
Объектно-ориентированное
программирование

UTM, FCIM, POO 21.6, Brânzan Leon © 2025

XXIV. Обзор курса

Object-oriented programming

Course review

λ-выражения и архитектура фон Неймана
https://www.youtube.com/watch?v=vMDHpPN_p08

http://www.youtube.com/watch?v=vMDHpPN_p08&t=255
https://www.youtube.com/watch?v=vMDHpPN_p08

Для чего нужно высшее образование
https://www.youtube.com/watch?v=SlasmhEcXDo

http://www.youtube.com/watch?v=SlasmhEcXDo&t=2848
https://www.youtube.com/watch?v=SlasmhEcXDo

Compiler optimizations

База от Дейкстры

“It is practically impossible to teach good programming to
students that have had a prior exposure to BASIC: as potential
programmers they are mentally mutilated beyond hope of
regeneration.”

Edsger W. Dijkstra

Сначала был С
#include <string.h>

 char * __cdecl strcpy(char * __restrict__ _Dest,const char * __restrict__ _Source);
 char * __cdecl strcat(char * __restrict__ _Dest,const char * __restrict__ _Source);
 int __cdecl strcmp(const char *_Str1,const char *_Str2);
 size_t __cdecl strlen(const char *_Str);
 _CRTIMP
 char *__cdecl _strdup(const char *_Src);
 _CONST_RETURN
 char *__cdecl strchr(const char *_Str,int _Val);
 _CRTIMP
 char *__cdecl _strrev(char *_Str);
 _CONST_RETURN
 char *__cdecl strstr(const char *_Str,const char *_SubStr);
…
 typedef char * str;

Инкапсуляция – инструмент абстракции

 typedef struct {
 char * text;
 char * (*cons)(char*, const char*);
 } str;

 // …

 // const char *cs1 = "hello";
 str s1 = { malloc(strlen(cs1) + 1), strcpy};
 s1.cons(s1.text, cs1);

 printf(s1.text);

Object-oriented C

https://www.cs.rit.edu/~ats/books/ooc.pdf

typedef struct _class {
 size_t size;
 void * (*ctor)(void *self, va_list *app);
} Class;

typedef struct _string {
 const void * class;
 char * text;
} String;

static void * String_ctor(void *_self, va_list *app);
void * new(const void *_class, ...);

https://www.cs.rit.edu/~ats/books/ooc.pdf

Object-oriented C

static void *String_ctor(void *_self, va_list *app) {
 String *self = _self;
 const char *text = va_arg(*app, const char *);
 self->text = malloc(strlen(text) + 1);
 assert(self->text);
 strcpy(self->text, text);
 return self;
}

* “stdarg.h”

Object-oriented C

void *new(const void *_class, ...) {
 const Class *class = _class;
 void *p = calloc(1, class->size);
 assert(p);
 *(const Class **)p = class;
 if (class->ctor) {
 va_list ap;
 va_start(ap, _class);
 p = class->ctor(p, &ap);
 va_end(ap);
 }
 return p;
}

Object-oriented C

static const Class _String = {
 sizeof(String),
 String_ctor
};

const void *string = &_String;

void *a = new (string, "some text");

“If you are "setting" values from the outside of an object, you
are doing "simulated data structure programming" rather than
object oriented programming.”

Alan C. Kay

Классы
class str {
 char * text{nullptr};
public:
 ~str();
 str() = default;
 str(const char*);
 str(const str&);
 str(const str&&) noexcept;
 str &operator=(const str&);
 str &operator=(str&&) noexcept;
 void swap(str&);
 // ...
};

Классы

● … группируют алгоритмы вместе с данными, которые они изменяют
● … скрывают внутреннее состояние объекта от внешнего воздействия
● … позволяют изменять поведение операторов других типов данных

Перегрузка

// str s = "0"; std::cout << 1 + s;

class str {
public:
 friend std::ostream& operator<<(std::ostream&, const str&);
 friend str operator+(int, const str&);
};

Наследование

class pure_str : public str {
public:
 friend std::ostream& operator<<(std::ostream&, const pure_str&);

 friend str operator+(int, const pure_str&) = delete;
 // pure_str ps = "0"; std::cout << 1 + s;

 friend str operator+(int, const str&) = delete;
 // str s = "0"; std::cout << 1 + s;
};

Композиция

class pure_str {
 str string;
public:
 friend std::ostream& operator<<(std::ostream&, const pure_str&);

 // friend str operator+(int, const pure_str&);
 // pure_str ps = "0"; std::cout << 1 + s;
};

Другой пример

template <typename T> class iterator {
protected:
 T * ptr{nullptr};
public:
 iterator& operator++() { ptr++; return *this; }
};

template <typename T> class reverse_iterator : public iterator {
public:
 reverse_iterator& operator++() { ptr--; return *this; }
};

Адаптер

template <typename T> class iterator {
 T * ptr{nullptr};
public:
 iterator& operator++() { ptr++; return *this; }
};

template <typename Iterator> class reverse_iterator {
 Iterator iter;
public:
 reverse_iterator& operator++() { iter--; return *this; }
};

Полиморфизм

class str {
 char * text{nullptr};
public:
 str(iterator<char>, iterator<char>);
 // ...
};

str s1 = "hello";
str s2(s1.end(), s1.begin());

Полиморфизм

template <typename T> class iterator;
class reverse_iterator : public iterator<char>;

// str s2(s1.end(), s1.begin())

str::str(iterator<char> a, iterator<char> b) {
 // …
 auto start = a; auto finish = b;
 for (;start != finish;) {
 *text++ = *start++;
 }
}

Динамический полиморфизм

template <typename T> class iterator;

class reverse_iterator : public iterator<char>;

str::str(iterator<char> &a, iterator<char> &b) {
 // …
 auto start = a; auto finish = b;
 for (;start != finish; *text++ = *start++);
}

str s2(reverse_iterator(s1.end()), reverse_iterator(s1.begin()));

Статический полиморфизм

template <typename T> class iterator;

template <typename Iterator> class reverse_iterator;

template <typename Iter> str::str(Iter a, Iter b) {
 // …
 auto start = a; auto finish = b;
 for (;start != finish; *text++ = *start++);
}

str s2(reverse_iterator(s1.end()), reverse_iterator(s1.begin()));

https://stackoverflow.com/a/50407375/2874555

Полиморфные классы

str s3 = U"🌲"; // UTF-8 -> char32_t*

template <typename T> class str {
 T* text;
public:
 str(const T*);
 // ...
};

template<>
class str<char32_t> {
 char32_t * text;

public:
 str(const char32_t *);
 // ...
};

https://stackoverflow.com/a/50407375/2874555

std::basic_string<>

https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/basic_string.h

namespace std {
 template <
 typename _CharT,
 typename _Traits,
 typename _Alloc>
 class basic_string {
 // ...

// Use empty-base optimization:
http://www.cantrip.org/emptyopt.html
 struct _Alloc_hider : allocator_type {
 pointer _M_p; // The actual data.
 };

 _Alloc_hider _M_dataplus;
 size_type _M_string_length;

 enum {
 _S_local_capacity = 15 / sizeof(_CharT)
 };

 union {
 _CharT _M_local_buf[_S_local_capacity + 1];
 size_type _M_allocated_capacity;
 };

 // ...
 };

 typedef basic_string<char, ...> string;
};

https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/basic_string.h

“My guess is that object-oriented programming will be in the 1980s
what structured programming was in the 1970s. Everyone will be in
favor of it. Every manufacturer will promote his products as
supporting it. Every manager will pay lip service to it. Every
programmer will practice it (differently). And no one will know just
what it is.”

T. Rentsch

Так что же такое ООП?

● инкапсуляция (абстракция состояния и избавление от манипуляции
состоянием в коде, public и private)

● динамическое связывание (дискриминированные объединения)

● абстракция (скрытая реализация, открытый интерфейс)

● обобщенное поведение (generics)

Так что же такое ООП?

Рассмотрим сферический ООП в вакууме…

Что такое OOP?

ООП – это идея Lisp, знающими людьми доведенная до
абсолюта, позже подобранная посторонними людьми и
доведенная до абсурда.

Я (2025)

Что такое OOP?

https://www.youtube.com/watch?v=4xqkI953K6Y

http://www.youtube.com/watch?v=4xqkI953K6Y&t=695
https://www.youtube.com/watch?v=4xqkI953K6Y

Почему такой подход?

“Everything we know about how people think and communicate is applicable.
The mechanisms of human thought and communication have been
engineered for millions of years, and we should respect them as being of
sound design. Moreover, since we must work with this design for the next
million years, it will save time if we make our computer models compatible
with the mind, rather that the other way around.”

D. Ingalls

https://www.cs.virginia.edu/~evans/cs655/readings/smalltalk.html

https://www.cs.virginia.edu/~evans/cs655/readings/smalltalk.html

Есть ли настоящий ООП в природе?
● Objective-C (message passing, dynamic resolution)

○ вместо виртуальных таблиц – “хэндлы” сообщений
○ объект выбирает какой метод вызывать в ответ на сообщение

● Erlang (actor model*)
○ каждый “процесс” (актер) содержит очередь сообщений, которые он обрабатывает
○ внутреннее “состояние” процесса меняется в ответ на сообщение
○ “let it crash”

https://www.cocoawithlove.com/2009/10/objective-c-niche-why-it-survives-in.html
https://softwareengineering.stackexchange.com/a/277469

* Модель была разработана Карлом Хьюэттом под влиянием объектов в Smalltalk. Smalltalk был
разработан под влиянием системы PLANNER, разработанной Хьюэттом, которая стала основой
языка Prolog. Prolog был основой разработки языка Erlang.

https://www.cocoawithlove.com/2009/10/objective-c-niche-why-it-survives-in.html
https://softwareengineering.stackexchange.com/a/277469

Actor model (за 27 минут!)
https://www.youtube.com/watch?v=vMDHpPN_p08

http://www.youtube.com/watch?v=vMDHpPN_p08&t=594
https://www.youtube.com/watch?v=vMDHpPN_p08

Еще немного о Smalltalk
https://www.youtube.com/watch?v=mRwHZTNGdoY

http://www.youtube.com/watch?v=mRwHZTNGdoY
https://www.youtube.com/watch?v=mRwHZTNGdoY

