

MD-2068, CHISINĂU, STR. STUDENTILOR, 9/7, TEL: 022 50-99-63, www.utm.md

S.A.014 SYSTÈMES INTÉGRÉS

1. Informations sur la discipline

Faculté	Ordinateurs, informatique et microélectronique					
Département	Génie logiciel et automatisation					
Cycle d'étude	Licence, premier cycle					
Programme d'études	0613.1 Technologies de l'information					
Année d'études	Semestre	Type d'évaluati on	Catégorie formative	Catégorie d'optionnalité	Crédits ECTS	
Année 4 (enseignement à temps plein)	7	Е	S- Discipline spécialisée	O - unité de cours obligatoire	4	

2. Durée totale estimée

Nombre total d'heures de cours		Dont			
		Heures d'ouverture de l'auditorium			Travailler individuellement
		Cours	Travaux de laboratoire	Séminaire	Conception
Enseignement à temps plein	120	30	30		60

3. Conditions d'accès à la discipline

Pour accéder à cette unité, les étudiants doivent avoir suivi avec succès les cours suivants, qui fournissent les bases théoriques et pratiques permettant de comprendre et d'appliquer les concepts avancés enseignés :

- Algèbre linéaire et géométrie analytique fournit les bases mathématiques nécessaires à la compréhension des structures mathématiques utilisées en informatique et en génie logiciel.
- Analyse mathématique I et II essentielle pour développer les compétences analytiques nécessaires à la modélisation mathématique et à la résolution de problèmes complexes.
- Structures de données et algorithmes fondamentaux pour l'apprentissage de techniques efficaces de gestion des données et l'optimisation des processus de calcul.
- Programmation orientée objet introduit les principes et les pratiques de la programmation moderne, essentielle pour développer des logiciels évolutifs et robustes.
- Technologies Web fournit les connaissances nécessaires au développement d'applications Web, un domaine essentiel des technologies de l'information.

- Bases de données I - couvre les concepts de base de la conception et de la gestion des bases de données, essentiels pour la gestion des informations dans les applications logicielles.

- Analyse et modélisation des systèmes d'information essentiel pour comprendre l'architecture et la fonctionnalité des systèmes d'information complexes et pour développer des compétences en matière de conception et de modélisation de ces systèmes.
- Physique pour comprendre les principes fondamentaux qui sous-tendent le fonctionnement des appareils électroniques et des systèmes informatiques.
- Circuits et dispositifs électroniques fournit les connaissances de base nécessaires pour comprendre et appliquer les concepts de matériel dans les technologies de l'information.
- Architectures informatiques importantes pour comprendre la structure interne et le fonctionnement des systèmes informatiques, un élément crucial dans le développement de logiciels.
- Systèmes d'exploitation fournit une compréhension approfondie de la gestion des ressources matérielles et logicielles, essentielle pour tout travail avancé dans ce domaine.

Réseaux informatiques - couvre les aspects essentiels de la connectivité et de la communication entre les systèmes informatiques, ce qui est essentiel pour développer et sécuriser les réseaux.

Selon le programme d'études

L'acces Dave ette unité d'enseignement/module requiert l'acquisition des compétences suivantes, acquises par l'achèvement des cours préalables mentionnés ci-dessus :

- Compétences analytiques et mathématiques développées par des cours d'analyse mathématique et d'algèbre linéaire, nécessaires à la modélisation et à la résolution de problèmes complexes dans le domaine du génie logiciel.
- Compétences en programmation y compris une connaissance approfondie du paradigme orienté objet et des structures de données, essentielles pour le développement et l'optimisation des applications logicielles.

Au titre des compétences

- Compétences en gestion de bases de données requises pour la conception, la mise en œuvre et la maintenance de bases de données dans l'environnement de travail professionnel.
- Compétences en matière d'analyse et de modélisation des systèmes acquises dans le cadre de cours sur l'analyse et la modélisation des systèmes d'information, nécessaires pour concevoir l'architecture de systèmes d'information complexes.
- Compétences techniques en matière de matériel y compris une compréhension des circuits électroniques et de l'architecture informatique, nécessaires au développement de solutions informatiques efficaces et optimisées.

Compétences en matière de réseaux et de sécurité de l'information - essentielles pour développer, gérer et sécuriser les réseaux informatiques.

4. Conditions du processus éducatif pour les

	- Salle de cours, adaptée au nombre d'étudiants du programme d'études (série), équipée d'un
Cours	projecteur et d'un ordinateur pour la présentation du matériel théorique.
	- Il ne sera pas toléré que les étudiants soient en retard ou qu'ils téléphonent pendant les cours.
	La salle de travaux pratiques et de séminaires doit être dotée des équipements et installations
	suivants:
	- Des prises électriques permettant aux étudiants de brancher des ordinateurs personnels.
	- Une connexion internet stable pour accéder aux ressources en ligne et aux activités interactives.
	- Un projecteur fonctionnel pour la présentation du matériel théorique et d'autres ressources
Travaux	visuelles.
pratiques/	Présentation des travaux pratiques :
séminaires	- La présentation des travaux pratiques est obligatoire et le délai fixé doit être respecté. Pour
	chaque leçon en retard, l'étudiant se verra retirer 1 point.
	- Le travail pratique doit être présenté sous la forme d'un rapport rédigé selon les exigences
	spécifiées sur la plateforme Moodle et téléchargé sur cette même plateforme.
	- Le projet de fin d'études est présenté dans le cadre du travail individuel et doit être téléchargé
	sur la plateforme Moodle sous la forme d'un rapport, rédigé selon les exigences spécifiées.

5. Copétences spécifiques acquises

Compétences professionnelles

- CP1. Développement et conception d'architectures : les étudiants seront capables de créer et de documenter des architectures logicielles et matérielles pour des solutions informatiques complexes, en respectant les exigences fonctionnelles et non fonctionnelles.
- CP2. Conception et développement d'applications : les étudiants seront capables de développer des applications efficaces et évolutives, en utilisant des méthodologies modernes de développement de logiciels et en respectant les normes de conception.
- CP3. Intégration des composants : les étudiants seront capables d'intégrer différents composants logiciels et matériels dans un système unifié, en garantissant l'interopérabilité et la fonctionnalité optimale de la solution.
- CP4. test des applications : les étudiants apprendront à planifier et à exécuter des tests pour valider la fonctionnalité, la performance et la sécurité des applications développées.
- CP5. Mise en œuvre de solutions : les étudiants seront capables de mettre en œuvre des solutions informatiques dans des environnements réels, en appliquant les connaissances acquises pour garantir le fonctionnement correct et efficace des systèmes.
- CP6. Développement de la documentation : les étudiants seront capables de créer la documentation technique nécessaire, y compris les spécifications techniques, les manuels d'utilisation et les guides d'installation, qui sont clairs et faciles à suivre.
- CP7. Ingénierie des systèmes : les étudiants seront capables de concevoir et de gérer des systèmes d'information complexes, en appliquant les principes de l'ingénierie logicielle pour répondre aux exigences du projet.
- CP8. Gestion des problèmes : les étudiants développeront des compétences pour identifier et résoudre les problèmes survenant au cours du développement et de la mise en œuvre de solutions

	UNIVERSITATEA TEHNICĂ
	http://hat/fues, en minimisant leur impact sur le projet.
	CP9. Amélioration des processus : les étudiants seront capables d'analyser et d'optimiser les
	processus de développement et de mise en œuvre des solutions informatiques, en contribuant à
	l'amélioration continue de leurs performances et de leur efficacité.
Compétences	CT3. Développement personnel et professionnel
transversales	Reconnaître la nécessité de l'apprentissage tout au long de la vie en utilisant efficacement les
	ressources et les techniques d'apprentissage pour le développement personnel et professionnel.

6. Les objectifs

Objectif général	Développer les compétences des étudiants dans l'utilisation des méthodes de modélisation et de conception des systèmes d'information, en leur donnant la capacité de créer des solutions informatiques efficaces et sûres pour divers domaines d'activité.
Objectifs spécifiques	 Apprentissage des méthodes de modélisation de base, de l'organisation et de la classification de l'information, de l'ontologie et de la taxonomie en informatique. Application pratique des normes de modélisation et des moyens de traitement de l'information. Développement de la capacité à analyser l'objet de l'informatisation, à élaborer des spécifications techniques et à concevoir un système d'information. Utilisation pratique des systèmes et applications de conception assistée par ordinateur.

7. Contenu du sujet

	Nombre d'heures		
Thèmes des activités d'enseignement	enseignement à	enseignement à temps	
Thème des conférences	temps plein	partiel	
	2		
T1. Introduction aux systèmes embarqués	2		
T2. Considérations architecturales dans les systèmes embarqués	2		
T3. Interaction avec l'utilisateur, interfaces binaires, matricielles et complexes	2		
T4. Systèmes d'exploitation séquentiels et préemptifs	2		
T5. Capteurs. Acquisition et conditionnement du signal.	2		
T6. Actionneurs. Actionneurs environnementaux. Conversion de puissance.	2		
T7. Diagnostics et protections	2		
T8. Systèmes de contrôle, boucle ouverte, contrôle ON-OFF, PID	2		
T9. Contrôle avec des automates finis	2		
T10. Contrôle flou et systèmes experts. Contrôle avec interprétation de programme	2		
T11. Communication - Interconnexion des équipements. Transfert d'informations.	2		
T12. Cybersécurité	2		
T13. Applications des systèmes embarqués avec capteurs environnementaux, réseaux mobiles GSM.	2		
T14. Applications des systèmes embarqués dans l'agriculture AgTech, les	2		
systèmes robotiques, les véhicules autonomes.			
T15. Applications des systèmes embarqués industriels	2		
Nombre total de conférences :	30		
	Nombre d'heures		
Thèmes des activités d'enseignement	enseignement à	enseignement à temps	
	temps plein	partiel	
Thèmes des travaux de laboratoire/séi	ninaires		
LL1. Interface utilisateur. Configuration de la bibliothèque STDIO.	4		
LL2. Systèmes d'exploitation. Séquentiel et préemptif	4		
LL3. Capteurs. Acquisition de données.	4		
LL4. Actionneurs. Dispositifs d'actionnement de la lumière, du son, du mouvement	4		
LL5. Systèmes de contrôle. Contrôle ON/OFF, contrôle PID.	4		

UNIVERSITATEA TEHNICĂ		
LEG. Contait Area de Alaboyates finis.	4	
LL7. Communications. Protocoles de communication	6	
Total des travaux de laboratoire/semences :	30	

8. Références bibliographiques

	crences bibliographiques
Principal	 Bass L., Clements P., Kazman R. Software Architecture in Practice, Addison Wesley, 2003 A.S. Tanenbaum, M. van Steen, Distributed Systems. Principles and paradigms, Prentice Hall, 2007. George Coulouris, Jean Dollimore, Tim Kindberg, Distributed Systems Concepts and, Addison-Wesley, 2012. Păunescu F., Goleșteanu D.P., Sisteme cu prelucrare distribuita și aplicațiile lor, București, Editura Tehnica, 1993 560 p. Карпов Л. Е., Архитектура распределенных систем программного обеспечения. Учебное пособие, М.: МАКС Пресс, МГУ, 2007.
Supplémenta ire	 V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduction to Parallel Computing, Benjamin-Cummings, 2003. Bruce Eckel, Thinking in Java, Prentice Hall, 2003 Niculaescu V., Programarea în Web, București, Jamșa-PRESS, 1998

9. Utiliser l'IA générative

	L'utilisation de l'IA générative dans les devoirs et les projets est autorisée, à condition que les étudiants
Autorisation	
d'utilisation	respectent les règles suivantes :
	- L'IA générative peut être utilisée pour générer des idées, des structures de texte ou du code, mais tous
	les matériaux générés doivent être revus et ajustés par l'étudiant pour s'assurer qu'ils répondent aux
	exigences académiques.
	• Toute utilisation de l'IA générative doit être déclarée dans la section annexe de chaque article, en
	utilisant la phrase suivante : « Au cours de la préparation de cet article, l'auteur a utilisé [NOM DE
	L'INSTRUMENT/SERVICE] dans le but de [RAISON]. Après avoir utilisé cet outil/service,
	l'auteur a revu et corrigé le contenu si nécessaire et assume l'entière responsabilité du contenu de
	l'article. »
Restrictions	Les étudiants ne doivent pas considérer l'IA générative comme une source d'information fiable, car elle
d'utilisation	ne fournit pas de références claires ou de sources documentées.
d dimsation	- La citation directe du contenu généré par l'IA dans un travail académique en tant que source primaire
	n'est pas autorisée.
	• Les activités dans lesquelles l'utilisation de l'IA générative est interdite sont spécifiées par
	l'enseignant et sont généralement des évaluations intermédiaires et finales ou n'impliquent pas
	d'activités de développement des compétences professionnelles.

10. L'évaluation

Périodique		Actuel	Duaint	Examen	Périodique	
EP 1	EP 2	Actuel	Projet	EP 1	EP 2	
Enseignement à temps plein						
15%	15%	15%	15%	-	40%	

Normes minimales de performance

Assiduité et participation aux cours magistraux et aux travaux de laboratoire ;

Obtention d'une note minimale de « 5 » à chacune des attestations et à chacun des travaux de laboratoire ;

Démonstration, dans l'épreuve de l'examen final, de la connaissance des processus et technologies de base appliqués au développement d'applications en réseau.

Activité	Composante d'évaluation	Méthode d'évaluation, Critères d'évaluation	Poids dans la note finale de l'activité	Pondération dans l'évaluation des matières	
		Enseignement à temps plein			
Évaluation périodique I	Contenu théorique, thèmes 1 à 6	Test/MOODLE	40%		
	Contenu théorique LL1- LL3	Test/MOODLE Discussions en laboratoire	50%	15%	
	Présence	Assiduité aux cours/travaux pratiques	10%		
Évaluation périodique II	Contenu théorique, thèmes 7-14	Test/MOODLE	40%	15%	
	Contenu théorique LL4- LL7	Test/MOODLE Discussions en laboratoire	50%		
	Prezența	Assiduité aux cours/travaux pratiques	10%		
Évaluation actuelle	Activitatea practică	Test /MOODLE Soutien du LL1-LL7	100%	15%	
Travail individuel	Cercetare la temă	Discours/présentation/discours public	100%	15%	
Évaluation finale	Conținut teoretic și practic	Test/MOODLE	100%	40%	