OOBbEKTHO-OPUEHTUPOBAHHOE
nporpamMMmpoBaHmne

XXIV. Ob30p Kypca

A-BblpaxkeHuna n apxmutektypa gooH HenmaHa

https://www.youtube.com/watch?v=vMDHpPN p08

.

http://www.youtube.com/watch?v=vMDHpPN_p08&t=255
https://www.youtube.com/watch?v=vMDHpPN_p08

[1na yero Hy>XHO BbiCLLee obpa3oBaHue

https://www.youtube.com/watch?v=SlasmhEcXDo

+

commsgn
2371\

http://www.youtube.com/watch?v=SlasmhEcXDo&t=2848
https://www.youtube.com/watch?v=SlasmhEcXDo

Compiler optimizations

AoCO Day 0O:

the Advent of

Optamasation

Advent of Compiler
Optimisations 2025

¥ by Matt Godbolt

ba3a ot [lenkcTpbl

“It 1s practically impossible to teach good programming to
students that have had a prior exposure to BASIC: as potential
programmers they are mentally mutilated beyond hope of

regeneration.”
Edsger W. Dijkstra

CHavana obin C

#include <string.h>

char * cdecl strcpy(char * restrict _Dest,const char * _ restrict _Source);
char * cdecl strcat(char * _ restrict _Dest,const char * _ restrict _Source);
int __cdecl strcmp(const char *_Strl,const char *_Str2);

size_t cdecl strlen(const char *_Str);

_CRTIMP

char * cdecl _strdup(const char * Src);
_CONST_RETURN
char * cdecl strchr(const char *_Str,int _Val);
_CRTIMP
char * cdecl _strrev(char *_Str);
_CONST_RETURN
char * cdecl strstr(const char * Str,const char * SubStr);

typedef char * str;

NHKancynaumsa — MHCTPYMEHT abcTpakuum

typedef struct {

char * text;

char * (*cons)(char*, const char*);
} str;

const char *csl = "hello";
str s1 = { malloc(strlen(csl) + 1), strcpy};
sl.cons(sl.text, csl);

printf(sl.text);

Obiject-oriented C

typedef struct class {

size_ t size;
void * (*ctor) (void *self, va_list *app);
} Class;

typedef struct string {
const void * class;
char * text;

} String;

static void * String ctor(void * self, va_list *app);
void * new(const void * class, ...);

https://www.cs.rit.edu/~ats/books/ooc.pdf

https://www.cs.rit.edu/~ats/books/ooc.pdf

Obiject-oriented C

static void *String ctor(void * self, va_list *app) {
String *self = self;
const char *text = va_arg(*app, const char *);
self->text = malloc(strlen(text) + 1);
assert(self->text);
strcpy(self->text, text);
return self;

* “stdarg.h”

Obiject-oriented C

void *new(const void * class, ...) {

const Class *class = class;
void *p = calloc(1l, class->size);
assert(p);

*(const Class **)p = class;
if (class->ctor) {
va_list ap;
va_start(ap, class);
p = class->ctor(p, &ap);
va_end(ap);
}

return p;

Obiject-oriented C

static const Class _String = {
sizeof(String),
String ctor

}s
const void *string = & String;

void *a = new (string, "some text");

“If you are "setting" values from the outside of an object, you
are doing "simulated data structure programming" rather than
object oriented programming.”

Alan C. Kay

Knacchl

class str {

char * text{nullptr};

public:

s

~str();

str() = default;

str(const char*);

str(const str&);

str(const str&&) noexcept;

str &operator=(const str&);

str &operator=(str&&) noexcept;
void swap(str&);

/] ...

Knacchl

e ... TPpynrnmpyroT aniroputmbl BMeCTe C AaHHbIM, KOTOPbl€ OHU USMEHAIOT
... CKpbIBAOT BHYTpEHHEE COCTOAHUE obbeKkTa OT BHELLIHEero BO3AencTems
® ... NO3BOJIAKOT USMEHATbL NoBedeHNE onepaTtopoB APYrnx TMNOB AaHHbIX

[leperpyska

// str s = "@"; std::cout << 1 + s;

class str {

public:
friend std::ostream& operator<<(std::ostream&, const str&);
friend str operator+(int, const str&);

}s

HacnenoBaHue

class pure_str : public str {
public:
friend std::ostream& operator<<(std::ostream&, const pure_str&);

friend str operator+(int, const pure_str&) = delete;
// pure_str ps = "0@"; std::cout << ;

friend str operator+(int, const str&) = delete;
// str s = "@"; std::cout << ;
¥

Komno3nyug

class pure str {
str string;
public:
friend std::ostream& operator<<(std::ostream&, const pure_str&);

// friend str operator+(int, const pure_str&);
// pure_str ps = "0"; std::cout << ;

}s

[pyron npumep

template <typename T> class iterator {
protected:
T * ptr{nullptr};
public:
iterator& operator++() { ptr++; return *this; }

}s

template <typename T> class reverse iterator : public iterator {
public:

reverse_iterator& operator++() { ptr--; return *this; }

}s

ApanTtep

template <typename T> class iterator {
T * ptr{nullptr};
public:
iterator& operator++() { ptr++; return *this; }

s

template <typename Iterator> class reverse iterator {
Iterator iter;

public:
reverse_iterator& operator++() { iter--; return *this; }

s

[Tonnmopdunam

class str {
char * text{nullptr};

public:
str(iterator<char>, iterator<char>);
/] ...

¥

str s1 = "hello";
str s2(sl.end(), sl.begin());

[Tonnmopdunam

template <typename T> class iterator;
class reverse_iterator : public iterator<char>;

// str s2(sl.end(), sl.begin())

str::str(iterator<char> a, iterator<char> b) {

/] ...

auto start = a; auto finish = b;

for (;start != finish;) {
*text++ = *start++;

}

[nHammnyecknin nonmmopdpmnam

template <typename T> class iterator;
class reverse _iterator : public iterator<char>;

str::str(iterator<char> &a, iterator<char> &b) {

/] ...
auto start = a; auto finish = b;
for (;start != finish; *text++ = *start++);

}

str s2(reverse_iterator(sl.end()), reverse_iterator(sl.begin()));

Ctatunyeckmn nonmmMmopdonsm

template <typename T> class iterator;
template <typename Iterator> class reverse iterator;

template <typename Iter> str::str(Iter a, Iter b) {

/] ...
auto start = a; auto finish = b;
for (;start != finish; *text++ = *start++);

}

str s2(reverse_iterator(sl.end()), reverse_iterator(sl.begin()));

[TonnmopdHbIe Knacchbl

str s3 = U"&"; // UTF-8 -> char32 t* template<>
class str<char32_t> {
template <typename T> class str { char32_t * text;
T* text;
public: public:
str(const T*); str(const char32_t *);
/] ... /] ...
}s }s

https://stackoverflow.com/a/50407375/2874555

https://stackoverflow.com/a/50407375/2874555

std::basic_string<>

namespace std {
template <
typename _CharT,
typename Traits,
typename _Alloc>
class basic_string {
/...

struct _Alloc_hider :
pointer _M p;

allocator_type {
}s

_Alloc_hider _M_dataplus;
size_type _M_string length;

1

}s

enum {

}s

_S local_capacity = 15 / sizeof(_CharT)

union {

}s

_CharT _M local buf[_S_local capacity + 1];
size_type M _allocated_capacity;

/] ...

typedef basic_string<char,

...> string;

https://qithub.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/basic string.h

https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/basic_string.h

“My guess 1s that object-oriented programming will be in the 1980s
what structured programming was in the 1970s. Everyone will be in
favor of it. Every manufacturer will promote his products as
supporting 1t. Every manager will pay lip service to it. Every
programmer will practice it (differently). And no one will know just
what it is.”

T. Rentsch

Tak 4yTto e Takoe OOI17?

e MWHKanNncynsauusa (abcrpakumsa cCoCToAHNS U n3basrneHne oT MaHunynauum

COCTOSIHUEM B Kope, pubhei+private)
e AOUHaMU4YeCKoe CBsA3biBaHUE (anckpMMmHUpoOBaHHbIe 00bLeaNHEHNS)

° aﬁchaKLWIFI (CKpbITas peanusaunsi, OTKpPbITbI UHTEPMgEUC)
e 0000LUeHHOoe noseaeHne (generics)

Tak 4yTto e Takoe OOI17?

PaccmoTtpum cchpepuyeckun OOl B Bakyyme...

Uto Takoe OOP?

OOIl - 3to upes Lisp, 3HawWuMM noaObMU OOBEAEHHAA A0
abcontota, no3xe nogobpaHHaa MOCTOPOHHUMM nNOAbBMU U
goseneHHas oo abecypaa.

5 (2025)

Uto Takoe OOP?

“You wanted a banana but
what you got was a gorilla £
holding the banana and the [
entire jungle.”

- Joe Armstrong, creator of Erlang

https://www.youtube.com/watch?v=4xgkl953K6Y

Much Better Book
But is it Good7

- ~ &L& ~ .s‘"

AFPHLOSOPHY OF SOFTWARE DESICN

mm\\\ -

BUGGY Code '

http://www.youtube.com/watch?v=4xqkI953K6Y&t=695
https://www.youtube.com/watch?v=4xqkI953K6Y

[Touemy Takown nogxon?

“Everything we know about how people think and communicate is applicable.
The mechanisms of human thought and communication have been
engineered for millions of years, and we should respect them as being of
sound design. Moreover, since we must work with this design for the next
million years, it will save time if we make our computer models compatible
with the mind, rather that the other way around.”

D. Ingalls

https://www.cs.virginia.edu/~evans/cs655/readings/smalltalk.html

https://www.cs.virginia.edu/~evans/cs655/readings/smalltalk.html

EcTtb nn HacTosawmn OOI1 B npupoae?

e Objective-C (message passing, dynamic resolution)

O BMECTO BMpTYyasibHbIX Tabnuy — “XaHanbl” coobLweHNI

o 0ObeKT BbibMpaeT kakon MeTo Bbi3blBaTb B OTBET HA COODLLIEHME
e Erlang (actor model*)

O Kaxabln “npouecc” (aKkTep) cCoaepXnT odepeab coobLLEHNIN, KOTOpPblE OH obpabaTkiBaeT
O BHYTPEHHee “cocTosiHMe” npouecca MeHsIeTCs B OTBET Ha coobuieHne
o “letit crash”

* Mogenb 6bina paspabotaHa Kapnom XbtodTToMm nog BnusiHnem obbektoB B Smalltalk. Smalltalk 661
pa3pabortaH nog BnusHnem cuctembl PLANNER, paspaboTtaHHoOM XbHO3TTOM, KOTOpas cTana OCHOBOMW
a3blka Prolog. Prolog 6bin ocHoBow pa3paboTku si3bika Erlang.

https://softwareengineering.stackexchange.com/a/277469
https://www.cocoawithlove.com/2009/10/objective-c-niche-why-it-survives-in.html

https://www.cocoawithlove.com/2009/10/objective-c-niche-why-it-survives-in.html
https://softwareengineering.stackexchange.com/a/277469

Actor model

https://www.youtube.com/watch?v=vMDHpPN p08

»

http://www.youtube.com/watch?v=vMDHpPN_p08&t=594
https://www.youtube.com/watch?v=vMDHpPN_p08

Ewe HemHoro o Smalltalk

https://www.youtube.com/watch?v=mRwHZTNGdoY

Four Languages From
Forty Years Ago

http://www.youtube.com/watch?v=mRwHZTNGdoY
https://www.youtube.com/watch?v=mRwHZTNGdoY

