

MD-2068, CHIŞINĂU, STR. STUDENŢILOR, 9/7, TEL: 022 50-99-63, www.utm.md

ARTIFICIAL INTELLIGENCE FUNDAMENTALS

1. Subject Information

Faculty	Computers, Informatics and Microelectronics					
Department	Software Er	Software Engineering and Automation				
Academic Degree	Cycle I, bachelor's degree					
Study Program	Software Engineering					
Study Year	Semester	Exam type	Formative category	Optional category	ECTS credits	
IV year	VII	Е	S – Specialty subject	A-optional	5	

2. Total estimated time

Total curriculum hours		Of which				
		Auditorium hours			Individual work	
		Course	Seminar	Laboratory work	Study of theoretical materials	Project
Full-time study	150	45		30	75	

3. Prerequisites

According to	To achieve the objectives of this course, students must possess skills acquired in previous subjects:
study	computer programming, data structures and algorithms, formal and automatic languages and object-
curriculum	oriented programming.
According to	According to the competences, among the essential prerequisites are the application of programming
competences	languages, modeling and development environments, methodologies for software development etc.

4. Conditions for carrying out the educational process

Course Students should be provided with a well-illuminated and ventilated auditorium, we the ability to hear the teacher and take notes comfortably.	
Laboratory work	Students should be provided with a PC / laptop with internet connection, which is able to run their projects in a programming language of choice.

5. Competences

Professional	CP2 Application Design and Development;
competences	CP5 Solution Implementation;
	CP7 Sistems engineering.
Transversal	Identifying, describing and carrying out organized activities in a team with the development of
competences	communication and collaboration skills, as well as assuming different roles (executive and leadership).

6. Course objectives

Scope	The goal is for students to gain a comprehensive understanding of the AI field, including its future trajectory and key milestones. This foundation will help them grasp crucial concepts and apply their knowledge practically to develop AI systems.
Objectives	Course objectives include defining algorithms based on constraints within models that address perception, reasoning and action.

7. Course content

Taaabing Activity Taniaa	Number of Hours		
Teaching Activity Topics	Full-Time Study		
Course Topics			
T1. Goal Trees and Problem Solving	3		
T2. Goal Trees and Rule-Based Expert Systems	3		
T3. Depth-First, Hill Climbing, Beam Search	3		
T4. Optimal, Branch and Bound, A* Search	3		
T5. Games, Minimax and Alpha-Beta Search	3		
T6. Interpreting Line Drawings	3		
T7. Search, Domain Reduction	3		
T8. Nearest Neighbors, SVMs	3		
T9. Identification Trees, Disorder	3		
T10. One-shot Learning	3		
T11. Neural Networks	3		
T12. Genetic Algorithms	3		
T13. Natural Language Processing	3		
T14. Ensemble Learning	3		
T15. Boosting	3		
Total Course:	45		
Laboratory Work Topics			
LL1. Expert Systems	6		
LL2. Intelligent Searching Algorithms	4		
LL3. Domains and Constraints	4		
LL4. Learning	4		
LL5. Processing Images with OpenCV and CNNs	6		
LL6. Natural Language Processing and chat-bots	6		
Total Laboratory Work:	30		

8. Bibliography

Main	Artificial Intelligence: A Modern Approach (4th Edition). By Stuart Russell and
	Peter Norvig. Pearson, 2020. ISBN 978-0134610993.
	 Are Expert Systems Dead? By Simon J Preis.
	https://towardsdatascience.com/are-expert-systems-dead-87c8d6c26474.
	Accessed Oct. 2024
	• AI Search Algorithms With Examples. By Pawara Siriwardhane.
	https://medium.com/nerd-for-tech/ai-search-algorithms-with-examples-
	54772c6d973a. Accessed Oct. 2024
	Predicting Moves in Chess using Convolutional Neural Networks. By Barak Oshr
	and Nishith Khandwala.
	https://cs231n.stanford.edu/reports/2015/pdfs/ConvChess.pdf. Accessed Oct.
	2024
	Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and
	Large-Scale Data Collection. By Sergey Levine et. al.
	https://arxiv.org/pdf/1603.02199. Accessed Oct. 2024

	- CooleFuer Learning Lligh Cread Duration Table Terris on a Division Date
	 GoalsEye: Learning High Speed Precision Table Tennis on a Physical Robot. <u>https://arxiv.org/pdf/2210.03662</u>. Accessed Oct. 2024
	 Playing Atari with Deep Reinforcement Learning. By Volodymyr Mnih et. al. <u>https://arxiv.org/pdf/1312.5602</u>. Accessed Oct. 2024
	 ImageNet Classification with Deep Convolutional Neural Networks. By Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton.
	https://papers.nips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e 924a68c45b-Paper.pdf. Accessed Oct. 2024
	Very Deep Convolutional Networks for Large-Scale Image Recognition. By Karen Simonyan and Andrew Zisserman.
	 <u>https://arxiv.org/pdf/1409.1556</u>. Accessed Oct. 2024 Going Deeper with Convolutions. By Christian Szegedy et. al.
	 <u>https://arxiv.org/pdf/1409.4842.pdf</u>. Accessed Oct. 2024 Sequence to Sequence Learning with Neural Networks. By Ilya Sutskever et. al.
	https://papers.nips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894e c1c3c743d2-Paper.pdf. Accessed Oct. 2024
	 Decoding Transformers: The Heart of Large Language Models. By Avijit Swain. <u>https://medium.com/@avijitswain11/decoding-transformers-the-heart-of-</u>
	 <u>large-language-models-06aa33acf1d3</u>. Accessed Oct. 2024 Attention Is All You Need. By Ashish Vaswani et. Al.
	 <u>https://arxiv.org/pdf/1706.03762</u>. Accessed Oct. 2024 Zephyr: Direct Distillation of LM Alignment. By Lewis Tunstall et. al.
	 <u>http://arxiv.org/pdf/2310.16944</u>. Accessed Oct. 2024 Latent Diffusion Models. By Robin Rombach et. Al.
	 <u>https://arxiv.org/pdf/2112.10752</u>. Accessed Oct. 2024 Synthetic data is the future of Artificial Intelligence. By Moez Ali.
	https://moez-62905.medium.com/synthetic-data-is-the-future-of-artificial- intelligence-6fcfd2ce1a14. Accessed Oct. 2024
	 Consensus and subjectivity of skin tone annotation for ML fairness. By Google Research.
	https://research.google/blog/consensus-and-subjectivity-of-skin-tone- annotation-for-ml-fairness/. Accessed Oct. 2024
	 Deceptive Tricks in Artificial Intelligence: Adversarial Attacks in Ophthalmology. By Agnieszka M Zbrzezny and Andrzej E Grzybowski. <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179065/</u>. Accessed Oct.
	 2024 If it's what I wanted that's great, but if it's not, I just wasted time": Unpacking the personal developer teching. By Amber
	the perceived costs/benefits of ML enhanced developer tooling. By Ambar Murillo et. al. <u>https://storage.googleapis.com/gweb-research2023-</u>
	media/pubtools/7130.pdf. Accessed Oct. 2024
Supplementary	Artificial Intelligence (6.034). By Patrick Winston. <u>ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-</u> artificial intelligence foll 2010. Accessed Oct. 2024
	 <u>artificial-intelligence-fall-2010</u>. Accessed Oct. 2024 Machine Learning Specialization. By Andrew NG. www.coursera.org/specializations/machine-learning-introduction.
	Accessed Oct. 2024
9. Generative A	AI use

Permission	The use of generative AI in assignments and projects is permitted, provided that students adhere to the
for use	following rules:
	 Generative AI may be used to generate ideas, text structures, or code, but all generated materials must be reviewed and adjusted by the student to ensure that they meet academic requirements; Any use of generative AI must be declared in the appendix section of each paper, using the phrase: "During the preparation of this paper, the author used [INSTRUMENT/SERVICE NAME] for the purpose of [REASON]. After using this tool/service, the author has

	reviewed and edited the content as necessary and takes full responsibility for the content of the paper.".
Usage	Students should not consider generative AI as a reliable source for information, as it does not provide
restrictions	clear references or documented sources:
	• Direct citation of AI-generated content in academic papers as a primary source is not permitted;
	• The activities in which the use of generative AI is prohibited are teacher-specified and are usually midterm and final assessments or ones that do not involve professional skill development activities.

10. Course evaluation

Midterm		Midterm Current		Evon	
M1	M2	Evaluation	Study	Exam	
15%	15%	15%	15%	40%	
Nationary standard of a sufferment of					

Minimum standard of performance

Attendance and activity in lectures and laboratory works;

A minimum grade of "5" on each of the midterms and laboratory assignments;

Knowledge of basic models and algorithms applied in the field of AI.

11. Evaluation criteria

Activity	Evaluation components	Evaluation method, evaluation criteria	Activity mark weight	Course evaluation weight
Midterm 1	Theoretical component, topics T1 T7	Test / MOODLE	66%	15%
	Theoretical component LL1 – LL3	Test / MOODLE Discussions during laboratory works	34%	
Midterm 2	Theoretical component, topics T8 – T15	Test / MOODLE	66%	15%
	Theoretical component LL4 – LL6	Test / MOODLE Discussions during laboratory works	34%	
Current Evaluation	Practical component LL1 – LL6	Discussions during laboratory works	100%	15%
Individual Study	Topic research	Presentation	66%	15%
	Practical component LL1 – LL6	Discussions during laboratory works	34%	
Exam	Theoretical component T1 – T15	Test / MOODLE	75%	40%
	Practical component LL1 – LL6	Discussions during laboratory works	25%	