

MD-2045, CHIŞINĂU, STR. Studenților, 9/7, TEL: 022 50-99-07 | FAX: 022 50-99-07, <u>www.utm.md</u>

F.O.002 ANALYSE MATHÉMATIQUE II

1. Informations sur l'unité de cours/module

Faculté	Ordinateurs, Informatique et Microélectronique				
Département	Mathématiques				
Cycle d'études	Études supé	rieures de Licence, C	Cycle 1		
Programme d'études	0612.1 Calc	ulatrices et réseaux			
		nologie de l'informa	tion		
	0612.2 Gest	ion de l'information			
	0613.2 Sécu	rité de l'information			
	0613.3 Ingénierie logicielle				
	0613.5 Informatique appliquée				
	0714.5 Microélectronique et nanotechnologies				
	0714.4 Électronique appliquée				
	0714.6 Automatique et informatique				
	0714.7 Robotique et Mécatronique				
	0414.9 Ingénierie biomédicale				
A 5 - 3154 3	Semestre	Type	Catégorie	Catégorie	Crédits
Année d'études		d'évaluation	formative	d'optionnalité	ECTS
I (enseignement à temps plein);			F – unitate de	O - unitate de	
I (enseignement à temps	2 E curs curs 4				
partiel)	fundamentală obligatorie				

2. Timpul total estimat

T-4-1-1	Dont						
Total des heures dans le plan d'études	Heures en classe		Travail individuel				
	Cours	Laborator/ seminar	Projet de fin d'année	Studiul materialului teoretic	Préparation des applications		
	enseignement à temps plein						
120	30	30	-	30	30		
	enseignement à temps partiel						
120	12	12	-	48	48		

3. Preconditions d'accès à l'unité de cours/module

Curriculum	Algèbre linéaire et géométrie analytique, Analyse mathématique I
Compétences	Compétences des disciplines ci-dessus

4. Conditions de déroulement du processus éducatif pour

Cours	Salle équipée d'un tableau, d'un ordinateur et d'un projecteur. Présence obligatoire.			
Laboratoire /	Salle équipée d'un tableau. Présence obligatoire.			
séminaire	Les étudiants devront se présenter avec les tâches de travail individuel accomplies.			

5. Compétences spécifiques acquises

Compétences	CP1. Utilisation des notions spécifiques des mathématiques et d'autres
professionnelles	sciences fondamentales dans la recherche, la conception et la gestion des
	processus technologiques en ingénierie.
	C1.1. Identification appropriée des concepts, principes, théorèmes et
	méthodes de base en mathématiques.
	C1.2. Utilisation des connaissances fondamentales en analyse
	mathématique et dans les disciplines/modules de base pour expliquer et
	interpréter les résultats théoriques, les phénomènes ou les processus spécifiques

FIŞA UNITĂŢII DE CURS/MODULULUI

dans les domaines de l'ingénierie mécanique, industrielle, des technologies de l'information et d'autres domaines d'ingénierie.

C1.3. Application des théorèmes, principes et méthodes mathématiques fondamentaux pour réaliser correctement les calculs d'ingénierie dans la conception et l'exploitation des systèmes techniques, spécifiques aux technologies de l'information, à l'ingénierie mécanique et à d'autres domaines d'ingénierie, en bénéficiant d'une assistance qualifiée.

C1.4. Utilisation appropriée des critères et méthodes standard d'évaluation en mathématiques et dans les disciplines/modules fondamentaux pour identifier, modéliser, analyser et évaluer qualitativement et quantitativement les phénomènes et paramètres caractéristiques, ainsi que pour le traitement et l'interprétation des résultats des processus spécifiques d'ingénierie.

C1.5. Élaboration de modèles et de projets professionnels spécifiques à différents domaines d'ingénierie sur la base de l'identification, de la sélection et de l'utilisation des principes et méthodes optimaux issus de l'analyse mathématique et des disciplines/modules fondamentaux

6. Objectifs de l'unité de cours/module

Objectif général	• Compréhension et assimilation des concepts, principes et théories mathématiques avec des applications en ingénierie.
	• Identification et analyse de problèmes spécifiques, ainsi que développement de stratégies pour leur résolution.
Objectifs spécifiques	• Étudier divers processus et problèmes, qui peuvent être décrits et résolus à l'aide des outils mathématiques tels que : les équations différentielles ordinaires, les intégrales curvilignes et de surface, les séries de Fourier.
	• Acquérir les concepts de base dans les domaines susmentionnés et leurs propriétés fondamentales.
	• Développer les compétences nécessaires pour résoudre différents problèmes d'équations différentielles, la théorie des champs scalaires et vectoriels, les séries de Fourier.
	 Modéliser des processus réels en appliquant les concepts étudiés ci-dessus pour résoudre des problèmes pratiques en ingénierie.

7. Contenu de l'unité de cours/module

7. Contenu de l'unite de cours/module	I .	
	Nombre d'heures	
Thématique des activités d'enseignement	enseignement	enseignement
Thematique des destricts d'enseignement	en présentiel	à temps partiel
Thématique des cours		<u> </u>
T1. Intégrales curvilignes de premier ordre. Définitions, sens géométrique et	2	1
physique, propriétés. Calcul et applications des intégrales curvilignes de		
premier ordre.		
T2. Intégrales curvilignes de second ordre. Définitions, sens géométrique	3	1
et physique, propriétés. Calcul et applications des intégrales curvilignes de		
second ordre. Formule de Green, applications.		
T3. Intégrales de surface de premier et second ordre. Définitions, sens	3	1
géométrique et physique, propriétés. Calcul et applications des intégrales de		
surface. Formule de Stokes, applications.		
T4. Champs scalaires et vectoriels. Dérivée directionnelle. Gradient de la	3	1
fonction. Divergence et rotationnel d'un champ vectoriel.	4	1
T5. Flux d'un champ vectoriel à travers une surface. Formule d'Ostrogradski-	4	1
Gauss, applications. Champs potentiels et solénoïdaux.	2	1
T6. Problèmes pratiques menant à la notion d'équation différentielle. Équations différentielles du premier ordre, notions générales.	2	1
Équations différentielles du premier ordre, notions generales. Équations différentielles résolubles par quadratures : avec variables		
séparables ; homogènes et réductibles à ces formes.		
T7. Équations différentielles du premier ordre : linéaires, de type	2	1
Bernoulli et en différentielles totales. Facteur intégrant.		
T8. Équations différentielles ordinaires d'ordre supérieur. Notions de	2	1
base. Équations différentielles d'ordre supérieur admettant une		
réduction de l'ordre.		
T9. Équations différentielles linéaires homogènes et non homogènes d'ordre	3	2
n. Équations différentielles linéaires avec coefficients constants,		
méthodes de résolution.	_	
T10. Systèmes d'équations différentielles linéaires. Résolution des	2	0
équations différentielles à l'aide des séries de puissances.		
T11. Fonctions périodiques. Série trigonométrique de Fourier d'une	2	1
fonction périodique. Coefficients de Fourier. Théorème de Dirichlet.		
T12. Décomposition en série de Fourier des fonctions périodiques	2	1
paires, impaires, de période 21. Série de Fourier pour une fonction		
non périodique. Applications.		
Total des heures:	30	12
Tom des neures.		

FIŞA UNITĂŢII DE CURS/MODULULUI

	Nombre d'heures	
Thématique des activités d'enseignement	enseignement en présentiel	enseignement à temps partiel
Thématique des séminaires (leçons pratiqu		
T1. Intégrales curvilignes de premier ordre. Définitions, sens géométrique et physique, propriétés. Calcul et applications des intégrales curvilignes de premier ordre.	2	1
T2. Intégrales curvilignes de second ordre. Définitions, sens géométrique et physique, propriétés. Calcul et applications des intégrales curvilignes de second ordre. Formule de Green, applications.	3	1
T3. Intégrales de surface de premier et second ordre. Définitions, sens géométrique et physique, propriétés. Calcul et applications des intégrales de surface. Formule de Stokes, applications.	3	1
T4. Champs scalaires et vectoriels. Dérivée directionnelle. Gradient de la fonction. Divergence et rotationnel d'un champ vectoriel.	3	1
T5. Flux d'un champ vectoriel à travers une surface. Formule d'Ostrogradski-Gauss, applications. Champs potentiels et solénoïdaux.	4	1
T6. Équations différentielles résolubles par quadratures : avec variables séparables ; homogènes et réductibles à ces formes.	2	1
T7. Équations différentielles du premier ordre : linéaires, de type Bernoulli et en différentielles totales. Facteur intégrant.	3	1
T8. Équations différentielles ordinaires d'ordre supérieur. Notions de base. Équations différentielles d'ordre supérieur admettant une réduction de l'ordre.	2	1
T9. Équations différentielles linéaires homogènes et non homogènes d'ordre n . Équations différentielles linéaires avec coefficients constants, méthodes de résolution.	3	2
T10. Systèmes d'équations différentielles linéaires. Résolution des équations différentielles à l'aide des séries de puissances.	1	0
T11. Fonctions périodiques. Série trigonométrique de Fourier d'une fonction périodique. Coefficients de Fourier. Théorème de Dirichlet.	2	1
T12. Décomposition en série de Fourier des fonctions périodiques paires, impaires, de période 2l. Série de Fourier pour une fonction non périodique. Applications.	2	1
Total des heures:	30	12

8. Références bibliographiques

Principales:

- 1. https://lectii.utm.md/courses/analiza-matematica/
- 2. https://lectii.utm.md/courses/%d0%bc%d0%b0%d1%82%d0%b5%d0%bc%d0%b0%d1%82%d0%b 8% d1%87%d0%b5%d1%81%d0%ba%d0%b8%d0%b9-
- 1. %d0%b0%d0%bd%d0%b0%d0%bb%d0%b8%d0%b7/
- 2. Ana Costaș, Galina Rusu, Calcul diferențial și integral, Chișinău, CEP USM, 2018, 352 pag.
- 3. James Stewart, Calculus: Early Transcendentals 8th Edition, Mcmaster University and University of Toronto, 2014, USA, ISBN-13:9781285741550.
- 4. Ron Larson, Bruce Edwards, Calculus 10e, Brooks/Cole, Cengage Learning, Tenth Edition, 2014, USA, ISBN-13:9781285057095.
- 5. Cursul on-line Matematică Superioară, plasat pe ELSE: Elearning SpacE.
- 6. I. Șcerbaţchi, Curs de analiză matematică. Vol.2, 3. Chişinău, Ed. Tehnica-Info, 2002.
- 7. I. Şcerbaţchi, Analiza matematică (Probleme). Vol. 2. Ed. Tehnica. Chişinău, 1998.
- 8. N. Piscunov, Calcul diferențial și integral. Vol.2. Chișinău, Ed. Lumina, 1991. Piscunov. Calcul diferențial și integral. Vol.2. Chișinău, Ed. Lumina, 1992.
- 9. I. Goriuc, Probleme și exerciții la analiza matematică, Editura Tehnică, UTM, 2015
- 10. Л. А. Кузнецов, Сборник заданий по высшей математике (Типовые расчеты). Москва, Высшая школа, 1983.
- 11. Г.Н.Берман, Сборник задач по курсу математического анализа. Москва, Наука, 1975.
- 12. Сборник индивидуальных заданий по высшей математике, Под ред. Рябушко А. П., Части 1, 2, 3,
- 13. Минск, 1990, 1991.
- 14. Данко П. Е., Попов А. Г., Кожевникова Т. Л. «Высшая математика в задачах и упражнениях». Часть 2, Москва, 1986.

Supplémentaires:

- 1. Я. Бугров, С. Никольский «Высшая математика»., Часть 3, Москва,
- 2. Б. Демидович «Задачи и упражнения по математическому анализу» для ВТУЗОВ, Москва, 1970.
- 3. S. Chiriță "Probleme de matematică superioară", București, 1989.
- 4. A. Molosniuc s.a. "Matematica 4", Editura Tehnică UTM, 2006
- 5. Roşculet "Analiză matematică", București, 1979.
- 6. A. Moloșniuc ș.a. "Matematica 4", Editura Tehnică UTM, 2006
- 7. S. Miron "Curs de analiză matematică", Chişinău, Lumina, 1992
- 8. Moloșniuc A, și alții, Matematica 4. S.R.E.M. a U.T.M. Chișinău, 2006.
- 9. Moloșniuc A, și alții, Matematica 5. S.R.E.M. a U.T.M. Chișinău, 2007.

9. Évaluation

Mode	Périodique		Couranta	Travail individuel	Examon final
d'enseignement	Attestation 1	Attestation 2	Courante	Travan murviduei	Examen final
Enseignement en présentiel	15%	15%	15%	15%	40%
Enseignement à temps partiel		25%		25%	50%

Norme minimale de performance

Présence et activité lors des conférences et des travaux pratiques/séminaires ;

Obtention de la note minimale de « 5 » à chacune des attestations ;

Démonstration, dans le travail d'examen final, de la connaissance du matériel étudié.