning and control throughout the testing activities.
We plan at the outset, but as testing progresses, undertake monitoring and
control activities (monitoring to measure what has happened, control to adjust
future activities in the light of experience). Monitoring and control feed back into
the continual activity of planning. The activities of planning and control are
developed in more detail in Chapter 5.

Test analysis and design
Analysis and design are concerned with the fine detail of what to test (test
conditions), and how to combine test conditions into test cases, so that a small
number of test cases can cover as many of the test conditions as possible. The
analysis and design stage is the bridge between planning and test execution.
It is looking backward to the planning (schedules, people, what is going to be
tested) and forward to the execution activity (test expected results, what
environment will be needed).

A part of the design process needs to consider the test data that will be required
for the test conditions and test cases that have been drawn up.

Test design involves predicting how the software under test should behave in
a given set of circumstances. Sometimes the expected outcome of a test is

SOFTWARE TESTING

22

Figure 1.5 Iteration of activities

Test planning and control

Test analysis and design

Test implementation
and execution

Evaluating exit criteria
and reporting

Test closure activities

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 22

trivial: when ordering books from an online book retailer, for instance, under no
circumstances should money be refunded to the customer’s card without interven-
tion from a supervisor. If we do not detail expected outcomes before starting test
execution, there is a real danger that we will miss the one item of detail that is
vital, but wrong.

These topics will be discussed in more detail in Chapter 4, when test case design
techniques are presented. The main points of this activity are as follows:

Reviewing requirements, architecture, design, interface specifications and
other parts, which collectively comprise the test basis.

Analysing test items, the specification, behaviour and structure to identify
test conditions and test data required.

Designing the tests, including assigning priority.

Determining whether the requirements and the system are testable.

Detailing what the test environment should look like, and whether there are
any infrastructure and tools required.

Highlighting the test data required for the test conditions and test cases.

Creating bi-directional traceability between test basis and test cases.

Test implementation and execution
The test implementation and execution activity involves running tests, and this
will include where necessary any set-up/tear-down activities for the testing. It
will also involve checking the test environment before testing begins. Test execu-
tion is the most visible part of testing, but it is not possible without other parts
of the fundamental test process. It is not just about running tests. As we have
already mentioned, the most important tests need to be run first. How do we
know what are the most important tests to run? This is determined during the
planning stages, and refined as part of test design.

One important aspect undertaken at this stage is combining test cases into an
overall run procedure, so that test time can be utilised efficiently. Here the logical
ordering of tests is important so that, where possible, the outcome of one test
creates the preconditions for one or more tests that are later in the execution
sequence.

As tests are run, their outcome needs to be logged, and a comparison made between
expected results and actual results. Whenever there is a discrepancy between the
expected and actual results, this needs to be investigated. If necessary a test incident
should be raised. Each incident requires investigation, although corrective action will
not be necessary in every case. Test incidents will be discussed in Chapter 5.

When anything changes (software, data, installation procedures, user documenta-
tion, etc.), we need to do two kinds of testing on the software. First of all, tests
should be run to make sure that the problem has been fixed. We also need to make
sure that the changes have not broken the software elsewhere. These two types
are usually called retesting and regression testing, respectively. In retesting we

23

THE FUNDAMENTALS OF TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 23

are looking in fine detail at the changed area of functionality, whereas regression
testing should cover all the main functions to ensure that no unintended changes
have occurred. On a financial system, we should include end of day/end of
month/end of year processing, for example, in a regression test pack.

Test implementation and execution is where the most visible test activities are
undertaken, and usually have the following parts:

Developing and prioritising test cases, creating test data, writing test
procedures and, optionally, preparing test harnesses and writing automated
test scripts.

Collecting test cases into test suites, where tests can be run one after another
for efficiency.

Checking the test environment set-up is correct.

Running test cases in the determined order. This can be manually or using
test execution tools.

Keeping a log of testing activities, including the outcome (pass/fail) and the
versions of software, data, tools and testware (scripts, etc.).

Comparing actual results with expected results.

Reporting discrepancies as incidents with as much information as possible,
including if possible causal analysis (code defect, incorrect test specification,
test data error or test execution error).

Where necessary, repeating test activities when changes have been made
following incidents raised. This includes re-execution of a test that previously
failed in order to confirm a fix (retesting), execution of a corrected test and
execution of previously passed tests to check that defects have not been
introduced (regression testing).

Evaluating exit criteria and reporting
Remember that exit criteria were defined during test planning and before test
execution started. At the end of test execution, the test manager checks to see
if these have been met. If the criterion was that there would be 85 per cent
statement coverage (i.e. 85 per cent of all executable statements have been
executed (see Chapter 4 for more detail)), and as a result of execution the figure
is 75 per cent, there are two possible actions: change the exit criteria, or run more
tests. It is possible that even if the preset criteria were met, more tests would
be required. Also, writing a test summary for stakeholders would say what was
planned, what was achieved, highlight any differences and in particular things
that were not tested.

The fourth stage of the fundamental test process, evaluating exit criteria,
comprises the following:

Checking whether the previously determined exit criteria have been met.

Determining if more tests are needed or if the specified exit criteria need
amending.

SOFTWARE TESTING

24

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 24

Writing up the result of the testing activities for the business sponsors and
other stakeholders.

More detail is given on this subject in Chapter 5.

Test closure activities
Testing at this stage has finished. Test closure activities concentrate on making
sure that everything is tidied away, reports written, defects closed, and those
defects deferred for another phase clearly seen to be as such.

At the end of testing, the test closure stage is composed of the following:

Ensuring that the documentation is in order; what has been delivered is
defined (it may be more or less than originally planned), closing incidents
and raising changes for future deliveries, documenting that the system has
been accepted.

Closing down and archiving the test environment, test infrastructure and
testware used.

Passing over testware to the maintenance team.

Writing down the lessons learned from this testing project for the future, and
incorporating lessons to improve the testing process (‘testing maturity’).

The detail of the test closure activities is discussed in Chapter 5.

THE PSYCHOLOGY OF TESTING

A variety of different people may be involved in the total testing effort, and
they may be drawn from a broad set of backgrounds. Some will be developers,
some professional testers, and some will be specialists, such as those with
performance testing skills, whilst others may be users drafted in to assist with
acceptance testing. Who ever is involved in testing needs at least some under-
standing of the skills and techniques of testing to make an effective contribution
to the overall testing effort.

Testing can be more effective if it is not undertaken by the individual(s) who wrote
the code, for the simple reason that the creator of anything (whether it is software
or a work of art) has a special relationship with the created object. The nature of
that relationship is such that flaws in the created object are rendered invisible to
the creator. For that reason it is important that someone other than the creator

25

CHECK OF UNDERSTANDING

(1) What are the stages in the fundamental test process (in the correct sequence)?

(2) Briefly compare regression testing and retesting.

(3) When should the expected outcome of a test be defined?

THE FUNDAMENTALS OF TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 25

should test the object. Of course we do want the developer who builds a component
or system to debug it, and even to attempt to test it, but we accept that testing
done by that individual cannot be assumed to be complete. Developers can test
their own code, but it requires a mindset change, from that of a developer (to prove
it works) to that of a tester (trying to show that it does not work). If there are
separate individuals involved, there are no potential conflicts of interest.We
therefore aim to have the software tested by someone who was not involved in the
creation of the software; this approach is called test independence. Below are
people who could test software, listed in order of increasing independence:

Those who wrote the code.

Members of the same development team.

Members of a different group (independent test team).

Members of a different company (a testing consultancy/outsourced).

Of course independence comes at a price; it is much more expensive to use a
testing consultancy than to test a program oneself.

Testers and developers think in different ways. However, although we know
that testers should be involved from the beginning, it is not always good to get
testers involved in code execution at an early stage; there are advantages and
disadvantages. Getting developers to test their own code has advantages (as soon
as problems are discovered, they can be fixed, without the need for extensive
error logs), but also difficulties (it is hard to find your own mistakes). People and
projects have objectives, and we all modify actions to blend in with the goals.
If a developer has a goal of producing acceptable software by certain dates,
then any testing is aimed towards that goal.

If a defect is found in software, the software author may see this as criticism.
Testers need to use tact and diplomacy when raising defect reports. Defect
reports need to be raised against the software, not against the individual who
made the mistake. The mistake may be in the code written, or in one of the
documents upon which the code is based (requirement documents or system
specification). When we raise defects in a constructive way, bad feeling can be
avoided.

We all need to focus on good communication, and work on team building. Testers
and developers are not opposed, but working together, with the joint target of
better quality systems. Communication needs to be objective, and expressed in
impersonal ways:

The aim is to work together rather than be confrontational. Keep the focus on
delivering a quality product.

Results should be presented in a non-personal way. The work-product may be
wrong, so say this in a non-personal way.

Attempt to understand how others feel; it is possible to discuss problems and
still leave all parties feeling positive.

SOFTWARE TESTING

26

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 26

At the end of discussions, confirm that you have both understood and been
understood. ‘So, am I right in saying that your aim was to deliver on Friday
by 12:00, even if you knew there were problems?’

As testers and developers, one of our goals is better quality systems delivered in a
timely manner. Good communication between testers and the development teams
is one way that this goal can be reached.

CODE OF ETHICS

One last topic that we need to address before we move onto the more detailed
coverage of topics in the following chapters is that testers must adhere to a code
of ethics: they are required to act in a professional manner. Testers can have
access to confidential and/or privileged information, and they are to treat any
information with care and attention, and act responsibly to the owner(s) of this
information, employers and the wider public interest. Of course, anyone can test
software, so the declaration of this code of conduct applies to those who have
achieved software testing certification! The code of ethics applies to the following
areas:

Public – Certified software testers shall consider the wider public interest in
their actions.

Client and employer – Certified software testers shall act in the best
interests of their client and employer (being consistent with the wider
public interest).

Product – Certified software testers shall ensure that the deliverables they
provide (for any products and systems they work on) meet the highest
professional standards possible.

Judgement – Certified software testers shall maintain integrity and
independence in their professional judgement.

Management – Certified software test managers and leaders shall subscribe
to and promote and ethical approach to the management of software testing.

Profession – Certified software testers shall advance the integrity and
reputation of the profession consistent with the public interest.

Colleagues – Certified software testers shall be fair to and supportive of their
colleagues, and promote cooperation with software developers.

27

CHECK OF UNDERSTANDING

(1) When testing software, who has the highest level of independence?

(2) Contrast the advantages and disadvantages of developers testing their
own code.

(3) Suggest three ways that confrontation can be avoided.

THE FUNDAMENTALS OF TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 27

Self – Certified software testers shall participate in lifelong learning regarding
the practice of their profession, and shall promote an ethical approach to the
practice of the profession.

The code of ethics is far reaching in its aims, and a quick review of the eight
points reveals interaction with other areas of the syllabus. The implementation of
this code of ethics is expanded on in all chapters of this book, and perhaps is the
reason for the whole book itself!

SUMMARY

In this chapter, we have looked at key ideas that are used in testing, and
introduced some terminology. We examined some of the types of software
problems that can occur, and why the blanket explanation of ‘insufficient testing’
is unhelpful. The problems encountered then led us through some questions
about the nature of testing, why errors and mistakes are made, and how these
can be identified and eliminated. Individual examples enabled us to look at what
testing can achieve, and the view that testing does not improve software quality,
but provides information about that quality.

We have examined both general testing principles and a standard template for
testing: the fundamental test process. These are useful and can be effective in
identifying the types of problems we considered at the start of the chapter. The
chapter finished by examining how developers and testers think, and looked at
different levels of test independence, and how testers should behave by adhering
to a code of ethics.

This chapter is an introduction to testing, and to themes that are developed later
in the book. It is a chapter in its own right, but also points to information that
will come later. A rereading of this chapter when you have worked through the
rest of the book will place all the main topics into context.

REFERENCES

Kit, Edward (1995) Software Testing in the Real World. Addison-Wesley,
Reading, MA.

SOFTWARE TESTING

28

CHECK OF UNDERSTANDING

(1) Why do testers need to consider how they treat information they use?

(2) What eight areas should testers consider when conducting themselves in the
workplace?

(3) What other sections of this chapter have described how testers should conduct
themselves with colleagues?

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 28

Example examination questions with answers
E1. K1 question
Which of the following is correct?

Debugging is:

a. Testing/checking whether the software performs correctly.
b. Checking that a previously reported defect has been corrected.
c. Identifying the cause of a defect, repairing the code and checking the fix is

correct.
d. Checking that no unintended consequences have occurred as a result of a fix.

E2. K2 question
Which of the following are aids to good communication, and which hinder it?

(i) Try to understand how the other person feels.
(ii) Communicate personal feelings, concentrating upon individuals.
(iii)Confirm the other person has understood what you have said and vice versa.
(iv) Emphasise the common goal of better quality.
(v) Each discussion is a battle to be won.

a. (i), (ii) and (iii) aid, (iv) and (v) hinder.
b. (iii), (iv) and (v) aid, (i) and (ii) hinder.
c. (i), (iii) and (iv) aid, (ii) and (v) hinder.
d. (ii), (iii) and (iv) aid, (i) and (v) hinder.

E3. K1 question
Which option is part of the ‘implementation and execution’ area of the
fundamental test process?

a. Developing the tests.
b. Comparing actual and expected results.
c. Writing a test summary.
d. Analysing lessons learnt for future releases.

E4. K1 question
The five parts of the fundamental test process have a broad chronological order.
Which of the options gives three different parts in the correct order?

a. Implementation and execution, planning and control, analysis and design.
b. Analysis and design, evaluating exit criteria and reporting, test closure

activities.
c. Evaluating exit criteria and reporting, implementation and execution,

analysis and design.
d. Evaluating exit criteria and reporting, test closure activities, analysis

and design.

29

THE FUNDAMENTALS OF TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 29

E5. K2 question
Which pair of definitions is correct?

a. Regression testing is checking that the reported defect has been fixed;
retesting is testing that there are no additional problems in previously tested
software.

b. Regression testing is checking there are no additional problems in
previously tested software; retesting enables developers to isolate the
problem.

c. Regression testing involves running all tests that have been run before;
retesting runs new tests.

d. Regression testing is checking that there are no additional problems in
previously tested software, retesting is demonstrating that the reported
defect has been fixed.

E6. K1 question
Which statement is most true?

a. Different testing is needed depending upon the application.
b. All software is tested in the same way.
c. A technique that finds defects will always find defects.
d. A technique that has found no defects is not useful.

E7. K1 question
When is testing complete?

a. When time and budget are exhausted.
b. When there is enough information for sponsors to make an informed

decision about release.
c. When there are no remaining high priority defects outstanding.
d. When every data combination has been exercised successfully.

E8. K1 question
Which list of levels of tester independence is in the correct order, starting with the
most independent first?

a. Tests designed by the author; tests designed by another member of
the development team; tests designed by someone from a different
company.

b. Tests designed by someone from a different department within the company;
tests designed by the author; tests designed by someone from a different
company.

c. Tests designed by someone from a different company; tests designed by
someone from a different department within the company; tests designed
by another member of the development team.

d. Tests designed by someone from a different department within the company;
tests designed by someone from a different company; tests designed by the
author.

SOFTWARE TESTING

30

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 30

E9. K2 question
The following statements relate to activities that are part of the fundamental test
process.

(i) Evaluating the testability of requirements.
(ii) Repeating testing activities after changes.
(iii) Designing the test environment set-up.
(iv) Developing and prioritising test cases.
(v) Verifying the environment is set up correctly.

Which statement below is TRUE?

a. (i) and (ii) are part of analysis and design, (iii), (iv) and (v) are part of test
implementation and execution.

b. (i) and (iii) are part of analysis and design, (ii), (iv) and (v) are part of test
implementation and execution.

c. (i) and (v) are part of analysis and design, (ii), (iii) and (iv) are part of test
implementation and execution.

d. (i) and (iv) are part of analysis and design, (ii), (iii) and (v) are part of test
implementation and execution.

E10. K2 question
Which statement correctly describes the public and profession aspects of the
code of ethics?

a. Public: Certified software testers shall act in the best interests of their client
and employer (being consistent with the wider public interest). Profession:
Certified software testers shall advance the integrity and reputation of their
industry consistent with the public interest.

b. Public: Certified software testers shall advance the integrity and reputation
of the profession consistent with the public interest. Profession: Certified
software testers shall consider the wider public interest in their actions.

c. Public: Certified software testers shall consider the wider public interest
in their actions. Profession: Certified software testers shall participate in
lifelong learning regarding the practice of their profession and shall promote
an ethical approach to the practice of their profession.

d. Public: Certified software testers shall consider the wider public interest
in their actions. Profession: Certified software testers shall advance the
integrity and reputation of their industry consistent with the public interest.

31

THE FUNDAMENTALS OF TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 31

Answers to questions in the chapter
SA1. The correct answer is c.
SA2. The correct answer is b.
SA3. The correct answer is d.

Answers to example questions
E1. The correct answer is c.

a. is a brief definition of testing.
b. is retesting.
d. is regression testing.

E2. The correct answer is c.
If you are unsure why, revisit the section in this chapter on the psychology
of testing.

E3. The correct answer is b.

a. is part of ‘Analysis and design’.
c. is part of ‘Evaluating exit criteria and reporting’.
d. is part of ‘Test closure activities’.

E4. The correct answer is b.
All other answers have at least one stage of the fundamental test process in the
wrong sequence.

E5. The correct answer is d.
Regression testing is testing that nothing has regressed. Retesting (or confirma-
tion testing) confirms the fix is correct by running the same test after the fix
has been made. No other option has both of these as true.

E6. The correct answer is a.
This is a restatement of the testing principle ‘Testing is context dependent’.

E7. The correct answer is b.
Sometimes time/money does signify the end of testing, but it is really
complete when everything that was set out in advance has been achieved.

E8. The correct answer is c.
This option has someone nearer to the written code in each statement. All other
options are not in this order.

E9. The correct answer is b.
All other answers contain an activity identified as analysis and design that is
part of implementation and test execution.

E10. The correct answer is d.
All the answers reflect the definition of two of the items from the code of ethics,
and care must be taken in searching for the Public item because ‘public’ or

SOFTWARE TESTING

32

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 32

‘public interest’ are used in several of the eight items in the code. The key is
that ‘public’ is the main item, rather than a subsidiary. In the order given in the
options, a. reflects Client and employer and Profession while b. gives
Profession and Public (the correct choices, but the wrong way round). Option c.
gives Public and Self, leaving the last option d. to give Public and Profession.

33

THE FUNDAMENTALS OF TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 33

34

Angelina Samaroo

INTRODUCTION

In the previous chapter, we looked at testing as a concept – what it is and why
we should do it. In this chapter we will look at testing as part of overall software
development. Clearly testing does not take place in isolation; there must be a
product first!

We will refer to work-products and products. A work-product is an intermediate
deliverable required to create the final product. Work-products can be documen-
tation or code. The code and associated documentation will become the product
when the system is declared ready for release. In software development,
work-products are generally created in a series of defined stages, from capturing
a customer requirement, to creating the system, to delivering the system. These
stages are usually shown as steps within a software development life cycle.

In this chapter we will look at two life-cycle models – sequential and iterative. For
each one, the testing process will be described, and the objectives at each stage of
testing explained.

Finally, we will look at the different types of testing that can take place
throughout the development life cycle.

Learning objectives
The learning objectives for each section are as follows. Each section has been
categorised as K2 overall, but individual K1 elements are shown where
applicable.

Software development models (K2)

Understanding of the relationship between development, test activities and
work-products in the development life cycle, giving examples based on project
and product characteristics and context.

Recognition that software development models must be adapted to the
context of project and product characteristics. (K1)

Recall of reasons for different levels of testing, and characteristics of good
testing in any life-cycle model. (K1)

2 LIFE CYCLES

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 34

35

Test levels (K2)

Be able to compare the different levels of testing, considering for each the:

Major objectives.

Typical objectives of testing.

Typical targets of testing (e.g. functional or structural) and related
work-products.

People who test.

Types of defects and failures to be identified.

Test types (K2)

Comparison of the four requirement types (functional, non-functional,
structural and change-related) by example.

Recognition that functional and structural tests can occur at any level. (K1)

Identification and description of non-functional test types based on
non-functional requirements.

Identification and description of test types based on the analysis of a software
system’s structure or architecture.

Explanation of the purpose of confirmation and regression testing.

Maintenance testing (K2)

Recognition of differences between testing existing systems and new systems,
considering:

Test types

Triggers for testing

Amount of testing

Recall of reasons for maintenance testing (K1):

Modification

Migration

Retirement

Description of the role of regression testing and impact analysis in
maintenance testing.

Self-assessment questions
The following questions have been designed to assess the reader’s current
knowledge of this topic. The answers are provided at the end of the chapter.

LIFE CYCLES

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 35

SOFTWARE TESTING

Question SA1 (K2)
Which of the following is true about the V-model?

a. It has the same steps as the waterfall model for software development.
b. It is referred to as a cyclical model for software development.
c. It enables the production of a working version of the system as early

as possible.
d. It enables test planning to start as early as possible.

Question SA2 (K2)
Which of the following is true of iterative development?

a. It uses fully defined specifications from the start.
b. It involves the users in the testing throughout.
c. Changes to the system do not need to be formally recorded.
d. It is not suitable for developing websites.

Question SA3 (K1)
Which of the following is in the correct order (typically)?

a. Unit testing, system testing, acceptance testing, maintenance testing.
b. System testing, unit testing, acceptance testing, maintenance testing.
c. Acceptance testing, system testing, maintenance testing, unit testing.
d. Unit testing, maintenance testing, system testing, acceptance testing.

SOFTWARE DEVELOPMENT MODELS

A development life cycle for a software product involves capturing the initial
requirements from the customer, expanding on these to provide the detail required
for code production, writing the code and testing the product, ready for release.

A simple development model is shown in Figure 2.1. This is known traditionally
as the waterfall model.

Figure 2.1 Waterfall model

Requirement specification

Coding Test

Functional specification

Technical specification

Program specification

36

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 36

37

The waterfall model in Figure 2.1 shows the steps in sequence where the
customer requirements are progressively refined to the point where coding can
take place. This type of model is often referred to as a linear or sequential model.
Each work-product or activity is completed before moving on to the next.

In the waterfall model, testing is carried out once the code has been fully
developed. Once this is completed, a decision can be made on whether the
product can be released into the live environment.

This model for development shows how a fully tested product can be created, but
it has a significant drawback: what happens if the product fails the tests? Let us
look at a simple case study.

In the waterfall model, the testing at the end serves as a quality check. The
product can be accepted or rejected at this point. As we saw in the case of rivet
production, a single point of quality checking may be acceptable, assuming that
most rivets pass the quality check.

In software development, however, it is unlikely that we can simply reject the
parts of the system found to be defective, and release the rest. The nature of
software functionality is such that removal of software is often not a clean-cut
activity – this action could well cause other areas to function incorrectly. It may
even cause the system to become unusable.

In addition, we may not be able to choose not to deliver anything at all. The
commercial and financial effects of this course of action could be substantial.

What is needed is a process that assures quality throughout the development life
cycle. At every stage, a check should be made that the work-product for that stage
meets its objectives. This is a key point, work-product evaluation taking place at
the point where the product has been declared complete by its creator. If the
work-product passes its evaluation (test), we can progress to the next stage in
confidence. In addition, finding problems at the point of creation should make
fixing any problems cheaper than fixing them at a later stage. This is the cost
escalation model, described in Chapter 1.

CASE STUDY – DEVELOPMENT PROCESS

In a factory environment producing rivets for an aircraft fuselage, checks are made
by operators to assess the rivets on a conveyor belt. This assessment may reveal a
percentage of the rivets to be defective. Usually this percentage is small, and does
not result in the whole batch of rivets being rejected. Therefore the bulk of the
product can be released.

Consider now the same aircraft, but the product is the software controlling the
display provided for the aircrew. If, at the point of testing, too many defects are
found, what happens next? Can we release just parts of the system?

LIFE CYCLES

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 37

SOFTWARE TESTING

The checks throughout the life cycle include verification and validation.

There are two types of development model that facilitate early work-product
evaluation.

The first is an extension to the waterfall model, known as the V-model. The second
is a cyclical model, where the coding stage often begins once the initial user needs
have been captured. Cyclical models are often referred to as iterative models.

We will consider first the V-model.

V-model (sequential development model)
There are many variants of the V-model. One of these is shown in Figure 2.2.

Verification – checks that the work-product meets the requirements set out for
it. An example of this would be to ensure that a website being built follows the
guidelines for making websites usable by as many people as possible.
Verification helps to ensure that we are building the product in the right way.

Validation – changes the focus of work-product evaluation to evaluation against
user needs. This means ensuring that the behaviour of the work-product
matches the customer needs as defined for the project. For example, for the
same website above, the guidelines may have been written with people familiar
with websites in mind. It may be that this website is also intended for novice
users. Validation would include these users checking that they too can use the
website easily. Validation helps to ensure that we are building the right product
as far as the users are concerned.

Figure 2.2 V-model for software development
Requirement
specification

Coding

Unit
testing

Functional
specification

Technical
specification

Program
specification

Integration
testing

System
testing

Acceptance
testing

Unit test
planning

Integration test
planning

System test
planning

Acceptance test
planning

38

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 38

39

As for the waterfall model, the left-hand side of the model focuses on elaborating
the initial requirements, providing successively more technical detail as the
development progresses. In the model shown, these are:

Requirement specification – capturing of user needs.

Functional specification – definition of functions required to meet user needs.

Technical specification – technical design of functions identified in the
functional specification.

Program specification – detailed design of each module or unit to be built to
meet required functionality.

These specifications could be reviewed to check for the following:

Conformance to the previous work-product (so in the case of the functional
specification, verification would include a check against the requirement
specification).

That there is sufficient detail for the subsequent work-product to be built cor-
rectly (again, for the functional specification, this would include a check that
there is sufficient information in order to create the technical specification).

That it is testable – is the detail provided sufficient for testing the
work-product?

Formal methods for reviewing documents are discussed in Chapter 3.

The middle of the V-model shows that planning for testing should start with
each work-product. Thus, using the requirement specification as an example,
acceptance testing would be planned for, right at the start of the development.
Test planning is discussed in more detail in Chapter 5.

The right-hand side focuses on the testing activities. For each work-product,
a testing activity is identified. These are shown in Figure 2.2:

Testing against the requirement specification takes place at the acceptance
testing stage.

Testing against the functional specification takes place at the system testing
stage.

Testing against the technical specification takes place at the integration
testing stage.

Testing against the program specification takes place at the unit testing stage.

This allows testing to be concentrated on the detail provided in each work-product,
so that defects can be identified as early as possible in the life cycle, when the
work-product has been created. The different stages of testing are discussed later.

Remembering that each stage must be completed before the next one can be
started, this approach to software development pushes validation of the system

LIFE CYCLES

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 39

SOFTWARE TESTING

40

by the user representatives right to the end of the life cycle. If the customer needs
were not captured accurately in the requirement specification, or if they change,
then these issues may not be uncovered until the user testing is carried out. As
we saw in Chapter 1, fixing problems at this stage could be very costly; in
addition, it is possible that the project could be cancelled altogether.

Iterative–incremental development models
Let us now look at a different model for software development – iterative develop-
ment. This is one where the requirements do not need to be fully defined before
coding can start. Instead, a working version of the product is built, in a series of
stages, or iterations – hence the name iterative or incremental development.
Each stage encompasses requirements definition, design, code and test. This is
shown diagrammatically in Figure 2.3.

This type of development is often referred to as cyclical – we go ‘round the develop-
ment cycle a number of times’, within the project. The project will have a defined
timescale and cost. Within this, the cycles will be defined. Each cycle will also have
a defined timescale and cost. The cycles are commonly referred to as time-boxes.
For each time-box, a requirement is defined and a version of the code is produced,
which will allow testing by the user representatives. At the end of each time-box, a
decision is made on what extra functionality needs to be created for the next itera-
tion. This process is then repeated until a fully working system has been produced.

A key feature of this type of development is the involvement of user representa-
tives in the testing. Having the users represented throughout minimises the risk
of developing an unsatisfactory product. The user representatives are empowered
to request changes to the software, to meet their needs.

This approach to software development can pose problems, however.

The lack of formal documentation makes it difficult to test. To counter this, devel-
opers may use test-driven development. This is where functional tests are written
first, and code is then created and tested. It is reworked until it passes the tests.

Figure 2.3 Iterative development

Requirements

Test Code

Design

Entry

Exit

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 40

41

In addition, the working environment may be such that developers make any
changes required, without formally recording them. This approach could mean
that changes cannot be traced back to the requirements or to the parts of the
software that have changed. Thus, traceability as the project progresses is
reduced. To mitigate this, a robust process must be put in place at the start of the
project to manage these changes (often part of a configuration management
process – this is discussed further in Chapter 5).

Another issue associated with changes is the amount of testing required to ensure
that implementation of the changes does not cause unintended changes to other
parts of the software (this is called regression testing, discussed later in this chapter).

Forms of iterative development include prototyping, rapid application develop-
ment (RAD) and agile software development. A proprietary methodology is the
Rational Unified Process (RUP).

TEST LEVELS

For both types of development, testing plays a significant role. Testing helps to
ensure that the work-products are being developed in the right way (verification)
and that the product will meet the user needs (validation).

Characteristics of good testing across the development life cycle include:

Early test design – In the V-model, we saw that test planning begins with the
specification documents. This activity is part of the fundamental test process
discussed in Chapter 1. After test planning, the documents would be analysed
and test cases designed. This approach would ensure that testing starts with
the development of the requirements, i.e. a proactive approach to testing is
undertaken. Proactive approaches to test design are discussed further in

CHECK OF UNDERSTANDING

(1) What is meant by verification?

(2) What is meant by validation?

(3) Name three work-products typically shown in the V-model.

(4) Name three activities typically shown in the V-model.

(5) Identify a benefit of the V-model.

(6) Identify a drawback of the V-model.

(7) Name three activities typically associated with an iterative model.

(8) Identify a significant benefit of an iterative model.

(9) List three challenges of an iterative development.

(10) List three types of iterative development.

(11) Compare the work-products in the V-model with those in an iterative model.

LIFE CYCLES

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 41

SOFTWARE TESTING

42

Chapter 5. As we saw in iterative development, test-driven development may
be adopted, pushing testing to the front of the development activity.

Each work-product is tested – In the V-model, each document on the left is
tested by an activity on the right. Each specification document is called the
test basis, i.e. it is the basis on which tests are created. In iterative develop-
ment, each release is tested before moving on to the next.

Testers are involved in reviewing requirements before they are released – In
the V-model, testers would be invited to review all documents from a testing
perspective. Techniques for reviewing documents are outlined in Chapter 3.

In Figure 2.2, the test stages of the V-model are shown. They are often called test
levels. The term test level provides an indication of the focus of the testing, and
the types of problems it is likely to uncover. The typical levels of testing are:

Unit (component) testing

Integration testing

System testing

Acceptance testing

Each of these test levels will include tests designed to uncover problems
specifically at that stage of development. These levels of testing can be applied
to iterative development also. In addition, the levels may change depending on
the system. For instance, if the system includes some software developed by
external parties, or bought off the shelf, acceptance testing on these may be
conducted before testing the system as a whole.

Let us now look at these levels of testing in more detail.

Unit (component) testing
Before testing of the code can start, clearly the code has to be written. This is
shown at the bottom of the V-model. Generally, the code is written in component
parts, or units. The units are usually constructed in isolation, for integration at a
later stage. Units are also called programs, modules or components.

Unit testing is intended to ensure that the code written for the unit meets its
specification, prior to its integration with other units.

In addition to checking conformance to the program specification, unit testing
would also verify that all of the code that has been written for the unit can be
executed. Instead of using the specification to decide on inputs and expected
outputs, the developer would use the code that has been written for this. Testing
based on code is discussed in detail in Chapter 4. Thus the test bases for unit
testing can include: the component requirements; the detailed design; the code
itself.

Unit testing requires access to the code being tested. Thus test objects (i.e. what
is under test) can be the components, the programs, data conversion/migration
programs and database modules. Unit testing is often supported by a unit

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 42

43

test framework (e.g. Kent Beck’s Smalltalk Testing Framework: http://
xprogramming.com/testfram.htm). In addition, debugging tools are often used.

An approach to unit testing is called Test Driven Development. As its name
suggests, test cases are written first, code built, tested and changed until the unit
passes its tests. This is an iterative approach to unit testing.

Unit testing is usually performed by the developer who wrote the code (and who
may also have written the program specification). Defects found and fixed during
unit testing are often not recorded.

Integration testing
Once the units have been written, the next stage would be to put them together
to create the system. This is called integration. It involves building something
large from a number of smaller pieces.

The purpose of integration testing is to expose defects in the interfaces and in the
interactions between integrated components or systems.

Thus the test bases for integration testing can include: the software and system
design; a diagram of the system architecture; workflows and use-cases.

The test objects would essentially be the interface code. This can include
subsystems’ database implementations.

Before integration testing can be planned, an integration strategy is required.
This involves making decisions on how the system will be put together prior to
testing. There are three commonly quoted integration strategies, as follows.

Big-bang integration
This is where all units are linked at once, resulting in a complete system. When
testing of this system is conducted, it is difficult to isolate any errors found,
because attention is not paid to verifying the interfaces across individual units.

This type of integration is generally regarded as a poor choice of integration strat-
egy. It introduces the risk that problems may be discovered late in the project,
where they are more expensive to fix.

Top-down integration
This is where the system is built in stages, starting with components that call
other components. Components that call others are usually placed above those
that are called. Top-down integration testing will permit the tester to evaluate
component interfaces, starting with those at the ‘top’.

Let us look at the diagram in Figure 2.4 to explain this further.

The control structure of a program can be represented in a chart. In Figure 2.4,
component 1 can call components 2 and 3. Thus in the structure, component 1 is
placed above components 2 and 3. Component 2 can call components 4 and 5.
Component 3 can call components 6 and 7. Thus in the structure, components 2
and 3 are placed above components 4 and 5 and components 6 and 7, respectively.

LIFE CYCLES

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 43

SOFTWARE TESTING

44

In this chart, the order of integration might be:

1,2

1,3

2,4

2,5

3,6

3,7

Top-down integration testing requires that the interactions of each component
must be tested when it is built. Those lower down in the hierarchy may not
have been built or integrated yet. In Figure 2.4, in order to test component 1’s
interaction with component 2, it may be necessary to replace component 2 with
a substitute since component 2 may not have been integrated yet. This is done by
creating a skeletal implementation of the component, called a stub. A stub is a
passive component, called by other components. In this example, stubs may be
used to replace components 4 and 5, when testing component 2.

The use of stubs is commonplace in top-down integration, replacing components
not yet integrated.

Bottom-up integration
This is the opposite of top-down integration and the components are integrated in
a bottom-up order. This is shown in Figure 2.5.

The integration order might be:

4,2

5,2

6,3

7,3

Figure 2.4 Top-down control structure

1

2 3

4 5 76

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 44

45

2,1

3,1

So, in bottom-up integration, components 4–7 would be integrated before
components 2 and 3. In this case, the components that may not be in place are
those that actively call other components. As in top-down integration testing,
they must be replaced by specially written components. When these special
components call other components, they are called drivers. They are so called
because, in the functioning program, they are active, controlling other
components.

Components 2 and 3 could be replaced by drivers when testing components 4–7.
They are generally more complex than stubs.

There may be more than one level of integration testing. For example:

Component integration testing focuses on the interactions between software
components and is done after component (unit) testing. This type of
integration testing is usually carried out by developers.

System integration testing focuses on the interactions between different
systems and may be done after system testing of each individual system.
For example, a trading system in an investment bank will interact with the
stock exchange to get the latest prices for its stocks and shares on the
international market. This type of integration testing is usually carried
out by testers.

It should be noted that testing at system integration level carries extra elements
of risk. These can include: at a technical level, cross-platform issues; at an
operational level, business workflow issues; and at a business level, risks
associated with ownership of regression issues associated with change in one
system possibly having a knock-on effect on other systems.

Figure 2.5 Bottom-up integration

1

2 3

4 5 76

LIFE CYCLES

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 45

SOFTWARE TESTING

46

System testing
Having checked that the components all work together at unit level, the next step
is to consider the functionality from an end-to-end perspective. This activity is
called system testing.

System testing is necessary because many of the criteria for test selection at unit
and integration testing result in the production of a set of test cases that are
unrepresentative of the operating conditions in the live environment. Thus
testing at these levels is unlikely to reveal errors due to interactions across the
whole system, or those due to environmental issues.

System testing serves to correct this imbalance by focusing on the behaviour of
the whole system/product as defined by the scope of a development project or
programme, in a representative live environment. It is usually carried out by
a team that is independent of the development process. The benefit of this
independence is that an objective assessment of the system can be made, based
on the specifications as written, and not the code.

In the V-model, the behaviour required of the system is documented in the
functional specification. It defines what must be built to meet the requirements
of the system. The functional specification should contain definitions of both
the functional and non-functional requirements of the system.

A functional requirement is a requirement that specifies a function that a system
or system component must perform. Functional requirements can be specific to a
system. For instance, you would expect to be able to search for flights on a travel
agent’s website, whereas you would visit your online bank to check that you have
sufficient funds to pay for the flight.

Thus functional requirements provide detail on what the application being
developed will do.

Non-functional system testing looks at those aspects that are important but not
directly related to what functions the system performs. These tend to be generic
requirements, which can be applied to many different systems. In the example
above, you can expect that both systems will respond to your inputs in a reason-
able time frame, for instance. Typically, these requirements will consider both
normal operations and behaviour under exceptional circumstances.

Thus non-functional requirements detail how the application will perform in use.

Examples of non-functional requirements include:

Installability – installation procedures.

Maintainability – ability to introduce changes to the system.

Performance – expected normal behaviour.

Load handling – behaviour of the system under increasing load.

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 46

47

Stress handling – behaviour at the upper limits of system capability.

Portability – use on different operating platforms.

Recovery – recovery procedures on failure.

Reliability – ability of the software to perform its required functions over time.

Usability – ease with which users can engage with the system.

Note that security and interoperability with specific systems are regarded as
functional requirements in this syllabus.

The amount of testing required at system testing, however, can be influenced by
the amount of testing carried out (if any) at the previous stages. In addition, the
amount of testing advisable would also depend on the amount of verification
carried out on the requirements (this is discussed further in Chapter 3).

Test bases for system testing can include: system and software requirement
specifications; use cases; functional specifications; risk analysis reports; and
system, user and operation manuals.

The test object will generally be the system under test.

Acceptance testing
The next step after system testing is often acceptance testing. The purpose of
acceptance testing is to provide the end users with confidence that the system
will function according to their expectations. Referring once more to the V-model,
acceptance testing will be carried out using the requirement specification as a
basis for test.

The requirement specification is typically the first document to be written, after
initial capture of the user requirement. An example of a requirement could be to
create a website that enables users to buy airline tickets online.

The subsequent documentation (functional, technical and program specifications)
will expand on this in increasing levels of detail, in order to facilitate development
of the system, as seen earlier. Thus, it is paramount that these requirements are
fully documented and correct before further development activity is carried out.
Again, this is the V-model approach. You may well be aware that having such an
ideal set of requirements is a rare thing. This does not mean, however, that the
need for correctness and completeness should be ignored. Techniques for verifying
requirements are given in Chapter 3.

As for system testing, no reference is made to the code from which the system is
constructed. Thus the test bases can include: user requirements; system require-
ments; use cases; business processes; and risk analysis reports.

The test objects can include: the fully integrated system; forms and reports
produced by the system.

LIFE CYCLES

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 47

SOFTWARE TESTING

48

Unlike system testing, however, the testing conducted here should be independent
of any other testing carried out. Its key purpose is to demonstrate system
conformance to, for example, the customer requirements and operational and
maintenance processes. For instance, acceptance testing may assess the system’s
readiness for deployment and use.

Acceptance testing is often the responsibility of the customers or users of a
system, although other project team members may be involved as well.

Typical forms of acceptance testing include the following:

User acceptance testing – testing by user representatives to check that the
system meets their business needs. This can include factory acceptance test-
ing, where the system is tested by the users before moving it to their own site.
Site acceptance testing could then be performed by the users at their own site.

Operational acceptance testing – often called operational readiness testing.
This involves checking that the processes and procedures are in place to allow
the system to be used and maintained. This can include checking:

Back-up facilities

Procedures for disaster recovery

Training for end users

Maintenance procedures

Data load and migration tasks

Security procedures

Contract and regulation acceptance testing

Contract acceptance testing – sometimes the criteria for accepting a
system are documented in a contract. Testing is then conducted to check
that these criteria have been met, before the system is accepted.

Regulation acceptance testing – in some industries, systems must meet
governmental, legal or safety standards. Examples of these are the
defence, banking and pharmaceutical industries.

Alpha and beta testing

Alpha testing takes place at the developer’s site – the operational system
is tested whilst still at the developer’s site by internal staff, before release
to external customers. Note that testing here is still independent of the
development team.

Beta testing takes place at the customer’s site – the operational system is
tested by a group of customers, who use the product at their own locations
and provide feedback, before the system is released. This is often called
‘field testing’.

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 48

49

TEST TYPES

In the last section we saw that each test level has specific testing objectives. In
this section we will look at the types of testing required to meet these objectives.

Test types fall into the following categories:

Functional testing

Non-functional testing

Structural testing

Testing after code has been changed.

To facilitate different types of testing, models may be used as follows:

Functional testing: process flows; state transition models; security threat
models; plain language specifications.

Non-functional testing: performance model; usability model.

Structural testing: control flow model; menu structure model.

Functional testing
As you saw in the section on system testing, functional testing looks at the
specific functionality of a system, such as searching for flights on a website,
or perhaps calculating employee pay correctly using a payroll system. Note that
security testing is a functional test type. Another type of functional testing is
interoperability testing – this evaluates the capability of the system to interact
with other specified components.

CHECK OF UNDERSTANDING

(1) In the V-model, which document would be used as the test basis for
unit testing?

(2) Describe three typical integration strategies.

(3) Identify why stubs and drivers are usually used.

(4) In the V-model, which document is used as the test basis for system
testing?

(5) Compare a functional requirement with a non-functional requirement.

(6) List three non-functional requirements.

(7) What is the purpose of acceptance testing?

(8) In the V-model, what is the test basis for acceptance testing?

(9) Identify three types of acceptance testing.

LIFE CYCLES

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 49

SOFTWARE TESTING

50

Functional testing is also called specification-based testing: testing against a
specification.

Non-functional testing
This is where the behavioural aspects of the system are tested. As you saw in
the section on system testing, examples are usability, performance under load
and stress, among others. As for functional testing, these requirements are
usually documented in a functional specification. Thus, mainly black-box testing
techniques are used for this type of testing.

These tests can be referenced against a quality model, such as the one defined in
ISO 9126 Software Engineering – Software Product Quality. Note that a detailed
understanding of this standard is not required for the exam.

Structural testing
This type of testing is used to measure how much testing has been carried out.
In functional testing, this could be the number of functional requirements tested
against the total number of requirements.

In structural testing, we change our measure to focus on the structural aspects
of the system. This could be the code itself, or an architectural definition of the
system. We want to do this to check the thoroughness of the testing carried out on
the system that has actually been built. A common measure is to look at how
much of the actual code that has been written has been tested. Further detail
on code coverage measures is provided in Chapter 4.

Note that structural testing can be carried out at any test level.

Testing related to changes
The previous sections detail the testing to be carried out at the different stages in
the development life cycle. At any level of testing, it can be expected that defects
will be discovered. When these are found and fixed, the quality of the system
being delivered can be improved.

After a defect is detected and fixed the changed software should be retested to
confirm that the problem has been successfully removed. This is called retesting
or confirmation testing. Note that when the developer removes the defect, this
activity is called debugging, which is not a testing activity. Testing finds a defect,
debugging fixes it.

The unchanged software should also be retested to ensure that no additional
defects have been introduced as a result of changes to the software. This is
called regression testing. Regression testing should also be carried out if the
environment has changed.

Regression testing involves the creation of a set of tests which serve to
demonstrate that the system works as expected. These would be run again
many times over a testing project, when changes are made, as discussed above.
This repetition of tests makes regression testing suitable for automation in
many cases. Test automation is covered in detail in Chapter 6.

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 50

51

MAINTENANCE TESTING

For many projects (though not all) the system is eventually released into the live
environment. Hopefully, once deployed, it will be in service as long as intended,
perhaps for years or decades.

During this deployment, it may become necessary to change the system. Changes
may be due to:

Additional features being required.

The system being migrated to a new operating platform.

The system being retired – data may need to be migrated or archived.

Planned upgrade to COTS-based systems.

New faults being found requiring fixing (these can be ‘hot fixes’).

Once changes have been made to the system, they will need to be tested (retesting),
and it also will be necessary to conduct regression testing to ensure that the rest of
the system has not been adversely affected by the changes. Testing that takes place
on a system which is in operation in the live environment is called maintenance
testing.

When changes are made to migrate from one platform to another, the system
should also be tested in its new environment. When migration includes data
being transferred in from another application, then conversion testing also
becomes necessary.

As we have suggested, all changes must be tested, and, ideally, all of the system
should be subject to regression testing. In practice, this may not be feasible or
cost-effective. An understanding of the parts of the system that could be affected by
the changes could reduce the amount of regression testing required. Working this out
is termed impact analysis, i.e. analysing the impact of the changes on the system.

CHECK OF UNDERSTANDING

Which of the following is correct?

(a) Regression testing checks that a problem has been successfully addressed,
whilst confirmation testing is done at the end of each release.

(b) Regression testing checks that all problems have been successfully
addressed, whilst confirmation testing refers to testing individual fixes.

(c) Regression testing checks that fixes to errors do not introduce unexpected
functionality into the system, whilst confirmation testing checks that fixes have
been successful.

(d) Regression testing checks that all required testing has been carried out, whilst
confirmation testing checks that each test is complete.

LIFE CYCLES

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 51

SOFTWARE TESTING

52

Impact analysis can be difficult for a system that has already been released.
This is because the specifications may be out of date (or non-existent), and/or the
original development team may have moved on to other projects, or left the
organisation altogether.

SUMMARY

In this chapter we have explored the role of testing within the software
development life cycle. We have looked at the basic steps in any development
model, from understanding customer needs to delivery of the final product.
These were built up into formally recognisable models, using distinct approaches
to software development.

The V-model, as we have seen, is a stepwise approach to software development,
meaning that each stage in the model must be completed before the next stage
can be started, if a strict implementation of the model is required. This is often
the case in safety-critical developments. The V-model typically has the following
work-products and activities:

(1) Requirement specification

(2) Functional specification

(3) Technical specification

(4) Program specification

(5) Code

(6) Unit testing

(7) Integration testing

(8) System testing

(9) Acceptance testing

Work-products 1–5 would be subject to verification, to ensure that they have been
created following the rules set out. For example, the program specification would
be assessed to ensure that it meets the requirements set out in the technical
specification, and that it contains sufficient detail for the code to be produced.

In activities 6–9, the code is assessed progressively for compliance to user needs,
as captured in the specifications for each level.

CHECK OF UNDERSTANDING

(1) What is the purpose of maintenance testing?

(2) Give examples of when maintenance testing would be necessary.

(3) What is meant by the term impact analysis?

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 52

53

An iterative model for development has fewer steps, but involves the user from
the start. These steps are typically:

(1) Define iteration requirement.

(2) Build iteration.

(3) Test iteration.

This sequence would be repeated for each iteration until an acceptable product
has been developed.

An explanation of each of the test levels in the V-model was given. For unit
testing the focus is the code within the unit itself, for integration testing it is
the interfacing between units, for system testing it is the end-to-end functionality,
and for acceptance testing it is the user perspective.

An explanation of test types was then given and by combining alternative test
types with test levels we can construct a test approach that matches a given
system and a given set of test objectives very closely. The techniques associated
with test types are covered in detail in Chapter 4 and the creation of a test
approach is covered in Chapter 5.

Finally, we looked at the testing required when a system has been released, but a
change has become necessary – maintenance testing. We discussed the need for
impact analysis in deciding how much regression testing to do after the changes
have been implemented. This can pose an added challenge, if the requirements
associated with the system are missing or have been poorly defined.

In the next chapter, techniques for improving requirements will be discussed.

LIFE CYCLES

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 53

SOFTWARE TESTING

54

Example examination questions with answers
E1. K1 question
Which of the following is usually the test basis for integration testing?

a. Program specification
b. Functional specification
c. Technical specification
d. Requirement specification

E2. K2 question
A top-down development strategy affects which level of testing most?

a. Component testing
b. Integration testing
c. System testing
d. User acceptance testing

E3. K2 question
Which of the following is a non-functional requirement?

a. The system will enable users to buy books.
b. The system will allow users to return books.
c. The system will ensure security of the customer details.
d. The system will allow up to 100 users to log in at the same time.

E4. K1 question
Which of the following are examples of iterative development models?

(i) V-model
(ii) Rapid Application Development model
(iii) Waterfall model
(iv) Agile development model

a. (i) and (ii)
b. (ii) and (iii)
c. (ii) and (iv)
d. (iii) and (iv)

E5. K2 question
Which of the following statements are true?

(i) For every development activity there is a corresponding testing activity.
(ii) Each test level has the same test objectives.
(iii) The analysis and design of tests for a given test level should begin after the

corresponding development activity.
(iv) Testers should be involved in reviewing documents as soon as drafts are

available in the development life cycle.

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 54

55

a. (i) and (ii)
b. (iii) and (iv)
c. (ii) and (iii)
d. (i) and (iv)

E6. K1 question
Which of the following is not true of regression testing?

a. It can be carried out at each stage of the life cycle.
b. It serves to demonstrate that the changed software works as intended.
c. It serves to demonstrate that software has not been unintentionally changed.
d. It is often automated.

LIFE CYCLES

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 55

SOFTWARE TESTING

56

Answers to questions in the chapter
SA1. The correct answer is d.
SA2. The correct answer is b.
SA3. The correct answer is a.

Answers to example questions
E1. The correct answer is c.
Option (a) is used for unit testing. Option (b) is used for system testing and option
(d) is used for acceptance testing.

E2. The correct answer is b.
The development strategy will affect the component testing (option (a)), in so far
as it cannot be tested unless it has been built. Options (c) and (d) require the
system to have been delivered; at these points the development strategy followed
is not important to the tester. Option (b) needs knowledge of the development
strategy in order to determine the order in which components will be integrated
and tested.

E3. The correct answer is d.
The other options are functional requirements. Note that security is regarded as
a functional requirement in this syllabus.

E4. The correct answer is c.
The other two models are sequential models.

E5. The correct answer is d.
Option (ii) is incorrect: each test level has a different objective. Option (iii) is also
incorrect: test analysis and design should start once the documentation has been
completed.

E6. The correct answer is b.
This is a definition of confirmation testing. The other three options are true of
regression testing.

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 56

57

INTRODUCTION

This chapter provides an introduction to an important area of software
testing – static techniques. Static techniques test software without executing
it. They are therefore important because they can find errors and defects
before code is executed and therefore earlier in the life cycle of a project,
making corrections easier and cheaper to achieve than for the same defects
found during test execution. Review techniques are central to the static
testing approach, and in this chapter we will look at the alternative types of
review and how they fit with the test process that was defined in Chapter 2.

The chapter also considers static analysis of the developed code, which is a
technique for examining code without executing it to identify actual and potential
problems. With the advances in coding languages and the legacy status of many
older systems, static testing is often impossible to achieve manually, so our focus
will therefore be on the types of static testing that can be completed using tools.
In this chapter we focus on the techniques of static testing; the tools that are
referred to are described in Chapter 6.

Learning objectives
The learning objectives for this chapter are listed below. You can confirm that you
have achieved these by using the self-assessment questions at the start of the
chapter, the ‘Check of understanding’ boxes distributed throughout the text, and
the example examination questions provided at the end of the chapter. The
chapter summary will remind you of the key ideas.

The sections are allocated a K number to represent the level of understanding
required for that section; where an individual element has a lower K number
than the section as a whole this is indicated for that topic; for an explanation of
the K numbers see the Introduction.

Reviews and the test process (K2)

Recognise software work-products that can be examined by the different
static techniques. (K1)

Describe the importance and value of considering static techniques for the
assessment of software work-products.

3 STATIC TESTING

Geoff Thompson

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 57

SOFTWARE TESTING

58

Explain the difference between static and dynamic techniques, considering
objectives, types of defects to be identified, and the role of these techniques
within the software life cycle.

Review process (K2)

Recall the phases, roles and responsibilities of a typical formal review. (K1)

Explain the differences between different types of review: informal review,
technical review, walkthrough and inspection.

Explain the factors for successful performance of reviews.

Static analysis by tools (K2)

Recall typical defects and errors identified by static analysis and compare
them with reviews and dynamic testing. (K1)

Describe using examples, the typical benefits of static analysis.

List typical code and design defects that may be identified by static analysis
tools. (K1)

Self-assessment questions
The following questions have been designed to enable you to check your current
level of understanding for the topics in this chapter. The answers are at the end of
the chapter.

Question SA1 (K1)
One of the roles in a review is that of moderator, which of the following best
describes this role?

a. Plans the review, runs the review meeting and ensures that follow-up
activities are completed.

b. Allocates time in the plan, decides which reviews will take place and that the
benefits are delivered.

c. Writes the document to be reviewed, agrees that the document can be
reviewed, and updates the document with any changes.

d. Documents all issues raised in the review meeting, records problems and
open points.

Question SA2 (K2)
Which of the following statements are correct for walkthroughs?

(i) Often led by the author.
(ii) Documented and defined results.
(iii) All participants have defined roles.
(iv) Used to aid learning.
(v) Main purpose is to find defects.

a. (i) and (v) are correct.
b. (ii) and (iii) are correct.
c. (i) and (iv) are correct.
d. (iii) and (iv) are correct.

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 58

59

Question SA3 (K1)
What do static analysis tools analyse?

a. Design
b. Test cases
c. Requirements
d. Program code

BACKGROUND TO STATIC TECHNIQUES

Static testing techniques are those techniques that test software without
executing the code. This includes both the testing of work-products other than
code, typically requirements or specification documents, and the testing of code
without actually executing it. The first of these is known as a review and is
typically used to find and remove errors and ambiguities in documents before
they are used in the development process, thus reducing one source of defects in
the code; the second is known as static analysis, and it enables code to be
analysed for structural defects or systematic programming weaknesses that may
lead to defects.

Reviews are normally completed manually; static analysis is normally completed
automatically using tools. The tools used for static analysis will be described in
Chapter 6.

REVIEWS AND THE TEST PROCESS

A review is a systematic examination of a document by one or more people with
the main aim of finding and removing errors. Giving a draft document to a
colleague to read is the simplest example of a review, and one which can usually
yield a larger crop of errors than we would have anticipated (see Chapter 5
regarding ‘World view’ to understand why).

Reviews can be used to test anything that is written or typed; this can include
documents such as requirement specifications, system designs, code, test plans
and test cases. Reviews represent the first form of testing that can take place
during a software development life cycle, since the documents reviewed are
normally ready long before the code has been written. The practice of testing
specification documents by reviewing them early on in the life cycle helps to
identify defects before they become part of the executable code, and so makes
those defects cheaper and easier to remove. The same defect, if found during
dynamic test execution, would incur the extra cost of initially creating and testing
the defective code, diagnosing the source of the defect, correcting the problem and
rewriting the code to eliminate the defect. Reviewing code against development
standards can also prevent defects from appearing in test execution, though in
this case, as the code has already been written, not all the additional costs and
delays are avoided.

STATIC TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 59

SOFTWARE TESTING

60

Important as cost and time saving are, though, there are also other important
benefits of finding defects early in the life cycle, among them the following:

Development productivity can be improved and timescales reduced because
the correction of defects in early work-products will help to ensure that those
work-products are clear and unambiguous. This should enable a developer to
move more quickly through the process of writing code. Also, if defects are
removed before they become executable code there will be fewer errors to find
and fix during test execution.

Testing costs and time can be reduced by removing the main delays in test
execution, which arise when defects are found after they have become failures
and the tester has to wait for a fix to be delivered. By reviewing the code and
removing defects before they become failures the tester can move more swiftly
through test execution.

Reductions in lifetime costs can be achieved because fewer defects in the final
software ensure that ongoing support costs will be lower.

Improved communication results as authors and their peers discuss and
refine any ambiguous content discovered during review to ensure that all
involved understand exactly what is being delivered.

The types of defects most typically found by reviews are:

Deviations from standards either internally defined and managed or
regulatory/legally defined by Parliament or perhaps a trade organisation.

Requirements defects – for example, the requirements are ambiguous,
or there are missing elements.

Design defects – for example, the design does not match the requirements.

Insufficient maintainability – for example, the code is too complex to maintain.

Incorrect interface specifications – for example, the interface specification
does not match the design or the receiving or sending interface.

All reviews aim to find defects, but some types of review find certain types of
defects more effectively and efficiently than others.

Review process
Review processes can vary widely in their level of formality, where formality
relates to the level of structure and documentation associated with the activity.
Some types of review are completely informal, while others are very formal. The
decision on the appropriate level of formality for a review is usually based on
combinations of the following factors:

The maturity of the development process: the more mature the process is, the
more formal reviews tend to be.

Legal or regulatory requirements. These are used to govern the software
development activities in certain industries, notably in safety-critical areas
such as railway signalling, and determine what kinds of review should take
place.

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 60

61

The need for an audit trail. Formal review processes ensure that it is possible
to trace backwards throughout the software development life cycle. The level
of formality in the types of review used can help to raise the level of audit
trail.

Reviews can also have a variety of objectives,where the term ‘review objective’
identifies the main focus for a review. Typical review objectives include:

Finding defects.

Gaining understanding.

Generating discussion.

Decision making by consensus.

The way a review is conducted will depend on what its specific objective is, so a
review aimed primarily at finding defects will be quite different from one that is
aimed at gaining understanding of a document.

Basic review process
All reviews, formal and informal alike, exhibit the same basic elements of
process:

The document under review is studied by the reviewers.

Reviewers identify issues or problems and inform the author either verbally
or in a documented form, which might be as formal as raising a defect report
or as informal as annotating the document under review.

The author decides on any action to take in response to the comments and
updates the document accordingly.

This basic process is always present, but in the more formal reviews it is
elaborated to include additional stages and more attention to documentation and
measurement.

Activities of a formal review
Reviews at the more formal end of the spectrum, such as technical reviews and
inspections, share certain characteristics that differentiate them from the less
formal reviews, of which walkthroughs are a typical example.

Figure 3.1 shows the key stages that characterise formal reviews.

The following list explains the key stages in more detail:

Planning:

Selecting the personnel – ensuring that those selected can and will add
value to the process. There is little point in selecting a reviewer who will
agree with everything written by the author without question. As a rule of
thumb it is best to include some reviewers who are from a different part of
the organisation, who are known to be ‘picky’, and known to be dissenters.

STATIC TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 61

SOFTWARE TESTING

62

Reviews, like weddings, are enhanced by including ‘something old,
something new, something borrowed, something blue’. In this case
‘something old’ would be an experienced practitioner; ‘something new’
would be a new or inexperienced team member; ‘something borrowed’
would be someone from a different team; ‘something blue’ would be the
dissenter who is hard to please. At the earliest stage of the process a
review leader must be identified. This is the person who will coordinate
all of the review activity.

Allocating roles – each reviewer is given a role to provide them with a
unique focus on the document under review. Someone in a tester role might
be checking for testability and clarity of definition, while someone in a user
role might look for simplicity and a clear relationship to business values.
This approach ensures that, although all reviewers are working on the
same document, each individual is looking at it from a different perspective.

Defining the entry and exit criteria, especially for the most formal review
types (e.g. inspection).

Figure 3.1 Stages of a formal review

Individual
preparation

Checking
entry

criteria

Kick off

Planning

Checking
exit criteria

Follow-up

Fixing
defects

Rework Examine

Review
meeting

Noting
incidents

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 62

63

Selecting the parts of documents to be reviewed (not always required; this
will depend on the size of the document: a large document may need to be
split into smaller parts and each part reviewed by a different person to
ensure the whole document is reviewed fully).

Kick-off: distributing documents; explaining the objectives, process and
documents to the participants; and checking entry criteria (for more formal
review types such as inspections). This can be run as a meeting or simply by
sending out the details to the reviewers. The method used will depend on
timescales and the volume of information to pass on. A lot of information can
be disseminated better by a meeting rather than expecting reviewers to read
pages of text.

Review entry criteria: this stage is where the entry criteria agreed earlier
are checked to ensure that they have been met, so that the review can
continue – this is mainly used in the more formal review types such as
inspections.

Individual preparation: work done by each of the participants on their own
before the review meeting, which would include reading the source docu-
ments, noting potential defects, questions and comments. This is a key task
and may actually be time-boxed, e.g. participants may be given two hours to
complete the preparation.

Noting incidents: in this stage the potential defects, questions and comments
found during individual preparation are logged.

Review meeting: this may include discussion regarding any defects found,
or simply just a log of defects found. The more formal review types like
inspections will have documented results or minutes. The meeting
participants may simply note defects for the author to correct; they might
also make recommendations for handling or correcting the defects. The
approach taken will have been decided at the kick-off stage so that all
participants are aware of what is required of them. The decision as to which
approach to take may be based on one or all of the following factors:

Time available (if time is short the meeting may only collect defects).

Requirements of the author (if the author would like help in correcting
defects).

Type of review (in an inspection only the collection of defects is
allowed – there is never any discussion).

Examine: this includes the recording of the physical meetings or tracking any
group electronic communications.

Rework: after a review meeting the author will have a series of defects to
correct; correcting the defects is called rework.

Fixing defects: here the author will be fixing defects that were found and
agreed as requiring a fix.

STATIC TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 63

SOFTWARE TESTING

64

Follow-up: the review leader will check that the agreed defects have been
addressed and will gather metrics such as how much time was spent on the
review and how many defects were found. The review leader will also check
the exit criteria (for more formal review types such as inspections) to ensure
that they have been met.

Checking exit criteria: at this stage the exit criteria defined at the start of the
process are checked to ensure that all exit criteria have been met so that the
review can be officially closed as finished.

Roles and responsibilities
The role of each reviewer is to look at documents belonging to them from their
assigned perspective; this may include the use of checklists. For example, a
checklist based on a particular perspective (such as user, maintainer, tester or
operations) may be used, or a more general checklist (such as typical require-
ments problems) may be used to identify defects.

In addition to these assigned review roles the review process itself defines specific
roles and responsibilities that should be fulfilled for formal reviews. They are:

Manager: the manager decides on what is to be reviewed (if not already
defined), ensures there is sufficient time allocated in the project plan for all
of the required review activities, and determines if the review objectives have
been met. Managers do not normally get involved in the actual review process
unless they can add real value, e.g. they have technical knowledge key to the
review.

Moderator: the moderator is sometimes known as the review leader. This is
the person who leads the review of the document or set of documents,
including planning the review, running the meeting, and follow-ups after the
meeting. If necessary, the moderator may mediate between the various points
of view and is often the person upon whom the success of the review rests.
The moderator will also make the final decision as to whether to release an
updated document.

Author: The author is the writer or person with chief responsibility for the
development of the document(s) to be reviewed. The author will in most
instances also take responsibility for fixing any agreed defects.

Reviewers: These are individuals with a specific technical or business
background (also called checkers or inspectors) who, after the necessary
preparation, identify and describe findings (e.g. defects) in the product
under review. As discussed above, reviewers should be chosen to represent
different perspectives and roles in the review process and take part in any
review meetings.

Scribe (or recorder): The scribe attends the review meeting and documents
all of the issues and defects, problems and open points that were identified
during the meeting.

An additional role not normally associated with reviews is that of the tester.
Testers have a particular role to play in relation to document reviews. In their

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 64

65

test analysis role they will be required to analyse a document to enable the
development of tests. In analysing the document they will also review it, e.g. in
starting to build end-to-end scenarios they will notice if there is a ‘hole’ in the
requirements that will stop the business functioning, such as a process that is
missing or some data that is not available at a given point. So effectively a tester
can either be formally invited to review a document or may do so by default in
carrying out the tester’s normal test analysis role.

Types of review
A single document may be subject to many different review types: for example,
an informal review may be carried out before the document is subjected to a
technical review or, depending on the level of risk, a technical review or
inspection may take place before a walkthrough with a customer.

Figure 3.2 shows the different levels of formality by review type.

CHECK OF UNDERSTANDING

(1) Identify three benefits of reviews.

(2) What happens during the planning phase of a review?

(3) Who manages the review process?

Figure 3.2 Formality of reviews

Informal

Walkthrough

Technical review

Inspection

Low

High

Level of form
ality

STATIC TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 65

SOFTWARE TESTING

66

Each type of review has its own defining characteristics. We identify four review
types to cover the spectrum of formality. These are usually known as:

(1) Informal review (least formal). Key characteristics:

There is no formal process underpinning the review.

The review may be documented but this is not required; many informal
reviews are not documented.

There may be some variations in the usefulness of the review depending
on the reviewer, e.g. the reviewer does not have the technical skills but is
just available to check quickly and ensure that the document makes sense.

The main purpose is to find defects and this is an inexpensive way to
achieve some limited benefit.

The review may be implemented by pair programming (where one
programmer reviews the code of the other ‘pair programmer’) or by a
technical lead reviewing designs and code.

(2) Walkthrough. Key characteristics:

The meeting is led by the author of the document under review and
attended by members of the author’s peer group.

Review sessions are open-ended and may vary in practice from quite
informal to very formal.

Preparation by reviewers before the walkthrough meeting, production of a
review report or a list of findings, and appointment of a scribe who is not
the author are all optional components that are sometimes present.

The main purposes are to enable learning about the content of the docu-
ment under review, to help team members gain an understanding of the
content of the document, and to find defects.

Walkthroughs typically explore scenarios, or conduct dry runs of code or
process.

(3) Technical review. Key characteristics:

Technical reviews are documented and use a well-defined defect detection
process that includes peers and technical experts.

The review is usually performed as a peer review without management
participation and is ideally led by a trained moderator who is not the
author.

Reviewers prepare for the review meeting, optionally using checklists,
and prepare a review report with a list of findings.

Technical reviews may vary in practice from the quite informal to very
formal and have a number of purposes, including: discussion, decision
making, evaluation of alternatives, finding defects, solving technical
problems and checking conformance to specifications and standards.

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 66

67

(4) Inspection (most formal). Key characteristics:

Inspections are led by a trained moderator who is not the author and
usually involve peer examination of a document; individual inspectors
work within defined roles.

The inspection process is formal, based on rules and checklists, and uses
entry and exit criteria.

Pre-meeting preparation is essential, which would include reading of any
source documents to ensure consistency.

An inspection report, with a list of findings, is produced, which includes
metrics that can be used to aid improvements to the process as well as
correcting defects in the document under review.

After the meeting a formal follow-up process is used to ensure that
corrective action is completed and timely.

The main purpose is to find defects, and process improvement may be a
secondary purpose.

In reality the lines between the review types often get blurred and what is seen
as a technical review in one company may be seen as an inspection in another.
The above is the ‘classic view’ of reviews. The key for each company is to agree the
objectives and benefits of the reviews that they plan to carry out.

Success factors for reviews
When measuring the success of a particular review the following suggested
success factors should be considered:

Each review should have a clearly predefined and agreed objective and the
right people should be involved to ensure the objective is met. For example, in
an inspection each reviewer will have a defined role and therefore needs the
experience to fulfil that role; this should include testers as valued reviewers.

Any defects found are welcomed, and expressed objectively.

The review should be seen as being conducted within an atmosphere of trust,
so that the outcome will not be used for the evaluation of the participants,
and that the people issues and psychological aspects are dealt with (e.g.
making it a positive experience for the author and all participants).

Review techniques (both formal and informal) that are suitable to the type
and level of software work-products and reviewers (this is especially
important in inspections).

Checklists or roles should be used, where appropriate, to increase effectiveness
of defect identification; for example, in an inspection, roles such as data
entry clerk or technical architect may be required to review a particular
document.

Management support is essential for a good review process (e.g. by
incorporating adequate time for review activities in project schedules).

There should be an emphasis on learning and process improvement.

STATIC TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 67

SOFTWARE TESTING

68

Other more quantitative approaches to success measurement could also be used:

How many defects found.

Time taken to review/inspect.

Percentage of project budget used/saved.

In his original paper on the benefits of inspections in 1976, Michael Fagan of
IBM, who developed the Fagan Inspection Method, reported a 23 per cent
increase in ‘coding productivity alone’ by using inspections. Success can be
measured in many ways; however, the key is to keep measuring to ensure success
is still being achieved and, more importantly, reported to a wider audience.

STATIC ANALYSIS BY TOOLS

Like reviews, static analysis looks for defects without executing the code.
However, unlike reviews static analysis is carried out once the code has been
written. Its objective is to find defects in software source code and software
models.

Source code is any series of statements written in some human-readable
computer programming language that can then be converted to equivalent
computer executable code – it is normally generated by the developer.

A software model is an image of the final solution developed using techniques
such as Unified Modeling Language (UML); it is normally generated by a
software designer.

Static analysis can find defects that are hard to find during test execution by
analysing the program code, e.g. instructions to the computer can be in the form
of control flow graphs (how control passes between modules) and data flows
(ensuring data is identified and correctly used).

The value of static analysis is:

Early detection of defects prior to test execution. As with reviews, the earlier
the defect is found, the cheaper and easier it is to fix.

Early warning about suspicious aspects of the code or design, by the
calculation of metrics, such as a high-complexity measure. If code is too
complex it can be more prone to error or less dependent on the focus given

CHECK OF UNDERSTANDING

(1) Compare the differences between a walkthrough and an inspection.

(2) Name three characteristics of a walkthrough.

(3) Identify at least five success factors for a review.

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 68

69

to the code by developers. If they understand that the code has to be complex
then they are more likely to check and double check that it is correct;
however, if it is unexpectedly complex there is a higher chance that there
will be a defect in it.

Identification of defects not easily found by dynamic testing, such as
development standard breaches as well as detecting dependencies and
inconsistencies in software models, such as links or interfaces that were
either incorrect or unknown before static analysis was carried out.

Improved maintainability of code and design. By carrying out static analysis,
defects will be removed that would otherwise have increased the amount of
maintenance required after ‘go live’. It can also recognise complex code that
if corrected will make the code more understandable and therefore easier to
maintain.

Prevention of defects. By identifying the defect early in the life cycle it is a
lot easier to identify why it was there in the first place (root cause analysis)
than during test execution, thus providing information on possible process
improvement that could be made to prevent the same defect appearing
again.

Typical defects discovered by static analysis tools include:

Referencing a variable with an undefined value, e.g. using a variable as part
of a calculation before the variable has been given a value.

Inconsistent interface between modules and components, e.g. module X
requests three values from module Y, which has only two outputs.

Variables that are never used. This is not strictly an error, but if a program-
mer declares a variable in a program and does not use it, there is a chance
that some intended part of the program has inadvertently been omitted,

Unreachable (dead) code. This means lines of code that cannot be executed
because the logic of the program does not provide any path in which that code
is included.

Programming standards violations, e.g. if the standard is to add comments
only at the end of the piece of code, but there are notes throughout the code,
this would be a violation of standards.

Security vulnerabilities, e.g. password structures that are not secure.

Syntax violations of code and software models, e.g. incorrect use of the
programming or modelling language.

Static analysis tools add the greatest value when used during component and
integration testing. This will normally involve their use by developers to check
against predefined rules or development standards, and by designers during
software modelling.

A static analysis tool runs automatically and reports all defects it identifies,
some of which may be insignificant and require little or no work to correct, whilst
others could be critical and need urgent correction. These defects therefore

STATIC TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 69

SOFTWARE TESTING

70

require strong management to ensure that the full benefit is obtained from using
the tool in the first place.

Software compilers are computer programs (or a set of programs) that translate
codes written in one computer language (the source language) into another
computer language (the target language). As part of the compile process certain
static analysis can be undertaken that will identify some defects and provide the
calculation of software metrics.

Static analysis tools are explained in Chapter 6.

SUMMARY

In this chapter we have looked at how review techniques and static analysis fit
within the test process defined in Chapter 2. We have understood that a review
is a static test, i.e. it is a test carried out without executing any code (by reading
and commenting on any document (work-product) such as a requirements
specification, a piece of code or a test plan/test case). We have also looked at
the different types of review techniques available, such as walkthroughs and
inspections, as well as spending time understanding the benefits of reviews
themselves.

Reviews vary in formality. The formality governs the amount of structure and
documentation that surround the review itself.

To obtain the most benefit from reviews, they should be carried out as early
in the project life cycle as possible, preferably as soon as the document to be
reviewed has been written and definitely, in the case of work-products such as
requirement specifications and designs, before any code is written or executed.
The roles of the participant reviewers need to be defined and, in the more
structured review techniques, written output from reviews is expected.

We have learnt that static analysis is checking the developed software code
before it is executed, checking for defects such as unreachable (dead code) and
the misuse of development standards. We have also learnt that static analysis is
best carried out using tools, which are described in detail in Chapter 6.

Like reviews, the best benefits of static analysis are realised when it is carried
out as soon as possible after the code is written.

CHECK OF UNDERSTANDING

(1) What is static analysis looking for?

(2) Name the five benefits of static analysis.

(3) What is the name of the type of defect that relates to password checks?

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 70

71

Example examination questions with answers
E1. K1 question
Which of the following is most likely to be a benefit of using static techniques?

a. Fewer performance defects.
b. Productivity improvements in the development process.
c. More efficient regression testing.
d. Quick return on investment in static analysis tools.

E2. K2 question
Which of the following has the typical formal review activities in the correct
sequence?

a. Kick-off, review meeting, planning, follow-up.
b. Kick-off, planning, review meeting, re-work.
c. Planning, kick-off, individual preparation, review meeting.
d. Planning, individual preparation, follow-up, re-work.

E3. K2 question
Which of the following statements are true?

(i) Defects are likely to be found earlier in the development process by using
reviews rather than static analysis.

(ii) Walkthroughs require code but static analysis does not require code.
(iii) Informal reviews can be performed on code and specifications.
(iv) Dynamic techniques are generally used before static techniques.
(v) Dynamic techniques can only be used after code is ready to be executed.

a. (i), (ii), (vi).
b. (ii), (iii), (v).
c. (i), (iv), (v).
d. (i), (iii), (v).

E4. K1 question
Which of the following are static techniques?

a. Walkthrough.
b. State transition testing.
c. Decision table testing.
d. Statement testing.

E5. K1 question
Which one of the following roles is typically used in a review?

a. Champion.
b. Author.
c. Project sponsor.
d. Custodian.

STATIC TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 71

SOFTWARE TESTING

72

E6. K2 question
Which of the following is most likely to be performed by developers?

a. Technical review of a functional specification.
b. Walkthrough of a requirements document.
c. Informal review of a program specification.
d. Static analysis of a software model.

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 72

73

Answers to questions in the chapter
SA1. The correct answer is a.
SA2. The correct answer is c.
SA3. The correct answer is d.

Answers to example questions
E1. The correct answer is b.
Although the other options might be seen as benefits they are not amongst the
most likely benefits. Option (b) is the benefit that is most likely to be
realised.

E2. The correct answer is c.
The correct sequence is: planning, kick-off, individual preparation, review
meeting, re-work, follow-up. All of the other options have either the activities in
the wrong order or activities missing from the strict flow.

E3. The correct answer is d.
The other answers are incorrect because:

ii. Walkthroughs do not require code and static analysis does require code.
iv. Static techniques do not execute the code and therefore can be run before

and after the code is ready for execution.

E4. The correct answer is a.
Options (b), (c) and (d) are all dynamic test techniques.

E5. The correct answer is b.
The Author is the only role that is typically used in a review. A Champion
might sponsor the review process but is not a defined role within an actual
review; a Project Sponsor, if technically competent, might be asked to play a
defined role within the review process, but whilst using that role they will
not be a Project Sponsor; finally, a Custodian might ensure the results are stored
safely but would not be involved in the actual review itself.

E6. The correct answer is d.
Static analysis is done almost exclusively by developers. The other review types
would be performed using a combination of developers, testers and other inter-
ested stakeholders.

STATIC TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 73

74

Brian Hambling

INTRODUCTION

This chapter covers the very large topic of test case design techniques. Beginning
with an introduction to the key terms and the basic process of creating a suite of
tests for execution, the chapter explores the three categories of test case design
techniques: specification-based, structure-based and experience-based. In each
case specific techniques are explained and examples are given of their use. A final
section on the selection of techniques completes the chapter.

Learning objectives
The learning objectives for this chapter are listed below. You can confirm that you
have achieved these by using the self-assessment questions at the start of the
chapter, the ‘Check of understanding’ boxes distributed throughout the text, and
the example examination questions provided at the end of the chapter. The
chapter summary will remind you of the key ideas.

The sections are allocated a K number to represent the level of understanding
required for that section; where an individual topic has a lower K number than
the section as a whole this is indicated for that topic; for an explanation of the
K numbers see the Introduction.

The test development process (K3)

Differentiate between a test design specification, test case specification and
test procedure specification. (K2)

Compare the terms test condition, test case and test procedure. (K2)

Evaluate the quality of test cases in terms of clear traceability to the
requirements and expected results. (K2)

Translate test cases into a well-structured test procedure specification at a
level of detail relevant to the knowledge of the testers.

Categories of test design techniques (K2)

Recall reasons that both specification-based (black-box) and structure-based
(white-box) approaches to test case design are useful, and list the common
techniques for each. (K1)

4 TEST DESIGN TECHNIQUES

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 74

75

Explain the characteristics and differences between specification-based
testing, structure-based testing and experience-based testing.

Specification-based or black-box techniques (K3)

Write test cases from given software models using equivalence
partitioning, boundary value analysis, decision tables and state
transition diagrams/tables.

Explain the main purpose of each of the four techniques, what level and
type of testing could use the technique, and how coverage may be
measured. (K2)

Explain the concept of use case testing and its benefits. (K2)

Structure-based or white-box techniques (K4)

Describe the concept and importance of code coverage. (K2)

Explain the concepts of statement and decision coverage, and understand
that these concepts can also be used at other test levels than component
testing (e.g. on business procedures at system level). (K2)

Write test cases from given control flows using statement and decision test
design techniques. (K3)

Assess statement and decision coverage for completeness with respect to
defined exit criteria.

Experience-based techniques (K2)

Recall reasons for writing test cases based on intuition, experience and
knowledge about common defects. (K1)

Compare experience-based techniques with specification-based testing
techniques.

Choosing test techniques (K2)

Classify test design techniques according to their fitness to a given
context, for the test basis, respective models and software
characteristics.

Self-assessment questions
The following questions have been designed to enable you to check your current
level of understanding for the topics in this chapter. The answers are at the end
of the chapter. If you struggled with the K3 question you probably need more
practice with applying the techniques; you can get this by working through the
examples and exercises and attempting the additional practice questions at the
end of the chapter. If you struggled with the K2 question it suggests that, while
your recall of key ideas might be reasonable, your ability to apply the ideas needs
developing. You need to study this chapter carefully and be careful to recognise
all the connections between individual topics.

TEST DESIGN TECHNIQUES

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 75

SOFTWARE TESTING

76

Question SA1 (K1)
Which of the following defines the expected result of a test?

a. Test case
b. Test procedure
c. Test execution schedule
d. Test condition

Question SA2 (K2)
Which of the following are most characteristic of structure-based testing?

(i) Information about how the software is constructed is used to derive test cases.
(ii) Statement coverage and/or decision coverage can be measured for existing

test cases.
(iii) The knowledge and experience of people are used to derive test cases.
(iv) Test cases are derived from a model or specification of the system.

a. (i) and (ii)
b. (ii) and (iii)
c. (ii) and (iv)
d. (i) and (iii)

Question SA3 (K3)
A system is designed to accept values of examination marks as follows:

Fail 0–39 inclusive
Pass 40–59 inclusive
Merit 60–79 inclusive
Distinction 80–100 inclusive

In which of the following sets of values are all values in different equivalence
partitions?

a. 25, 40, 60, 75
b. 0, 45, 79, 87
c. 35, 40, 59, 69
d. 25, 39, 60, 81

THE TEST DEVELOPMENT PROCESS

The specification of test cases is the second step in the fundamental test process
(FTP) defined in the Introduction. The terms specification and design are used
interchangeably in this context; in this section we discuss the creation of test
cases by design.

The design of tests comprises three main steps:

(1) Identify test conditions.

(2) Specify test cases.

(3) Specify test procedures.

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 76

77

Our first task is to become familiar with the terminology.

In other words, a test condition is some characteristic of our software that we can
check with a test or a set of tests.

In other words, a test case: gets the system to some starting point for the test
(execution preconditions); then applies a set of input values that should achieve
a given outcome (expected result), and leaves the system at some end point
(execution postcondition).

Our test design activity will generate the set of input values and we will predict
the expected outcome by, for example, identifying from the specification what
should happen when those input values are applied.

We have to define what state the system is in when we start so that it is ready to
receive the inputs and we have to decide what state it is in after the test so that
we can check that it ends up in the right place.

A test procedure therefore identifies all the necessary actions in sequence to
execute a test. Test procedure specifications are often called test scripts (or
sometimes manual test scripts to distinguish them from the automated scripts
that control test execution tools, introduced in Chapter 6).

So, going back to our three step process above, we:

(1) decide on a test condition, which would typically be a small section of the
specification for our software under test;

(2) design a test case that will verify the test condition;

(3) write a test procedure to execute the test, i.e. get it into the right starting
state, input the values, and check the outcome.

In spite of the technical language, this is quite a simple set of steps. Of course we
will have to carry out a very large number of these simple steps to test a whole

TEST DESIGN TECHNIQUES

A test condition – an item or event of a component or system that could be
verified by one or more test cases, e.g. a function, transaction, feature, quality
attribute, or structural element.

A test case – a set of input values, execution preconditions, expected results
and execution postconditions, developed for a particular objective or test
condition, such as to exercise a particular program path or to verify compliance
with a specific requirement.

A test procedure specification – a sequence of actions for the execution of a test.

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 77

system, but the basic process is still the same. To test a whole system we write a
test execution schedule, which puts all the individual test procedures in the right
sequence and sets up the system so that they can be run.

Bear in mind as well that the test development process may be implemented in
more or less formal ways. In some situations it may be appropriate to produce
very little documentation and in others a very formal and documented process
may be appropriate. It all depends on the context of the testing, taking account of
factors such as maturity of development and test processes, the amount of time
available and the nature of the system under test. Safety-critical systems, for
example, will normally require a formal test process.

The best way to clarify the process is to work through a simple example.

A good test case needs some extra information. First, it should be traceable back
to the test condition and the element of the specification that it is testing; we
can do this by applying the specification reference to the test, e.g. by identifying
this test as T1.2.3.1 (because it is the first test associated with specification

SOFTWARE TESTING

78

TEST CASE DESIGN BASICS

Suppose we have a system that contains the following specification for an input
screen:

1.2.3 The input screen shall have three fields: a title field with a drop-down
selector; a surname field that can accept up to 20 alphabetic characters and the
hyphen (-) character; a first name field which can accept up to 20 alphabetic
characters. All alphabetic characters shall be case insensitive. All fields must be
completed. The data is validated when the Enter key is pressed. If the data is
valid the system moves on to the job input screen; if not, an error message is
displayed.

This specification enables us to define test conditions; for example, we could
define a test condition for the surname field (i.e. it can accept up to 20 alphabetic
characters and the hyphen (-) character) and define a set of test cases to test
that field.

To test the surname field we would have to navigate the system to the appropriate
input screen, select a title, tab to the surname field (all this would be setting the
test precondition), enter a value (the first part of the set of input values), tab to the
first name field and enter a value (the second part of the set of input values that we
need because all fields must be completed), then press the Enter key. The system
should either move on to the job input screen (if the data we input was valid) or
display an error message (if the input data was not valid). Of course, we would
need to test both of these cases.

The preceding paragraph is effectively the test procedure, though we might lay it
out differently for real testing.

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 78

79

element 1.2.3). Secondly, we would need to add a specific value for the input, say
‘Hambling’ and ‘Brian’. Finally we would specify that the system should move to
the job input screen when ‘Enter’ is pressed.

TEST DESIGN TECHNIQUES

TEST CASE DESIGN EXAMPLE

As an example, we could key in the following test cases:

Mr Hambling Brian
Ms Samaroo Angelina
Ms Simmonite Compo
Mr Hyde-White Wilfred

All these would be valid test cases; even though Compo Simmonite was an imagi-
nary male character in a TV series, the input is correct according to the specification.

We should also test some invalid inputs, such as:

Mr Thompson1 Geoff
Mr “Morgan” Peter
Mr Williams ‘Pete’

There are many more possibilities that infringe the rules in the specification, but
these should serve to illustrate the point. You may be thinking that this simple
specification could generate a very large number of test cases – and you would be
absolutely right. One of our aims in using systematic test case design techniques
will be to cut down the number of tests we need to run to achieve a given level of
confidence in the software we are testing.

The test procedure would need to add some details along the following lines:

(1) Select the <Name or Personal Details> option from the main menu.

(2) Select the ‘input’ option from the <Name or Personal Details> menu.

(3) Select ‘Mr’ from the ‘Title’ drop-down menu.

(4) Check that the cursor moves to the ‘surname’ field.

(5) Type in ‘Hambling’ and press the tab key once; check that the cursor moves
to the ‘first name’ field.

(6) Type in ‘Brian’ and press the Enter key.

(7) Check that the Job Input screen is displayed.

(8) . . .

That should be enough to demonstrate what needs to be defined, and also how
slow and tedious such a test would be to run, and we have only completed one of
the test cases so far!

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 79

SOFTWARE TESTING

80

The test procedure would collect together all the test cases related to this
specification element so that they can all be executed together as a block; there
would be several to test valid and non-valid inputs, as you have seen in the
example.

In the wider process (the FTP) we would move on to the test execution step
next. In preparation for execution the test execution schedule collects together
all the tests and sequences them, taking into account any priorities (highest
priority tests would be run first) and any dependencies between tests. For
example, it would make sense to do all the tests on the input screen together
and to do all the tests that use input data afterwards; that way we get the
input screen tests to do the data entry that we will need for the later tests.
There might also be technical reasons why we run tests in a particular
sequence; for example, a test of the password security needs to be done at the
beginning of a sequence of tests because we need to be able to get into the
system to run the other tests.

THE IDEA OF TEST COVERAGE

Test coverage is a very important idea because it provides a quantitative assess-
ment of the extent and quality of testing. In other words, it answers the question
‘how much testing have you done?’ in a way that is not open to interpretation.
Statements such as ‘I’m nearly finished’, or ‘I’ve done two weeks’ testing’ or ‘I’ve
done everything in the test plan’ generate more questions than they answer. They
are statements about how much testing has been done or how much effort has
been applied to testing, rather than statements about how effective the testing
has been or what has been achieved. We need to know about test coverage for two
very important reasons:

It provides a quantitative measure of the quality of the testing that has been
done by measuring what has been achieved.

It provides a way of estimating how much more testing needs to be done.
Using quantitative measures we can set targets for test coverage and
measure progress against them.

Statements like ‘I have tested 75 per cent of the decisions’ or ‘I’ve tested
80 per cent of the requirements’ provide useful information. They are
neither subjective nor qualitative; they provide a real measure of what
has actually been tested. If we apply coverage measures to testing
based on priorities, which are themselves based on the risks addressed
by individual tests, we will have a reliable, objective and quantified
framework for testing.

Test coverage can be applied to any systematic technique; in this chapter we
will apply it to specification-based techniques to measure how much of the
functionality has been tested, and to structure-based techniques to measure
how much of the code has been tested. Coverage measures may be part of the
completion criteria defined in the test plan (step 1 of the FTP) and used to
determine when to stop testing in the final step of the FTP.

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 80

81

CATEGORIES OF TEST CASE DESIGN TECHNIQUES

There are very many ways to design test cases. Some are general, others are very
specific. Some are very simple to implement, others are difficult and complex to
implement. The many excellent books published on software testing techniques
every year testify to the rate of development of new and interesting approaches to
the challenges that confront the professional software tester.

There is, however, a collection of test case design techniques that has come to be
recognised as the most important ones for a tester to learn to apply, and these
have been selected as the representatives of test case design for the Foundation
Certificate, and hence for this book.

The test case design techniques we will look at are grouped into three categories:

Those based on deriving test cases directly from a specification or a model of
a system or proposed system, known as specification-based or black-box
techniques. So black-box techniques are based on an analysis of the test basis
documentation, including both functional and non-functional aspects. They do
not use any information regarding the internal structure of the component or
system under test.

Those based on deriving test cases directly from the structure of a component
or system, known as structure-based, structural or white-box techniques. We
will concentrate on tests based on the code written to implement a component
or system in this chapter, but other aspects of structure, such as a menu
structure, can be tested in a similar way.

Those based on deriving test cases from the tester’s experience of similar sys-
tems and general experience of testing, known as experience-based techniques.

It is convenient to categorise techniques for test case design in this way (it is
easier for you to remember, for one thing) but do not assume that these are the
only categories or the only techniques; there are many more that can be added to
the tester’s ‘tool kit’ over time.

The category now known as specification-based was originally called ‘black-box’
because the techniques in it take a view of the system that does not need to know
what is going on ‘inside the box’. Those of us born in the first half of the 20th cen-
tury will recognise ‘black box’ as the name of anything technical that you can use
but about which you know nothing or next to nothing. ‘Specification-based’ is a

TEST DESIGN TECHNIQUES

CHECK OF UNDERSTANDING

(1) What defines the process of test execution?

(2) Briefly compare a test case and a test condition.

(3) Which document identifies the sequence in which tests are executed?

(4) Describe the purpose of a test coverage measure.

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 81

SOFTWARE TESTING

82

more descriptive title for those who may not find the ‘black-box’ image helpful.
The natural alternative to ‘black box’ is ‘white box’ and so ‘white box’ techniques
are those that are based on internal structure rather than external function.

Experience-based testing was not really treated as ‘proper’ testing in testing
prehistory, so it was given a disdainful name such as ‘ad hoc’; the implication
that this was not a systematic approach was enough to exclude it from many
discussions about testing. Both the intellectual climate and the sophistication of
experience-based techniques have moved on from those early days. It is worth
bearing in mind that many systems are still tested in an experience-based way,
partly because the systems are not specified in enough detail or in a sufficiently
structured way to enable other categories of technique to be applied, or because
neither the development team nor the testing team have been trained in the use
of specification-based or structure-based techniques.

Before we look at these categories in detail, think for a moment about what we
are trying to achieve. We want to try to check that a system does everything that
its specification says it should do and nothing else. In practice the ‘nothing else’ is
the hardest part and generates the most tests; that is because there are far more
ways of getting anything wrong than there are ways of getting it right. Even if
we just concentrate on testing that the system does what it is supposed to do, we
will still generate a very large number of tests. This will be expensive and time
consuming, which means it probably will not happen, so we need to ensure that
our testing is as efficient as possible. As you will see, the best techniques do this
by creating the smallest set of tests that will achieve a given objective, and they
do that by taking advantage of certain things we have learned about testing; for
example, that defects tend to cluster in interesting ways.

Bear this in mind as we take a closer look at the categories of test case design
techniques.

SPECIFICATION-BASED (BLACK-BOX) TECHNIQUES

The main thing about specification-based techniques is that they derive test
cases directly from the specification or from some other kind of model of what the
system should do. The source of information on which to base testing is known as
the ‘test basis’. If a test basis is well defined and adequately structured we can
easily identify test conditions from which test cases can be derived.

The most important point about specification-based techniques is that
specifications or models do not (and should not) define how a system should
achieve the specified behaviour when it is built; it is a specification of the
required (or at least desired) behaviour. One of the hard lessons that software
engineers have learned from experience is that it is important to separate the
definition of what a system should do (a specification) from the definition of
how it should work (a design). This separation allows the two specialist groups
(testers for specifications and designers for design) to work independently so
that we can later check that they have arrived at the same place, i.e. they
have together built a system and tested that it works according to its
specification.

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 82

83

If we set up test cases so that we check that desired behaviour actually occurs
then we are acting independently of the developers. If they have misunder-
stood the specification or chosen to change it in some way without telling
anyone then their implementation will deliver behaviour that is different from
what the model or specification said the system behaviour should be. Our test,
based solely on the specification, will therefore fail and we will have
uncovered a problem.

Bear in mind that not all systems are defined by a detailed formal
specification. In some cases the model we use may be quite informal. If
there is no specification at all, the tester may have to build a model of the
proposed system, perhaps by interviewing key stakeholders to understand
what their expectations are. However formal or informal the model is, and
however it is built, it provides a test basis from which we can generate
tests systematically.

Remember, also, that the specification can contain non-functional elements as
well as functions; topics such as reliability, usability and performance are
examples. These need to be systematically tested as well.

What we need, then, are techniques that can explore the specified behaviour
systematically and thoroughly in a way that is as efficient as we can make it. In
addition, we use what we know about software to ‘home in’ on problems; each of
the test case design techniques is based on some simple principles that arise from
what we know in general about software behaviour.

You need to know five specification-based techniques for the Foundation
Certificate:

Equivalence partitioning

Boundary value analysis

Decision table testing

State transition testing

Use case testing

You should be capable of generating test cases for the first four of these
techniques.

TEST DESIGN TECHNIQUES

CHECK OF UNDERSTANDING

(1) What do we call the category of test case design techniques that requires
knowledge of how the system under test actually works?

(2) What do black-box techniques derive their test cases from?

(3) How do we make specification-based testing work when there is no
specification?

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 83

SOFTWARE TESTING

84

Equivalence partitioning
Input partitions
Equivalence partitioning is based on a very simple idea: it is that in many cases
the inputs to a program can be ‘chunked’ into groups of similar inputs. For exam-
ple, a program that accepts integer values can accept as valid any input that is
an integer (i.e. a whole number) and should reject anything else (such as a real
number or a character). The range of integers is infinite, though the computer
will limit this to some finite value in both the negative and positive directions
(simply because it can only handle numbers of a certain size; it is a finite
machine). Let us suppose, for the sake of an example, that the program accepts
any value between −10,000 and +10,000 (computers actually represent numbers
in binary form, which makes the numbers look much less like the ones we are
familiar with, but we will stick to a familiar representation). If we imagine a
program that separates numbers into two groups according to whether they are
positive or negative the total range of integers could be split into three ‘parti-
tions’: the values that are less than zero; zero; and the values that are greater
than zero. Each of these is known as an ‘equivalence partition’ because every
value inside the partition is exactly equivalent to any other value as far as our
program is concerned. So if the computer accepts −2,905 as a valid negative
integer we would expect it also to accept −3. Similarly, if it accepts 100 it should
also accept 2,345 as a positive integer. Note that we are treating zero as a special
case. We could, if we chose to, include zero with the positive integers, but my
rudimentary specification did not specify that clearly, so it is really left as an
undefined value (and it is not untypical to find such ambiguities or undefined
areas in specifications). It often suits us to treat zero as a special case for
testing where ranges of numbers are involved; we treat it as an equivalence
partition with only one member. So we have three valid equivalence partitions
in this case.

The equivalence partitioning technique takes advantage of the properties of
equivalence partitions to reduce the number of test cases we need to write. Since
all the values in an equivalence partition are handled in exactly the same way
by a given program, we need only test one of them as a representative of the
partition. In the example given, then, we need any positive integer, any negative
integer and zero. We generally select values somewhere near the middle of each
partition, so we might choose, say, −5,000, 0 and 5,000 as our representatives.
These three test inputs would exercise all three partitions and the theory tells us
that if the program treats these three values correctly it is very likely to treat all
of the other values, all 19,998 of them in this case, correctly.

The partitions we have identified so far are called valid equivalence partitions
because they partition the collection of valid inputs, but there are other possible
inputs to this program that would not be valid – real numbers, for example. We
also have two input partitions of integers that are not valid: integers less than
−10,000 and integers greater than 10,000. We should test that the program does
not accept these, which is just as important as the program accepting valid
inputs.

Non-valid partitions are also important to test. If you think about the example we
have been using you will soon recognise that there are far more possible non-valid

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 84

85

inputs than valid ones, since all the real numbers (e.g. numbers containing
decimals) and all characters are non-valid in this case. It is generally the case
that there are far more ways to provide incorrect input than there are to provide
correct input; as a result, we need to ensure that we have tested the program
against the possible non-valid inputs. Here again equivalence partitioning comes
to our aid: all real numbers are equally non-valid, as are all alphabetic charac-
ters. These represent two non-valid partitions that we should test, using values
such as 9.45 and ‘r’ respectively. There will be many other possible non-valid
input partitions, so we may have to limit the test cases to the ones that are most
likely to crop up in a real situation.

Exercise 4.1
Suppose you have a bank account that offers variable interest rates: 0.5 per cent
for the first £1,000 credit; 1 per cent for the next £1,000; 1.5 per cent for the rest.
If you wanted to check that the bank was handling your account correctly what
valid input partitions might you use?

The answer can be found at the end of the chapter.

Output partitions
Just as the input to a program can be partitioned, so can the output. The program
in the exercise above could produce outputs of 0.5 per cent, 1 per cent and 1.5 per
cent, so we could use test cases that generate each of these outputs as an alterna-
tive to generating input partitions. An input value in the range £0.00–£1,000.00
would generate the 0.5 per cent output; a value in the range £1,001.00–£2,000.00
would generate the 1 per cent output; a value greater than £2,000.00 would
generate the 1.5 per cent output.

Other partitions
If we know enough about an application we may be able to partition other values
instead of or as well as input and output. For example, if a program handles input
requests by placing them on one of a number of queues we could, in principle,
check that requests end up on the right queue. In this case a stream of inputs can

TEST DESIGN TECHNIQUES

EXAMPLE EQUIVALENCE PARTITIONS

Valid input: integers in the range 100 to 999.

Valid partition: 100 to 999 inclusive.

Non-valid partitions: less than 100, more than 999, real (decimal)
numbers and non-numeric characters.

Valid input: names with up to 20 alphabetic characters.

Valid partition: strings of up to 20 alphabetic characters.

Non-valid partitions: strings of more than 20 alphabetic characters,
strings containing non-alphabetic characters.

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 85

be partitioned according to the queue we anticipate it will be placed into. This is
more technical and difficult than input or output partitioning but it is an option
that can be considered when appropriate.

Exercise 4.2
A mail-order company selling flower seeds charges £3.95 for postage and
packing on all orders up to £20 value and £4.95 for orders above £20 value
and up to £40 value. For orders above £40 value there is no charge for postage
and packing.

If you were using equivalence partitioning to prepare test cases for the postage
and packing charges what valid partitions would you define?

What about non-valid partitions?

The answer can be found at the end of the chapter.

Boundary value analysis
One thing we know about the kinds of mistakes that programmers make is that
errors tend to cluster around boundaries. For example, if a program should
accept a sequence of numbers between 1 and 10, the most likely fault will be
that values just outside this range are incorrectly accepted or that values just
inside the range are incorrectly rejected. In the programming world these
faults coincide with particular programming structures such as the number
of times a program loop is executed or the exact point at which a loop should
stop executing.

This works well with our equivalence partitioning idea because partitions must
have boundaries. A partition of integers between 1 and 99, for instance, has a
lowest value, 1, and a highest value, 99. These are called boundary values.
Actually they are called valid boundary values because they are the boundaries
on the inside of a valid partition. What about the values on the outside? Yes, they
have boundaries too. So the boundary of the non-valid values at the lower end

SOFTWARE TESTING

86

PARTITIONS – EXAMPLE 4.1

A mail-order company charges £2.95 postage for deliveries if the package weighs
less than 2 kg, £3.95 if the package weighs 2 kg or more but less than 5 kg, and £5
for packages weighing 5 kg or more. Generate a set of valid test cases using
equivalence partitioning.

The valid input partitions are: under 2 kg; 2 kg or over but less than 5 kg; and 5 kg
or over.

Input values could be 1 kg, 3.5 kg, 7.5 kg. These would produce expected results of
£2.95, £3.95 and £5 respectively.

In this case there are no non-valid inputs (unless the scales fail).

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 86

87

will be zero because it is the first value you come to when you step outside the
partition at the bottom end. (You can also think of this as the highest value inside
the non-valid partition of integers that are less than one, of course.) At the top
end of the range we also have a non-valid boundary value, 100.

This is the boundary value technique, more or less. For most practical purposes
the boundary value analysis technique needs to identify just two values at each
boundary. For reasons that need not detain us here there is an alternative version
of the technique that uses three values at each boundary. For this variant, which
is the one documented in BS 7925-2, we include one more value at each boundary
when we use boundary value analysis: the rule is that we use the boundary value
itself and one value (as close as you can get) either side of the boundary.

So, in this case lower boundary values will be 0, 1, 2 and upper boundary values
will be 98, 99, 100. What does ‘as close as we can get’ mean? It means take the next
value in sequence using the precision that has been applied to the partition. If the
numbers are to a precision of 0.01, for example, the lower boundary values would
be 0.99, 1.00, 1.01 and the upper boundary values would be 98.99, 99.00, 99.01.

When you come to take your exam you will find that the exam recognises that
there are two possible approaches to boundary value analysis. For this reason
any questions about boundary value analysis will clearly signal whether you are
expected to identify 2 or 3 values at any boundary. You will find that this causes
no problems, but there are examples below using both the 2 value and the 3 value
approach, just to be on the safe side and ensure that you do not get taken by sur-
prise in the exam.

The best way to consolidate the idea of boundaries is to look at some examples.

Exercise 4.3
A system is designed to accept scores from independent markers who have
marked the same examination script. Each script should have 5 individual
marks, each of which is out of 20, and a total for the script. Two markers’ scores
are compared and differences greater than three in any question score or
10 overall are flagged for further examination.

TEST DESIGN TECHNIQUES

BOUNDARY VALUES – EXAMPLE 4.2

The boiling point of water – the boundary is at 100 degrees Celsius, so for the
3 Value Boundary approach the boundary values will be 99 degrees, 100
degrees, 101 degrees – unless you have a very accurate digital thermometer, in
which case they could be 99.9 degrees, 100.0 degrees, 100.1 degrees. For the
2 value approach the corresponding values would be 100 and 101.

Exam pass – if an exam has a pass boundary at 40 per cent, merit at 60 per
cent and distinction at 80 per cent the 3 value boundaries would be 39, 40, 41
for pass, 59, 60, 61 for merit, 79, 80, 81 for distinction. It is unlikely that marks
would be recorded at any greater precision than whole numbers. The 2 value
equivalents would be 39 and 40, 59 and 60, and 79 and 80 respectively.

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 87

SOFTWARE TESTING

88

Using equivalence partitioning and boundary value analysis identify the
boundary values that you would explore for this scenario.

(In practice, some of the boundary values might actually be in other equivalence
partitions, and we do not need to test them twice, so the total number of
boundary values requiring testing might be less than you might expect.)

The answer can be found at the end of the chapter.

Decision table testing
Specifications often contain business rules to define the functions of the system
and the conditions under which each function operates. Individual decisions are
usually simple, but the overall effect of these logical conditions can become quite
complex. As testers we need to be able to assure ourselves that every combination
of these conditions that might occur has been tested, so we need to capture all the
decisions in a way that enables us to explore their combinations. The mechanism
usually used to capture the logical decisions is called a decision table.

A decision table lists all the input conditions that can occur and all the actions
that can arise from them. These are structured into a table as rows, with the
conditions at the top of the table and the possible actions at the bottom. Business
rules, which involve combinations of conditions to produce some combination of
actions, are arranged across the top. Each column therefore represents a single
business rule (or just ‘rule’) and shows how input conditions combine to produce
actions. Thus each column represents a possible test case, since it identifies both
inputs and expected outputs. This is shown schematically in the box below.

CHECK OF UNDERSTANDING

(1) What is the relationship between a partition and a boundary?

(2) Why are equivalence partitioning and boundary value analysis often used together?

(3) Explain what is meant by ‘as close as possible to a boundary’?

DECISION TABLE STRUCTURE

Business Business Business
rule 1 rule 2 rule 3

Condition 1 T F T

Condition 2 T T T

Condition 3 T – F

Action 1 Y N Y

Action 2 N Y Y

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 88

89

In reality the number of conditions and actions can be quite large, but usually the
number of combinations producing specific actions is relatively small. For this
reason we do not enter every possible combination of conditions into our decision
table, but restrict it to those combinations that correspond to business rules – this
is called a limited entry decision table to distinguish it from a decision table with
all combinations of inputs identified. In this chapter we will always mean the
limited entry kind when we refer to a decision table.

As usual, we use an example to clarify what we mean.

TEST DESIGN TECHNIQUES

Business rule 1 requires all conditions to be true to generate action 1. Business
rule 2 results in action 2 if condition 1 is false and condition 2 is true but does not
depend on condition 3. Business rule 3 requires conditions 1 and 2 to be true and
condition 3 to be false.

DECISION TABLE TESTING – EXAMPLE 4.3

A supermarket has a loyalty scheme that is offered to all customers. Loyalty
cardholders enjoy the benefits of either additional discounts on all purchases
(rule 3) or the acquisition of loyalty points (rule 4), which can be converted into
vouchers for the supermarket or to equivalent points in schemes run by partners.
Customers without a loyalty card receive an additional discount only if they spend
more than £100 on any one visit to the store (rule 2), otherwise only the special
offers offered to all customers apply (rule 1).

Rule 1 Rule 2 Rule 3 Rule 4

Conditions:
Customer without T T F F
loyalty card
Customer with F F T T
loyalty card
Extra discount – – T F
selected
Spend > £100 F T – –
Actions:
No discount T F F F
Extra discount F T T F
Loyalty points F F F T

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 89

Exercise 4.4
A mutual insurance company has decided to float its shares on the stock
exchange and is offering its members rewards for their past custom at the
time of flotation. Anyone with a current policy will benefit provided it is a
‘with-profits’ policy and they have held it since 2001. Those who meet these
criteria can opt for either a cash payment or an allocation of shares in the new
company; those who have held a qualifying policy for less than the required
time will be eligible for a cash payment but not for shares. Here is a decision
table reflecting those rules.

SOFTWARE TESTING

90

From the decision table we can determine test cases by setting values for the
conditions and determining the expected output, e.g. from rule 1 we could input a
normal customer with a £50 transaction and check that no discount was applied.
The same customer with a £150 transaction (rule 2) should attract a discount.
Thus we can see that each column of the decision table represents a possible
test case.

CHECK OF UNDERSTANDING

(1) What is a decision table derived from?

(2) Why does decision table testing use limited entry decision tables?

(3) Describe how test cases are identified from decision tables.

(4) Which element of a decision table defines the expected output for a test case?

Rule 1 Rule 2 Rule 3 Rule 4

Conditions:

Current policy holder Y Y Y N

Policy holder since 2001 N Y N –

‘With-profits’ policy Y Y N –

Actions:

Eligible for cash Y Y N N
payment

Eligible for share N Y N N
allocations

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 90

91

What expected result would you expect to get for the following test case?

Billy Bunter is a current policy holder who has held a ‘with-profits’ policy since 2003.

The answer can be found at the end of the chapter.

State transition testing
The previous technique, decision table testing, is particularly useful in systems
where combinations of input conditions produce various actions. Now we consider
a similar technique, but this time we are concerned with systems in which
outputs are triggered by changes to the input conditions, or changes of ‘state’;
in other words, behaviour depends on current state and past state, and it is the
transitions that trigger system behaviour. It will be no surprise to learn that this
technique is known as state transition testing or that the main diagram used in
the technique is called a state transition diagram.

Look at the box to see an example of a state transition diagram.

TEST DESIGN TECHNIQUES

STATE TRANSITION DIAGRAMS

A state transition diagram is a representation of the behaviour of a system. It is
made up from just two symbols.

The first is

State
1

which is the symbol for a state. A state is just what it says it is: the system is
‘static’, in a stable condition from which it will only change if it is stimulated by
an event of some kind. For example, a TV stays ‘on’ unless you turn it ‘off’; a
multifunction watch tells the time unless you change mode.

The second is

which is the symbol for a transition, i.e. a change from one state to another. The
state change will be triggered by an event (e.g. pressing a button or switching a
switch). The transition will be labelled with the event that caused it and any action
that arises from it. So we might have ‘mode button pressed’ as an event and
‘presentation changes’ as the action. Usually (but not necessarily) the start
state will have a double arrowhead pointing to it. Often the start state is obvious
anyway.

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 91

If we have a state transition diagram representation of a system we can analyse
the behaviour in terms of what happens when a transition occurs.

Transitions are caused by events and they may generate outputs and/or changes
of state. An event is anything that acts as a trigger for a change; it could be an
input to the system, or it could be something inside the system that changes for
some reason, such as a database field being updated.

In some cases an event generates an output, in others the event changes the
system’s internal state without generating an output, and in still others an event
may cause an output and a change of state. What happens for each change is
always deducible from the state transition diagram.

Rather than work out what happens for each event each time we want to initiate
a test, we can take the intermediate step of creating what is known as a state
table (ST). An ST records all the possible events and all the possible states; for
each combination of event and state it shows the outcome in terms of the new
state and any outputs that are generated.

The ST is the source from which we usually derive test cases. It makes sense
to do it this way because the analysis of state transitions takes time and can
be a source of errors; it is better to do this task once and then have a simple
way of generating tests from it than to do it every time we want to generate a
new test case.

Here is an example of what an ST looks like.

SOFTWARE TESTING

92

STATE TRANSITION DIAGRAM – EXAMPLE 4.4

A hill-walker’s watch has two modes: Time and Altimeter. In Time mode,
pressing the Mode switch causes the watch to switch to Alt mode; pressing
Mode again returns to Time mode. While the watch is in Alt mode the Set
button has no effect.

When the watch is in Time mode pressing the Set button transitions the watch into
Set Hrs, from which the Hrs display can be incremented by pressing the Set but-
ton. If the Mode switch is pressed while the watch is in Set Hrs mode the watch
transitions to Set Mins mode, in which pressing the Set button increments the
Mins display. If the Mode button is pressed in this mode the watch transitions back
to Time mode (Figure 4.1).

Note that not all events have an effect in all states. Where an event does not
have an effect on a given state it is usually omitted, but it can be shown as an
arrow starting from the state and returning to the same state to indicate that
no transition takes place; this is sometimes known as a ‘null’ transition or an
‘invalid’ transition.

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 92

93

TEST DESIGN TECHNIQUES

Figure 4.1 State transition diagram of the hill-walker’s watch

Mode = AltimeterMode = Time

Mode = Set Hrs

Set
Add 1 to hrs

Set
Add 1 to mins

Mode
Change display

to Altimeter

Mode
Change display to

Set mins

Mode
Change display to Time

Set

Mode
Change display

to Time

Mode = Set Mins

S
et

C
ha

ng
e

di
sp

la
y

to
 S

et
 H

rs

STATE TABLE – EXAMPLE 4.4

An ST has a row for each state in the state transition diagram and a column for
every event. For a given row and column intersection we read off the state from
the state transition diagram and note what effect (if any) each event has. If the
event has no effect we label the table entry with a symbol that indicates that
nothing happens; this is sometimes called a ‘null’ transition or an ‘invalid’
transition. If the event does have an effective label the table entry with the state
to which the system transitions when the given event occurs; if there is also an
output (there is sometimes but not always) the output is indicated in the same
table entry separated from the new state by the ‘/’ symbol. The example shown in
Table 4.1 is the ST for Figure 4.1, which we drew in the previous box.

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 93

Once we have an ST it is a simple exercise to generate the test cases that we need
to exercise the functionality by triggering state changes.

SOFTWARE TESTING

94

Mode Set

Mode = Time Mode = Altimeter/Change Mode = Set Hrs/Change
Display to Altimeter Display to Set Hrs

Mode = Altimeter Mode = Time/Change Null
Display to Time

Set Hrs Mode = Set Mins/Change Set Hrs/Add 1 to Hrs
display to Set Mins

Set Mins Mode = Time/Change Set Mins/Add 1 to Mins
Display to Time

STATE TRANSITION TESTING – EXAMPLE 4.4

We generate test cases by stepping through the ST. If we begin in Time mode then
the first test case might be to press Mode and observe that the watch changes to
Alt state; pressing Mode again becomes test case 2, which returns the watch to
Time state. Test case 3 could press Set and observe the change to Set Hrs mode
and then try a number of presses of Set to check that the incrementing mecha-
nism works. In this way we can work our way systematically round the ST until
every single transition has been exercised. If we want to be more sophisticated we
can exercise pairs of transitions, e.g. pressing Set twice as a single test case, to
check that Hrs increments correctly. We should also test all the negative cases,
i.e. those cases where the ST indicates there is no valid transition.

CHECK OF UNDERSTANDING

(1) What is the main use of an ST for testers?

(2) Name three components of a state transition diagram.

(3) How are negative tests identified from an ST?

(4) What is meant by the term‘invalid transition’?

Table 4.1 ST for the hill-walker’s watch

Software Testing 2nd Edition:Layout 1 10/1/10 4:55 PM Page 94

95

Exercise 4.5
In the state transition diagram in Figure 4.2, which of the sequences of
transitions below would be valid?

a. ABCDE
b. FEABC
c. ABCEF
d. EFADC

The answer can be found at the end of the chapter.

Use case testing
Use cases are one way of specifying functionality as business scenarios or process
flows. They capture the individual interactions between ‘actors’ and the system.
An actor represents a particular type of user and the use cases capture the
interactions that each user takes part in to produce some output that is of value.
Test cases based on use cases at the business process level, often called scenarios,
are particularly useful in exercising business rules or process flows and will often
identify gaps or weaknesses in these that would not be found by exercising indi-
vidual components in isolation. This makes use case testing very effective in
defining acceptance tests because the use cases represent actual likely use.

Use cases may also be defined at the system level, with preconditions that define
the state the system needs to be in on entry to a use case to enable the use case to
complete successfully, and postconditions that define the state of the system on
completion of the use case. Use cases typically have a mainstream path, defining
the expected behaviour, and one or more alternative paths related to such aspects
as error conditions. Well defined use cases can therefore be an excellent basis for
system level testing, and they can also help to uncover integration defects caused
by incorrect interaction or communication between components.

TEST DESIGN TECHNIQUES

Figure 4.2 State transition diagram

S5

S2

S4

S3

E

F

D C

B
A

S1

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 95

In practice, writing a test case to represent each use case is often a good starting
point for testing, and use case testing can be combined with other specification-
based testing.

Use case testing has the major benefit that it relates to real user processes, so it
offers an opportunity to exercise a complete process flow. The principles applied
elsewhere can be applied here: first test the highest priority (highest value) use
cases by taking typical examples; then exercise some attempts at incorrect
process flows; and then exercise the boundaries.

SOFTWARE TESTING

96

USE CASES

In a use case diagram (e.g. Figure 4.3) each type of user is known as an actor, and
an actor stands for all users of the type. Use cases are activities carried out for
that actor by the system. This is, in effect, a high-level view of requirements.

The diagram alone does not provide enough detail for testing, so we need some
textual description of the processes involved as well.

Figure 4.3 Use case example

Create course

Study course

Take exam

Provider

Student

CHECK OF UNDERSTANDING

(1) What is the purpose of a use case?

(2) What is the relationship between a use case and a test case?

(3) Briefly compare equivalence partitioning and use case testing.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 96

97

STRUCTURE-BASED (WHITE-BOX) TECHNIQUES

Structure-based test techniques are used to explore system or component
structures at several levels. At the component level, the structures of interest
will be program structures such as decisions; at the integration level we may
be interested in exploring the way components interact with other compo-
nents (in what is usually termed a calling structure); at the system level we
may be interested in how users will interact with a menu structure. All these
are examples of structures and all may be tested using white-box test case
design techniques. Instead of exercising a component or system to see if
it functions correctly white-box tests focus on ensuring that particular
elements of the structure itself are correctly exercised. For example, we can
use structural testing techniques to ensure that each statement in the code
of a component is executed at least once. At the component level, where
structure-based testing is most commonly used, the test case design
techniques involve generating test cases from code, so we need to be able
to read and analyse code. As you will see later, in Chapter 6, code analysis
and structure-based testing at the component level are mostly done by
specialist tools, but a knowledge of the techniques is still valuable. You
may wish to run simple test cases on code to ensure that it is basically
sound before you begin detailed functional testing, or you may want to
interpret test results from programmers to ensure that their testing
adequately exercises the code.

Our starting point, then, is the code itself.

Real programming languages have a wide variety of forms and structures – so
many that we could not adequately cover them all. The advantage of pseudo code
in this respect is that it has a simple structure.

TEST DESIGN TECHNIQUES

READING AND INTERPRETING CODE

In a Foundation-level examination the term‘code’ will always mean pseudo
code. Pseudo code is a much more limited language than any real
programming language but it enables designers to create all the main
control structures needed by programs. It is sometimes used to
document designs before they are coded into a programming language.

In the next few boxes we will introduce all the essential elements of pseudo code
that you will need to be able to analyse code and create test cases for the
Foundation examination.

Wherever you see the word ‘code’ from here on in this chapter read it as
‘pseudo code’.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 97

Now we have a picture of an overall program structure we can look inside the code.
Surprisingly, there are only three ways that executable code can be structured,
so we only have three structures to learn. The first is simple and is known as
sequence: that just means that the statements are exercised one after the other as
they appear on the page. The second structure is called selection: in this case the
computer has to decide if a condition (known as a Boolean condition) is true or false.
If it is true the computer takes one route, and if it is false the computer takes a
different route. Selection structures therefore involve decisions. The third structure
is called iteration: it simply involves the computer exercising a chunk of code more
than once; the number of times it exercises the chunk of code depends on the value
of a condition (just as in the selection case). Let us look at that a little closer.

SOFTWARE TESTING

98

OVERALL PROGRAM STRUCTURE

Code can be of two types, executable and non-executable. Executable code
instructs the computer to take some action; non-executable code is used to
prepare the computer to do its calculations but it does not involve any actions.
For example, reserving space to store a calculation (this is called a declaration
statement) involves no actions. In pseudo code non-executable statements will be
at the beginning of the program; the start of the executable part is usually identified
by BEGIN, and the end of the program by END. So we get the following structure:

1 Non-executable statements
2 BEGIN
3
4 Executable statements
5
6 END

If we were counting executable statements we would count lines 2, 4 and 6. Line 1
is not counted because it is non-executable. Lines 3 and 5 are ignored because
they are blank.

If there are no non-executable statements there may be no BEGIN or END either,
but there will always be something separating non-executable from executable
statements where both are present.

PROGRAMMING STRUCTURES

SEQUENCE

The following program is purely sequential:

1 Read A
2 Read B
3 C = A + B

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 98

99

TEST DESIGN TECHNIQUES

The BEGIN and END have been omitted in this case since there were no
non-executable statements; this is not strictly correct but is common practice,
so it is wise to be aware of it and remember to check whether there are any
non-executable statements when you do see BEGIN and END in a program. The
computer would execute those three statements in sequence, so it would read
(input) a value into A (this is just a name for a storage location), then read another
value into B, and finally add them together and put the answer into C.

SELECTION

1 IF P > 3
2 THEN
3 X = X + Y
4 ELSE
5 X = X - Y
6 ENDIF

Here we ask the computer to evaluate the condition P > 3, which means compare
the value that is in location P with 3. If the value in P is greater than 3 then the
condition is true; if not, the condition is false. The computer then selects which
statement to execute next. If the condition is true it will execute the part labelled
THEN, so it executes line 3. Similarly if the condition is false it will execute line 5.
After it has executed either line 3 or line 5 it will go to line 6, which is the end of the
selection (IF THEN ELSE) structure. From there it will continue with the next line
in sequence.

There may not always be an ELSE part, as below:

1 IF P > 3
2 THEN
3 X = X + Y
4 ENDIF

In this case the computer executes line 3 if the condition is true, or moves on
to line 4 (the next line in sequence) if the condition is false.

ITERATION

Iteration structures are called loops. The most common loop is known as a
DO WHILE (or WHILE DO) loop and is illustrated below:

1 X = 15
2 Count = 0
3 WHILE X < 20 DO
4 X = X + 1
5 Count = Count + 1
6 END DO

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 99

Flow charts
Now that we can read code we can go a step further and create a visual
representation of the structure that is much easier to work with. The simplest
visual structure to draw is the flow chart, which has only two symbols.
Rectangles represent sequential statements and diamonds represent decisions.
More than one sequential statement can be placed inside a single rectangle as
long as there are no decisions in the sequence. Any decision is represented by
a diamond, including those associated with loops.

Let us look at our earlier examples again.

SOFTWARE TESTING

100

As with the selection structures there is a decision. In this case the condition that
is tested at the decision is X < 20. If the condition is true the program ‘enters the
loop’ by executing the code between DO and END DO. In this case the value of X is
increased by one and the value of Count is increased by one. When this is done the
program goes back to line 3 and repeats the test. If X < 20 is still true the program
‘enters the loop’ again. This continues as long as the condition is true. If the
condition is false the program goes directly to line 6 and then continues to the next
sequential instruction. In the program fragment above the loop will be executed
five times before the value of X reaches 20 and causes the loop to terminate. The
value of Count will then be 5.

There is another variation of the loop structure known as a REPEAT UNTIL loop.
It looks like this:

1 X = 15
2 Count = 0
3 REPEAT
4 X = X + 1
5 Count = Count + 1
6 UNTIL X = 20

The difference from a DO WHILE loop is that the condition is at the end, so the loop
will always be executed at least once. Every time the code inside the loop is
executed the program checks the condition. When the condition is true the
program continues with the next sequential instruction. The outcome of this
REPEAT UNTIL loop will be exactly the same as the DO WHILE loop above.

CHECK OF UNDERSTANDING

(1) What is meant by the term executable statement?

(2) Briefly describe the two forms of looping structure introduced in this section.

(3) What is a selection structure?

(4) How many different paths are there through a selection structure?

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 100

To create a flow chart representation of a complete program (see Example 4.5) all
we need to do is to connect together all the different bits of structure.

101

TEST DESIGN TECHNIQUES

Figure 4.4 Flow chart for a sequential program

Read A
Read B

C = A + B

Figure 4.5 Flow chart for a selection (decision) structure

Figure 4.6 Flow chart for an iteration (loop) structure

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 101

SOFTWARE TESTING

102

PROGRAM ANALYSIS – EXAMPLE 4.5

Here is a simple program for calculating the mean and maximum of three integers.

1 Program MaxandMean
2
3 A, B, C, Maximum: Integer
4 Mean: Real
5
6 Begin
7
8 Read A
9 Read B
10 Read C
11 Mean = (A + B + C)/3
12
13 If A > B
14 Then
15 If A > C
16 Then
17 Maximum = A
18 Else
19 Maximum = C
20 Endif
21 Else
22 If B > C
23 Then
24 Maximum = B
25 Else
26 Maximum = C
27 Endif
28 Endif
29
30 Print (“Mean of A, B and C is ”, Mean)
31 Print (“Maximum of A, B, C is ”, Maximum)
32
33 End

Note one important thing about this code: it has some non-executable statements
(those before the Begin and those after the Begin that are actually blank lines) that
we will have to take account of when we come to count the number of executable
statements later. The line numbering makes it a little easier to do the counting.

By the way, you may have noticed that the program does not recognise if two of the
numbers are the same value, but simplicity is more important than sophistication
at this stage.

This program can be expressed as a flow chart; have a go at drawing it before you
look at the solution in the text.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 102

103

Figure 4.7 shows the flow chart for Example 4.5.

TEST DESIGN TECHNIQUES

Figure 4.7 Flow chart representation for Example 4.5

Read A
Read B
Read C

Begin

Mean =
(A + B + C) / 3

A > BIf

Then

If

Then

Maximum = CMaximum = B

B > C

Else

Else

Else

Then

A > C

Print (“Mean...)
Print (“Maximum...)

End

End if

End if

Maximum = CMaximum = A

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 103

Before we move on to look at how we generate test cases for code, we need to
look briefly at another form of graphical representation called the control
flow graph.

Control flow graphs
A control flow graph provides a method of representing the decision points and
the flow of control within a piece of code, so it is just like a flow chart except that
it only shows decisions. A control flow graph is produced by looking only at the
statements affecting the flow of control.

The graph itself is made up of two symbols: nodes and edges. A node represents
any point where the flow of control can be modified (i.e. decision points), or the
points where a control structure returns to the main flow (e.g. END WHILE or
ENDIF). An edge is a line connecting any two nodes. The closed area contained
within a collection of nodes and edges, as shown in the diagram, is known as a
region.

We can draw ‘subgraphs’ to represent individual structures. For a flow graph the
representation of sequence is just a straight line, since there is no decision to
cause any branching.

The subgraphs show what the control flow graph would look like for the program
structures we are already familiar with.

SOFTWARE TESTING

104

Region

Edge connecting
two nodes

Node

Repeat
until

Do
while

If then
else

CONTROL FLOW SUBGRAPHS

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 104

Any chunk of code can be represented by using these subgraphs.

As an example, we will return to Example 4.5.

Step 1 breaks the code into statements and identifies the control structures,
ignoring the sequential statements, in order to identify the decision points; these
are highlighted below.

1 Program MaxandMean
2
3 A, B, C, Maximum: Integer
4 Mean: Real
5
6 Begin
7
8 Read A
9 Read B
10 Read C
11 Mean = (A + B + C)/3
12
13 If A > B
14 Then
15 If A > C
16 Then
17 Maximum = A
18 Else
19 Maximum = C
20 Endif
21 Else
22 If B > C
23 Then
24 Maximum = B
25 Else
26 Maximum = C
27 Endif
28 Endif
29
30 Print (“Mean of A, B and C is ”, Mean)
31 Print (“Maximum of A, B, C is ”, Maximum)
32
33 End

105

TEST DESIGN TECHNIQUES

DRAWING A CONTROL FLOW GRAPH

The steps are as follows:

(1) Analyse the component to identify all control structures, i.e. all statements that
can modify the flow of control, ignoring all sequential statements.

(2) Add a node for any decision statement.

(3) Expand the node by substituting the appropriate subgraph representing the
structure at the decision point.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 105

Step 2 adds a node for each branching or decision statement (Figure 4.8).

Step 3 expands the nodes by substituting the appropriate subgraphs (Figure 4.9).

SOFTWARE TESTING

106

Figure 4.8 Control flow graph showing subgraphs as nodes

If
A > B

If
A > C

If
B > C

Figure 4.9 Control flow graph with subgraphs expanded

If
A > B

Endif

If
B > C

If
A > C

Endif Endif

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 106

107

Exercise 4.6
Draw a flow chart and a control flow graph to represent the following code:

1 Program OddandEven
2
3 A, B: Real;
4 Odd: Integer;
5
6 Begin
7 Read A
8 Read B
9 C = A + B
10 D = A – B
11 Odd = 0
12
13 If A/2 DIV 2 <> 0 (DIV gives the remainder after division)
14 Then Odd = Odd + 1
15 Endif
16
17 If B/2 DIV 2 <> 0
18 Then Odd = Odd + 1
19 Endif
20
21 If Odd = 1
22 Then
23 Print (“C is odd”)
24 Print (“D is odd”)
25 Else
26 Print (“C is even”)
27 Print (“D is even”)
28 Endif
29 End

The answer can be found at the end of the chapter.

Statement testing and coverage
Statement testing is testing aimed at exercising programming statements. If we
aim to test every executable statement we call this full or 100 per cent statement
coverage. If we exercise half the executable statements this is 50 per cent
statement coverage, and so on. Remember: we are only interested in executable

TEST DESIGN TECHNIQUES

CHECK OF UNDERSTANDING

(1) What is the difference between a flow chart and a control flow graph?

(2) Name the three fundamental program structures that can be found in programs.

(3) Briefly explain what is meant by an edge, a node and a region in a control flow
graph.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 107

SOFTWARE TESTING

108

statements, so we do not count non-executable statements at all when we are
measuring statement coverage.

Why measure statement coverage? It is a very basic measure that testing has
been (relatively) thorough. After all, a suite of tests that had not exercised all of
the code would not be considered complete. Actually, achieving 100 per cent
statement coverage does not tell us very much, and there are much more
rigorous coverage measures that we can apply, but it provides a baseline from
which we can move on to more useful coverage measures. Look at the following
pseudo code:

1 Program Coverage Example
2 A, X: Integer
3 Begin
4 Read A
5 Read X
6 If A > 1 AND X = 2
7 Then
8 X = X/A
9 Endif
10 If A = 2 OR X = 2
11 Then
12 X = X + 1
13 Endif
14 End

A flow chart can represent this, as in Figure 4.10.

Having explored flow charts and flow graphs a little, you will see that flow charts
are very good at showing you where the executable statements are; they are all
represented by diamonds or rectangles and where there is no rectangle there is
no executable code. A flow graph is less cluttered, showing only the structural
details, in particular where the program branches and rejoins. Do we need both
diagrams? Well, neither has everything that we need. However, we can produce a
version of the flow graph that allows us to determine statement coverage.

To do this we build a conventional control flow graph but then we add a node for
every branch in which there is one or more statements. Take the Program Cover-
age example; we can produce its flow graph easily as shown in Figure 4.11.

Before we proceed, let us confirm what happens when a program runs. Once the
program starts it will run through to the end executing every statement that it
comes to in sequence. Control structures will be the only diversion from this
end-to-end sequence, so we need to understand what happens with the control
structures when the program runs. The best way to do that is to ‘dry run’ the
program with some inputs; this means writing down the inputs and then step-
ping through the program logic noting what happens at each step and what
values change. When you get to the end you will know what the output values
(if any) will be and you will know exactly what path the program has taken
through the logic.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 108

109

TEST DESIGN TECHNIQUES

Figure 4.10 Flow chart for Program Coverage Example

Read A
Read X

A > 1 and X = 2

X = X / A

X = X + 1

A = 2 or X = 2

If
Else

Then

Endif

If

Then

Endif

Else

Figure 4.11 The hybrid flow graph

If

If

THE HYBRID FLOW GRAPH

Note the additional nodes that represent the edges with executable statements in
them; they make it a little easier to identify what needs to be counted for
statement coverage.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 109

In the Program Coverage example, for which we drew the flow chart in
Figure 4.10, 100 per cent statement coverage can be achieved by writing a single
test case that follows the path acdfgh (using lower case letters to label the arcs
on the diagram that represent path fragments). By setting A = 2 and X = 2 at
point a, every statement will be executed once. However, what if the first
decision should be an OR rather than an AND? The test would not have detected
the error, since the condition will be true in both cases. Similarly, if the second
decision should have stated X > 2 this error would have gone undetected because
the value of A guarantees that the condition is true. Also, there is a path through
the program in which X goes unchanged (the path abeh). If this were an error it
would also go undetected.

Remember that statement coverage takes into account only executable
statements. There are 12 in the Program Coverage example if we count the

SOFTWARE TESTING

110

PATHS THROUGH A PROGRAM

Flow charts, control flow graphs and hybrid flow graphs all show essentially
the same information, but sometimes one format is more helpful than another.
We have identified the hybrid flow graph as a useful combination of the control
flow graph and the control flow chart. To make it even more useful we can
add to it labels to indicate the paths that a program can follow through the
code. All we need to do is to label each edge; paths are then made up from
sequences of the labels, such as abeh, which make up a path through the code
(see Figure 4.12).

Figure 4.12 Paths through the hybrid flow graph

a

b

e

h

g

f

d

cIf

If

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 110

111

BEGIN and END statements, so statement coverage would be 12/12 or 100 per
cent. There are alternative ways to count executable statements: some people
count the BEGIN and END statements; some count the lines containing IF,
THEN and ELSE; some count none of these. It does not matter as long as:

You exclude the non-executable statements that precede BEGIN.

You ignore blank lines that have been inserted for clarity.

You are consistent about what you do or do not include in the count with
respect to control structures.

As a general rule, for the reasons given above, statement coverage is too weak to
be considered an adequate measure of test effectiveness.

Figure 4.13 shows what the flow graph looks like. It is drawn in the hybrid
flow graph format so that you can see which branches need to be exercised for
statement coverage.

TEST DESIGN TECHNIQUES

STATEMENT TESTING – EXAMPLE 4.6

Here is an example of the kind you might see in an exam. Try to answer the
question, but if you get stuck the answer follows immediately in the text.

Here is a program. How many test cases will you need to achieve 100 per cent
statement coverage and what will the test cases be?

1 Program BestInterest
2 Interest, Base Rate, Balance: Real
3
4 Begin
5 Base Rate = 0.035
6 Interest = Base Rate
7
8 Read (Balance)
9 If Balance > 1000
10 Then
11 Interest = Interest + 0.005
12 If Balance < 10000
13 Then
14 Interest = Interest + 0.005
15 Else
16 Interest = Interest + 0.010
17 Endif
18 Endif
19
20 Balance = Balance × (1 + Interest)
21
22 End

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 111

It is clear from the flow graph that the left-hand side (Balance below £1,000) need
not be exercised, but there are two alternative paths (Balance between £1,000
and £10,000 and Balance > £10,000) that need to be exercised.

So we need two test cases for 100 per cent statement coverage and Balance =
£5,000, Balance = £20,000 will be suitable test cases.

Alternatively we can aim to follow the paths abcegh and abdfgh marked on the
flow graph. How many test cases do we need to do that?

We can do this with one test case to set the initial balance value to a value
between £1,000 and £10,000 (to follow abcegh) and one test case to set the initial
balance to something higher than £10,000, say £12,000 (to follow path abdfgh).

So we need two test cases to achieve 100 per cent statement coverage in this case.

Now look at this example from the perspective of the tester actually trying to
achieve statement coverage. Suppose we have set ourselves an exit criterion of
100% statement coverage by the end of component testing. If we ran a single test
with an input of Balance = £10,000 we can see that that test case would take us
down the path abdfgh, but it would not take us down the path abcegh, and line
14 of the pseudo code would not be exercised. So that test case has not achieved
100% statement coverage and we will need another test case to exercise line 14 by
taking path abcegh. We know that Balance = £5000 would do that. We can build
up a test suite in this way to achieve any desired level of statement coverage.

SOFTWARE TESTING

112

Figure 4.13 Paths through the hybrid flow graph

a

c
F

d

f

g

h

T

F T

e

Balance > 1000

Balance < 10,000

b

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 112

113

Exercise 4.7
For the following program:

1 Program Grading
2
3 StudentScore: Integer
4 Result: String
5
6 Begin
7
8 Read StudentScore
9
10 If StudentScore > 79
11 Then Result = “Distinction”
12 Else
13 If StudentScore > 59
14 Then Result = “Merit”
15 Else
16 If StudentScore > 39
17 Then Result = “Pass”
18 Else Result = “Fail”
19 Endif
20 Endif
21 Endif
22 Print (“Your result is”, Result)
23 End

How many test cases would be needed for 100 per cent statement coverage?

The answer can be found at the end of the chapter.

Exercise 4.8
Now using the program Grading in Exercise 4.7 again, try to calculate whether 100%
statement coverage is achieved with a given set of data (this would be a K4 level
question in the exam).

Suppose we ran two test cases, as follows:

Test Case 1 StudentScore = 50

Test Case 2 StudentScore = 30

TEST DESIGN TECHNIQUES

CHECK OF UNDERSTANDING

(1) What is meant by statement coverage?

(2) In a flow chart, how do you decide which paths to include in determining how
many test cases are needed to achieve a given level of statement coverage?

(3) Does 100 per cent statement coverage exercise all the paths through a program?

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 113

SOFTWARE TESTING

114

(1) Would 100% statement coverage be achieved?

(2) If not, which lines of pseudo code will not be exercised?

The answer can be found at the end of the chapter.

Decision testing and coverage
Decision testing aims to ensure that the decisions in a program are adequately
exercised. Decisions, as you know, are part of selection and iteration structures;
we see them in IF THEN ELSE constructs and in DO WHILE or REPEAT
UNTIL loops. To test a decision we need to exercise it when the associated
condition is true and when the condition is false; this guarantees that both exits
from the decision are exercised.

As with statement testing, decision testing has an associated coverage measure
and we normally aim to achieve 100 per cent decision coverage. Decision coverage
is measured by counting the number of decision outcomes exercised (each exit
from a decision is known as a decision outcome) divided by the total number of
decision outcomes in a given program. It is usually expressed as a percentage.

The usual starting point is a control flow graph, from which we can visualise all
the possible decisions and their exit paths. Have a look at the following example.

1 Program Check
2
3 Count, Sum, Index: Integer
4
5 Begin
6
7 Index = 0
8 Sum = 0
9 Read (Count)
10 Read (New)
11
12 While Index <= Count
13 Do
14 If New < 0
15 Then
16 Sum = Sum + 1
17 Endif
18 Index = Index + 1
19 Read (New)
20 Enddo
21
22 Print (“There were”, Sum, “negative numbers in the input

stream”)
23
24 End

This program has a WHILE loop in it. There is a golden rule about WHILE loops.
If the condition at the WHILE statement is true when the program reaches it for

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 114

115

the first time then any test case will exercise that decision in both directions
because it will eventually be false when the loop terminates. For example, as long
as Index is less than Count when the program reaches the loop for the first time,
the condition will be true and the loop will be entered. Each time the program
runs through the loop it will increase the value of Index by one, so eventually
Index will reach the value of Count and pass it, at which stage the condition is
false and the loop will not be entered. So the decision at the start of the loop is
exercised through both its true exit and its false exit by a single test case. This
makes the assumption that the logic of the loop is sound, but we are assuming
that we are receiving this program from the developers who will have debugged it.

Now all we have to do is to make sure that we exercise the If statement inside the
loop through both its true and false exits.We can do this by ensuring that the
input stream has both negative and positive numbers in it.

For example, a test case that sets the variable Count to 5 and then inputs the
values 1, 5, −2, −3, 6 will exercise all the decisions fully and provide us with
100 per cent decision coverage. Note that this is considered to be a single test
case, even though there is more than one value for the variable New, because the
values are all input in a single execution of the program. This example does not
provide the smallest set of inputs that would achieve 100 per cent decision
coverage, but it does provide a valid example.

Although loops are a little more complicated to understand than programs
without loops, they can be easier to test once you get the hang of them.

TEST DESIGN TECHNIQUES

DECISION TESTING – EXAMPLE 4.7

Let us try an example without a loop now.

1 Program Age Check
2
3 CandidateAge: Integer;
4
5 Begin
6
7 Read(CandidateAge)
8
9 If CandidateAge < 18
10 Then
11 Print (“Candidate is too young”)
12 Else
13 If CandidateAge > 30
14 Then
15 Print (“Candidate is too old”)
16 Else
17 Print(“Candidate may join Club 18–30”)
18 Endif
19 Endif

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 115

Figure 4.14 shows the flow graph drawn in the hybrid flow graph format.

How many test cases will we need to achieve 100 per cent decision coverage? Well
each test case will just run through from top to bottom, so we can only exercise
one branch of the structure at a time.

We have labelled the path fragments a, b, c, d, e, f, g, h, i, j and you can see that
we have three alternative routes through the program – path abhj, path acegij
and path acdfij. That needs three test cases.

The first test case needs decision 1 to be true – so CandidateAge = 16 will be OK
here. The second needs to make the first decision false and the second decision
true, so CandidateAge must be more than 18 and more than 30 – let us say 40.
The third test case needs the first decision to be false and the second decision to
be false, so CandidateAge of 21 would do here. (You cannot tell which exit is true
and which is false in the second decision; if you want to, you can label the exits

SOFTWARE TESTING

20
21 End

Have a go at calculating how many test cases are needed for 100 per cent decision
coverage and see if you can identify suitable test cases.

Figure 4.14 Paths through the hybrid flow graph

a

ed

f

i

j

g

h

b

If CandidateAge <18

If CandidateAge >30

c

116

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 116

117

T and F, though in this case it does not really matter because we intend to
exercise them both anyway.)

So, we need three test cases for 100 per cent decision coverage:

CandidateAge = 16
CandidateAge = 21
CandidateAge = 40

which will exercise all the decisions.

Note that we have exercised the false exit from the first decision, which would not
have been necessary for statement coverage, so decision coverage gives us that
little bit extra in return for a little more work.

Exercise 4.9
This program reads a list of non-negative numbers terminated by −1.

1 Program Counting numbers
2
3 A: Integer
4 Count: Integer
5
6 Begin
7 Count = 0
8 Read A
9 While A <> –1
10 Do
11 Count = Count + 1
12 Read A
13 EndDo
14
15 Print (“There are”, Count, “numbers in the list”)
16 End

How many test cases are needed to achieve 100 per cent decision
coverage?

The answer can be found at the end of the chapter.

TEST DESIGN TECHNIQUES

CHECK OF UNDERSTANDING

(1) What is the purpose of decision testing?

(2) How many test cases are needed to exercise a single decision?

(3) How many test cases are needed to exercise a loop structure?

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 117

SOFTWARE TESTING

118

Exercise 4.10
Using Program Counting numbers from Exercise 4.9, what level of decision
coverage would be achieved by the single input A = –1?

The answer can be found at the end of the chapter.

Other structure-based techniques
More sophisticated techniques are available to provide increasingly complete code
coverage. In some applications these are essential: for example, in a safety-critical
system it is vital to know that nothing unacceptable happens at any point when
the code is executed. Would you like to ‘fly by wire’ if you did not know what was
happening in the software? The many well documented mishaps in computer-
controlled systems provide compelling examples of what can happen if code –
even code that is not providing essential functionality in some cases – does
something unexpected. Measures such as condition coverage and multiple
condition coverage are used to reduce the likelihood that code will behave in
unpredictable ways by examining more of it in more complex scenarios.

Coverage is also applicable to other types and levels of structure. For example, at
the integration level it is useful to know what percentage of modules or interfaces
has been exercised by a test suite, while at the functional level it is helpful to step
through all the possible paths of a menu structure. We can also apply the idea of
coverage to areas outside the computer, e.g. by exercising all the possible paths
through a business process as testing scenarios.

EXPERIENCE-BASED TECHNIQUES

Experience-based techniques are those that you fall back on when there is no
adequate specification from which to derive specification-based test cases or
no time to run the full structured set of tests. They use the users’ and the
testers’ experience to determine the most important areas of a system and to
exercise these areas in ways that are both consistent with expected use (and
abuse) and likely to be the sites of errors – this is where the experience comes
in. Even when specifications are available it is worth supplementing the
structured tests with some that you know by experience have found defects in
other similar systems.

Techniques range from the simplistic approach of ad hoc testing or error guessing
through to the more sophisticated techniques such as exploratory testing, but all
tap the knowledge and experience of the tester rather than systematically
exploring a system against a written specification.

Error guessing
Error guessing is a very simple technique that takes advantage of a tester’s
skill, intuition and experience with similar applications to identify special tests
that may not be easy to capture by the more formal techniques. When applied
after systematic techniques, error guessing can add another value in identifying

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 118

119

and exercising test cases that target known or suspected weaknesses or that
simply address aspects of the application that have been found to be
problematical in the past.

The main drawback of error guessing is its varying effectiveness, depending as it
does on the experience of the tester deploying it. However, if several testers
and/or users contribute to constructing a list of possible errors and tests are
designed to attack each error listed, this weakness can be effectively overcome.
Another way to make error guessing more structured is by the creation of defect
and failure lists. These lists can use available defect and failure data (where this
exists) as a starting point, but the list can be expanded by using the testers’ and
users’ experience of why the application under test in particular is likely to fail.
The defect and failure list can be used as the basis of a set of tests that are
applied after the systematic techniques have been used. This systematic
approach is known as fault attack.

Exploratory testing
Exploratory testing is a technique that combines the experience of testers with
a structured approach to testing where specifications are either missing or inade-
quate and where there is severe time pressure. It exploits concurrent test design,
test execution, test logging and learning within time-boxes and is structured
around a test charter containing test objectives. In this way exploratory testing
maximises the amount of testing that can be achieved within a limited time
frame, using test objectives to maintain focus on the most important areas.

TEST DESIGN TECHNIQUES

SYSTEMATIC AND EXPERIENCE-BASED TECHNIQUES

How do we decide which is the best technique? There are some simple rules of
thumb:

(1) Always make functional testing the first priority. It may be necessary to test
early code products using structural techniques, but we only really learn about
the quality of software when we can see what it does.

(2) When basic functional testing is complete that is a good time to think about
test coverage. Have you exercised all the functions, all the requirements, all the
code? Coverage measures defined at the beginning as exit criteria can now
come into play. Where coverage is inadequate extra tests will be needed.

(3) Use structural methods to supplement functional methods where possible.
Even if functional coverage is adequate, it will usually be worth checking
statement and decision coverage to ensure that enough of the code has been
exercised during testing.

(4) Once systematic testing is complete there is an opportunity to use
experience-based techniques to ensure that all the most important and
most error-prone areas of the software have been exercised. In some
circumstances, such as poor specifications or time pressure, experience-
based testing may be the only viable option.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 119

The decision of which test technique to use is not a simple one. There are many
factors to bear in mind, some of which are listed in the box.

CHOOSING TEST TECHNIQUES

One or more of these factors may be important on any given occasion. Some
leave no room for selection: regulatory or contractual requirements leave the
tester with no choice. Test objectives, where they relate to exit criteria such as
test coverage, may also lead to mandatory techniques. Where documentation
is not available, or where time and budget are limited, the use of experience-
based techniques may be favoured. All others provide pointers within a broad
framework: level and type of risk will push the tester towards a particular
approach, where high risk is a good reason for using systematic techniques;
knowledge of testers, especially where this is limited, may narrow down the
available choices; the type of system and the development life cycle will
encourage testers to lean in one direction or another depending on their own
particular experience. There are few clear-cut cases, and the exercise of sound
judgement in selecting appropriate techniques is a mark of a good test
manager or team leader.

SOFTWARE TESTING

120

KEY SELECTION FACTORS

Type of system
Regulatory standards
Customer or contractual requirements
Level of risk
Type of risk
Test objectives
Documentation available
Knowledge of the testers
Time and budget
Development life cycle
Use case models
Experience of type of defects found

CHECK OF UNDERSTANDING

(1) What is meant by experience-based testing?

(2) Briefly compare error guessing and exploratory testing.

(3) When is the best time to use experience-based testing?

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 120

121

SUMMARY

In this chapter we have considered the most important terminology needed
in discussing the specification stage of the fundamental test process,
which was introduced in Chapter 1. We explained how test conditions are
derived and how test cases can be designed and grouped into test procedures
for execution.

Test design techniques were categorised into three main groups known as
specification-based or black-box techniques, structure-based or white-box
techniques, and experience-based techniques.

Specification-based techniques introduced were equivalence partitioning,
boundary value analysis, state transition testing, decision table testing and use
case testing. Specific worked examples of all except use case testing were given
(and this was excluded solely because the examination does not require the
ability to generate test cases from use cases). Structure-based techniques were
introduced and worked examples were given for statement testing and decision
testing. Experience-based techniques introduced included error guessing and
exploratory testing.

Finally the factors involved in selecting test case design techniques were
discussed and guidance given on the selection criteria to be applied.

TEST DESIGN TECHNIQUES

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 121

SOFTWARE TESTING

122

Example examination questions with answers
E1. K1 question
Which of the following describes structure-based (white-box) test case design
techniques?

a. Test cases are derived systematically from models of the system.
b. Test cases are derived systematically from the tester’s experience.
c. Test cases are derived systematically from the delivered code.
d. Test cases are derived from the developers’ experience.

E2. K1 question
Which of the following is a structure-based (white-box) technique?

a. Decision table testing
b. State transition testing
c. Statement testing
d. Boundary value analysis

E3. K3 question
A washing machine has three temperature bands for different kinds of fabrics:
fragile fabrics are washed at temperatures between 15 and 30 degrees Celsius;
normal fabrics are washed at temperatures between 31 and 60 degrees Celsius;
heavily soiled and tough fabrics are washed at temperatures between 61 and
100 degrees Celsius.

Which of the following contains only values that are in different equivalence
partitions?

a. 15, 30, 60
b. 20, 35, 60
c. 25, 45, 75
d. 12, 35, 55

E4. K3 question
Consider the following pseudo code:

1 Begin
2 Read Time
3 If Time < 12 Then
4 Print(Time, “am”)
5 Endif
6 If Time > 12 Then
7 Print(Time -12, “pm”)
8 Endif
9 If Time = 12 Then
10 Print (Time, “noon”)
11 Endif
12 End

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 122

How many test cases are needed to achieve 100 per cent decision coverage?

a. 1
b. 2
c. 3
d. 4

E5. K4 question
Consider the following pseudo code:

1 Begin
2 Read Time
3 If Time < 12 Then
4 Print(Time, “am”)
5 Endif
6 If Time > 12 Then
7 Print(Time -12, “pm”)
8 Endif
9 If Time = 12 Then
10 Print (Time, “noon”)
11 Endif
12 End

If the test cases Time = 11 and Time = 15 were input, what level of decision
coverage would be achieved?

a. 100% or 6/6
b. 50% or 3/6
c. 67% or 4/6
d. 83% or 5/6

E6. K1 question
What is the main purpose of use case testing?

a. To identify defects in process flows related to typical use of the system.
b. To identify defects in the connections between components.
c. To identify defects in the system related to extreme scenarios.
d. To identify defects in the system related to the use of unapproved

programming practices.

123

TEST DESIGN TECHNIQUES

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 123

SOFTWARE TESTING

124

E7. K2 question
Which of the following are the most important factors to be taken into account
when selecting test techniques?

(i) Tools available.
(ii) Regulatory standards.
(iii) Experience of the development team.
(iv) Knowledge of the test team.
(v) The need to maintain levels of capability in each technique.

a. (i) and (ii)
b. (ii) and (iv)
c. (iii) and (iv)
d. (i) and (v)

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 124

125

Answers to questions in the chapter
SA1. The correct answer is a.
SA2. The correct answer is a.
SA3. The correct answer is b.

Exercise 4.1
The partitions would be: £0.00–£1,000.00, £1,000.01–£2,000.00, and >= £2,000.01.

Exercise 4.2
The valid partitions would be: £0.00–£20.00, £20.01–£40.00, and >= £40.01.
Non-valid partitions would include negative values and alphabetic characters.

Exercise 4.3
The partitions would be: question scores 0–20; total 0–100; question differences:
0–3 and > 3; total differences 0–10 and > 10.

Boundary values would be: −1, 0, 1 and 19, 20, 21 for the question scores; −1, 0, 1
(again) and 99, 100, 101 for the question paper totals; −1, 0, 1 (again) and 2, 3, 4
for differences between question scores for different markers; and −1, 0, 1 (again)
and 9, 10, 11 for total differences between different markers.

In this case, although the −1, 0, 1 values occur several times, they may be applied
to different parts of the program (e.g. the question score checks will probably be
in a different part of the program from the total score checks) so we may need to
repeat these values in the boundary tests.

Exercise 4.4
Billy will be eligible for a cash payment but not for a share allocation.

Exercise 4.5
The correct answer is b.

Answer (a) includes the transition DE; answer (c) includes the transition CE;
answer (d) includes the transition FA. None of these is valid from the
diagram.

Exercise 4.6
The flow chart is shown in Figure 4.15. The control flow graph is shown in
Figure 4.16.

Exercise 4.7
The answer is 4 because there are three decisions and every outcome has an
executable statement in it.

Exercise 4.8
(1) No, 100% statement coverage would not be achieved. We know from

Exercise 4.7 that four test cases are needed.
(2) Statements 11 and 14 would not be exercised because they need inputs

higher than 79 and 59 respectively.

TEST DESIGN TECHNIQUES

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 125

SOFTWARE TESTING

126

Figure 4.15 Flow chart for Exercise 4.6

Read A
Read B

C = A + B
D = A – B
Odd = 0

End

(A/2) DIV 2 <> 0

Odd = Odd + 1

(B/2) DIV 2 <> 0

Odd = Odd + 1

Odd = 1

Print (“C is odd”)
Print (“D is odd”)

Print (“C is even”)
Print (“D is even”)

Begin

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 126

127

Exercise 4.9
The answer is 1 because a single list terminated by −1 (say 4, 6, 3, −1) will enter
the loop the first three times and then exit on the fourth; hence the WHILE
decision will be true three times and then false, which exercises the decision in
both directions with one test case.

A single test case with values of 1, −1 would also exercise all decisions.

Exercise 4.10
Decision coverage of 50% will be achieved. The –1 input will make the While
condition False and the loop will not be entered. The program will print the
message ‘There are 0 integers in the list’ and terminate, so the True outcome of
the decision will not be exercised.

TEST DESIGN TECHNIQUES

Figure 4.16 Control flow graph for Exercise 4.6

If (A/2) DIV 2 <> 0

If (B/2) DIV 2 <> 0

If Odd = 1

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 127

SOFTWARE TESTING

128

Answers to example questions
E1. The correct answer is c.
Answer (a) relates to specification-based testing, answer (b) relates to
experience-based testing and answer (d) could relate either to debugging
or to experience-based techniques.

E2. The correct answer is c.
All other options are specification-based (black-box) techniques, and the main
distracter is answer (a) because decision table testing could be confused with
decision testing.

E3. The correct answer is c.
Answer (a) includes two values from the lower partition, answer (b) contains two
values from the second partition, answer (d) contains one value that is
invalid (out of range).

E4. The correct answer is c.
The three decisions are in sequence and the conditions are all mutually exclusive
(if any one is true the others must be false). Hence a test case that makes the first
decision true will make the second and third decisions false and so on.

So test case 1 (say Time = 6) would exercise the path True, False, False, test case
2 (say Time = 15) would exercise the path False, True, False. Test case 3 would
have to be Time = 12. This combination achieves 100 per cent decision coverage
because each decision has been exercised through its true and its false outcomes.

E5. The correct answer is d.
Test case 1 exercises the decision outcomes True, False, False

Test case 2 exercises the decision outcomes False, True, False

This leaves the True outcome of decision 3 not exercised.

Of the 6 possible decision outcomes, 5 have been exercised, so the decision
coverage is 5/6 (about 83%).

E6. The correct answer is a.
Answer (b) relates to integration testing; answer (c) could relate to boundary
value analysis or performance testing, but use cases exercise typical process flows
rather than extreme examples; answer (d) relates to static analysis.

E7. The correct answer is b.
Answer (i) looks tempting, and the availability of tools might make the use of a
technique more or less attractive, but it would not be decisive in the way that
regulatory standards and tester knowledge are. Answer (iii) is irrelevant because
testing should be independent of development anyway, but it could tempt
someone who is unsure about the relationship between development and testing.
Answer (v) is a factor in managing the test team, and experience would need to be
maintained, but this should not influence the selection of techniques for a live
project.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 128

129

INTRODUCTION

This chapter provides a generic overview of how testing is organised and how
testing is managed within organisations. A generic view of testing will, inevitably,
not match the way testing is organised in specific organisations. The issues
addressed are nevertheless important for any organisation and need to be
considered by all.

We will start by looking at how testing and risk fit together, as well as providing
detailed coverage of test planning and the control of testing, and we will identify
how independence assists the test process. One very important area in managing
the test process is the understanding of the different roles and tasks associated
with the testing role such as the test leader and the tester.

We cannot, in one chapter, provide all the knowledge required to enable the
reader to become a practising test leader or test manager, but we do aim to
provide the background information necessary for a reader to understand the
various facets of the test management role.

Learning objectives
The learning objectives for this chapter are listed below. You can confirm that you
have achieved these by using the self-assessment questions at the start of the
chapter, the ‘Check of understanding’ boxes distributed throughout the text, and
the example examination questions provided at the end of the chapter. The chap-
ter summary will remind you of the key ideas.

The sections are allocated a K number to represent the level of understanding
required for that section; where an individual element has a lower K number
than the section as a whole this is indicated for that topic; for an explanation of
the K numbers see the Introduction.

Test organisation (K2)

Recognise the importance of independent testing. (K1)

Explain the benefits and drawbacks of independent testing within an
organisation.

5 TEST MANAGEMENT

Geoff Thompson

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 129

Recognise the different team members to be considered for the creation of a
test team. (K1)

Recall the tasks of typical test leader and tester. (K1)

Test planning and estimation (K3)

Recognise the different levels and objectives of test planning. (K1)

Summarise the purpose and content of the test plan, test design specification
and test procedure documents according to the Standard for Software Test
Documentation (IEEE 829-1998). (K2)

Differentiate between conceptually different test approaches, such as analyti-
cal model based methodical, process/standard compliant, dynamic/heuristic,
consultative and regression averse. (K2)

Differentiate between the subject of test planning for a system and for
scheduling test execution. (K2)

Write a test execution schedule for a given set of test cases, considering
prioritisation, and technical and logical dependencies.

List test preparation and execution activities that should be considered
during test planning. (K1)

Recall typical factors that influence the effort related to testing. (K1)

Differentiate between two conceptually different estimation approaches: the
metrics-based approach and the expert-based approach. (K2)

Recognise/justify adequate exit criteria for specific test levels and groups of
test cases (e.g. for integration testing, acceptance testing or test cases for
usability testing). (K2)

Test progress monitoring and control (K2)

Recall common metrics used for monitoring test preparation and execution. (K1)

Explain and compare test metrics for test reporting and test control (e.g. defects
found and fixed, and tests passed and failed) related to purpose and use.

Summarise the purpose and content of the test summary report document
according to the Standard for Software Test Documentation (IEEE
829-1998).

Configuration management (K2)

Summarise how configuration management supports testing.

Risk and testing (K2)

Describe a risk as a possible problem that would threaten the achievement of
one or more stakeholders’ project objectives.

SOFTWARE TESTING

130

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 130

Remember that risks are determined by likelihood (of happening) and impact
(harm resulting if it does happen). (K1)

Distinguish between the project and product risks.

Recognise typical product and project risks. (K1)

Describe, using examples, how risk analysis and risk management may be
used for test planning.

Incident management (K3)

Recognise the content of an incident report according to the Standard for
Software Test Documentation (IEEE 829-1998). (K1)

Write an incident report covering the observation of a failure during testing.

Self-assessment questions
The following questions have been designed to enable you to check your current
level of understanding for the topics in this chapter. The answers are given at the
end of the chapter.

Question SA1 (K1)
What is the purpose of exit criteria?

a. To identify how many tests to design.
b. To identify when to start testing.
c. To identify when to stop testing.
d. To identify who will carry out the test execution.

Question SA2 (K2)
Which of the following are most likely to be used when developing a test strategy
or test approach?

(i) Failure-based approach
(ii) Test specification approach
(iii) Model-based approach
(iv) Finance-based approach

a. (iii) and (ii)
b. (i) and (iv)
c. (ii) and (i)
d. (i) and (iii)

Question SA3 (K1)
What can a risk-based approach to testing provide?

a. The types of test techniques to be employed.
b. The total tests needed to provide 100 per cent coverage.
c. An estimation of the total cost of testing.
d. Only that test execution is effective at reducing risk.

131

TEST MANAGEMENT

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 131

RISK AND TESTING

It is not possible to talk about test management without first looking at risk and
how it affects the fundamental test process defined in Chapter 2. If there were no
risk of adverse future events in software or hardware development then there
would be no need for testing. In other words, if defects did not exist then neither
would testing.

Risk can be defined as the chance of an event, hazard, threat or situation
occurring and its undesirable consequences:

In a project a test leader will use risk in two different ways: project risks and
product risks. In both instances the calculation of the risk will be:

Project risks
Whilst managing the testing project a test leader will use project risks to manage
the capability to deliver.

Project risks include:

Supplier issues:

Failure of a third party to deliver on time or at all.

Contractual issues, such as meeting acceptance criteria.

Organisational factors:

Skills, training and staff shortages.

Personal issues.

Political issues, such as problems that stop testers communicating their
needs and test results.

Failure by the team to follow up on information found in testing
and reviews (e.g. not improving development and testing
practices).

Improper attitude toward or expectations of testing (e.g. not appreciating
the value of finding defects during testing).

SOFTWARE TESTING

132

Risk – a factor that could result in future negative consequences, usually
expressed as impact and likelihood.

Level of risk = probability of the risk occurring × impact if it did happen

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 132

133

Technical issues:

Problems in defining the right requirements.

The extent that requirements can be met given existing project
constraints.

Test environment not ready on time.

Late data conversion, migration planning and development and testing
data conversion/migration tools.

Low quality of the design, code, configuration data, test data and tests.

For each risk identified a probability (chance of the risk being realised) and
impact (what will happen if the risk is realised) should be identified as well as
the identification and management of any mitigating actions (actions aimed at
reducing the probability of a risk occurring, or reducing the impact of the risk if
it did occur).

So, for example if there was a risk identified that the third-party supplier may
be made bankrupt during the development, the test manager would review the
supplier’s accounts and might decide that the probability of this is medium (3 on
a scale of 1 to 5, 1 being a high risk and 5 a low one). The impact on the project
if this did happen would be very high (1 using the same scale). The level of risk is
therefore 3 × 1 = 3. Thus, the lower the number, the more the risk.With 3 being in
the medium risk area the test leader would now have to consider what mitigating
actions to take to try to stop the risk becoming a reality. This might include not
using the third party, or ensuring that payment for third-party deliverables is
made efficiently.

When analysing, managing and mitigating these risks the test manager is
following well-established project management principles provided within project
management methods and approaches. The project risks recognised during test
planning should be documented in the IEEE 829 test plan (see later in this
chapter for details of the test plan contents); for the ongoing management and
control of existing and new project risks a risk register should be maintained by
the test leader.

Product risks
When planning and defining tests a test leader or tester using a risk-based
testing approach will be managing product risks.

Potential failure areas (adverse future events or hazards) in software are known
as product risks, as they are a risk to the quality of the product. In other words,
the potential of a defect occurring in the live environment is a product risk.
Examples of product risks are:

Failure-prone software delivered.

The potential that a defect in the software/hardware could cause harm to an
individual or company.

TEST MANAGEMENT

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 133

SOFTWARE TESTING

134

Poor software characteristics (e.g. functionality, security, reliability, usability,
performance).

Poor data integrity and quality (e.g. data migration issues, data
conversion problems, data transport problems, violation of data
standards).

Software that does not perform its intended functions.

Risks are used to decide where to start testing in the software development life
cycle, e.g. the risk of poor requirements could be mitigated by the use of formal
reviews as soon as the requirements have been documented at the start of a
project. Product risks also provide information enabling decisions regarding how
much testing should be carried out on specific components or systems, e.g. the
more risk there is, the more detailed and comprehensive the testing may be. In
these ways testing is used to reduce the risk of an adverse effect (defect) occurring
or being missed.

Mitigating product risks may also involve non-test activities. For example, in
the poor requirements situation, a better and more efficient solution may be
simply to replace the analyst who is writing the poor requirements in the
first place.

As already stated, a risk-based approach to testing provides proactive opportuni-
ties to reduce the levels of product risk starting in the initial stages of a project.
It involves the identification of product risks and how they are used to guide the
test planning, specification and execution. In a risk-based approach the risks
identified:

will determine the test techniques to be employed, and/or the extent of
testing to be carried out, e.g. the Motor Industry Software Reliability
Association (MISRA) defines which test techniques should be used for
each level of risk: the higher the risk, the higher the coverage required
from test techniques;

prioritise testing in an attempt to find the critical defects as early as possible,
e.g. by identifying the areas most likely to have defects (the most complex) the
testing can be focused on these areas;

will determine any non-test activities that could be employed to reduce risk,
e.g. to provide training to inexperienced designers.

Risk-based testing draws on the collective knowledge and insights of the project
stakeholders, testers, designers, technical architects, business reps and anyone
with knowledge of the solution to determine the risks and the levels of testing to
address those risks.

To ensure that the chance of a product failure is minimised, risk management
activities provide a disciplined approach:

To assess continuously what can go wrong (risks). Regular reviews of the
existing and looking for any new product risks should occur periodically
throughout the life cycle.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 134

135

To determine what risks are important to deal with (probability × impact).
As the project progresses, owing to the mitigation activities risks may reduce
in importance, or disappear altogether.

To implement actions to deal with those risks (mitigating actions).

Testing supports the identification of new risks by continually reviewing risks of
the project deliverables throughout the life cycle; it may also help to determine
what risks are important to reduce by setting priorities; it may lower uncertainty
about risks by, for example, testing a component and verifying that it does not
contain any defects; and lastly by running specific tests it may verify other
strategies that deal with risks, such as contingency plans.

Testing is a risk control activity that provides feedback about the residual risk in
the product by measuring the effectiveness of critical defect removal (see below)
and by reviewing the effectiveness of contingency plans.

TEST ORGANISATION

Test organisation and independence
Independent testing is testing carried out by someone other than the creator
(developer) of the code being tested. By remaining independent it is possible to
improve the effectiveness of testing if implemented correctly.

As humans we are all capable of making mistakes, from the simplest misspelling or
wrong use of syntax to fundamental errors at the core of any documents we write.
The problem is that as authors we are less able to see our own errors than someone
else, who is less directly associated with the document, would be. This is a problem
that is made worse, in the world of software development, by the differing ‘world
view’ of testers and developers. A developer, as the creator and owner of documents
and code related to development, perceives these deliverables as being correct when
they are delivered. The general awareness that we all make mistakes is, at this
stage, overridden by the belief that what has been produced is what is required. A
tester, by contrast, will take the view that anything delivered for testing is likely to
contain errors and will search diligently to identify and locate those errors.

This is where independent testing is important, as it is genuinely hard for
authors to identify their own errors, but it is easier for others to see them.
There are many options for many levels of independence. In general, the more
remote a tester is from the production of the document, the greater is the level

TEST MANAGEMENT

CHECK OF UNDERSTANDING

(1) What are the two types of risks that have to be considered in testing?

(2) Compare and contrast these two risk types.

(3) How early in the life cycle can risk impact the testing approach?

(4) What does MISRA determine when the level of risk is understood?

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 135

of independence. Figure 5.1 indicates the most common roles and the levels of
independence they bring.

Of course independence comes at a price. The greater the level of independence,
the greater the likelihood of errors in testing arising from unfamiliarity. Levels of
independence will also depend on the size of the organisation. In smaller organi-
sations where everybody contributes to every activity it is harder to differentiate
the role of the tester from any other role, and therefore testers may not be very
independent at all. The key in these circumstances is for the testers to have
independence of mind, not necessarily to be in an independent (separate) team.
In organisations where there are clearly defined roles it is a lot easier for a tester
to remain independent.

It is also possible to mix and match the levels of independence, e.g. a test team
made up of permanent resources, business unit resources and contractors. For
large, complex or safety-critical projects, it is usually best to have multiple levels
of testing, with some or all of the levels done by independent testers.

The ‘agile’ approach to development challenges the traditional approach to independ-
ence. In this approach everybody takes on multiple roles and so maintaining total
independence is not always possible. A tester in this situation has to be able to switch
to an independent view, at the relevant points in the project. Testers achieve this
independence of view by not assuming anything and by not starting to own the
software like a developer would, e.g. the view that was how it was developed to work.

Independence in the implementation of testing has some key benefits and
drawbacks, as in Table 5.1.

SOFTWARE TESTING

136

The developer

Independent testers ceded to the development team

Independent permanent test team, centre of excellence,
within the organisation

Independent testers or test team provided by the
operational business units

Specialist testers such as usability testers, security
testers, or performance testers

Outsourced test team or testers, e.g. contractors or
other organisations

Low

High

In
de

pe
nd

en
ce

Figure 5.1 Levels of independent testing

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 136

137

TEST MANAGEMENT

Table 5.1 Features of independent testing

Benefits Drawbacks

The tester sees other and different Isolation from the development team
defects to the author (if treated as totally independent), which

will mean the tester is totally dependent
on the test basis to understand what it is
the tester is testing (documentation that
is rarely up to date)

The tester is unbiased The tester may be seen as the
bottleneck, as independent test
execution is normally the last stage and
affected by any delays earlier in the
process

The tester can see what has been Developers lose a sense of responsibility
built rather than what the developer for quality as it may be assumed that
thought had been built they need not worry about

errors because the independent test
team will find them

The tester makes no assumptions The fully independent view sets
regarding quality developers and testers on either side of

an invisible fence. This can be a
hindrance to communication that would
in normal circumstances ensure
common understanding and effective
working. It can also mean that
developers are seen to ‘throw’ the
software over the fence

CHECK OF UNDERSTANDING

(1) Why is independent testing more effective at finding errors than simply
allowing the developer and author to test their own product?

(2) Name three benefits of independence.

(3) Which organisation provides the lowest level of independence and
which provides the highest?

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 137

SOFTWARE TESTING

138

Tasks of a test leader and tester
Test tasks are traditionally carried out by people who make testing a career;
however, test tasks may also be carried out by non-testers such as a project
manager, quality manager, developer, business and domain expert, infrastructure
or IT operations. The availability of resources usually determines the resource
types that are deployed on each project, e.g. if there are no career testers
available an organisation may identify non-testing IT or business resources to
carry out the role of tester for a specific project or time period.

The syllabus defines two testing roles, the test leader (or test manager/test
coordinator) and the tester. Other roles may exist in your organisation, but they
are not covered here.

The testing roles can be undertaken by anyone with the required skills or who is
given the right training. For example, the role of a test leader could be under-
taken by a project manager. The decision as to who does what will depend on how
a project or organisation is structured, as well as the size and number of
resources working on a given project.

It is important to understand here the difference between a testing role and
a testing job. A role is an activity, or a series of activities given to a person
to fulfil, e.g. the role of test leader. A person may therefore have more than
one role at any moment depending on their experience and the level of
workload on a project. A job is effectively what an individual is employed to
do, so one or many roles could make up a job. For example, a test leader could
also be a tester.

The tasks undertaken by a test leader align very closely with those undertaken
by a project manager and align closely with standard approaches to project
management. In this context a test leader is anyone who leads a team of testers
(be that one or many testers). They are also known as test programme managers,
test managers, test team leaders and test coordinators.

Typical test leader tasks may include:

Coordinating the development of the test strategy and plan with project
managers and others.

Writing or reviewing test strategies produced for the project, and test policies
produced for the organisation.

Contributing the testing perspective to other project activities, such as
development delivery schedules.

Planning the development of the required tests – which will include
ensuring that the development uses the correct understanding of the
risks, selecting the required test approaches (test levels, cycles, approach,
objectives and incident management planning), estimating the time
and effort and converting to the cost of testing and acquiring the right
resources.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 138

139

Managing the specification, preparation, implementation and execution
of tests, including the monitoring and control of all the specification and
execution.

Taking the required action, including adapting the planning, based on test
results and progress (sometimes documented in status reports), and any
action necessary to compensate for problems or delays.

Ensuring that adequate configuration management of testware is in place
and that the testware is fully traceable, e.g. there is a hierarchical relation-
ship established between the requirements and the detailed specification
documents.

Putting in place suitable metrics for measuring test progress and evaluating
the quality of the testing delivered and the product.

Agreeing what should be automated, to what degree, and how, ensuring it is
implemented as planned.

Where required, selecting tools to support testing and ensuring any tool
training requirements are met.

Agreeing the structure and implementation of the test environment.

Scheduling all testing activity.

At the end of the project, writing a test summary report based on the
information gathered during testing.

These tasks are not, however, all of the tasks that could be carried out by test
leaders, just the most common ones. In fact other resources could take on one or
more of these tasks as required, or they may be delegated to other resources by
the test leader. The key is to ensure that everyone is aware of who is doing what
tasks, that they are completed on time and within budget, and that they are
tracked through to completion.

The other role covered by the syllabus is that of the tester, also known as test
analyst or test executor.

The tasks typically undertaken by a tester may include:

Reviewing and contributing to the development of test plans.

Analysing, reviewing and assessing user requirements, specifications and
models for testability.

Creating test specifications from the test basis.

Setting up the test environment (often coordinating with system
administration and network management). In some organisations the
setting up and management of the test environment could be centrally
controlled; in this situation a tester would directly liaise with the
environment management to ensure the test environment is delivered
on time and to specification.

TEST MANAGEMENT

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 139

Preparing and acquiring/copying/creating test data.

Implementing tests on all test levels, executing and logging the tests,
evaluating the results and documenting the deviations from expected
results as defects.

Using test administration or management and test monitoring tools as
required.

Automating tests (may be supported by a developer or a test automation
expert).

Where required, running the tests and measuring the performance of
components and systems (if applicable).

Reviewing tests developed by other testers.

If specialist testers are not available, then additional resources could be used at
different test levels:

For component and integration testing, any additional roles would typically
be filled by someone from a development background.

For system and user acceptance testing, any additional roles would typically
be filled by someone from a business or user background.

System operators (sometimes known as production support) would be
responsible for operational acceptance testing.

As mentioned earlier, the thing to remember when looking at roles and
tasks within a test project is that one person may have more than one role
and carry out some or all of the tasks applicable to the role. This is different
to having a ‘job’: a ‘job’ may contain many roles and tasks.

TEST APPROACHES (TEST STRATEGIES)

A test approach is the implementation of a test strategy on a particular project.
The test approach defines how testing will be implemented. A test approach can
reflect testing for a whole organisation, a programme of work or an individual
project. It can be:

SOFTWARE TESTING

140

CHECK OF UNDERSTANDING

(1) What other names are given to the test leader role?

(2) Detail five possible tasks of a test leader.

(3) Detail five possible tasks of a tester.

(4) Describe the differences between a test leader role and a test leader
task.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 140

141

developed early in the life cycle, which is known as preventative – in this
approach the test design process is initiated as early as possible in the life
cycle to stop defects being built into the final solution;

left until just before the start of test execution, which is known as
reactive – this is where testing is the last development stage and is not
started until after design and coding has been completed (sometimes it is
identified as the waterfall approach, i.e. all development stages are
sequential, the next not starting until the previous one has nearly finished).

A test approach includes all of the decisions made on how testing should be
implemented, based upon the (test) project goals and objectives, as well as the
risk assessment. It forms the starting point for test planning, selecting the test
design techniques and test types to be employed. It should also define the
software and test entry and exit criteria.

There are many approaches or strategies that can be employed. All will depend on
the context within which the test team is working, and may consider risks, hazards
and safety, available resources and skills, the technology, the nature of the system
(e.g. custom built vs COTS), test objectives and regulations, and may include:

Analytical approaches such as risk-based testing where testing is directed to
areas of greatest risk (see later in this section for an overview of risk-based
testing).

Model-based approaches such as stochastic testing using statistical informa-
tion about failure rates (such as reliability growth models) or usage (such as
operational profiles).

Methodical approaches, such as failure-based (including error guessing and
fault attacks), checklist based and quality-characteristic based.

Standard-compliant approaches, specified by industry-specific standards such
as The Railway Signalling standards (which define the levels of testing
required) or the MISRA (which defines how to design, build and test reliable
software for the motor industry).

Process-compliant approaches, which adhere to the processes developed for
use with the various agile methodologies or traditional waterfall approaches.

Dynamic and heuristic approaches, such as exploratory testing (see
Chapter 4) where testing is more reactive to events than pre-planned, and
where execution and evaluation are concurrent tasks.

Consultative approaches, such as those where test coverage is driven
primarily by the advice and guidance of technology and/or business domain
experts outside or within the test team.

Regression-averse approaches, such as those that include reuse of existing
test material, extensive automation of functional regression tests, and stan-
dard test suites.

Different approaches may be combined if required. The decision as to how and
why they will be combined will depend on the circumstances prevalent in a

TEST MANAGEMENT

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 141

project at the time. For example, an organisation may as a standard use an agile
method, but in a particular situation the structure of the test effort could use a
risk-based approach to ensure the testing is correctly focused.

Deciding on which approach to take may be dictated by standards, e.g. those used
in the motor industry that are set by MISRA, or at the discretion of those
developing the approach or strategy. Where discretion is allowed, the context or
scenario needs to be taken into account. Therefore the following factors should be
considered when defining the strategy or approach:

Risk of failure of the project, hazards to the product and risks of product
failure to humans, the environment and the company, e.g. the cost of failure
would be too high (safety-critical environments).

Skills and experience of the people in the proposed techniques, tools and
methods. There is no point in implementing a sophisticated component-level,
technique-driven approach or strategy when the only resources available are
business users with no technical grounding.

The objective of the testing endeavour and the mission of the testing team,
e.g. if the objective is to find only the most serious defects.

Regulatory aspects, such as external and internal regulations for the
development process, e.g. The Railway Signalling standards that enforce a
given level of test quality.

The nature of the product and the business, e.g. a different approach is
required for testing mobile phone coverage than for testing an online banking
operation.

TEST PLANNING AND ESTIMATION

Test planning
Test planning is the most important activity undertaken by a test leader in any
test project. It ensures that there is initially a list of tasks and milestones in a
baseline plan to track progress against, as well as defining the shape and size
of the test effort. Test planning is used in development and implementation
projects (sometimes called ‘greenfield’) as well as maintenance (change and fix)
activities.

SOFTWARE TESTING

142

CHECK OF UNDERSTANDING

(1) Name and explain five approaches to the development of the test approach or
test strategy.

(2) Name one of the standards referred to that dictate the test approach.

(3) Can discretion be used when defining a test approach and if so what can
influence the decision as to which way to approach testing?

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 142

143

The main document produced in test planning is often called a master test
plan or a project test plan. This document defines the high level of the
test activities being planned. It is normally produced during the early
phases of the project (e.g. initiation) and will provide sufficient information
to enable a test project to be established (bearing in mind that at this
point in a project little more than requirements may be available from
which to plan).

The details of the test-level activities are documented within test-level plans,
e.g. the system test plan. These documents will contain the detailed activities and
estimates for the relevant test level.

Figure 5.2 shows where test-level test plans fit into the V-model. It shows how a
test plan exists for each test level and that they will usually refer to the master
test plan.

TEST MANAGEMENT

Risks

Test policy

Constraints

Scope of
testing

Resources

Test
objectives

Criticality

Testability

Factors influencing the test planning process

Master
(or project)
test plan

Component
test
plan

Integration
test
plan

plan

More information, change requests and
changing priorities require an iterative
process. This usually results in several
versions of test plans being produced,
reviewed and re-issued

System
test
plan

Acceptance
test
plan

Figure 5.2 Test plans in the V-model

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 143

The contents sections of a test plan for either the master test plan or test-level
plans are normally identical or very similar. IEEE 829, the Standard for Software
Test Documentation, contains details of what the content of the plans should be.

The IEEE 829 standard identifies that there should be a minimum of 16 sections
present in a test plan, as in Table 5.2.

Test planning is a continual activity that spans the life of the test project; it takes
place in all life-cycle stages. As risks and changes occur, the plan and planning
should be amended to recognise these and reflect the current position. As the plans
will have been baselined (locked down) after initial sign-off, these changes would
normally be managed by the project change process. Baselining a document
effectively secures it from further change unless authorised via a change control
process.

SOFTWARE TESTING

144

Table 5.2 Test plan sections

Section Heading Details
no.

1 Test plan identifier A unique identifying reference such as

‘Doc ref XYZ v2’

2 Introduction A brief introduction to the document and the
project for which it has been produced

3 Test items A test item is a software item that is the object
of testing

A software item is one or more items of source
code, object code, job control code, or control
data

This section should contain any documentation
references, e.g. design documents

4 Features to be A feature is a distinguishing characteristic of a
tested software item (e.g. performance, portability, or

functionality)

Identify all software features and combinations
of features and the associated test design
specification

5 Features not to be Identify all software features and significant
tested combinations and state the reasons for not

including them

(Continued)

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 144

145

TEST MANAGEMENT

Table 5.2 (Continued)

Section Heading Details
no.

6 Approach Details the overall approach to testing; this
could include a detailed process definition, or
could refer to other documentation where the
detail is documented, i.e. a test strategy

7 Item pass/fail criteria Used to determine whether a software item
has passed or failed its test

8 Suspension and Suspension requirements define criteria for
resumption stopping part or all of the testing activity
requirements Resumption requirements specify the

requirements to resume testing

9 Test deliverables The documents that testing will deliver,
e.g. from IEEE 829 documents such as:

test plans (for each test level)

test specifications (design, case and
procedure)

test summary reports

10 Testing tasks All tasks for planning and executing the
testing, including the intertask dependencies

11 Environmental Definition of all environmental requirements
needs such as hardware, software, PCs, desks,

stationery, etc.

12 Responsibilities Identifies the roles and tasks to be used in the
test project and who will own them

13 Staffing and training Identifies any actual staffing requirements and
needs any specific skills and training requirements,

e.g. automation

14 Schedule Document delivery dates and key milestones

15 Risks and High-level project risks and assumptions and
contingencies a contingency plan for each risk

16 Approvals Identifies all approvers of the document, their
titles and the date of signature

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 145

SOFTWARE TESTING

146

A useful revision aid to help remember the 16 sections of the IEEE 829 test plan
is the acronym ‘SPACEDIRT’, each letter mapping to one or several sections of
the test plan:

S scope (including test items, features to be tested and features not to be tested)

P people (including responsibilities, staff and training and approvals)

A approach

C criteria (including item pass/fail criteria and suspension and resumption
requirements)

E environment needs

D deliverables (test)

I identifier and introduction (test plan)

R risks and contingencies

T testing tasks and schedule

Test-planning activities
During test planning various activities for an entire system or a part of a system
have to be undertaken by those working on the plan. They include:

Working with the project manager and subject matter experts’ to determine
the scope and the risks that need to be tested. As well identifying and agree-
ing the objectives of the testing, be they time, quality or cost focussed, or in
fact maybe a mixture of all three. The objectives will enable the test project to
know when it has finished.

Putting together the overall approach of testing (sometimes called the test
strategy), ensuring that the test levels and entry and exit criteria are defined.

Liaising with the project manager and making sure that the testing activities
have been included within the software life-cycle activities such as:

design – the development of the software design;

development – the building of the code;

implementation – the activities surrounding implementation into a live
environment.

Working with the project to decide what needs to be tested, what roles are
involved and who will perform the test activities, planning when and how the
test activities should be done, deciding how the test results will be evaluated,
and defining when to stop testing (exit criteria).

Building a plan that identifies when and who will undertake the test analysis
and design activities. In addition to the analysis and design activities test
planning should also document the schedule for test implementation, execu-
tion and evaluation.

Finding and assigning resources for the different activities that have been
defined.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 146

147

Deciding what the documentation for the test project will be, e.g. which plans,
how the test cases will be documented, etc.

Defining the management information, including the metrics required and
putting in place the processes to monitor and control test preparation and
execution, defect resolution and risk issues.

Ensuring that the test documentation generates repeatable test assets,
e.g. test cases.

Entry criteria
Entry criteria are used to determine when a given test activity can start. This
could include the beginning of a level of testing, when test design and/or when
test execution is ready to start.

Examples of some typical entry criteria to test execution (for example) may
include:

Test environment available and ready for use (it functions).

Test tools installed in the environment are ready for use.

Testable code is available.

All test data is available and correct.

All test design activity has completed.

Exit criteria
Exit criteria are used to determine when a given test activity has been completed
or when it should stop. Exit criteria can be defined for all of the test activities,
such as planning, specification and execution as a whole, or to a specific test level
for test specification as well as execution.

Exit criteria should be included in the relevant test plans.

Some typical exit criteria might be:

All tests planned have been run.

A certain level of requirements coverage has been achieved.

No high-priority or severe defects are left outstanding.

All high-risk areas have been fully tested, with only minor residual risks left
outstanding.

Cost – when the budget has been spent.

The schedule has been achieved, e.g. the release date has been reached and
the product has to go live. This was the case with the millennium testing (it
had to be completed before midnight on 31 December 1999), and is often the
case with government legislation.

Exit criteria should have been agreed as early as possible in the life cycle;
however, they can be and often are subject to controlled change as the detail of

TEST MANAGEMENT

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 147

the project becomes better understood and therefore the ability to meet the
criteria is better understood by those responsible for delivery.

Test estimation
The syllabus details two test estimation approaches, metrics-based and
expert based. The two approaches are quite different, the former being based
upon data whilst the latter is a somewhat subjective approach.

The metrics-based approach
This approach relies upon data collected from previous or similar projects.
This kind of data might include:

The number of test conditions.

The number of test cases written.

The number of test cases executed.

The time taken to develop test cases.

The time taken to run test cases.

The number of defects found.

The number of environment outages and how long on average each one
lasted.

With this approach and data it is possible to estimate quite accurately what the
cost and time required for a similar project would be.

It is important that the actual costs and time for testing are accurately recorded.
These can then be used to revalidate and possibly update the metrics for use on
the next similar project.

The expert-based approach
This alternative approach to metrics is to use the experience of owners of the
relevant tasks or experts to derive an estimate (this is also known as the Wide
Band Delphi approach). In this context ‘experts’ could be:

Business experts.

Test process consultants.

SOFTWARE TESTING

148

CHECK OF UNDERSTANDING

(1) What is the name of the international standard for test documentation?

(2) Identify the 16 sections of the test plan.

(3) What activities are contained within test planning?

(4) Detail four typical exit criteria.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 148

149

Developers.

Technical architects.

Analysts and designers.

Anyone with knowledge of the application to be tested or the tasks involved in
the process.

There are many ways that this approach could be used. Here are two examples:

Distribute a requirement specification to the task owners and get
them to estimate their task in isolation. Amalgamate the individual
estimates when received; build in any required contingency, to arrive
at the estimate.

Distribute to known experts who develop their individual view of the overall
estimate and then meet together to agree on and/or debate the estimate that
will go forward.

Expert estimating can use either of the above approaches individually or mixing
and matching them as required.

Many things affect the level of effort required to fulfil the test requirements of a
project. These can be split into three main categories, as shown below.

Product characteristics:

size of the test basis;

complexity of the final product;

the amount of non-functional requirements;

the security requirements (perhaps meeting BS 7799, the security
standard);

how much documentation is required (e.g. some legislation-driven changes
demand a certain level of documentation that may be more than an
organisation would normally produce);

the availability and quality of the test basis (e.g. requirements and
specifications).

Development process characteristics:

timescales;

amount of budget available;

skills of those involved in the testing and development activity (the lower
the skill level in development, the more defects could be introduced,
and the lower the skill level in testing, the more detailed the test
documentation needs to be);

TEST MANAGEMENT

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 149

which tools are being used across the life cycle (i.e. the amount of
automated testing will affect the effort required).

Expected outcome of testing such as:

the amount of errors;

test cases to be written.

Taking all of this into account, once the estimate is developed and agreed the
test leader can set about identifying the required resources and building the
detailed plan.

TEST PROGRESS MONITORING AND CONTROL

Test progress monitoring
Having developed the test plan, the activities and timescales determined within
it need to be constantly reviewed against what is actually happening. This is test
progress monitoring. The purpose of test progress monitoring is to provide feed-
back and visibility of the progress of test activities.

The data required to monitor progress can be collected manually, e.g. counting
test cases developed at the end of each day, or, with the advent of sophisticated
test management tools, it also possible to collect the data as an automatic output
from a tool either already formatted into a report, or as a data file that can be
manipulated to present a picture of progress.

The progress data is also used to measure exit criteria such as test coverage,
e.g. 50 per cent requirements coverage achieved.

Common test metrics include:

Percentage of work done in test case preparation (or percentage of planned
test cases prepared).

Percentage of work done in test environment preparation.

Test case execution (e.g. number of test cases run/not run, and test cases
passed/failed).

SOFTWARE TESTING

150

CHECK OF UNDERSTANDING

(1) Compare and contrast the two approaches to developing estimates.

(2) Provide three examples of what a metrics approach to estimates would use as
a base.

(3) Name three areas that affect the level of effort to complete the test activity.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 150

151

Defect information (e.g. defect density, defects found and fixed, failure rate
and retest results).

Test coverage of requirements, risks or code.

Subjective confidence of testers in the product.

Dates of test milestones.

Testing costs, including the cost compared with the benefit of finding the next
defect or to run the next test.

Ultimately test metrics are used to track progress towards the completion of test-
ing, which is determined by the exit criteria. So test metrics should relate directly
to the exit criteria.

There is a trend towards ‘dashboards’, which reflect all of the relevant metrics on
a single screen or page, ensuring maximum impact. For a dashboard, and gener-
ally when delivering metrics, it is best to use a relatively small but impact-worthy
subset of the various metric options available. This is because the readers do not
want to wade through lots of data for the key item of information they are after,
which invariably is ‘Are we on target to complete on time?’

These metrics are often displayed in graphical form, examples of which are
shown in Figure 5.3. This reflects progress on the running of test cases and
reports on defects found. There is also a box at the top left for some written
commentary on progress to be documented (this could simply be the issues and/or
successes of the previous reporting period).

The graph in Figure 5.4 is the one shown at the bottom left of the dashboard in
Figure 5.3. It reports the number of incidents raised, and also shows the planned
and actual numbers of incidents.

TEST MANAGEMENT

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 151

SOFTWARE TESTING

Figure 5.3 iTesting Executive Dashboard

0

50

K
ey

 in
fo

rm
at

io
n

R
A

G
S

ta
tu

s
A

m
be

r

N
ew

15

In
te

st
13

F
ai

le
d

5

P
la

n(
A

cc
m

)
10

0
80

20

A
ct

ua
l(A

cc
m

)
20

18
th

 J
ul

y
11

th
 J

ul
y

60

4t
h

Ju
ly

62 20 6 50 82

28
th

 M
ay

21
st

 M
ay

5 2 1 2 6

14
th

 M
ay

O
p

e
n

 i
n

c
id

e
n

ts
 b

y
 p

ri
o

ri
ty

H
ig

h
M

ed
Lo

w
C

os

D
a
te

0510152025303540

P
la

n
n

e
d

 t
e
s
t

e
x
e
c
u

ti
o

n
 v

s
 a

c
tu

a
l
te

s
t

e
x
e
c
u

ti
o

n

No. of tests executed

50
0

45
0

30
0

35
0

40
0

25
0

20
0

15
0

10
0 0

P
la

nn
ed

 (
A

cc
m

)
A

ct
ua

l

D
a
te

Number

14
 M

ay
21

 M
ay

Number

N
ew

In
te

st
F

ai
le

d
P

la
n

(A
cc

m
)

A
ct

ua
l (

A
cc

m
)

D
a
te

020 103040506070
12

0

10
0

80 60 40 20

P
ro

gr
es

s

E
xe

cu
tio

n
sl

ip
pa

ge
 d

ue
 to

 la
ck

 o
f c

or
re

ct
 v

er
si

on
 o

f

so
ftw

ar
e

in
 e

nv
iro

nm
en

t

A
ct

ua
l e

rr
or

 r
at

e
is

 b
el

ow
 p

la
n

G

oo
d

pr
og

re
ss

 m
ad

e
on

 fi
na

lis
in

g
re

gr
es

si
on

 te
st

 p
ac

k

F
ur

th
er

 in
te

rv
ie

w
s

lin
ed

 u
p

fo
r

m
is

si
ng

 te
st

 e
xe

cu
to

rs

Is
su

es

S
of

tw
ar

e
co

nf
ig

ur
at

io
n

S

ic
kn

es
s

B

ad
 c

od
e

T

im
e

28
 M

ay
4

Ju
ly

11
 J

ul
y

18
 J

ul
y

152

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 152

153

TEST MANAGEMENT

Number

D
a

te

14
th

 M
ay

5 2 1 2 6

13 5 20 2015
62 20 6 50 82

10
0

80
60

02040608010
0

12
0

N
ew

In
 te

st
F

ai
le

d
P

la
n

(A
cc

m
)

A
ct

ua
l (

A
cc

m
)

N
ew

In
 te

st
F

ai
le

d
P

la
n

(A
cc

m
)

A
ct

ua
l (

A
cc

m
)

010203040506070

21
st

 M
ay

28
th

 M
ay

4t
h

Ju
ly

11
th

 J
ul

y
18

th
 J

ul
y

Figure 5.4 Incidents planned/raised

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 153

Test reporting
Test reporting is the process where by test metrics are reported in summarised
format to update the reader regarding the testing tasks undertaken. The
information reported can include:

What has happened during a given period of time, e.g. a week, a test level or
the whole test endeavour, or when exit criteria have been met.

Analysed information and metrics required to support recommendations and
decisions about future actions, such as:

an assessment of defects remaining;

the economic benefit of continued testing, e.g. additional tests are
exponentially more expensive than the benefit of running;

outstanding risks;

the level of confidence in tested software, e.g. defects planned vs actual
defects found.

The IEEE 829 standard includes an outline of a test summary report that
could be used for test reporting. The structure defined in the outline is shown
in Table 5.3.

SOFTWARE TESTING

Table 5.3 Test summary report outline

Section Heading Details
no.

1 Test summary report The specific identifier allocated to this
identifier document, e.g. TSR XYX v1

2 Summary Identifies the items tested (including any
version numbers)

Documents the environments in which
the test activity being reported on took
place

References the testing documentation for
each test item, e.g. test plan, test cases,
test defect reports

3 Variances Reports deviations from the test approach
or strategy, test plan, test specification or
test procedures

(Continued)

154

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 154

155

The information gathered can also be used to help with any process improvement
opportunities. This information could be used to assess whether:

the goals for testing were correctly set (were they achievable; if not why not?);

the test approach or strategy was adequate (e.g. did it ensure there was
enough coverage?);

the testing was effective in ensuring that the objectives of testing were met.

Test control
We have referred above to the collection and reporting of progress data. Test control
uses this information to decide on a course of action to ensure control of the test
activities is maintained and exit criteria are met. This is particularly required when
the planned test activities are behind schedule. The actions taken could impact any
of the test activities and may also affect other software life-cycle activities.

TEST MANAGEMENT

Table 5.3 (Continued)

Section Heading Details
no.

4 Comprehensive Measures the actual progress made
assessment against the exit criteria and explains why

any differences have arisen

5 Summary results Provides an overview of the results from
the test activities; it should include details
of defects raised and fixed, as well as
those that remain unresolved

6 Evaluation Provides an evaluation of the quality of
each test item, including a view of the
risks of failure in production of these test
items. Based upon the test result metrics
and test item pass/fail criteria

7 Summary of activities A summary of the major test activities
and events such as test environment
unavailability, success or weaknesses of
the test specification process, etc.

Should also include resource usage data,
e.g. planned spend against actual spend

8 Approvals Identifies all approvers of the document

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 155

Examples of test-control activities are as follows:

Making decisions based on information from test monitoring.

Reprioritise tests when an identified project risk occurs (e.g. software
delivered late).

Change the test schedule due to availability of a test environment.

Set an entry criterion requiring fixes to be retested (confirmation tested) by a
developer before accepting them into a build (this is particularly useful when
defect fixes continually fail again when retested).

Review of product risks and perhaps changing the risk ratings to meet the
target.

Adjusting the scope of the testing (perhaps the amount of tests to be run) to
manage the testing of late change requests.

The following test-control activities are likely to be outside the test leader’s
responsibility. However, this should not stop the test leader making a
recommendation to the project manager.

Descoping of functionality, i.e. removing some less important planned deliver-
ables from the initial delivered solution to reduce the time and effort required
to achieve that solution.

Delaying release into the production environment until exit criteria have
been met.

Continuing testing after delivery into the production environment so that
defects are found before they occur in production.

INCIDENT MANAGEMENT

An incident is any unplanned event occurring that requires further investiga-
tion. In testing this translates into anything where the actual result is
different to the expected result. An incident when investigated may be a
defect, however, it may also be a change to a specification or an issue with the
test being run. It is important that a process exists to track all incidents
through to closure.

SOFTWARE TESTING

156

CHECK OF UNDERSTANDING

(1) Name four common test metrics.

(2) Name the eight headings in the IEEE 829 summary report.

(3) Identify three ways a test leader can control testing if there are more tests than
there is time to complete.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 156

157

Incidents can be raised at any time throughout the software development life
cycle, from reviews of the test basis (requirements, specifications, etc.) to test
specification and test execution.

Incident management, according to IEEE 1044 (Standard Classification for
Software Anomalies), is ‘The process of recognising, investigating, taking action
and disposing of incidents.’ It involves recording incidents, classifying them
and identifying the impact. The process of incident management ensures that
incidents are tracked from recognition to correction, and finally through retest
and closure. It is important that organisations document their incident manage-
ment process and ensure they have appointed someone (often called an incident
manager/coordinator) to manage/police the process.

Incidents are raised on incident reports, either electronically via an incident man-
agement system (from Microsoft Excel to sophisticated incident management
tools) or on paper. Incident reports have the following objectives:

To provide developers and other parties with feedback on the problem to
enable identification, isolation and correction as necessary. It must be
remembered that most developers and other parties who will correct the
defect or clear up any confusion will not be present at the point of identifica-
tion, so without full and concise information they will be unable to under-
stand the problem, and possibly therefore unable to understand how to go
about fixing it. The more information provided, the better.

To provide test leaders with a means of tracking the quality of the system
under test and the progress of the testing. One of the key metrics used to
measure progress is a view of how many incidents are raised, their priority
and finally that they have been corrected and signed off.

To provide ideas for test process improvement. For each incident the point of
injection should be documented, e.g. a defect in requirements or code, and
subsequent process improvement can focus on that particular area to stop the
same defect occurring again.

The details that are normally included on an incident report are:

Date of issue, issuing organisation, author, approvals and status.

Scope, severity and priority of the incident.

References, including the identity of the test case specification that revealed
the problem.

Expected and actual results.

Date the incident was discovered.

Identification of the test item (configuration item) and environment.

Software or system life-cycle process in which the incident was observed.

Description of the incident to enable reproduction and resolution, including
logs, database dumps or screenshots.

TEST MANAGEMENT

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 157

Degree of impact on stakeholder(s) interests.

Severity of the impact on the system.

Urgency/priority to fix.

Status of the incident (e.g. open, deferred, duplicate, waiting to be fixed, fixed
awaiting confirmation test or closed).

Conclusions, recommendations and approvals.

Global issues, such as other areas that may be affected by a change resulting
from the incident.

Change history, such as the sequence of actions taken by project team
members with respect to the incident to isolate, repair and confirm it as fixed.

The syllabus also recognises that IEEE 829 contains the outline of a test incident
report. The outline suggests that the report should contain the sections shown in
Table 5.4.

SOFTWARE TESTING

158

Table 5.4 Test incident report outline

Section Heading Details
no.

1 Test incident report The unique identifier assigned to this test
identifier incident report

2 Summary A summary of the incident, detailing
where expected and actual results differ,
identifying at a high level the items that
are affected, and the steps leading up to
the recognition of the incident, e.g. if in
test execution, which test was executed
and the actual keystrokes and data loaded

3 Incident description A detailed description of the incident,
which should include:

Inputs

Expected results

Actual results

Anomalies

Date and time

Procedure step

(Continued)

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 158

159

CONFIGURATION MANAGEMENT

Configuration management is the process of managing products, facilities and
processes by managing the information about them, including changes, and
ensuring they are what they are supposed to be in every case.

For testing, configuration management will involve controlling both the versions
of code to be tested and the documents used during the development process, e.g.
requirements, design and plans.

In both instances configuration management should ensure traceability
throughout the test process, e.g. a requirement should be traceable through
to the test cases that are run to test its levels of quality, and vice versa.

Effective configuration management is important for the test process as the
contents of each release of software into a test environment must be understood
and at the correct version, otherwise testers could end up wasting time because

TEST MANAGEMENT

Table 5.4 (Continued)

Section Heading Details
no.

Environment

Attempts to repeat

Testers’ comments

Observers’ comments

Should also include any information
regarding possible causes and solutions

4 Impact If known, document what impact the
incident has on progress

CHECK OF UNDERSTANDING

(1) Identify three details that are usually included in an incident report.

(2) What is the name of the standard that includes an outline of a test incident
report?

(3) What is a test incident?

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 159

either they are testing an invalid release of the software or the release does not
integrate successfully, leading to the failure of many tests.

In most instances the project will have already established its configuration
management processes that will define the documents and code to be
held under configuration management. If this is not the case then during
test planning the process and tools required to establish the right
configuration management processes will need to be selected/implemented
by the test leader.

The same principle applies to testware. Each item of testware (such as a test
procedure) should have its own version number and be linked to the version of
the software it was used to test. For example, test procedure TP123a might be
used for Release A and TP123b might be used for Release B – even though both
have the same purpose and even expected results. However, another test
procedure, TP201, may be applicable to all releases.

A good configuration management system will ensure that the testers can
identify exactly what code they are testing, as well as have control over the test
documentation such as test plans, test specification, defect logs, etc.

SUMMARY

In this chapter we have looked at the component parts of test management. We
initially explored risk and testing. When developing the test plan, the test leader
and tester will look at the product risks (risks that relate directly to the failure of
the product in the live environment) to decide what is important to test, as well
as ensuring that any project risks (risks relating to the delivery of the project)
are mitigated.

The importance of independence in the test organisation and how independence
helps to ensure that the right focus is given to the test activity was reviewed.
Independence is gained by separating the creative development activity from
the test activity and we looked at the different levels of independence that
are achievable:

The developers – low independence.

Independent testers ceded to the development team.

SOFTWARE TESTING

160

CHECK OF UNDERSTANDING

(1) Define configuration management.

(2) What can be stored under configuration management?

(3) Why is it important to have effective configuration management?

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 160

161

Independent permanent test team, centre of excellence with the
organisation.

Independent testers or test team provided by the operational business
unit.

Specialist testers such as security testers or performance testers.

Outsourced test team or the use of independent contractors – high
independence.

We have looked at the test approach and how it shapes the test activity based on
many influences, including risks and the objectives of the testing.

We have reviewed two roles that exist within a test project, test leader
(also known as a test manager or test coordinator) and tester. Both roles
are important to the delivery of testing, but could be vested in one or many
people, e.g. one person could have the role of test manager and tester.
A test leader has responsibility for all of the planning activity, whilst the
tester has responsibility for activities that surround the preparation of
test cases.

IEEE 829, the test documentation standard, provides outlines of three test
planning documents:

The test plan

The test summary report

The test incident report

Test management depends not only on the preparation of the required documents
but also on the development of the right entry and exit criteria and estimates, the
monitoring of progress through the plan and the control activities implemented to
ensure the plan is achieved.

Test estimating can be achieved in one of two ways: using historical metrics or the
expert-based approach (involving experts in the subject who agree the estimate
between them).

After a plan of activity has been developed and time begins to pass the test
leader needs to monitor the progress of the activities. If any activity is delayed
or there has been a change of any kind in the project itself, the test leader
may need to revise the plan or take other actions to ensure the project is
delivered on time.

We explored how the incidents found during testing are recorded, and we
reviewed the level of detail that needs to be recorded to ensure that any defect is
fully understood and that any fix then made is the right one.

Finally we looked at configuration management. When running test cases against
the code it is important that the tester is aware of the version of code being tested

TEST MANAGEMENT

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 161

SOFTWARE TESTING

162

and the version of the test being run. Controlling the versioning of the software
and test assets is called configuration management. Lack of configuration
management may lead to issues like loss of already-delivered functionality,
reappearance of previously corrected errors and no understanding of which
version of test was run against which version of code.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 162

163

Example examination questions with answers
E1. K1 question
When assembling a test team to work on an enhancement to an existing system,
which of the following has the highest level of test independence?

a. A business analyst who wrote the original requirements for the system.
b. A permanent programmer who reviewed some of the new code, but has not

written any of it.
c. A permanent tester who found most defects in the original system.
d. A contract tester who has never worked for the organisation before.

E2. K2 question
What test roles (or parts in the testing process) is a developer most likely to
perform?

(i) Executing component integration tests.
(ii) Static analysis.
(iii)Setting up the test environment.
(iv) Deciding how much testing should be automated.

a. (i) and (ii)
b. (i) and (iv)
c. (ii) and (iii)
d. (iii) and (iv)

E3. K2 question
Which of the following are valid justifications for developers testing their own
code during unit testing?

(i) Their lack of independence is mitigated by independent testing during
system and acceptance testing.

(ii) A person with a good understanding of the code can find more defects more
quickly using white-box techniques.

(iii) Developers have a better understanding of the requirements than testers.
(iv) Testers write unnecessary incident reports because they find minor

differences between the way in which the system behaves and the way in
which it is specified to work.

a. (i) and (ii)
b. (i) and (iv)
c. (ii) and (iii)
d. (iii) and (iv)

TEST MANAGEMENT

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 163

SOFTWARE TESTING

164

E4. K1 question
Which of the following terms is used to describe the management of software
components comprising an integrated system?

a. Configuration management
b. Incident management
c. Test monitoring
d. Risk management

E5.
A new system is about to be developed. Which of the following functions has the
highest level of risk?

a. likelihood of failure = 20%; impact value = £100,000
b. likelihood of failure = 10%; impact value = £150,000
c. likelihood of failure = 1%; impact value = £500,000
d. likelihood of failure = 2%; impact value = £200,000

E6.
Which of the following statements about risks is most accurate?

a. Project risks rarely affect product risk.
b. Product risks rarely affect project risk.
c. A risk-based approach is more likely to be used to mitigate product rather

than project risks.
d. A risk-based approach is more likely to be used to mitigate project rather

than product risks.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 164

165

Answers to questions in the chapter
SA1. The correct answer is c.
SA2. The correct answer is d.
SA3. The correct answer is a.

Answers to example questions
E1. The correct answer is d.
In this scenario, the contract tester who has never worked for the organisation
before has the highest level of test independence. The three others are less
independent as they are likely to make assumptions based on their
previous knowledge of the requirements, code and general functionality of
the original system.

Note that independence does not necessarily equate to most useful. In practice
most test or project managers would recruit a permanent tester who has worked
on the original system in preference to a contract tester with no knowledge of the
system. However, when assembling a team it would be useful to have staff with
varying levels of test independence and system knowledge.

E2. The correct answer is a.

(i) Executing component integration tests is usually done by developers.
Developers are usually responsible for unit and component integration
testing. Independent testing usually follows at system and acceptance test
levels.

(ii) Static analysis is usually done by developers because: it requires an
understanding of the code and therefore the person doing this needs skills
in the programming language; and it can be done as soon as the code is
written. Therefore it is quick and effective for the developer to
do it. The risk of a lack of test independence can be mitigated by
performing independent system and acceptance testing.

(iii) Setting up the test environment is an activity typically performed by a
tester. It may require support from developers and staff from other
departments and on some occasions environments could be set up by
developers. However, it is a task that could be done by a tester rather than
a developer.

(iv) Deciding how much testing should be automated is typically a decision
made by the test leader, who will consult other staff in the decision-making
process. Developers may be involved and their skills may be required to
automate some tests. However, the decision on how much to automate
should not be made by developers.

E3. The correct answer is a.
It is unlikely that developers will have a better understanding of the requirements
than testers, partly because testers work closely with the user community (and
may be drawn from it) and partly because developers seldom work with the
complete set of requirements in a medium to large development.

TEST MANAGEMENT

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 165

SOFTWARE TESTING

166

Testers may raise incidents related to the difference between user expectations
and the specification, but these are not unnecessary. Such issues are more likely
to arise at the later stages of testing.

Early testing (unit testing) is usually done most effectively by developers with a
good understanding of the code and the development environment; they can be
more efficient and more effective at this level. Later independent stages of testing
offset any disadvantage from the lack of independence at unit testing level.

E4. The correct answer is a.
Incident management is the collection and processing of incidents raised when
errors and defects are discovered. Test monitoring identifies the status of the
testing activity on a continuous basis. Risk management identifies, analyses and
mitigates risks to the project and the product. Configuration management is
concerned with the management of changes to software components and their
associated documentation and testware.

E5. The correct answer is a.
In (b) the product of probability × impact has the value £15,000; in (c) the value is
£5,000 and in (d) it is £4,000. The value of £20,000 in (a) is therefore the highest.

E6. The correct answer is c.
In general, project risk and product risk can be hard to differentiate. Anything
that impacts on the quality of the delivered system is likely to lead to delays or
increased costs as the problem is tackled. Anything causing delays to the project
is likely to threaten the delivered system’s quality. The risk-based approach is an
approach to managing product risk through testing, so it impacts most directly on
product risk.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 166

167

INTRODUCTION

As seen in earlier chapters there are many tasks and activities that need to be
performed during the testing process. In addition, other tasks need to be
performed to support the testing process.

In order to assist in making the testing process easier to perform and manage,
many different types of test tools have been developed and used for a wide variety
of testing tasks. Some of them have been developed in-house by an organisation’s
own software development or testing department. Others have been developed by
software houses (also known as test-tool vendors) to sell to organisations that
perform testing. Even within the same type of tool, some will be home-grown and
others will be developed by test-tool vendors.

This chapter discusses the potential benefits and pitfalls associated with test
tools in general. It then describes the most commonly used types of test tools and
concludes with a process for introducing a tool into a test organisation.

Learning objectives
The learning objectives for this chapter are listed below. You can confirm that you
have achieved these by using the self-assessment questions at the start of the
chapter, the ‘Check of understanding’ boxes distributed throughout the text,
and the example examination questions provided at the end of the chapter.
The chapter summary will remind you of the key ideas.

The sections are allocated a K number to represent the level of understanding
required for that section; where an individual section has a lower K number than
the section as a whole this is indicated for that topic; for an explanation of the
K numbers see the Introduction.

Types of test tool (K2)

Classify different types of test tools according to their purpose and to the
activities of the fundamental test process and the software life cycle.

Explain the term test tool and the purpose of tool support for testing.

6 TOOL SUPPORT FOR TESTING

Peter Williams

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 167

Effective use of tools: potential benefits and risks (K2)

Summarise the potential benefits and risks of test automation and tool
support for testing.

Remember special considerations for test execution tools, static analysis and
test management tools. (K1)

Introducing a tool into an organisation (K1)

State the main principles of introducing a tool into an organisation.

State the goals of a proof-of-concept for tool evaluation and a piloting phase
for tool implementation.

Recognise that factors other than simply acquiring a tool are required for
good tool support.

Self-assessment questions
The following questions have been designed to enable you to check your current
level of understanding for the topics in this chapter. The answers are at the end of
the chapter.

Question SA1 (K2)
Which of the following pairs of test tools are likely to be most useful during the
test analysis and design stage of the fundamental test process?

(i) Test execution tool
(ii) Test data preparation tool
(iii) Test management tool
(iv) Requirements management tool

a. (i) and (ii)
b. (i) and (iv)
c. (ii) and (iii)
d. (iii) and (iv)

Question SA2 (K2)
Which of the following is most likely to cause failure in the implementation of a
test tool?

a. Underestimating the demand for a tool.
b. The purchase price of the tool.
c. No agreed requirements for the tool.
d. The cost of resources to implement and maintain the tool.

Question SA3 (K2)
What benefits do static analysis tools have over test execution tools?

a. Static analysis tools find defects earlier in the life cycle.
b. Static analysis tools can be used before code is written.
c. Static analysis tools test that the delivered code meets business requirements.
d. Static analysis tools are particularly effective for regression testing.

SOFTWARE TESTING

168

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 168

169

WHAT IS A TEST TOOL?

Definition of a test tool
The ISTQB Glossary of Testing Terms defines a test tool as:

Therefore a test tool can be thought of as a piece of software that is used to make
the testing process more effective or efficient. In other words, anything that
makes testing easier, quicker, more accurate, etc.

This book will focus on those test tools that are listed in the syllabus. These are, in
general, the test tools that are most commonly used in the testing process and
designed primarily for the testing process.

Benefits and risks of using any type of tool
Let us consider the building of a new hotel and examine the similarities with the
introduction and use of test tools. Test tools need to be thought of as long-term
investments that need maintenance to provide long-term benefits. Similarly,
building a hotel requires a lot of upfront planning, effort and investment. Even
when the hotel is ready for use, there is still a continual long-term requirement for
the provision of services such as catering, cleaning, building maintenance, provi-
sion of staff to provide ad hoc services to customers, etc. The long-term benefit is
that this upfront investment and ongoing maintenance and support can provide
substantial income in return.

In addition, there are risks that over a period of time, the location of the
hotel will become less attractive, resulting in lower demand, lower usage
and a maintenance cost that is greater than the income received. Therefore
the initial investment is wasted because the ongoing need/requirement did
not exist.

The graph in Figure 6.1 demonstrates a typical payback model for implementing
a test execution tool. The same principle applies to the majority of test tools.
Note that there is an ongoing maintenance cost of using the tool, but that this
ongoing maintenance cost needs to be less than the cost of performing testing
activities without the tool if the investment is to be worthwhile.

The same advantages and disadvantages apply to the use of most types of test
tool. However, there are exceptions to this generalisation (and to the same
generalisation made in the ISTQB syllabus). Some tools, such as comparators,
can be used virtually straight out of the box. A comparator can check whether
one large test file is the same as another. If it is different it can identify and
report upon the differences. This would be very difficult and time-consuming to
do manually. In addition, incident management tools are fairly intuitive and easy
for both experienced and novice testers to use. They are also likely to provide a
‘quick win’.

TOOL SUPPORT FOR TESTING

A software product that supports one or more test activities, such as planning
and control, specification, building initial files and data, test execution and test
analysis.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 169

Other tools can be built by developers in-house as the need arises. For instance,
test harnesses, test oracles or test data preparation tools may be relatively easy
to produce for developers with a good understanding of the tool requirements and
the systems and databases in the test environment.

Benefits
The main benefit of using test tools is similar to the main benefit of automating
any process. That is, the amount of time and effort spent performing routine,
mundane, repetitive tasks is greatly reduced. For example, consider the time and
cost of making consumer goods by hand or in a factory.

This time saved can be used to reduce the costs of testing or it can be used to
allow testers to spend more time on the more intellectual tasks of test planning,
analysis and design. In turn, this can enable more focused and appropriate
testing to be done – rather than having many testers working long hours,
running hundreds of tests.

Related to this is the fact that the automation of any process usually results in
more predictable and consistent results. Similarly, the use of test tools provides
more predictable and consistent results as human failings such as manual-
keying errors, misunderstandings, incorrect assumptions, forgetfulness, etc.,
are eliminated. It also means that any reports or findings tend to be objective
rather than subjective. For instance, humans often assume that something that
seems reasonable is correct, when in fact it may not be what the system is
supposed to do.

The widespread use of databases to hold the data input, processed or captured by
the test tool, means that it is generally much easier and quicker to obtain and
present accurate test management information, such as test progress, incidents
found/fixed, etc. (see Chapter 5).

Risks
Most of the risks associated with the use of test tools are concerned with
over-optimistic expectations of what the tool can do and a lack of appreciation of
the effort required to implement and obtain the benefits that the tool can bring.

SOFTWARE TESTING

170

C
os

t

Length of time for which tool is used

Testing activities
performed
manuallyBreak-even

point

Testing activities
performed using
tool

Figure 6.1 Test tool payback model

SOFTWARE TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 170

171

For example, consider the production environments of most organisations
considering using test tools. They are unlikely to have been designed and built
with test tools in mind. Therefore, assuming that you want a test environment to
be a copy of production (or at least as close to it as possible), you will also have a
test environment that is not designed and built with test tools in mind.

Consider the test environments used by vendors to demonstrate their test tools.
If you were the vendor would you design the environment to enable you to demon-
strate the tool at its best or to demonstrate the shortcomings it may encounter in a
typical test environment?

Therefore, unless detailed analysis and evaluation is done, it is likely that test
tools will end up as something that seemed a good idea at the time but have been
largely a waste of time and money. A process for avoiding such problems when
introducing a tool into an organisation is described later in this chapter.

After a test tool has been implemented and measurable benefits are being
achieved, it is important to put in sufficient effort to maintain the tool, the
processes surrounding it and the test environment in which it is used. Otherwise
there is a risk that the benefits being obtained will decrease and the tool will
become redundant. Additionally, opportunities for improving the way in which
the tool is used could also be missed.

For example, the acquisition of various test tools from multiple vendors will
require interfaces to be built or configured to import and export data between
tools. Otherwise much time may be spent manually cutting and pasting data
from one tool to another. If this is not done, then data inconsistencies and version
control problems are likely to arise. Similar problems may arise when testing with
third-party suppliers or as a result of mergers and acquisitions.

Maintenance effort will also be required to upgrade and re-configure tools so that
they remain compliant with new platforms or operating systems.

TOOL SUPPORT FOR TESTING

EXAMPLE – HOTEL CHAIN SCENARIO

An example of a hotel chain with several UK-based hotels will be used
throughout this chapter. The systems that comprise the organisation’s system
architecture are shown in Figure 6.2.

The general public can book rooms at any of the chain’s hotels by:

Contacting staff in the hotel, who then use a GUI front-end to make the
booking.

Telephoning customer services who then use a GUI front-end to make the
booking.

Using the company’s website to make the booking online.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 171

SOFTWARE TESTING

172

In all cases, communication with the mainframe computer is done via a
middleware layer of XML messages.

There is a document production system that produces paper and electronic
versions of customer correspondence such as booking confirmations, bills,
invoices, etc.

Direct debit and credit card payments are made via BACS. Files are transmitted
and confirmation and error messages are received back.

Validation of bank account details is performed by sending XML messages to and
from a third-party system.

Validation and enquiry of address and postcode is also performed by sending XML
messages to and from a third-party system.

A new release of the system is planned for six months’ time. This will include:

Code changes to improve performance in the XML middleware layer and on
the mainframe. Mainframe changes will be performed by an outsourced
development team in India.

Various changes to website screens to improve usability.

Website

GUI front-end for
internal staff

XML messages

Mainframe

XML messages

Document
output
system

Customers
(general public)

Customer
services staff

Hotel-based staff

Bank
account

validation

Postcode
enquiry/

validation

BACS

Figure 6.2 Hotel system architecture

SOFTWARE TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 172

173

TEST TOOLS

Types of tool
There are several ways in which test tools can be classified. They can be
classified according to:

their purpose;

the activities within the fundamental test process and the software life cycle
with which they are primarily associated;

the type of testing that they support;

the source of tool (shareware, open source, free or commercial);

the technology used;

who uses them.

In this book, test tools will be classified according to the type of activity they
support (as in the ISTQB Foundation Level Syllabus).

Tool support for management of testing and tests
Test management tools
Test management tools provide support for various activities and tasks through-
out the development life cycle. Some of these activities are supported by the
provision of interfaces to other more specialist tools (for instance, test execution
tools). Other test management tools provide fully integrated modules that provide
some or all of the services/functions provided by more specialist tools (such as
incident management or requirements management tools).

TOOL SUPPORT FOR TESTING

The introduction of a new third-party calendar object from which dates can be
selected.

The ability for customers to pay by cheque.

The automatic production of cheques for refunds, cancellations, etc.

An amended customer bill plus two other amended documents.

Two new output documents.

Fixes to various existing low- and medium-severity defects.

CHECK OF UNDERSTANDING

(1) Would you expect a quick return on your investment in test tools? Why?

(2) Describe three potential benefits of using test tools.

(3) Describe two risks of using test tools.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 173

The diagram in Figure 6.3 shows how a test management tool is the hub or centre
of a set of integrated test tools.

Test management tools provide an architecture for creating, storing and editing
test procedures. These may be linked or traced to requirements, test conditions
and risks. Such test procedures can then be prioritised or grouped together and
scheduled so that they are run in the most effective and efficient order. Some test
management tools allow dependencies to be recorded so that tests that will fail
owing to a known defect can be highlighted and left unexecuted. This allows testers
to be redirected to run the highest priority tests available rather than waste their
time and the test data they have prepared on tests that are certain to fail.

Tests can be recorded as passed or failed and usually a test management tool
provides an interface to an incident management tool so that an incident can be
raised if the actual and expected results differ.

Test management tools can provide management information and reports on test
procedures passed or failed. The amount of integration with other specialist tools
is significant here. For instance, integration with requirements management
tools allows reports to be produced on test progress against one or more require-
ments. Integration with incident management tools allows reports also to include
analysis of defects against requirements.

Test management tools generally hold data in a database. This allows a large
amount of reports and metrics to be produced. The metrics produced
can be used as inputs to:

Test and project management to control the current project.

SOFTWARE TESTING

174

Test
management

tool

Requirements
management

tool

Configuration
management

tool

Test
execution

tool

Incident
management

tool

Figure 6.3 An integrated set of tools

SOFTWARE TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 174

175

Estimates for future projects.

Identifying weaknesses or inefficiencies in the development or test process
that can be subsequently investigated with the aim of improving them.

Test management information reports should be designed to meet the needs of
project managers and other key users. It may be necessary to export data to a
spreadsheet in order for it to be manipulated into the format required.

A test management tool can enable reuse of existing testware in future test
projects.

Incident management tools
Incident management tools (also known as defect management tools) are one of
the most widely used types of test tool. At a basic level incident management tools
are used to perform two critical activities: creation of an incident report; and
maintenance of details about the incident as it progresses through the incident
life cycle.

The level of detail to be captured about the incident can be varied depending
upon the characteristics of the tool itself and the way in which the incident man-
agement tool is configured and used by the test organisation.

For example, the incident management tool could be configured so that lots of
mandatory information is required in order to comply with industry or generic
standards such as IEEE 1044. In addition, workflow rules may also be applied to
ensure that the agreed incident life cycle is strictly applied, with incidents only
able to be assigned to particular teams or users. Alternatively, the tool could be
configured to require very limited mandatory information, with most fields being
free format.

TOOL SUPPORT FOR TESTING

USE IN HOTEL CHAIN SCENARIO

In the scenario, a test management tool can be used to write down and store
requirements for new functionality and subsequently to hold the test conditions
necessary to test these requirements.

It can also be used to record whether tests have passed or failed and to produce
test management information on progress to date.

Additionally, requirements and test conditions from previous developments will
already exist in the test management tool. These can be used as the basis for the
regression testing required. Indeed a regression pack may already exist. Clearly
the regression pack would have to be reviewed and amended as necessary to
make it relevant to this release. However, the benefit is that much of the previous
work could be reused, which, in turn, means that much less effort will be involved
to create a regression pack.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 175

Incident management tools also use a database to store and manage details of
incidents. This allows the incident to be categorised according to the values stored
in appropriate fields. Such values will change during the incident life cycle as the
incident is analysed, debugged, fixed and re-tested. It is often possible to view the
history of changes made to the incident.

The database structure also enables incidents to be searched and analysed (using
either filters or more complex SQL-type queries). This provides the basis for man-
agement information about incidents. Note that as the values held against each
incident change, the management information will also change. Therefore users
need to be aware of the danger of using outdated reports.

This data can also be used in conjunction with data held in test management
tools when planning and estimating for future projects. It can also be
analysed to provide input to test process improvement projects.

Fields in the database structure normally include:

Priority (e.g. high, medium, low).

Severity (e.g. high, medium, low).

Assignee (the person to whom the incident is currently assigned,
e.g. a developer for debugging, a tester to perform retesting).

Status in the incident life cycle (e.g. New, Open, Fixed, Reopen, Closed).

This would allow management information to be produced from the incident
management database about the number of high-priority incidents with a status
of Open or Reopen that are assigned to, say, Peter Morgan, compared with the
number assigned to Brian Hambling.

Some test management tools include fully integrated incident management tools
as part of their core product, whilst other incident management tools can be
integrated with test management, requirements management and/or test
execution tools. Such integration enables incidents to be input and traced back to
test cases and requirements.

SOFTWARE TESTING

176

USE IN HOTEL CHAIN SCENARIO

An incident management tool can be used to raise new defects and process them
through the defect life cycle until resolved. It can also be used to check whether
defects (or similar defects) have been raised before, especially for defects raised
during regression testing.

An incident management tool could also be used to prioritise defects so that
developers fix the most important ones first. It could also highlight clusters of
defects. This may suggest that more detailed testing needs to be done on the
areas of functionality where most defects are being found as it is probable that
further defects will be found as well.

SOFTWARE TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 176

177

Requirements management tools
Requirements management tools are used by business analysts to record,
manage and prioritise the requirements of a system. They can also be used to
manage changes to requirements – something that can be a significant problem
for testers as test cases are designed and executed to establish whether the
delivered system meets its requirements. Therefore if requirements change after
tests have been written then test cases may also need to change. There is also a
potential problem of changes not being communicated to all interested parties,
thus testers could be using an old set of requirements whilst new ones are being
issued to developers.

The use of a traceability function within a requirements tool (and/or integrated
with a test management tool) enables links and references to be made between
requirements, functions, test conditions and other testware items. This means
that as requirements change, it is easy to identify which other items may need to
change.

Some requirements management tools can be integrated with test management
tools, whilst some test management tools enable requirements to be input and
related to test cases.

Requirements management tools also enable requirements coverage metrics
to be calculated easily as traceability enables test cases to be mapped to
requirements.

As can be seen, traceability can create a lot of maintenance work, but it does
highlight those areas that are undergoing change.

Configuration management tools
Configuration management tools are designed primarily for managing: the
versions of different software (and hardware) components that comprise a
complete build of the system; and various complete builds of systems that exist
for various software platforms over a period of time.

TOOL SUPPORT FOR TESTING

USE IN HOTEL CHAIN SCENARIO

A change is required to three documents sent to customers. The requirements
are documented in the requirements management tool. Testers obtain the
requirements from the tool and begin to devise test conditions and test cases.
A subsequent change control means that further changes are made to the
requirements. The testers should be made aware of the changes so that
they can provide input to the impact analysis. However, traceability within a
requirements management tool will also highlight the test conditions affected
by the changed requirement. The testers can review the change in requirements
and then consider what changes need to be made to the test conditions and
test cases.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 177

The amount of benefit to be obtained from using configuration management tools
is largely dependent upon:

the complexity of the system architecture;

the number and frequency of builds of the integrated system;

how much choice (options) is available to customers (whether internal or
external).

SOFTWARE TESTING

178

A build is a development activity where a complete system is compiled and
linked (typically daily) so that a consistent system is available at any time
including all the latest changes.

USE IN HOTEL CHAIN SCENARIO

Within the hotel booking system, there will be many versions of subsystems due
to the date at which the version was included in a build, or the operating system
on which the version works, etc. Each version of a subsystem will have a unique
version number and each version of a subsystem will comprise many different
components (e.g. program files, data files, DLLs, etc.).

The configuration management tool maps the version number of each subsystem
to the build (or release) number of the integrated system. As shown in Table 6.1,
Build A (UNIX) and Build B (Microsoft Windows 2003) might use the same version
(v1.02) of the Payments Out subsystem, but Release C might use version v1.04.

Table 6.1 Configuration traceability

Build for integrated Version of Cheque test Check BACS file
system Payments procedure ID test procedure ID

Out system

Build A v1.02 TP123a TP201

Build B v1.02 TP123b TP201

Build C v1.04 TP123b TP201

The same principle applies to testware with a different version number for a test
procedure being used, depending upon the version number of the build. For
instance, test procedure TP123a might be used for Build A and TP123b might be
used for Build B – even though both have the same purpose and even expected
results. However, another test procedure, TP201, may be applicable to all builds.

SOFTWARE TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 178

179

For example, a software house selling different versions of a product to many
customers who run on a variety of operating systems is likely to find configura-
tion management tools more useful than an internal development department
working on a single operating system for a single customer.

The use of configuration management tools allows traceability between testware
and builds of an integrated system and versions of subsystems and modules.
Traceability is useful for:

identifying the correct version of test procedures to be used;

determining which test procedures and other testware can be reused or need
to be updated/maintained;

assisting the debugging process so that a failure found when running a test
procedure can be traced back to the appropriate version of a subsystem.

Tool support for static testing
Review tools
Review tools (also known as review process support tools) provide a framework
for reviews or inspections. This can include:

Maintaining information about the review process, such as rules and checklists.

The ability to record, communicate and retain review comments and defects.

The ability to amend and reissue the deliverable under review whilst
retaining a history or log of the changes made.

Traceability functions to enable changes to deliverables under review to
highlight other deliverables that may be affected by the change.

The use of web technology to provide access from any geographical location to
this information.

Review tools can interface with configuration management tools to control the
version numbers of a document under review.

If reviews and inspections are already performed effectively then a review tool
can be implemented fairly quickly and relatively cheaply. However, if such a
tool is used as a means for imposing the use of reviews then the training and

TOOL SUPPORT FOR TESTING

CHECK OF UNDERSTANDING

(1) What is traceability?

(2) Which tool is likely to be most closely integrated with a requirements
management tool?

(3) Which tool would you use to identify the version of the software component
being tested?

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 179

implementation costs will be fairly high (as would be the case for implementing
a review process without such tools). These tools support the review process, but
management buy-in to reviews is necessary if benefits from them are to be
obtained in the long run.

Review tools tend to be more beneficial for peer (or technical) reviews and
inspections rather than walkthroughs and informal reviews.

Static analysis tools
Static analysis tools analyse code before it is executed in order to identify defects
as early as possible. Therefore they are used mainly by developers prior to unit
testing. A static analysis tool generates lots of error and warning messages about
the code. Training may be required in order to interpret these messages and it
may also be necessary to configure the tool to filter out particular types of
warning messages that are not relevant. The use of static analysis tools on
existing or amended code is likely to result in lots of messages concerning
programming standards. A way of dealing with this situation should be consid-
ered during the selection and implementation process. For instance, it may be
agreed that small changes to existing code should not use the static analysis
tool whereas medium to large changes to existing code should use the static
analysis tool. A rewrite should be considered if the existing code is significantly
non-compliant.

Static analysis tools can find defects that are hard to find during dynamic testing.
They can also be used to enforce programming standards (including secure
coding), improve the understanding of the code and to calculate complexity and
other metrics (see Chapter 3).

Some static analysis tools are integrated with dynamic analysis tools and
coverage measurement tools. They are usually language specific, so to test code
written in C++ you would need to have a version of a static analysis tool that was
specific to C++.

Other static analysis tools come as part of programming languages or only
work with particular development platforms. Note that debugging tools and
compilers provide some basic functions of a static analysis tool, but they are
generally not considered to be test tools and are excluded from the ISTQB
syllabus.

SOFTWARE TESTING

180

USE IN HOTEL CHAIN SCENARIO

The hotel company could use a review tool to perform a review of a system
specification written in the UK, so that offshore developers can be involved in the
review process. In turn, the review of program code, written offshore, could also
be performed using such a tool. This means that both the UK and offshore staff
could be involved in both reviews, with no excuses for the right people not being
available to attend.

SOFTWARE TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 180

181

The types of defect that can be found using a static analysis tool can include:

Syntax errors (e.g. spelling or missing punctuation).

Variance from programming standards (e.g. too difficult to maintain).

Invalid code structures (missing ENDIF statements).

The structure of the code means that some modules or sections of code may
not be executed. Such unreachable code or invalid code dependencies may
point to errors in code structure.

Portability (e.g. code compiles on Windows but not on UNIX).

Security vulnerabilities.

Inconsistent interfaces between components (e.g. XML messages
produced by component A are not of the correct format to be read by
component B).

References to variables that have a null value or variables declared but never
used.

Modelling tools
Modelling tools are used primarily by developers during the analysis and design
stages of the development life cycle. The reason modelling tools are included here
is because they are very cost-effective at finding defects early in the development
life cycle.

Their benefits are similar to those obtained from the use of reviews and
inspections, in that modelling tools allow omissions and inconsistencies to be
identified and fixed early so that detailed design and programming can begin
from a consistent and robust model. This in turn prevents fault multiplication
that can occur if developers build from the wrong model.

For instance, a visual modelling tool using UML can be used by designers to build
a model of the software specification. The tool can map business processes to the
system architecture model, which, in turn, enables programmers and testers to
have a better and common understanding of what programs should do and what
testing is required.

Similarly, the use of database, state or object models can help to identify what
testing is required and can assist in checking whether tests cover all necessary
transactions. Integration with test design tools may also enable modelling tools to
support the generation of test cases.

TOOL SUPPORT FOR TESTING

USE IN HOTEL CHAIN SCENARIO

Static analysis tools may be considered worthwhile for code being developed by
offshore development teams who are not familiar with in-house coding standards.
Such tools may also be considered beneficial for high-risk functions such as BACS
and other external interfaces.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 181

Tool support for test specification
Test design tools
Test design tools are used to support the generation and creation of test cases.
In order for the tool to generate test cases, a test basis needs to be input and
maintained. Therefore many test design tools are integrated with other tools that
already contain details of the test basis such as:

modelling tools;

requirements management tools;

static analysis tools;

test management tools.

The level of automation can vary and depends upon the characteristics of the tool
itself and the way in which the test basis is recorded in the tool. For example, some
tools allow specifications or requirements to be specified in a formal language.
This can allow test cases with inputs and expected results to be generated. Other
test design tools allow a GUI model of the test basis to be created and then allow
tests to be generated from this model.

Some tools (sometimes known as test frames) merely generate a partly filled
template from the requirement specification held in narrative form. The tester
will then need to add to the template and copy and edit as necessary to create the
test cases required.

SOFTWARE TESTING

182

USE IN HOTEL CHAIN SCENARIO

The modelling tool could help to identify missing scenarios from letter templates
or the need to update letters with new paragraphs. Again, the benefits of a clearly
defined, consistent model of the software will assist offshore companies to
develop software that meets the requirements of the customer.

The use of modelling tools is particularly useful in complex system architectures
such as in this scenario.

CHECK OF UNDERSTANDING

(1) Which of the tools used for static testing is/are most likely to be used by
developers rather than testers?

(2) In which part of the fundamental test process are static analysis tools likely to
be most useful?

(3) What is a significant benefit of using modelling tools from a testing
perspective?

SOFTWARE TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 182

183

Tests designed from database, object or state models held in modelling tools
can be used to verify that the model has been built correctly and can be used to
derive some test cases. Tests derived can be very thorough and give high levels of
coverage in certain areas.

Some static analysis tools integrate with tools that generate test cases from an
analysis of the code. These can include test input values and expected results.

A test oracle is a type of test design tool that automatically generates expected
results. However, these are rarely available as they perform the same function as
the software under test. Test oracles tend to be most useful for:

Replacement systems

Migrations

Regression testing

However, test design tools should be only part of the approach to test design.
They need to be supplemented by other test cases designed with the use of other
techniques and the application of risk.

Test design tools could be used by the test organisation in the scenario but the
overhead to input the necessary data from the test basis may be too great to give
any real overall benefit. However, if the test design tool can import requirements
or other aspects of the test basis easily then it may become worthwhile.

Test design tools tend to be more useful for safety-critical and other high-risk
software where coverage levels are higher and industry, defence or government
standards need to be adhered to. Commercial software applications, like the hotel
system, do not usually require such high standards and therefore test design
tools are of less benefit in such cases.

Test data preparation tools
Test data preparation tools are used by testers and developers to manipulate data
so that the environment is in the appropriate state for the test to be run. This can
involve making changes to the field values in databases, data files, etc., and
populating files with a spread of data, (including depersonalised dates of birth,
names and addresses, etc. to support data anonymity).

TOOL SUPPORT FOR TESTING

USE IN HOTEL CHAIN SCENARIO

A test oracle could be built using a spreadsheet to support the testing of
customers’ bills. The tester can then input details for calculating bills such as the
total bill based on various transaction types, refunds, VAT, etc. The spreadsheet
could then calculate the total bill amount and this should match the bill calculated
by the system under test.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 183

Tool support for test execution and logging
Test comparators
Test comparators compare the contents of files, databases, XML messages, objects
and other electronic data formats. This allows expected results and actual results
to be compared. They can also highlight differences and thus provide assistance
to developers when localising and debugging code.

They often have functions that allow specified sections of the file, screen or object
to be ignored or masked out. This means that a date or time stamp on a screen or
field can be masked out as it is expected to be different when a comparison is
performed.

Table 6.2 shows an extract from the transaction table in the hotel chain database
for data created on 20/10/2006.

SOFTWARE TESTING

184

USE IN HOTEL CHAIN SCENARIO

A set of test data may be created by taking, say, 5 per cent of all records from the
live system and scrambling personal details so that data is protected and to
ensure that customer letters being tested are not wrongly sent to real customers.
Data could be taken from the mainframe system, but it is also very important to
retain integrity of data between different systems. Data that is held in other
databases would need to remain consistent with records on the mainframe.

The knowledge of the database structure and which fields need to be
depersonalised is likely to lie with the development team – so it is important
to consider whether to buy a tool or build it within the organisation.

CHECK OF UNDERSTANDING

(1) What is the main difference and similarity between a test frame and a test
oracle?

(2) What types of inputs can a test design tool use to generate test cases?

Table 6.2 Hotel system extract (20/10/2006)

Transaction ID Trans_Date Amount VAT Customer ID
_exc_VAT

12345 20/10/2006 359.66 62.94 AG0012

12346 20/10/2006 2312.01 404.60 HJ0007

SOFTWARE TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 184

185

A regression test was run on 5/11/2006. Table 6.3 shows an extract from the
transaction table for this data.

The Transaction ID and Trans_Date fields contain different values. But we know
why this is the case and we would expect them to be different. Therefore we can
mask out these values. Note that some automated test comparators use test
oracles whilst others provide functions to add on values to take into account
known differences (e.g. 15 days later) so that the actual results and expected
results can be compared.

Comparators are particularly useful for regression testing since the contents of
output or interface files should usually be the same. This is probably the test tool
that provides the single greatest benefit. For instance, manually comparing the
contents of a database query containing thousands of rows is time-consuming,
error prone and demotivating. The same task can be performed accurately and in
a fraction of the time using a comparator. Comparators are usually included in
test execution tools.

Test execution tools
Test execution tools allow test scripts to be run automatically (or at least
semi-automatically). A test script (written in a programming language or
scripting language) is used to navigate through the system under test and to
compare predefined expected outcomes with actual outcomes. The results of the
test run are written to a test log. Test scripts can then be amended and reused to
run other or additional scenarios through the same system. Some tools offer
GUI-based utilities that enable amendments to be made to scripts more easily
than by changing code. These utilities may include:

configuring the script to identify particular GUI objects;

customising the script to allow it to take specified actions when encountering
particular GUI objects or messages;

parameterising the script to read data from various sources.

Record (or capture playback) tools: Record (or capture playback) tools can
be used to record a test script and then play it back exactly as it was executed.
However, a test script usually fails when played back owing to unexpected results

TOOL SUPPORT FOR TESTING

Table 6.3 Hotel system extract (5/11/2006)

Transaction ID Trans_Date Amount VAT Customer ID
_exc_VAT

12369 5/11/2006 359.66 62.94 AG0012

12370 5/11/2006 2312.01 404.60 HJ0007

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 185

SOFTWARE TESTING

186

SOFTWARE TESTING

or unrecognised objects. This may sound surprising but consider entering a new
customer record onto a system:

When the script was recorded, the customer record did not exist. When the script
is played back the system correctly recognises that this customer record already
exists and produces a different response, thus causing the test script to fail.

When a test script is played back and actual and expected results are
compared a date or time may be displayed. The comparison facility will spot
this difference and report a failure.

Other problems include the inability of test execution tools to recognise some
types of GUI control or object. This might be able to be resolved by coding or
reconfiguring the object characteristics (but this can be quite complicated and
should be left to experts in the tool).

Also note that expected results are not necessarily captured when recording user
actions and therefore may not be compared during playback.

The recording of tests can be useful during exploratory testing for reproducing a
defect or for documenting how to execute a test. In addition, such tools can be
used to capture user actions so that the navigation through a system can be
recorded. In both cases, the script can then be made more robust by a technical
expert so that it handles valid system behaviours depending upon the inputs and
the state of the system under test.

Data-driven testing: Robust test scripts that deal with various inputs can be
converted into data-driven tests. This is where hard-coded inputs in the test
script are replaced with variables that point to data in a data-table. Data-tables
are usually spreadsheets with one test case per row, with each row containing
test inputs and expected results. The test script reads the appropriate data value
from the data-table and inserts it at the appropriate point in the script (e.g. the
value in the Customer Name column is inserted into the Customer Name field on
the input screen).

Keyword-driven testing: A further enhancement to data-driven testing is the
use of keyword-driven (or action word) testing. Keywords are included as extra
columns in the data-table. The script reads the keyword and takes the appropri-
ate actions and subsequent path through the system under test. Conditional pro-
gramming constructs such as IF ELSE statements or SELECT CASE statements
are required in the test script for keyword-driven testing.

Technical skills: Programming skills and programming standards are required
to use the tool effectively. It may be that these can be provided by a small team of
technical experts within the test organisation or from an external company. In
data-driven and particularly keyword-driven approaches, the bulk of the work
can be done by manual testers, with no knowledge of the scripting language,
defining their test cases and test data and then running their tests and raising
defects as required. However, this relies on robust and well-written test scripts
that are easy to maintain. This takes much time and effort before any sort of
payback is achieved.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 186

187

Maintenance: It is essential that time (and subsequent budget) is allowed for
test scripts to be maintained. Any change to a system can mean that the test
scripts need to be updated. Therefore, the introduction of a new type of object or
control could result in a mismatch being found between the previous object type
and the new one. The relevant level of technical skills and knowledge is also
required to do this.

Effective and efficient use: The efficiency and effectiveness benefits that come
from the use of a test execution tool take a long time to come to fruition. First, the
selection and implementation process needs to be planned and conducted
effectively (a generic process for selecting and implementing any type of test tool
is detailed later in this chapter). However, there are certain issues that are
particularly relevant to test execution tools and these are described below.

The long-term benefits of test execution tools include:

Cost savings as a result of the time saved by running automated tests rather
than manual tests.

Accuracy benefits from avoiding manual errors in execution and comparison.

The ability and flexibility to use skilled testers on more useful and interesting
tasks (than running repetitive manual tests).

The speed with which the results of the regression pack can be obtained.

Note that benefits come primarily from running the same or very similar tests a
number of times on a stable platform. Therefore they are generally most useful
for regression testing.

TOOL SUPPORT FOR TESTING

USE IN HOTEL CHAIN SCENARIO

Let us assume that a test execution tool is already used for regression testing.
Existing automated test scripts could be analysed to identify which ones can be
reused and to identify gaps in the coverage for the new enhancement. These gaps
could be filled by running cases manually or by writing new automated test
scripts. Rather than starting from scratch, it may be possible to produce additional
automated scripts by reusing some code or modules already used by existing
scripts, or by using parameterisation and customisation utilities. In this enhance-
ment, the automated scripts used to test the unchanged documents could be run
without having to be amended.

The automated scripts to produce the amended documents would need to be
analysed and updated as required. The navigation part of the script would be
largely unchanged but the comparison between actual and expected results would
probably be performed manually the first time round. Once the test has passed
manually, the comparison could be added to the script for reuse in the future.

Automated scripts for new documents could be added to the regression pack after
this release is complete.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 187

The graph in Figure 6.4 shows how the benefits of using test execution tools take
some time to pay back. Note how in the early stages the cost of using automated
regression testing is greater than the cost of manual regression testing. This is
due to the initial investment, implementation, training, initial development of
automated scripts, etc. However, the cost each additional time the test is run is
less for automated regression testing than it is for manual regression testing.
Therefore the lines on the graph converge and at a point in time (known as the
break-even point) the lines cross. This is the point at which the total cost to date
for automated testing is less than the total cost to date for manual regression
testing.

This is clearly a simplistic view but it demonstrates how an initial investment in
test execution tools can be of financial benefit in the medium to long term. There
are other less tangible benefits as well. However, to get this financial benefit you
will need to be sure that there is a requirement to run the same (or very similar)
regression tests on many occasions.

Test harnesses
Test harnesses (also known as unit test framework tools) are used primarily by
developers to simulate a small section of the environment in which the software
will operate. They are usually written in-house by developers to perform compo-
nent or integration testing for a specific purpose. Test harnesses often use ‘mock
objects’ known as ‘stubs’ (which stub out the need to have other components or
systems by returning predefined values) and ‘drivers’ (which replace the calling
component or system and drive transactions, messages and commands through
the software under test).

Test harnesses can be used to test various systems or objects ranging from a
middleware system (as in Figure 6.5) to a single or small group of
components.

SOFTWARE TESTING

188

Figure 6.4 Test execution tools payback model

C
os

t

Number of times that the automated script is run

Manual regression tests
Break-even

point

Automated regression tests

SOFTWARE TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 188

189

TOOL SUPPORT FOR TESTING

USE IN HOTEL CHAIN SCENARIO

Bookings are entered via the web or GUI front-ends and are loaded onto the
mainframe. An overnight batch runs on the mainframe and generates XML
messages that are then processed by the middleware system, which makes a
further call to the mainframe to read other data. The middleware system then
generates further XML messages, which are processed by other systems, result-
ing in the production of letters to customers.

There are several benefits that can be obtained from using a test harness that
generates the XML messages produced by the mainframe:

• It would take a lot of time and effort to design and execute test cases on the
mainframe system and run the batch.

• It would be costly to build a full environment.

• The mainframe code needed to generate the XML messages may not yet be
available.

• A smaller environment is easier to control and manage. It enables developers (or
testers) to perform component and integration testing more quickly as it is easier
to localise defects. This allows a quicker turnround time for fixing defects.

The diagram in Figure 6.5 shows that a test harness has been built using a
spreadsheet and macros (the driver) to generate XML messages and send them to
the middleware. A stub is used to simulate the calls made by the middleware to
the mainframe. The contents of the XML messages produced by the middleware
can then be compared with the expected results.

Figure 6.5 Test harness for middleware

XML message(s)

Test harness

Stub to
replicate

mainframe

Middleware
system

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 189

There are similarities with the principle behind data-driven testing using test
execution tools, as the harness allows many different test cases to be designed
and run without the time-consuming process of keying them manually. This
raises the question of how much benefit can be obtained from using a test
execution tool when a test harness can be used instead. As usual, it depends
on the circumstances, the risk, the purpose and the level of testing being
performed.

Coverage measurement tools
Coverage measurement tools measure the percentage of the code structure
covered across white-box measurement techniques such as statement coverage
and branch or decision coverage. In addition, they can also be used to measure
coverage of modules and function calls. Coverage measurement tools are often
integrated with static and dynamic analysis tools and are primarily used by
developers.

Coverage measurement tools can measure code written in several programming
languages, but not all tools can measure code written in all languages. They are
useful for reporting coverage measurement and can therefore be used to assess
test completion criteria and/or exit criteria.

Coverage measurement of requirements and test cases/scripts run can usually be
obtained from test management tools. This function is unlikely to be provided by
coverage measurement tools.

Coverage measurement can be carried out using intrusive or non-intrusive
methods. Non-intrusive methods typically involve reviewing code and running
code. Intrusive methods, such as ‘instrumenting the code’ involve adding extra
statements into the code. The code is then executed and the extra statements
write back to a log in order to identify which statements and branches have been
executed.

Instrumentation code can then be removed before it goes into production.

Intrusive methods can affect the accuracy of a test because, for example, slightly
more processing will be required to cope with the additional code. This is known
as the probe effect and testers need to be aware of its consequences and try to
keep its impact to a minimum.

SOFTWARE TESTING

190

USE IN HOTEL CHAIN SCENARIO

Coverage measurement tools are generally used on high-risk and safety-critical
systems and therefore would probably not be used in the Hotel Chain Scenario.
However, as an example, assume that the exit criteria for a test phase include the
criteria shown in Table 6.4.

SOFTWARE TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 190

191

Security tools
Security testing tools are used to test the functions that detect security threats
and to evaluate the security characteristics of software. The security testing tool
would typically be used to assess the ability of the software under test to:

handle computer viruses;

protect data confidentiality and data integrity;

prevent unauthorised access;

carry out authentication checks of users;

remain available under a denial of service attack;

check non-repudiation attributes of digital signatures.

Security testing tools are mainly used to test e-commerce, e-business and
websites. For example, a third-party security application such as a firewall
may be integrated into a web-based application.

The skills required to develop and use security tools are very specialised and such
tools are generally developed and used on a particular technology platform for a
particular purpose. Therefore it maybe worth considering the use of specialist
consultancies to perform such testing.

Security tools need to be constantly updated, as there are problems solved and
new vulnerabilities discovered all the time – consider the number of Windows XP
security releases to see the scale of security problems.

TOOL SUPPORT FOR TESTING

Table 6.4 Exit criteria

Function Module risk Branch coverage Statement
level coverage

BACS High 100% 100%

Mailshot Medium Not specified 100%

Look-up error Low 50% 75%
message/screen
navigation

In this case, coverage measurement tools would be the most appropriate
method of assessing whether the exit criteria have been met.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 191

Tool support for performance and monitoring
Dynamic analysis tools
Dynamic analysis tools are used to detect the type of defects that are difficult to
find during static testing. They are typically used by developers, during compo-
nent testing and component integration testing, to:

report on the state of software during its execution;

monitor the allocation, use and deallocation of memory;

identify memory leaks;

detect time dependencies;

identify unassigned pointers;

check pointer arithmetic.

SOFTWARE TESTING

192

USE IN HOTEL CHAIN SCENARIO

Security tools could be used to test that the firewall surrounding the website
can prevent disruption from any type of attack that is specified within the
security tool.

In addition, encryption of XML messages to validate bank account details could be
tested.

CHECK OF UNDERSTANDING

(1) Why is implementing a comparator likely to be cheaper and quicker than
implementing a test execution tool?

(2) Why is the use of test execution tools for record and playback not as effective
as it may sound?

(3) Are test execution tools likely to be more useful for testing new systems or
testing changes to existing systems? Explain why.

(4) Would both a test execution tool and a test harness be appropriate for
acceptance testing?

(5) Name three potential benefits from implementing a test execution tool.

(6) Give three reasons why a test harness is an efficient way of testing
components.

(7) Which test execution and logging tools are typically used by developers?

(8) Which test execution and logging tools are likely to be used by specialists
in the use of that tool?

SOFTWARE TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 192

193

They are generally used for safety-critical and other high-risk software where
reliability is critical.

Dynamic analysis tools are often integrated with static analysis and coverage
measurement tools. For example, a developer may want to perform static
analysis on code to localise defects so that they can be removed before
component test execution. The integrated tool may allow:

the code to be analysed statically;

the code to be instrumented;

the code to be executed (dynamically).

Dynamic analysis tools are usually language specific, so to test code written in
C++ you would need to have a version of a dynamic analysis tool that was specific
to C++.

The tool could then:

report static defects;

report dynamic defects;

provide coverage measurement figures;

report upon the code being (dynamically) executed at various instrumentation
points.

Performance testing/load testing/stress testing tools
Performance testing is very difficult to do accurately and in a repeatable way
without using test tools. Therefore performance testing tools have been developed
to carry out both load testing and stress testing.

Load testing reports upon the performance of a system under test, under various
loads and usage patterns. A load generator (which is a type of test driver) can be
used to simulate the load and required usage pattern by creating virtual users
that execute predefined scripts across one or more test machines. Alternatively,
response times or transaction times can be measured under various levels of
usage by running automated repetitive test scripts via the user interface of the

TOOL SUPPORT FOR TESTING

USE IN HOTEL CHAIN SCENARIO

The hotel chain would probably not use dynamic analysis tools as the benefits for a
normal commercial software system (such as this) are relatively small compared
with the investment and ongoing costs of dynamic testing tools. However, if static
analysis and coverage measurement tools are used then the additional cost of
using dynamic analysis tools may be reduced as they usually come in the same
package. Another contributory factor in the decision is that the work done during
static analysis and coverage measurement may mean that little additional effort is
required to run dynamic tests.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 193

system under test. In both cases output will be written to a log. Reports or graphs
can be generated from the contents of the log to monitor the level of performance.

Performance testing tools can also be used for stress testing. In this case, the load
on the system under test is increased gradually (ramped up) in order to identify
the usage pattern or load at which the system under test fails. For example, if an
air traffic control system supports 200 concurrent aircraft in the defined air space,
the entry of the 201st or 205th aircraft should not cause the whole system to fail.

Performance testing tools can be used against whole systems but they can also be
used during system integration test to test an integrated group of systems,
one or more servers, one or more data bases or a whole environment.

If the risk analysis finds that the likelihood of performance degradation is low
then it is likely that no performance testing will be carried out. For instance, a
small enhancement to an existing mainframe system would not necessarily
require any formal performance testing. Normal manual testing may be consid-
ered sufficient (during which poor performance might be noticed).

There are similarities between performance testing tools and test execution tools
in that they both use test scripts and data-driven testing. They can both be left to
run unattended overnight and both need a heavy upfront investment, which will
take some period of time to pay back.

Performance testing tools can find defects such as:

General performance problems.

Performance bottlenecks.

Memory leakage (e.g. if the system is left running under heavy load for
some time).

Record-locking problems.

Concurrency problems.

Excess usage of system resources.

Exhaustion of disk space.

The cost of some performance tools is high and the implementation and
training costs are also high. In addition, finding experts in performance testing is
not that easy. Therefore it is worth considering using specialist consultancies to
come in and carry out performance testing using such tools.

SOFTWARE TESTING

194

USE IN HOTEL CHAIN SCENARIO

The likelihood of poor website performance and the cost of lost business and
reputation are likely to be sufficient to justify the use of performance testing to
mitigate this risk. Performance testing can range from using a relatively cheap

SOFTWARE TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 194

195

Monitoring tools
Monitoring tools are used to check whether whole systems or specific system
resources are available and whether their performance is acceptable. Such tools
are mainly used in live rather than test environments and are therefore not
really testing tools. They tend to be used for monitoring e-commerce, e-business
or websites as such systems are more likely to be affected by factors external to
the organisation and the consequences can be severe in terms of business lost
and bad publicity. Generally, if a website is not available, customers will not
report it but will go elsewhere. For example, it was reported in 2003 that a
well-known online retailer would lose sales of $660,000 per hour if it were offline
during the US trading day.

The use of monitoring tools is generally less important for internal systems as
failure is more likely to be noticed only within the organisation and contingency
plans may also exist. However, the availability of monitoring tools on mainframes,
servers and other forms of hardware, means that it is relatively easy to monitor
the majority of an organisation’s infrastructure.

Data quality assessment tools
Data quality assessment tools allow files and databases to be compared against
a format that is specified in advance. They are typically used on large scale data
intensive projects such as:

Conversion of data used on one system into a format suitable for another
system.

TOOL SUPPORT FOR TESTING

tool to indicate whether performance has improved or deteriorated as a result of
the enhancement, to an extensive assessment of response times under normal or
maximum predicted usage and identification of the usage pattern that will cause
the system to fail.

It is likely that performance test tools will have been used when the website was
first developed. Therefore it may be easy to reuse existing tools to do a regression
test of performance. If performance tools were not used when the website was
developed it is unlikely to be worthwhile buying and implementing expensive
performance testing tools.

An alternative option would be to use tools that already exist on servers or in the
test environment to monitor performance. It may also be worth considering using
external consultants.

USE IN HOTEL CHAIN SCENARIO

A monitoring tool may be beneficial to monitor the website. A monitoring tool
may also exist as part of the mainframe system. However, it is less likely that
monitoring tools will be used for the GUI front-end that is used by internal staff.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 195

Migration of data from one system to another.

Loading of data into a data warehouse.

Data Quality Assessment tools are not specifically designed for testing purposes.
They are used primarily for the migration of production data, but typically the
development and testing of a migration project will also use these tools.

Usability test tools
Usability test tools typically record the mouse clicks made by remote usability
testers when carrying out a specified task. Some tools also enable other data to be
captured such as screenshots, written comments and voice recordings of verbal
comments. This recorded data is generally stored in a database so that it can then
be analysed easily by staff at the organisation commissioning the testing.

Note that the usability testing tool market is changing very quickly and new
types of usability tools may appear over the next few years.

SOFTWARE TESTING

196

USE IN HOTEL CHAIN SCENARIO

The changes to the website to improve usability could be tested by a specialist
usability testing company who employ, say 50, remote users. The remote users
would be given a high-level requirement that would exercise the website changes
such as:

USE IN HOTEL CHAIN SCENARIO

Suppose that the hotel chain buys a smaller group of hotels, 'Small Hotel Group'.

It could use a data quality assessment tool during the development and testing of
an enhancement to its existing systems to include the additional hotels.

The data quality assessment tools could be configured to establish whether the
customer data being migrated meets particular quality requirements. These
requirements may include:

valid postcodes;

valid title for gender;

numeric values in financial fields;

numeric values in date fields.

The tool could also be used to reconcile file record counts with data held in header
and footer records to confirm that the number of records in the file equals the
number of records loaded into the database.

SOFTWARE TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 196

197

Other tools
Other tools that are not designed specifically for testers or developers can also be
used to support one or more test activities. These include:

Spreadsheets

Word processors

Email

Back-up and restore utilities

SQL and other database query tools

Project planning tools

Debugging tools (although these are more likely to be used by developers than
testers).

For example, in the absence of test management or incident management tools,
defects could be recorded on word processors and could be tracked and maintained
on spreadsheets. Tests passed or failed could also be recorded on spreadsheets.

TOOL SUPPORT FOR TESTING

CHECK OF UNDERSTANDING

(1) Describe two types of defect that can typically be found using dynamic
analysis tools.

(2) Describe two drawbacks associated with performance testing tools.

(3) Which of the tools that provide support for performance and monitoring is
most likely to be used by developers?

Go to a specified test URL and book three rooms from 3 August to 5 August
and two rooms from 7 August. Pay by credit card XYZ.

The mouse clicks, other inputs, and comments recorded by the 50 remote users in
carrying out this task would be stored in a database and an analysis report pro-
duced by the specialist usability testing company for the hotel chain. This analysis
could highlight poor areas of usability in the test website, which could be improved
before being deployed to the live website.

USE IN HOTEL CHAIN SCENARIO

Other software tools could also be used:

A spreadsheet could be used for producing decision tables or working out all
the different test scenarios required. It could also be used to manipulate test
management information so that it can be presented in the format required in
weekly or daily test progress reports.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 197

Summary of test tools
Table 6.5 summarises the types of test tools discussed above. It includes the
definition given in the ISTQB Glossary of Testing Terms v2.0 and gives a guide to:

the main ISTQB syllabus classification;

the activity in the fundamental test process for which the tool is usually
most useful;

the most likely users of the tool.

SOFTWARE TESTING

198

CHECK OF UNDERSTANDING

Name four tools that are not specifically designed for testers. Give an example of
how each of them could be of use to a tester.

Word processors could be used for writing test strategies, test plans, weekly
reports and other test deliverables.

Email could be used for communicating with developers about defects and for
distributing test reports and other deliverables.

Back-up and restore utilities could be used to restore a consistent set of data
into the test environment for regression testing.

SQL could be used for analysing the data held in databases in order to obtain
actual or expected results.

Project planning tools could be used to estimate resources and timescales
and monitor progress.

Debugging tools can be used by developers to localise and fix defects.

SOFTWARE TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 198

199

TOOL SUPPORT FOR TESTING

Ta
bl

e
6.

5
Ty

pe
s

of
 te

st
 to

ol

To
ol

 ty
pe

 I
ST

Q
B

 S
yl

la
bu

s

Ac
tiv

ity
 in

 fu
nd

am
en

ta
l

IS

TQ
B

 G
lo

ss
ar

y
of

M
os

t l
ik

el
y

 c
la

ss
ifi

ca
tio

n

 t

es
t p

ro
ce

ss
 w

he
re

Te
st

in
g

Te
rm

s
de

fin
iti

on

us

er
s

it
is

 u
su

al
ly

 m
os

t

be
ne

fic
ia

l

Te
st

M
an

ag
em

en
t

 A
ll

ac
tiv

iti
es

A

to
ol

 th
at

 p
ro

vid
es

 s
up

po
rt

 to
 th

e
te

st

 T

es
te

rs
M

an
ag

em
en

t

of

 te
st

in
g

an
d

 m

an
ag

em
en

t a
nd

 c
on

tr
ol

 p
ar

t o
f a

 te
st

to

ol

te

st
s

 p
ro

ce
ss

. I
t o

fte
n

ha
s

se
ve

ra
l c

ap
ab

ili
tie

s,

su
ch

 a
s

te
st

w
ar

e
m

an
ag

em
en

t,

sc

he
du

lin
g

of
 te

st
s,

 th
e

lo
gg

in
g

of
 re

su
lts

,

pr

og
re

ss
 tr

ac
ki

ng
, i

nc
id

en
t m

an
ag

em
en

t

an

d
te

st
 re

po
rt

in
g.

In
ci

de
nt

 M

an
ag

em
en

t o
f

 Im

pl
em

en
ta

tio
n

 A
 to

ol
 th

at
 fa

ci
lit

at
es

 th
e

re
co

rd
in

g
an

d

Va

rio
us

, b
ut

m

an
ag

em
en

t

te

st
in

g
an

d
te

st
s

an

d
ex

ec
ut

io
n

st
at

us
 tr

ac
ki

ng
 o

f d
ef

ec
ts

. T
he

se
 to

ol
s

 p
ar

tic
ul

ar
ly

to

ol

 o
fte

n
ha

ve
 w

or
kf

lo
w

-o
rie

nt
ed

 fa
ci

lit
ie

s

 te

st
er

s

to

 tr
ac

k
an

d
co

nt
ro

l t
he

 a
llo

ca
tio

n,

co
rr

ec
tio

n
an

d
re

te
st

in
g

of
 d

ef
ec

ts
 a

nd

pr
ov

id
e

re
po

rt
in

g
fa

ci
lit

ie
s.

 A
ls

o
kn

ow
n

as
 d

ef
ec

t-
tr

ac
ki

ng
 to

ol
s.

Re
qu

ire
m

en
ts

M
an

ag
em

en
t o

f

 A
na

ly
si

s
an

d
de

si
gn

 A
 to

ol
 th

at
 s

up
po

rt
s

th
e

re
co

rd
in

g
of

Va
rio

us
, b

ut
m

an
ag

em
en

t

te

st
in

g
an

d
te

st
s

 re

qu
ire

m
en

ts
, r

eq
ui

re
m

en
ts

 a
ttr

ib
ut

es

 p

ar
tic

ul
ar

ly
to

ol

 (
e.

g.
 p

rio
rit

y,
kn

ow
le

dg
e

re
sp

on
si

bl
e)

 a
nd

 b

us
in

es
s

an
no

ta
tio

n,
 a

nd
 fa

ci
lit

at
es

 tr
ac

ea
bi

lit
y

 a
na

ly
st

s

th

ro
ug

h
la

ye
rs

 o
f r

eq
ui

re
m

en
ts

 a
nd

re

qu
ire

m
en

ts
 c

ha
ng

e
m

an
ag

em
en

t.

So

m
e

re
qu

ire
m

en
ts

 m
an

ag
em

en
t t

oo
ls

al

so
 p

ro
vid

e
fa

ci
lit

ie
s

fo
r s

ta
tic

 a
na

ly
si

s,

su
ch

 a
s

co
ns

is
te

nc
y

ch
ec

ki
ng

 a
nd

vio

la
tio

ns
 to

 p
re

de
fin

ed
 re

qu
ire

m
en

ts
 ru

le
s.

(C
on

ti
n

u
ed

)

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 199

SOFTWARE TESTING

200

SOFTWARE TESTING

(C
on

ti
n

u
ed

)

Ta
bl

e
6.

5
(C

on
ti

n
u

ed
)

To
ol

 ty
pe

 I
ST

Q
B

 S
yl

la
bu

s

Ac
tiv

ity
 in

 fu
nd

am
en

ta
l

IS

TQ
B

 G
lo

ss
ar

y
of

M
os

t l
ik

el
y

 c
la

ss
ifi

ca
tio

n

 t

es
t p

ro
ce

ss
 w

he
re

Te
st

in
g

Te
rm

s
de

fin
iti

on

us

er
s

it
is

 u
su

al
ly

 m
os

t

be

ne
fic

ia
l

C
on

fig
ur

at
io

n

 M
an

ag
em

en
t o

f

Im
pl

em
en

ta
tio

n
an

d

 N
ot

 d
ef

in
ed

.

 V
ar

io
us

m
an

ag
em

en
t

 te

st
in

g
an

d
te

st
s

 e
xe

cu
tio

n
to

ol

R
ev

ie
w

 to
ol

 S
ta

tic
 te

st
in

g

 I

m
pl

em
en

ta
tio

n
an

d

 A
 to

ol
 th

at
 p

ro
vi

de
s

su
pp

or
t t

o
th

e
re

vi
ew

 V

ar
io

us

 e
xe

cu
tio

n

 p
ro

ce
ss

. T
yp

ic
al

 fe
at

ur
es

 in
cl

ud
e

re
vi

ew

pl
an

ni
ng

 a
nd

 tr
ac

ki
ng

 s
up

po
rt

, c
om

m
un

ic
at

io
n

su

pp
or

t,
co

lla
bo

ra
tiv

e
re

vi
ew

s
an

d
a

re
po

si
to

ry

fo

r
co

lle
ct

in
g

an
d

re
po

rt
in

g
of

 m
et

ri
cs

.

St
at

ic
 a

na
ly

si
s

 S

ta
tic

 te
st

in
g

 Im

pl
em

en
ta

tio
n

an
d

Pe
rf

or
m

s
an

d
su

pp
or

ts
 a

na
ly

si
s

of
 s

of
tw

ar
e

D

ev
el

op
er

s
to

ol
s

 e
xe

cu
tio

n

 a

rt
ifa

ct
s,

 e
.g

. r
eq

ui
re

m
en

ts
 o

r c
od

e,
 c

ar
rie

d

ou

t w
ith

ou
t e

xe
cu

tio
n

of
 th

es
e

so
ftw

ar
e

ar
tif

ac
ts

.

M
od

el
lin

g

 S
ta

tic
 te

st
in

g

 I

m
pl

em
en

ta
tio

n
an

d

 N
ot

 d
ef

in
ed

.

 D
ev

el
op

er
s

to
ol

s

 e

xe
cu

tio
n

Te
st

 d
es

ig
n

 T

es
t

 A
na

ly
si

s
an

d
de

si
gn

 A
 to

ol
 th

at
 s

up
po

rt
s

th
e

te
st

 d
es

ig
n

Te
st

er
s

to
ol

s/
sc

rip
t

sp

ec
ifi

ca
tio

n

ac

tiv
ity

 b
y

ge
ne

ra
tin

g
te

st
 in

pu
ts

 fr
om

ge

ne
ra

to
rs

 a

 s
pe

ci
fic

at
io

n
th

at
 m

ay
 b

e
he

ld
 in

 a
 C

AS
E

to
ol

 re
po

si
to

ry
, e

.g
. r

eq
ui

re
m

en
ts

m

an
ag

em
en

t t
oo

l,
or

 fr
om

 s
pe

ci
fie

d
te

st

co
nd

iti
on

s
he

ld
 in

 th
e

to
ol

 it
se

lf.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 200

201

TOOL SUPPORT FOR TESTING

(C
on

ti
n

u
ed

)

Ta
bl

e
6.

5
(C

on
ti

n
u

ed
)

To
ol

 ty
pe

IS
TQ

B
 S

yl
la

bu
s

Ac
tiv

ity
 in

 fu
nd

am
en

ta
l

IS
TQ

B
 G

lo
ss

ar
y

of

M
os

t l
ik

el
y

cl
as

si
fic

at
io

n
te

st
 p

ro
ce

ss
 w

he
re

Te
st

in
g

Te
rm

s
de

fin
iti

on
us

er
s

it
is

 u
su

al
ly

 m
os

t
be

ne
fic

ia
l

Te
st

 o
ra

cl
es

 T

es
t

 A
 n

al
ys

is
 a

nd
 d

es
ig

n

A

so
ur

ce
 to

 d
et

er
m

in
e

ex
pe

ct
ed

 re
su

lts
 to

 T
es

te
rs

(c
on

si
de

re
d

to

sp

ec
ifi

ca
tio

n

co

m
pa

re
 w

ith
 th

e
ac

tu
al

 re
su

lt
of

 th
e

be
 a

 s
ub

se
t o

f

 s
of

tw
ar

e
un

de
r t

es
t.

An
 o

ra
cl

e
m

ay
 b

e
th

e
te

st
 d

es
ig

n
to

ol
s)

ex
is

tin
g

sy
st

em
 (f

or
 a

 b
en

ch
m

ar
k)

, a
 u

se
r

m
an

ua
l,

or
 a

n
in

di
vid

ua
l’s

 s
pe

ci
al

is
ed

kn

ow
le

dg
e,

 b
ut

 s
ho

ul
d

no
t b

e
th

e
co

de
.

Te
st

 (i
np

ut
) d

at
a

 T
es

t

 A

na
ly

si
s

an
d

de
si

gn

 A

 ty
pe

 o
f t

es
t t

oo
l t

ha
t e

na
bl

es
 d

at
a

to
 b

e

Va
rio

us
pr

ep
ar

at
io

n
to

ol
s

sp
ec

ifi
ca

tio
n

se
le

ct
ed

 fr
om

 e
xi

st
in

g
da

ta
ba

se
s

or
 c

re
at

ed
,

ge
ne

ra
te

d,
 m

an
ip

ul
at

ed
 a

nd
 e

di
te

d
fo

r u
se

in

 te
st

in
g.

Te
st

 e
xe

cu
tio

n/

 T
es

t e
xe

cu
tio

n

 Im

pl
em

en
ta

tio
n

an
d

A
ty

pe
 o

f t
es

t t
oo

l t
ha

t i
s

ab
le

 to
 e

xe
cu

te
 o

th
er

 T
es

te
rs

te
st

 ru
nn

in
g

 a
nd

 lo
gg

in
g

ex
ec

ut
io

n

 s

of
tw

ar
e

us
in

g
an

 a
ut

om
at

ed
 te

st
 s

cr
ip

t,
e.

g.

to
ol

s

ca
pt

ur
e/

pl
ay

ba
ck

.

Te
st

 h
ar

ne
ss

/

 T
es

t e
xe

cu
tio

n

 Im

pl
em

en
ta

tio
n

an
d

A
te

st
 e

nv
iro

nm
en

t c
om

po
se

d
of

 s
tu

bs

 D

ev
el

op
er

s
un

it
te

st

 a
nd

 lo
gg

in
g

ex
ec

ut
io

n

 a

nd
 d

riv
er

s
ne

ed
ed

 to
 c

on
du

ct
 a

 te
st

.
fr

am
ew

or
k

to
ol

s
(s

tu
bs

 a
nd

 d
riv

er
s)

Te
st

Te
st

 e
xe

cu
tio

n

 Im

pl
em

en
ta

tio
n

an
d

A
te

st
 to

ol
 u

se
d

to
 s

up
po

rt
 a

nd
/o

r a
ut

om
at

e

Te
st

er
s

co
m

pa
ra

to
rs

 a
nd

 lo
gg

in
g

ex
ec

ut
io

n

 th

e
pr

oc
es

s
of

 id
en

tif
yin

g
di

ffe
re

nc
es

 b
et

w
ee

n

an

d

th

e
ac

tu
al

 re
su

lts
 p

ro
du

ce
d

by
 th

e
co

m
po

ne
nt

de
ve

lo
pe

rs

or

 s
ys

te
m

 u
nd

er
 te

st
 a

nd
 th

e
ex

pe
ct

ed
 re

su
lts

fo

r a
 te

st
. T

es
t c

om
pa

ris
on

 c
an

 b
e

pe
rf

or
m

ed

du
rin

g
te

st
 e

xe
cu

tio
n

(d
yn

am
ic

 c
om

pa
ris

on
)

or
 a

fte
r t

es
t e

xe
cu

tio
n.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 201

SOFTWARE TESTING

202

SOFTWARE TESTING

(C
on

ti
n

u
ed

)

Ta
bl

e
6.

5
(C

on
ti

n
u

ed
)

To
ol

 ty
pe

 I
ST

Q
B

 S
yl

la
bu

s

Ac
tiv

ity
 in

 fu
nd

am
en

ta
l

IS

TQ
B

 G
lo

ss
ar

y
of

M
os

t l
ik

el
y

 c
la

ss
ifi

ca
tio

n

 t

es
t p

ro
ce

ss
 w

he
re

Te
st

in
g

Te
rm

s
de

fin
iti

on

us

er
s

it
is

 u
su

al
ly

 m
os

t

be

ne
fic

ia
l

Co
ve

ra
ge

 T
es

t e
xe

cu
tio

n

 I

m
pl

em
en

ta
tio

n
an

d

A

to
ol

 th
at

 p
ro

vid
es

 o
bj

ec
tiv

e
m

ea
su

re
s

of
 w

ha
t

D

ev
el

op
er

s
m

ea
su

re
m

en
t

 a

nd
 lo

gg
in

g

ex

ec
ut

io
n

 s
tr

uc
tu

ra
l e

le
m

en
ts

, e
.g

. s
ta

te
m

en
ts

, b
ra

nc
he

s,
to

ol
s

ha

ve
 b

ee
n

ex
er

ci
se

d
by

 a
 te

st
 s

ui
te

.

Se
cu

rit
y

to
ol

s
Te

st
 e

xe
cu

tio
n

Im
pl

em
en

ta
tio

n
an

d
A

to
ol

 th
at

 s
up

po
rt

s
te

st
in

g
to

 d
et

er
m

in
e

Se
cu

rit
y

an
d

lo
gg

in
g

ex
ec

ut
io

n
th

e
se

cu
rit

y
of

 th
e

so
ftw

ar
e

pr
od

uc
t.

te
st

in
g

Se
cu

rit
y

is
 d

ef
in

ed
 a

s:
 a

ttr
ib

ut
es

 o
f s

of
tw

ar
e

sp
ec

ia
lis

ts
pr

od
uc

ts
 th

at
 b

ea
r o

n
its

 a
bi

lit
y

to
 p

re
ve

nt

un
au

th
or

is
ed

 a
cc

es
s,

 w
he

th
er

 a
cc

id
en

ta
l o

r
de

lib
er

at
e,

 to
 p

ro
gr

am
s

an
d

da
ta

.

D
yn

am
ic

 a
na

ly
si

s
Pe

rf
or

m
an

ce
 a

nd
Im

pl
em

en
ta

tio
n

an
d

A
to

ol
 th

at
 p

ro
vid

es
 ru

n-
tim

e
in

fo
rm

at
io

n
on

D

ev
el

op
er

s
to

ol
s

m
on

ito
rin

g
ex

ec
ut

io
n

th
e

st
at

e
of

 th
e

so
ftw

ar
e

co
de

. T
he

se
 to

ol
s

ar
e

m
os

t c
om

m
on

ly
 u

se
d

to
 id

en
tif

y
un

as
si

gn
ed

po

in
te

rs
, c

he
ck

 p
oi

nt
er

 a
rit

hm
et

ic
 a

nd
 to

m

on
ito

r t
he

 a
llo

ca
tio

n,
 u

se
 a

nd
 d

ea
llo

ca
tio

n
of

m

em
or

y
an

d
to

 fl
ag

 m
em

or
y

le
ak

s.

Pe
rf

or
m

an
ce

Pe

rf
or

m
an

ce
 a

nd
Im

pl
em

en
ta

tio
n

an
d

A
to

ol
 to

 s
up

po
rt

 p
er

fo
rm

an
ce

 te
st

in
g

an
d

th
at

Pe

rf
or

m
an

ce
te

st
in

g/
lo

ad

m
on

ito
rin

g
ex

ec
ut

io
n

us
ua

lly
 h

as
 tw

o
m

ai
n

fa
ci

lit
ie

s:
 lo

ad
 g

en
er

at
io

n
te

st
in

g
te

st
in

g/
st

re
ss

an

d
te

st
 tr

an
sa

ct
io

n
m

ea
su

re
m

en
t.

Lo
ad

sp

ec
ia

lis
ts

te
st

in
g

to
ol

s
ge

ne
ra

tio
n

ca
n

si
m

ul
at

e
ei

th
er

 m
ul

tip
le

 u
se

rs

or
 h

ig
h

vo
lu

m
es

 o
f i

np
ut

 d
at

a.
 D

ur
in

g
ex

ec
ut

io
n,

re

sp
on

se
 ti

m
e

m
ea

su
re

m
en

ts
 a

re
 ta

ke
n

fr
om

se

le
ct

ed
 tr

an
sa

ct
io

ns
 a

nd
 th

es
e

ar
e

lo
gg

ed
.

Pe
rf

or
m

an
ce

 te
st

in
g

to
ol

s
no

rm
al

ly
 p

ro
vid

e
re

po
rt

s
ba

se
d

on
 te

st
 lo

gs
 a

nd
 g

ra
ph

s
of

 lo
ad

ag

ai
ns

t r
es

po
ns

e
tim

es
.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 202

203

TOOL SUPPORT FOR TESTING
Ta

bl
e

6.
5

(C
on

ti
n

u
ed

)

To
ol

 ty
pe

 I
ST

Q
B

 S
yl

la
bu

s

Ac
tiv

ity
 in

 fu
nd

am
en

ta
l

IS

TQ
B

 G
lo

ss
ar

y
of

M
os

t l
ik

el
y

 c
la

ss
ifi

ca
tio

n

 t

es
t p

ro
ce

ss
 w

he
re

Te
st

in
g

Te
rm

s
de

fin
iti

on

us

er
s

it
is

 u
su

al
ly

 m
os

t

be

ne
fic

ia
l

M
on

ito
rin

g
to

ol
s

Pe
rf

or
m

an
ce

 a
nd

Im
pl

em
en

ta
tio

n
an

d
A

so
ftw

ar
e

to
ol

 o
r h

ar
dw

ar
e

de
vic

e
th

at
 ru

ns

Va
rio

us
m

on
ito

rin
g

ex
ec

ut
io

n
co

nc
ur

re
nt

ly
 w

ith
 th

e
co

m
po

ne
nt

 o
r s

ys
te

m

un
de

r t
es

t a
nd

 s
up

er
vis

es
, r

ec
or

ds
 a

nd
/o

r
an

al
ys

es
 th

e
be

ha
vio

ur
 o

f t
he

 c
om

po
ne

nt
 o

r
sy

st
em

.

D
at

a
Qu

al
ity

D

at
a

qu
al

ity
Im

pl
em

en
ta

tio
n

an
d

N
o

de
fin

ed
.

Va
rio

us
As

se
ss

m
en

t t
oo

ls
ex

ec
ut

io
n

U
sa

bi
lit

y
to

ol
s

U
sa

bi
lit

y
Im

pl
em

en
ta

tio
n

an
d

N
ot

 d
ef

in
ed

. (
U

sa
bi

lit
y

Te
st

in
g

is
 d

ef
in

ed
 a

s
U

sa
bi

lit
y

ex
ec

ut
io

n
te

st
in

g
to

 d
et

er
m

in
e

th
e

ex
te

nt
 to

 w
hi

ch
 th

e
Te

st
in

g
so

ftw
ar

e
pr

od
uc

t i
s

un
de

rs
to

od
, e

as
y

to
 le

ar
n,

sp
ec

ia
lis

ts
ea

sy
 to

 o
pe

ra
te

 a
nd

 a
ttr

ac
tiv

e
to

 th
e

us
er

s
un

de
r s

pe
ci

fie
d

co
nd

iti
on

s.
)

Sp
re

ad
sh

ee
ts

Ot
he

r t
oo

ls
Al

l a
ct

ivi
tie

s
N

ot
 d

ef
in

ed
.

Va
rio

us

SQ
L

Ot
he

r t
oo

ls
Im

pl
em

en
ta

tio
n

an
d

N
ot

 d
ef

in
ed

.
Va

rio
us

ex
ec

ut
io

n

Pr
oj

ec
t p

la
nn

in
g/

Ot
he

r t
oo

ls
Pl

an
ni

ng
 a

nd
 c

on
tr

ol
N

ot
 d

ef
in

ed
.

Va
rio

us
re

so
ur

ce

D
eb

ug
gi

ng
 to

ol
s

Ot
he

r t
oo

ls
N

ot
 u

se
d

fo
r t

es
tin

g
A

to
ol

 u
se

d
by

 p
ro

gr
am

m
er

s
to

 re
pr

od
uc

e
D

ev
el

op
er

s
ac

tiv
iti

es
fa

ilu
re

s,
 in

ve
st

ig
at

e
th

e
st

at
e

of
 p

ro
gr

am
s

an
d

fin
d

th
e

co
rr

es
po

nd
in

g
de

fe
ct

. D
eb

ug
ge

rs

en
ab

le
 p

ro
gr

am
m

er
s

to
 e

xe
cu

te
 p

ro
gr

am
s

st
ep

 b
y

st
ep

, t
o

ha
lt

a
pr

og
ra

m
 a

t a
ny

 p
ro

gr
am

st

at
em

en
t a

nd
 to

 s
et

 a
nd

 e
xa

m
in

e
pr

og
ra

m

va
ria

bl
es

.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 203

SOFTWARE TESTING

204

INTRODUCING A TOOL INTO AN ORGANISATION

There are many stages in the process that should be considered before
implementing a test tool.

Analyse the problem/opportunity
An assessment should be made of the maturity of the test process used within the
organisation. If the organisation’s test processes are immature and ineffective
then the most that the tool can do is to make the repetition of these processes
quicker and more accurate – quick and accurate ineffective processes are still
ineffective!

It is therefore important to identify the strengths, weaknesses and opportunities
that exist within the test organisation before introducing test tools. Tools should
only be implemented that will either support an established test process or
support required improvements to an immature test process. It may be beneficial
to carry out some TPI (Test Process Improvement) or CMMi (Capability Maturity
Model Integration) assessment to establish the maturity of the organisation
before considering the implementation of any test tool.

Generate alternative solutions
It may be more appropriate and cost-effective to do something different.
In some organisations, performance testing, which may only need to be done
from time to time, could be outsourced to a specialist testing consultancy.
Training or recruiting better staff could provide more benefits than
implementing a test tool and improve the effectiveness of a test process
more significantly. In addition, it is more effective to maintain a manual
regression pack so that it accurately reflects the high-risk areas than to
automate an outdated regression pack (that is no longer relevant) using a
test execution tool.

An early investigation of what tools are available is likely to form part of this
activity.

Constraints and requirements
A thorough analysis of the constraints and requirements of the tool should be
performed. Interested parties should attend workshops and/or be interviewed so
that a formal description of the requirements can be produced and approved by
the budget holder and other key stakeholders.

A failure to specify accurate requirements (as with a failure to specify accurate
requirements for a piece of software) can lead to delays, additional costs and the
wrong things being delivered. This could lead to a review tool being implemented
that does not allow access across the internet, even though there is a need for
staff from many countries to participate in reviews. Any financial or technical
constraints (e.g. compatibility with particular operating systems or databases)
should also be considered.

It is useful to attach some sort of priority or ranking to each requirement or group
of requirements.

SOFTWARE TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 204

205

TOOL SUPPORT FOR TESTING

Training, coaching and mentoring requirements should also be identified. For
example, experienced consultants could be used for a few weeks or months to
work on overcoming implementation problems with the tool and to help transfer
knowledge to permanent staff. Such consultants could be provided by the vendor
or could be from the contract market.

Requirements for the tool vendor should also be considered. These could include
the quality of training and support offered by the vendor during and after
implementation and the ability to enhance and upgrade the tool in the future.
In addition, their financial stability should be considered as the vendor could go
bankrupt or sell to another vendor. Therefore, using a small niche vendor may be
a higher risk than using an established tool supplier.

If non-commercial tools (such as open source and freeware) are being considered
then there are likely to be risks around the lack of training and support available.
In addition, the ability or desire of the service support supplier (or open-source
provider) to continue to develop and support the tool should be taken into account.

Evaluation and shortlist
The tools available in the marketplace should be evaluated to identify a shortlist
of the tools that provide the best fit to the requirements and constraints. This
may involve:

searching the internet;

attending exhibitions of test tools;

discussions with tool vendors;

engaging specialist consultants to identify relevant tools.

It may also be useful for the test organisation to send a copy of its list of
requirements and constraints to tool vendors so that:

the vendor is clear about what the test organisations wants;

the vendor can respond with clarity about what its own tools can do and
what workarounds there are to meet the requirements that the tool cannot
provide;

the test organisation does not waste time dealing with vendors that cannot
satisfy its key requirements.

The outcome of this initial evaluation should result in a shortlist of perhaps one,
two or three tools that appear to meet the requirements.

Detailed evaluation/proof of concept
A more detailed evaluation (proof of concept) should then be performed against
this shortlist. This should be held at the test organisation’s premises in the test
environment in which the tool will be used. This test environment should use the
system under test and other software, operating systems and hardware with
which the tool will be used. There are several reasons why there is little benefit
from evaluating the tool on something different. For example:

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 205

SOFTWARE TESTING

206

SOFTWARE TESTING

Test execution tools do not necessarily recognise all object types in the system
under test, or they may need to be reconfigured to do so.

Performance measurement tools may need to be reconfigured to provide
meaningful performance information.

Test management tools may need to have workflow redesigned to support
established test processes and may need to be integrated with existing tools
used within the test process.

Static analysis tools may not work on the version of programming languages
used.

In some cases, it may be worth considering whether changes can be made to the
organisation’s test environments and infrastructure, but the costs and risks need
to be understood and quantified.

(Note that if there is only one tool in the shortlist then it may be appropriate to
combine the proof of concept and the pilot project.)

After each proof of concept the performance of the tool should be assessed in
relation to each predefined requirement. Any additional features demonstrated
should be considered and noted as potential future requirements.

Once all proofs of concept have been carried out it may be necessary to amend the
requirements as a result of what was found during the tool selection process. Any
amendments should be agreed with stakeholders. Each tool should then be
assessed against the finalised set of requirements.

There are three likely outcomes at this stage:

None of the tools meet the requirements sufficiently well to make it
worthwhile purchasing and implementing them.

One tool meets the requirement much better than the others and is likely to
be worthwhile. In this case select this tool.

The situation is unclear and more information is needed. In this case a
competitive trial or another cycle/iteration of the process may be needed.
Perhaps the requirements need to be revised or further questions need to be put
to vendors. It may also be time to start negotiations with vendors about costs.

Negotiations with vendor of selected tool
Once a tool has been selected discussions will be held with the vendor to establish
and negotiate the amount of money to be paid and the timing of payments. This
will include some or all of the following:

purchase price;

annual licence fee;

consultancy costs;

training costs;

implementation costs.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 206

207

Discussions should establish the amount to be paid, first, for a pilot project and,
secondly (assuming the pilot project is successful), the price to be paid for a larger
scale implementation.

The pilot project
The aims of a pilot project include the following:

It is important to establish what changes need to be made to the high-level
processes and practices currently used within the test organisation. This
involves assessing whether the tool’s standard workflow, processes and
configuration need to be amended to fit with the test process or whether the
existing processes need to be changed to obtain the optimum benefits that the
tool can provide.

To determine lower level detail such as templates, naming standards and
other guidelines for using the tool. This can take the form of a user guidelines
document.

To establish whether the tool provides value for money. This is done by trying
to estimate and quantify the financial and other benefits of using the tool and
then comparing this with the fees paid to the vendor and the projected
internal costs to the organisation (e.g. lost time that could be used for other
things, the cost of hiring contractors, etc.).

A more intangible aim is to learn more about what the tool can and cannot do
and how these functions (or workarounds) can be applied within the test
organisation to obtain maximum benefit.

The pilot project should report back to the group of stakeholders that determined
the requirements of the tool.

If a decision is made to implement the tool on a larger scale then a formal project
should be created and managed according to established project management
principles. (This is outside the scope of the book and the syllabus. See ISEB
Project Management.)

Key factors in successful implementations of test tools
There are certain factors or characteristics that many successful tool
implementation projects have in common:

Implementing findings from the pilot project such as high-level process
changes and using functions or workarounds that can add additional
benefits.

Identifying and subsequently writing user guidelines, based on the findings of
the pilot project.

An incremental approach to rolling out the tool into areas where it is likely
to be most useful. For example, this can allow ‘quick wins’ to be made and
good publicity obtained, resulting in a generally positive attitude towards
the tool.

Improving the process to fit with the new tool, or amending the use of the tool
to fit with existing processes.

TOOL SUPPORT FOR TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 207

Ensuring that the appropriate level of training, coaching and mentoring is
available. Similarly, there may be a need to recruit permanent or contract
resources to ensure that sufficient skills exist at the outset of the tool’s use
within the organisation.

Using a database (in whatever format) of problems encountered and lessons
learnt to overcome them. This is because new users are likely to make similar
mistakes.

Capturing metrics to monitor the amount of use of the tool. Recording the
benefits obtained. This can then be used to support arguments about imple-
menting to other areas within the test organisation.

Agreeing or obtaining a budget to allow the tool to be implemented
appropriately.

Summary of test tool implementation process
The diagram in Figure 6.6 outlines the process for selecting and implementing a
test tool in an organisation. This shows that there are several points at which a
decision could be made not to introduce a tool. It also demonstrates that the
activities during the evaluation and negotiation stages can follow an iterative
process until a decision is made.

SUMMARY

We have seen that the main benefits of using test tools are generally the same as
the benefits from automating a process in any industry. These are: time saved;
and predictable and consistent results.

However, we have also seen that there can be considerable costs in terms of both
time and money associated with obtaining such benefits. The point at which the
use of tools becomes economically viable depends on the amount of reuse, which is
often difficult to predict.

SOFTWARE TESTING

208

CHECK OF UNDERSTANDING

(1) Why is an understanding of the test organisation’s maturity essential before
introducing a test tool?

(2) What is the purpose of defining requirements for the tool?

(3) Why is it important to evaluate the tool vendor as well as the tool itself?

(4) What is meant by a proof of concept?

(5) What is the purpose of a pilot project?

(6) When is it appropriate to combine a proof of concept and pilot project?

(7) Name three factors in the successful implementation of tools.

SOFTWARE TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 208

209

Other risks include over-optimistic expectations of:

what the tool can do;

how easy it is to use;

the amount of maintenance required.

TOOL SUPPORT FOR TESTING

Figure 6.6 Test tool implementation process

Analyse
the problem/
opportunity

Tools are unlikely
to be effective

Do not
introduce tool

Generate alternative
solutions

Identify constraints
and requirements

Evaluate and
produce shortlist

Detailed evaluation/
proof of concept

Negotiations
with vendors

Perform
pilot project

Implement using
project management
techniques and using
lessons learnt during

pilot project

Alternative solutions are
better than introducing tools

None of the tools meet the
requirements sufficiently well

The tool is not as effective
in practice as expected

If no clear selection, then
review requirements,

perform competitive trial,
negotiate with suppliers, etc.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 209

SOFTWARE TESTING

210

SOFTWARE TESTING

We have seen that there are many types of test tools and that they provide
support to a variety of activities within the fundamental test process. We have
also seen that tools are used by a variety of staff in the software development
process and that some are of greater benefit to developers than testers.

We have looked at the different scripting techniques that can be used with test
execution tools. This ranges from the simple record–playback to data-driven and
keyword-driven scripts.

We identified a process for selecting and introducing a test tool into an organisa-
tion. This involves understanding the interactions between activities within the
process and examining the purposes of a proof of concept and of a pilot project. We
also examined the problems likely to be encountered when implementing a tool
and looked at actions that can be taken in an attempt to overcome or avoid such
problems.

We also noted that a decision not to introduce a tool could well be a valid decision
at several stages within the process.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 210

211

Example examination questions with answers
E1. K1 question
For which of the following activities in the fundamental test process would an
incident management tool be most useful?

a. Test planning and control
b. Test analysis and design
c. Test implementation and execution
d. Evaluating exit criteria and reporting

E2. K2 question
Which of the following principles should be followed when introducing a test tool
into an organisation?

(i) Assessing organisational maturity to establish whether a tool will provide
expected benefits.

(ii) Requiring a quick payback on the initial investment.
(iii) Including a requirement for the tool to be easy to use without having to train

unskilled testers.
(iv) Identifying and agreeing requirements before evaluating test tools.

a. (i) and (ii)
b. (i) and (iv)
c. (ii) and (iii)
d. (iii) and (iv)

E3. K1 question
Which of the following defects is most likely to be found by a test harness?

a. Variance from programming standards.
b. A defect in middleware.
c. Memory leaks.
d. Regression defects.

E4. K2 question
How can test execution tools be of most benefit during exploratory testing?

a. They can record user actions so that defects are easier to recreate.
b. They can be used to perform the regression aspects of exploratory testing.
c. They can help to mitigate the risk of low test coverage.
d. They can use data-driven tests to increase the amount of exploratory testing

performed.

TOOL SUPPORT FOR TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 211

SOFTWARE TESTING

212

SOFTWARE TESTING

E5. K2 question
Which of the following types of test tool are most likely to include traceability
functions?

(i) Performance testing tool
(ii) Requirements management tool
(iii) Configuration management tool
(iv) Static analysis tool

a. (i) and (ii)
b. (i) and (iv)
c. (ii) and (iii)
d. (iii) and (iv)

E6. K1 question
A test management tool is most likely to integrate with which of the following
tools?

a. Performance testing tool
b. Test data preparation tool
c. Static analysis tool
d. Requirements management tool

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 212

213

Answers to questions in the chapter
SA1. The correct answer is d.
SA2. The correct answer is c.
SA3. The correct answer is a.

Answers to example questions
E1. The correct answer is c.
Incident management tools are most useful during test implementation and
execution as this is the stage at which the tool is used to raise, manage, retest
and close incidents.

The data collected during the defect life cycle can then be manipulated into
information that is useful for other activities within the fundamental test process.

Information on numbers of defects outstanding may be useful for evaluating exit
criteria (option (d)). This information could also be used for planning future
testing and for taking control (option (a)).

Incident management tools can also assist in test analysis and design (option (b))
as information about defects found when testing the previous release of the
system could be used when analysing the type of testing required for the next
enhancement.

E2. The correct answer is b.
Assessing organisational maturity (i) is very important when deciding whether to
introduce a test tool, as implementing a tool in an immature test organisation
with poor processes is unlikely to produce any benefits.

A quick return on the initial investment (ii) in a test tool is rare. See the graph in
Figure 6.1.

Having a requirement that a tool should be easy to use for untrained and
unskilled testers (iii) is generally a false hope. This is comparable with expecting
someone who has never driven a car to be able to drive safely and effectively.

Agreeing requirements before evaluating tools (iv) is essential. Not to do so would
be comparable with building and testing a system without requirements.

In conclusion, (i) and (iv) are good principles to follow when introducing a tool
and (ii) and (iii) are not.

E3. The correct answer is b.
Variance from programming standards defects (option (a)) are found during the
review or static testing process. Therefore a test harness is unlikely to find a
defect in programming standards.

Memory leak defects (option (c)) could potentially be found by a test harness
designed to run many test cases.

Regression defects (option (d)) could be found using many types of test tool.

TOOL SUPPORT FOR TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 213

SOFTWARE TESTING

214

SOFTWARE TESTING

Defects in middleware (option (b)) are generally more likely to be found by a test
harness or a dynamic analysis tool than by any other type of tool (see Figure 6.5).

E4. The correct answer is a.
Exploratory testing is used when it is unclear what the system is supposed to do.
Therefore test execution tools are of little use because expected results cannot be
predicted.

However, the record feature of a test execution tool can be used to log the actions
performed so that defects can be recreated (option (a)) and rectified more easily.

E5. The correct answer is c.
Requirements management tools (ii) have traceability because they enable
test conditions and subsequently test scripts and defects to be traced back to
requirements. Configuration management tools (iii) also need to trace the
appropriate version of a test script to the release or version of a system or module.

Performance monitoring tools (i) and static analysis tools (iv) are designed for
specific objectives. Neither of these tools particularly need traceability functions.

E6. The correct answer is d.
Requirements management tools (option (d)) often have interfaces with test
management tools. In some cases they will be sold as a package or in other cases
a test management tool may have its own requirements module. The use of such
interfaces or integrated packages aids traceability from requirements through to
test scripts and defects.

Performance management tools (option (a)), test data preparation tools (option (b))
and static analysis tools (option (c)) are unlikely to have an interface or be inte-
grated with a test management tool. They serve different purposes and therefore
there is little need for such interfaces.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 214

215

THE EXAMINATION

The examination structure
The Certified Tester Foundation Level examination is a one-hour examination
made up of 40 multiple choice questions. There are five main aspects to the
examination’s structure:

The questions are all equally weighted.

Questions are set from Learning Objectives stated in each section.

The number of questions associated with each section of the syllabus is in
proportion to the amount of time allocated to that section of the syllabus,
which roughly translates into:

Section 1, seven questions

Section 2, six questions

Section 3, three questions

Section 4, twelve questions

Section 5, eight questions

Section 6, four questions

These proportions are approximate and the precise breakdown is not mandatory,
but examinations will be structured along these lines and as close to these relative
proportions as possible.

The number of questions at each level of understanding will be as follows:

K1 50%, i.e. 20 questions

K2 30%, i.e. 12 questions

K3 and K4 20%, i.e. 8 questions

The breakdown of K3 and K4 questions is not defined in the exam structure,
but there is only a single K4 learning objective (LO-4.4.4) and this deals with
statement and decision coverage. There will therefore be no more than two

7 THE EXAMINATION

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 215

216

EXAMPLE OF A K1 QUESTION

(This one is taken from Chapter 3.)

What do static analysis tools analyse?

(a) Design
(b) Test cases
(c) Requirements
(d) Program code

(The correct answer is (d).)

K4 questions and more likely only one, and the topic will be assessing statement
and/or decision coverage for completeness with respect to defined exit criteria.

This is a mandatory requirement and examinations will adhere more strictly to
these proportions than to those related to the syllabus section.

Since the majority of K3 questions will be likely to be based on Section 4 of
the syllabus, it is likely that all or most K3 questions will be about applying
test design techniques. All K4 questions will be related to statement and decision
coverage.

The pass mark is 26 correct answers and there are no penalties for incorrect
answers.

The question types
All questions will contain a ‘stem’, which states the question, and four optional
answers. One and only one of the optional answers will be correct. The remainder
can be expected to be plausibly incorrect, which means that anyone knowing the
correct answer will be unlikely to be drawn to any of the incorrect answers, but
anyone unsure of the correct answer will be likely to find one or more alternatives
equally plausible.

Questions will be stated as clearly as possible, even emphasising keywords by
emboldening or underlining where this will add clarity. There should be very few
negative questions (e.g. which of the following is not true?) and any negative
questions included will be worded so that there is no ambiguity. Questions will be
set to test your knowledge of the content of the topics covered in the syllabus and
not your knowledge of the syllabus itself.

There are no absolute rules for question types as long as they are appropriate to
the level of understanding they are testing, but there are some common types of
questions that are likely to arise.

As a general rule, K1 questions will be of the straightforward variety shown in
the next box.

SOFTWARE TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 216

217

K2 questions may be of the same type as the K1 example but with a more
searching stem. The more common form of K2 question, however, is known as
the Roman type. This is particularly well suited to questions involving
comparisons or testing the candidate’s ability to identify correct combinations of
information. The example in the next box is a K2 question of the Roman type.

K3 questions test the candidate’s ability to apply a topic, so the most common
form of these is related to test design techniques (though this is not the only topic
that can be examined at the K3 level). The next box gives a typical example of a
techniques question.

THE EXAMINATION

EXAMPLE OF A K2 QUESTION

(This one is taken from Chapter 3.)

Which of the following statements are correct for walkthroughs?

(i) Often led by the author.
(ii) Documented and defined results.
(iii) All participants have defined roles.
(iv) Used to aid learning.
(v) Main purpose is to find defects.

(a) (i) and (v) are correct.
(b) (ii) and (iii) are correct.
(c) (i) and (iv) are correct.
(d) (iii) and (iv) are correct.

(The correct answer is (c).)

EXAMPLE OF A K3 QUESTION

A system is designed to accept values of examination marks as follows:

Fail 0–39 inclusive
Pass 40–59 inclusive
Merit 60–79 inclusive
Distinction 80–100 inclusive

Which of the following sets of values are all in different equivalence partitions?

(a) 25, 40, 60, 75
(b) 0, 45, 79, 87
(c) 35, 40, 59, 69
(d) 25, 39, 60, 81

(The correct answer is (b).)

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 217

K4 questions test a candidate’s ability to analyse information and decide on a
course of action. In this examination, K4 questions will be used to test ability to
decide whether defined exit criteria have been met.

Remember that K1, K2, K3 and K4 do not equate to easy, moderate or hard. The
K level identifies the level of understanding being tested, not the difficulty of the
question. It is perfectly possible to find K2 questions that are more difficult (in
the sense of being more challenging to answer) than a K3 question. It is, however,
true that K1 questions will always be the most straightforward and anyone who
knows the material in the syllabus should have no difficulty in answering any
K1 question. Every question has the same value; any 26 correct answers will
guarantee a pass.

Remember, too, that topics can be examined at any level up to the maximum
identified in the syllabus for that topic, so a K3 topic can be examined at the K1
or the K2 level.

Questions in the examination are not labelled by the K level they are testing, but
the example questions at the end of each chapter of this book include examples of
K1, K2, K3 and K4 questions, and these are labelled by level for your guidance.

SOFTWARE TESTING

218

EXAMPLE OF A K4 QUESTION

A software component has the code shown below:

Program Biggest

A, Biggest: Integer
Begin
Read A
Biggest = 10
While A > 0
Do

If A > Biggest
Then Biggest = A
Endif

Read A
Enddo
End

The component has exit criteria for component testing that include 100%
statement coverage. Which of the following test cases will satisfy this criterion?

(a) 0
(b) 10, 0
(c) 10, 5, 0
(d) 10, 11, 0

(The correct answer is (d).)

SOFTWARE TESTING

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 218

219

The sample examination
The sample examination paper, which is available from ISEB, is designed to
provide guidance on the structure of the paper and the ‘rubric’ (the rules printed
on the front of the paper) of the real examination. The questions in the sample
paper are not necessarily typical, though there will be examples of the various
types of questions so that candidates are aware of the kinds of questions that can
arise. Any topic or type of question in the sample paper can be expected to arise in
a real examination at some time. For example, the sample paper may contain an
example of a question testing the application of decision testing to a program with
a looping structure in it; the existence of this question can be taken to imply that
questions involving programs with looping structures may appear in the real
examination. Bear in mind that the sample paper may change from time to time
to reflect any changes in the syllabus or to reflect any changes in the way
questions are set.

Examination technique
In a relatively short examination there is little time to devote to studying the
paper in depth. However, it is wise to pause before beginning to answer questions
while you assimilate the contents of the question paper. This brief time of
inactivity is also a good opportunity to consciously slow down your heart rate
and regulate your breathing; nervousness is natural, but it can harm your
performance by making you rush. A few minutes spent consciously calming down
will be well repaid. There will still be time enough to answer the questions;
a strong candidate can answer 40 questions in less than 45 minutes.

When you do start, go through the whole paper answering those questions
that are straightforward and for which you know the answer. When you have
done this you will have a smaller task to complete and you will probably have
taken less than a minute for each question that you have already answered,
giving you more time to concentrate on those that you will need more time
to answer.

Next, turn to those you feel you understand but that will take you a little time to
work out the correct answer, and complete as many of those as you can. The
questions you are left with now should be those that you are uncertain about.
You now know how long you have to answer each of these and you can take a
little more time over each of them.

REVISION TECHNIQUES

There are some golden rules for exam revision:

Do as many example questions as you can so that you become familiar with
the types of questions, the way questions are worded and the levels (K1, K2,
K3, K4) of questions that are set in the examination.

Be active in your reading. This usually means taking notes, but this book has
been structured to include regular checks of understanding that will provide
you with prompts to ensure you have remembered the key ideas from the
section you have just revised. In many cases information you need to
remember is already in note form for easy learning.

THE EXAMINATION

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 219

SOFTWARE TESTING

220

SOFTWARE TESTING

One important way to engage with the book is to work through all the
examples and exercises. If you convince yourself you can do an exercise,
but you do not actually attempt it, you will only discover the weakness in that
approach when you are sitting in the examination centre.

Learning and revision need to be reinforced. There are two related ways to
do this:

By making structured notes to connect together related ideas. This can be
done via lists, but a particularly effective way to make the connections is
by using a technique known as mind mapping. An example of a mind map
of the syllabus can be found in the Introduction.

By returning to a topic that you have revised to check that you have
retained the information. This is best done the day after you first revised
the topic and again a week after, if possible. If you begin each revision
section by returning to the ‘Check of understanding’ boxes in some or all
of the chapters you worked with in previous revision sessions it will help
to ensure that you retain what you are revising.

Read the syllabus and become familiar with it. Questions are raised directly
from the syllabus and often contain wording similar to that used in the
syllabus. Familiarity with the syllabus document will more than repay the
time you will spend gaining that familiarity.

REVIEW

The layout, structure and style of this book are designed to maximise your
learning: by presenting information in a form that is easy to assimilate; by listing
things you need to remember; by highlighting key ideas; by providing worked
examples; and by providing exercises with solutions. All you need for an intense
and effective revision session is in these pages.

The best preparation for any examination is to practise answering as many
realistic questions as possible under conditions as close to the real examination as
possible. This is one way to use the ISEB sample paper, or you can construct a
sample paper of your own from the questions included in this book. Remember to
read the syllabus and be sure that you understand what it is asking of you.

Good luck with your Foundation Certificate examination.

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 220

221

INDEX

acceptance testing, 17, 39, 42,
47–48, Fig. 2.2

actors, 95, 96
ad hoc testing, 82, 118
agile software development, 41,
136, 141

alpha testing, 48
audit trails, 61
authors, 61, 63, 64, 66, 135

baselining, 144
beta testing, 48
black-box techniques see
specification-based techniques

boundary value analysis, 86–88
break-even points, 188, Fig. 6.1,
Fig. 6.4

builds, 178
business rules, 88, 95

Capability Maturity Model
Integration (CMMi), 204

capture playback tools, 185–186
changes

testing, 23–24, 41, 50
traceability, 41, 177

checklists, 64, 67
code

instrumentation, 190
interpreting, 97–100
reviewing, 59
source code, 68
static analysis, 68–70

code of ethics, 27–28
communication, 26–27, 60
compilers, 70, 180
completion criteria

coverage measures as, 80, 190
defining, 14, 22
see also exit criteria

component integration testing, 45,
69, 140

configuration management, 41,
159–160

configuration management tools,
177–179, Table 6.5

confirmation testing see retesting
contract acceptance testing, 48
control flow graphs, 68, 104–106,
108, Figs. 4.8–4.9

control structures, 43, Fig. 2.4
see also program structures

cost escalation models, 18, 37

costs
impact of errors, 18, Fig. 1.3,
Table 1.1

as metric, 148, 151
reducing, 60, 170
test tools, 179–180, 193, 194, 208
see also cost escalation models;
payback models

coverage measurement tools, 190,
Table 6.4

cyclical models see iterative
development models

dashboards, 151, Fig. 5.3
data quality assessment tools,
195–196

data-driven testing, 186, 194
databases

in test tools, 170, 174, 176
testing, 184–185, 194

debugging, 15, 50
debugging tools, 180, Table 6.5
decision coverage, 114–117
decision table testing, 88–91
decision testing, 114–117
decisions, 98, 100, 104
defect lists, 119
defects

absence of, 16, 20
causes, 10–11, Fig. 1.1
clustering, 19
dynamic analysis tools and, 192
early identification, 18, 57, 60
link with quality, 13
performance testing tools and,
194

preventing, 15, 69
raising constructively, 26
reviews and, 60
static analysis and, 70, 180,
181

developers
errors and, 135
role in testing, 26, 43, 45
test tools and, 170, 188,
Table 6.5

documents
errors in, 10, 15, 18
see also reviews; specifications

drivers, 45, 193
dynamic analysis tools, 192–193,
Table 6.5

dynamic testing, 15

early testing, 17–19
entry criteria, 147
equivalence partitioning, 84–86
error guessing, 118–119
‘error-defect-failure’ cycle, 18
errors

absence of, 20
clustering, 86
costs, 15, 18
effect, 10–11, Fig. 1.1
finding, 59, 135
from unfamiliarity, 136
see also defects

‘errors of migration’, 18
ethics, 27–28
events, 92
executable statements

counting, 98, 110–111
testing, 107–108

execution postconditions, 77
execution preconditions, 77
exhaustive testing, 12, 16–17
exit criteria, 147–148, Table 6.4

evaluating, 24–25
measuring, 151, 190
see also completion criteria

experience-based techniques, 81,
82, 118–119

expert-based estimation, 148–149
exploratory testing, 119, 186

factory acceptance testing, 48
failure lists, 119
failure of software, 10–12
fault attack, 119
field testing, 48
flow charts, 100–103, 108,
Figs. 4.4–4.7, Fig. 4.10

formal reviews, 61–64, Fig. 3.1
Foundation Certificate

examination, 215–216, 219
learning objectives, 2
purpose, 1–2
question types, 216–218
revision, 6, 219–220
sample paper, 219
syllabus, Fig 0.1, 2–3, 220

functional requirements, 46, 47
functional specifications, 39, 46,
Figs. 2.1–2.2

functional testing, 49–50
fundamental test process (FTP),
20–25, Figs. 1.4–1.5

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 221

high-complexity measures, 68–69
hybrid flow graphs, 108,
Figs. 4.11–4.14

impact analysis, 51–52
impact of risk, 133
incident management, 156–158
incident management tools, 169,
175–176, Table 6.5

incident reports, 157–158, 175,
Fig. 5.4, Table 5.4

incidents, 156
independent testing, 135–137

benefits, 25–26, 46, Table 5.1
levels of, 135–136, Fig. 5.1

informal reviews, 66
inspections, 67, 68

test tools for, 179–180
instrumentation code, 190
integrated test tools, 173, Fig. 6.3
integration strategies

big-bang integration, 43
bottom-up integration, 44–45,
Fig. 2.5

top-down integration, 43–44,
Fig. 2.4

integration testing, 39, 43–45, 140,
Fig. 2.2

test tools for, 69
interoperability testing, 49
‘invalid’ transitions, 92, 93
iteration structures, 98, 99–100,
Fig. 4.6

iterative development models, 38,
40–41, Fig. 2.3

keyword-driven testing, 186

limited entry decision table, 89
linear models, 37
load generators, 193
load testing tools, 193–194,
Table 6.5

loops see iteration structures

maintenance testing, 51–52
managers, 64
master test plan, 143, 144, Fig. 5.2,
Table 5.2

maturity, 60, 204
metrics

coverage, 177
from reviews, 64
from static analysis, 68–69, 70
from test tools, 174–175, 180
monitoring, Fig. 5.3
test progress, 150–151

metrics-based estimation, 148
middleware, test harness for, 189,
Fig. 6.5

modelling tools, 181–182,
Table 6.5

moderators, 64, 67
monitoring tools, 195, Table 6.5

non-executable statements, 98, 102,
108

non-functional failures, 13
non-functional requirements, 13,
46–47, 83

non-functional testing, 13, 49, 50,
83

non-valid inputs, 78, 79, 84–85
‘null transitions’, 92, 93

operational acceptance testing,
48, 140

operational readiness testing, 48

pair programming, 66
Pareto principle, 19
partitions see equivalence
partitioning

path through program, 110,
Fig. 4.12

payback models, 169, 188, Fig. 6.1,
Fig. 6.4

performance monitoring, 194, 195
performance testing tools, 193–195,
Table 6.5

preventative test approach, 141
prioritization, 14, 17, 23
probability of risk, 133
process improvement

from incidents, 157, 176
from reviews, 67
from static analysis, 69
from test reports, 155

product risks, 133–135
program specifications, 39, 42,
Figs. 2.1–2.2

program structures, 98–100, 104,
108

programs, paths through, 110,
Fig. 4.12

progress data, 150–151
project risks, 132–133
project test plans, 142
prototyping, 41
pseudo code, 97–98
psychology of testing, 25–27

quality, 13, 27, 80

rapid application development
(RAD), 41

Rational Unified Process (RUP), 41
reactive test approach, 141
record tools, 185–186
regression testing, 19–20, 23–24,
41, 50

test tools for, 185, 187
regulation acceptance testing, 48
reports, 24–25, 154–155

incident, 157–158, 175, Fig. 5.4,
Table 5.4

test summary, 24, 154, Table 5.3
requirement specifications, 17–18,
39, 47, Figs. 2.1–2.2

requirements
changes to, 177
functional, 46, 47
non-functional, 13, 46–47, 83

requirements management tools,
177, Table 6.5

resources
for testing, 138, 140
triangle of, 13, Fig. 1.2

response times, 193–194
retesting, 16, 23–24, 50
reuse of testware, 175, 185
review leaders, 62, 64
review process support tools,
179–180, Table 6.5

reviewers, 61–62, 64
reviews, 18, 59–60

basic process, 61
formal, 61–64
formality level, 60–61, Fig. 3.2

objectives, 61, 67
roles and responsibilities, 62,
64–65

success factors, 67–68
tools for, 179–180, Table 6.5
types, 65–67, Fig. 3.2

rework, 18, 63
risk, 132

product risk, 133–135
project risk, 132–133
in test selection, 12–13, 17,
20, 120

risk management, 134–135
risk registers, 133
risk-based testing, 134–135, 141
root cause analysis, 69

safety-critical systems
independent testing, 136
structure-based testing, 118
test tools, 183, 191, 193

scenarios, 95
scribes, 64, 66
security testing, 20, 49
security testing tools, 191–192,
Table 6.5

selection structures, 98, 99, Fig. 4.5
sequence structures, 98–99, Fig. 4.4
sequential models, 37
sequential statements, 100
site acceptance testing, 48
software development life cycle, 34

costs of errors during, 18,
Table 1.1

definition, 36
models, 36–41
testing during, 41–52

software development models
iterative models, 38, 40–41,
Fig. 2.3

linear models, 37
V-model, 38–40, Fig. 2.2
waterfall model, 36–37, Fig. 2.1

software failures, 10–12
software models, 68
source code, 68
specification-based techniques, 50,
81–82

boundary value analysis, 86–88
decision table testing, 88–91
equivalence partitioning, 84–86
state transition testing, 91–95
use case testing, 95–96, Fig. 4.3

specifications, 39, 82, 83,
Figs. 2.1–2.2

see also individual specification
types

standards
in test approach, 141
test tools and, 175, 183

state tables (ST), 92–94, Table 4.1
state transition testing, 91–94,
Figs. 4.1–4.2

statement testing, 107–112
statements

executable, 98, 107–108, 110–111
non-executable, 98, 102, 108
sequential, 101

states, 91
static analysis, 68–69
static analysis tools, 69–70,
180–181, Table 6.5

static testing, 15, 57, 59
reviews, 59–68

222

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 222

223

static analysis, 68–70
tool support for, 69–70, 179–181

stochastic testing, 141
stress testing tools, 194, Table 6.5
structure-based techniques, 81, 97,
118

control flow graphs, 104–107
decision testing, 114–117
flow charts in, 100–104
statement testing, 107–112

stubs, 44
system integration testing, 45, 194
system testing, 39, 46–47, 140,
Fig. 2.2

technical reviews, 66
technical specifications, 39,
Figs. 2.1–2.2

test analysis, 22–23
test approaches, 140–142
test basis, 42, 82

models as, 83
test tools and, 182

test cases, 22, 77–80, 177
see also test design techniques

test charters, 119
test closure activities, 25
test comparators, 169, 184–185,
Table 6.5

test conditions, 22, 77
defining, 78, 82
and test tools, 174, 177

test control, 22, 155–156
test coverage, 80, 118

decision, 114–117
statement, 107–112
test tools, 190–191

test data preparation tools, 170,
183–184, Table 6.5

test design, 22–23
test design techniques, 15

black-box, 82–96
categories, 81–82
choosing, 119–120
experience-based, 118–119
specification-based, 82–96
structure-based, 97–118

test design tools, 182–183,
Table 6.5

test development process, 76–80
test drivers, 45, 193
test environments

preparation, 23, 139, 183–184
test tools and, 171, 205–206

test estimation, 148–150
test execution, 15, 20, 23–24
test execution schedules, 78, 80
test execution tools, 185–188, 190,
194, Table 6.5

test frames, 182
test harnesses, 170, 188–190,
Table 6.5

test implementation, 23–24
test leaders, 138–139
test levels, 42

acceptance testing, 47–48
integration testing, 43–45
system testing, 46–47
unit testing, 42–43
see also test-level plans

test management information, 170,
175, 176

test management tools, 173–175,
Table 6.5

test objectives, 15, 18, 119, 120
test oracles, 170, 183, Table 6.5
test organization, 135–140
test planning, 22, 39, 142

activities, 146–147
documentation, 133, 143–145,
146, Table 5.2

entry criteria, 147
exit criteria, 147–148

test procedure specifications, 77
Test Process Improvement (TPI),
204

test progress monitoring, 150–151
test scripts, 77, 185–186, 194
test strategies, 140–142
test summary reports, 24, 154,
Table 5.3

test tasks, 138–140
test tools, 167, Table 6.5

benefits, 169–170, 208
configuration management,
177–179

costs, 179–180, 193, 194, 208
coverage measurement, 190
data quality assessment,
195–196

definition, 169
dynamic analysis, 192–193
implementing, 204–208, Fig. 6.6
incident management, 169,
175–176

integrated, 173, Fig. 6.3
miscellaneous, 197–198
modelling, 181–182
monitoring, 195
payback models, 169, Fig. 6.1
performance testing, 193–195
requirements management, 177
review process support,
179–180

risks, 170–171, 209
security, 191–192
static analysis, 69–70, 180–181
test comparators, 169, 184–185
test data preparation, 170,
183–184

test design, 182–183
test execution, 185–188
test harnesses, 170, 188–190
test management, 173–175

usability, 196–197
vendors, 167, 205, 206–207

test-driven development, 40, 42, 43
test-level plans, 144, Fig. 5.2,
Table 5.2

testers
code of ethics, 27–28
developers and, 26–27, 135
independence and, 135–136
in review process, 42, 64–65
tasks, 139–140

testing
characteristics of good, 41–42
early, 17–19, 59–60
effectiveness, 16, 19, 25–26
inadequacy, 1
level of effort required, 149–150
nature and purpose, 14–16
principles, 16–20
psychology of, 25–27
reducing costs, 60, 170
resources, 140
for risk control, 135
stopping, 14, 80, 147
test types, 49–50
type required, 20
see also specific test types e.g.
functional testing

testware, 160, 175, 178
time-boxes, 40
traceability

from configuration management,
159, 179

in iterative development, 41
requirements changes and, 177
of test cases, 78–79

transaction times, 193–194
transitions, 91–92, 93

Unified Modelling Language
(UML), 68, 181

unit test framework tools, 188
unit testing, 39, 42–43, Fig. 2.2
units, 42
usability test tools, 196–197
usage patterns, 193
use cases, 95–96, Fig. 4.3
user acceptance testing, 48, 140
user representatives, 39–40, 48

V-model, 38–40, Fig. 2.2
valid inputs, 78, 79, 84
validation, 38, 39–40
verification, 38
version numbers, 178, 179,
Table 6.1

walkthroughs, 66
waterfall model, 36–37, Fig. 2.1
white box techniques see
structure-based techniques

work-products, 17, 34, 37, 41

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 223

The ISTQB – ISEB Certified Tester Foundation level
is the first step in the leading programme for the
development and certification of software
testers worldwide

Our relationship with ISTQB has enabled
us to provide you with the most up-to-date
and relevant qualification in the industry,
helping you to develop your career in
software testing.

BCS, The Chartered Institute for IT supports the value of software testers
globally and understands the critical role they play in the IT industry.

Are you ready to launch your
software testing career?
Prove it with the ISTQB - ISEB Certified
Tester Foundation certificate

Find out more at:
www.bcs.org/iseb/ctfl

Software Testing 2nd Edition:Layout 1 10/1/10 4:56 PM Page 224

Software teSting
An ISTQB–ISEB Foundation Guide

Second Edition
Brian Hambling (Editor), Peter Morgan, Angelina Samaroo,

Geoff Thompson and Peter Williams

This bestselling software testing title is the official textbook
of the ISTQB–ISEB Foundation Certificate in Software Testing.
It covers the 2010 update to the exam syllabus and is ideal for
those with some experience of software testing who wish to
cement their knowledge with industry-recognised techniques
and theory. The book includes self-assessment exercises,
sample examination questions and worked examples.

•	 The	bestselling	software	testing	title
•	 The	official	textbook	of	the	ISTQB–ISEB	Foundation		 	 	
	 Certificate	in	Software	Testing	
•	 Complete	overview	of	tools	and	techniques

About the Authors
The authors are all experienced ISEB examination setters and
markers and know the ISTQB–ISEB syllabus in depth. The editor
Brian Hambling has experienced software development from
a developer’s, a project manager’s and a quality manager’s
perspective in a career spanning over 30 years.

You	might	also	be	interested	in:

SoFTwarE	TESTIng:	an	ISEB	Intermediate	Certificate
Brian Hambling and Angelina Samaroo

Invaluable for anyone
involved in testing and
would lift the game of
most VV&T staff
(including designers
doing their ‘informal’
reviews and tests) and
their project managers.
It is succinctly and
clearly written with
no nonsense. An
unreserved 5 for
value for money.
IT Training Magazine
(review of previous edition)

Information	Technology

softw
A

re testin
g: An ISTQB - ISEB Foundation Guide

B
rian H

am
bling (Editor)

Software
teSting
An ISTQB–ISEB
Foundation Guide
Second Edition

Brian Hambling (Editor)

SoftwareTesting_layout_4.indd 1 20/9/10 16:22:45

	Front Cover
	Software Testing
	BCS the chartered institute for IT
	Software Testing
	Contents
	Figures and tables
	Abbreviations
	Authors
	Introduction
	Nature and purpose of the book
	Purpose of foundation
	The certified tester foundation level syllabus
	Relationship of the book to the syllabus
	How to get the best out of this book

	1 The fundamentals of testing
	Background
	Introduction
	Why software fails
	Keeping software under control
	What testing is and what testing does
	General testing principles
	Fundamental test process
	The psychology of testing
	Code of ethics
	Summary
	References

	2 Life cycles
	Introduction
	Software development models
	Test levels
	Test types
	Maintenance testing
	Summary

	3 Static testing
	Introduction
	Background to static techniques
	Reviews and the test process
	Static analysis by tools
	Summary

	4 Test design techniques
	Introduction
	The test development process
	The idea of test coverage
	Categories of test case design techniques
	Specification-based (black-box) techniques
	Structure-based (white-box) techniques
	Experience-based techniques
	Choosing test techniques
	Summary

	5 Test management
	Introduction
	Risk and testing
	Test organisation
	Test approaches (test strategies)
	Test planning and estimation
	Incident management
	Configuration management
	Summary

	6 Tool support for testing
	Introduction
	What is a test tool?
	Test tools
	Introducing a tool into an organisation
	Summary

	7 The examination
	The examination
	Revision Techniques
	Review

	Index
	Back Cover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

