
Operating Systems

Session 3: Structure and Functions of an Operating
System

INTRODUCTION

Operating systems (OS) are the foundational software that form the backbone of all modern
computing environments. They are responsible for managing and coordinating both computer
hardware and software resources, ensuring that applications run smoothly and efficiently.
Acting as an intermediary between applications and hardware, an operating system plays a
crucial role in resource management, process execution, and system security.

At its core, an OS provides a stable environment for applications to operate, making it
essential for multitasking and multi-user scenarios. This stable environment is achieved
through a range of critical functions that include managing processes, allocating memory,
organizing file systems, and controlling hardware devices.

1. Process Management: The OS is responsible for the creation, scheduling, and
termination of processes. It ensures that system resources like the CPU are allocated
efficiently, allowing multiple processes to run simultaneously without conflict. This is
especially important in multitasking environments where several programs need to
operate concurrently.

2. Memory Allocation: Efficient memory management is key to the OS’s function,
ensuring that applications have the memory they need to operate while preventing
conflicts between processes. By managing physical and virtual memory, the OS
maximizes system performance and ensures that memory is used efficiently.

3. File System Management: The OS organizes data storage through its file system,
providing structured and secure access to files and directories. It handles file
operations like reading, writing, and modification while maintaining data integrity and
enforcing access permissions.



4. Hardware Device Control: An OS must also manage the various hardware devices
connected to the system, such as input/output devices, storage units, and
peripherals. By utilizing device drivers, the OS can communicate with and control
these devices, enabling efficient interaction between hardware and software
components.

These core functions are indispensable for the smooth operation of a multi-tasking, multi-user
system, as they allow the OS to maintain a balanced and efficient computing environment.

Process States in an Operating System

In an operating system, processes move through various states as they execute, representing
different stages in their lifecycle. These states help the OS efficiently manage each process,
determining how resources like CPU time and memory are allocated. The OS uses these states
to prioritize and schedule tasks, ensuring that critical processes receive the necessary
resources when needed, while less critical ones are placed in a queue.

By carefully managing these transitions between states, the OS optimizes overall performance
and multitasking capabilities, allowing multiple applications to run simultaneously without
conflicts. This involves ensuring that when a process is waiting (e.g., for I/O operations), the
CPU is reassigned to other processes to maximize utilization.

This diagram illustrates the typical process states that a process transitions through in an
operating system. Each state plays a crucial role in managing how the system allocates
resources, schedules CPU time, and maintains system stability. By understanding these states,
we can see how the OS optimizes performance and ensures efficient multitasking.



Brief explanation of the significance of each process state in an operating system:

Process
State

Significance

New This state signifies that a process is being created. It is important for

resource allocation and initialization. Understanding this state helps in

managing memory and system resources efficiently.

Ready In the ready state, a process is prepared to run but is waiting for CPU

time. This state is essential for scheduling algorithms to determine

which process should be executed next based on priority and

resource availability.

Running When a process is in the running state, it is actively using the CPU.

This state is crucial for the overall performance of the system as it

directly influences the execution speed and response time of

applications.

Waiting The waiting state indicates that a process cannot proceed until a

certain condition is met (e.g., completion of I/O operations). This state

is significant for efficient resource management and optimizing CPU

utilization by allowing other processes to run while one is waiting.

Terminated This state signifies the completion of a process's execution. It is

important for resource deallocation and cleanup. Understanding this

state ensures that the system can reclaim resources and maintain

stability by preventing memory leaks or resource exhaustion.

nderstanding these process states is crucial for comprehending how the OS balances system
stability and efficiency. Proper management of these states prevents issues like resource
contention, where multiple processes compete for the same resources, and ensures that
processes complete their execution smoothly. It also plays a vital role in security, as the OS
isolates processes to protect them from interference by other processes, reducing the risk of
crashes and security breaches.

The Importance of Understanding OS Structure and Functions

The study of an operating system’s internal architecture provides insight into how these core
functions are organized and executed. This session will explore the internal architecture of
operating systems, focusing on their components, organization, and the relationships between
them.



A deep understanding of the structure and mechanisms of an OS is crucial for grasping its role
in modern computing systems. This knowledge is essential for computer science professionals
and students, as it lays the foundation for developing, managing, and optimizing computing
environments.

Key topics that will be explored include:

● System Calls: The interface that applications use to interact with the OS, enabling
access to hardware and system resources in a controlled manner.

● Kernel Architectures: The organization and design of the kernel, the core of the OS,
with a focus on different types such as monolithic, microkernel, and hybrid
architectures.

● Layered Structure: The modular design of operating systems, which allows efficient
management of system components and facilitates maintenance and scalability.

● Recent Research Developments: Emerging trends and innovative designs in OS
development that address modern challenges like security, efficiency, and system
scalability.

This session explores the internal architecture of operating systems, focusing on their
components, structure, and functionalities. Understanding the inner workings of an OS is
essential for appreciating its role in modern computing. Key topics include system calls, OS
kernel architectures (monolithic, microkernel, hybrid), the layered structure of operating
systems, and recent research developments in the field. These topics are vital for
understanding how an OS interacts with applications and hardware resources.

SYSTEM CALLS

What are System Calls?

System calls are specialized functions provided by the operating system that allow applications
to request services from the OS. They serve as the primary interface between user
applications and the kernel, which is the core component of the operating system. The kernel
manages essential tasks like memory management, process scheduling, and hardware
control, making system calls crucial for applications to perform tasks that require interaction
with system resources.

System calls abstract the complexity of hardware interactions, enabling developers to execute
operations without delving into the underlying hardware mechanisms. This abstraction layer
allows developers to focus on building applications without worrying about the low-level details
of how hardware components such as CPU, memory, and I/O devices are managed. In



essence, system calls provide a simplified and secure way for applications to interact with the
hardware indirectly through the OS.

How Applications Interact with the OS via System Calls

When an application requires a service that involves OS intervention, such as accessing a file,
creating a process, or communicating with hardware, it invokes a system call. This invocation
triggers a transition from user mode to kernel mode. Here’s how the interaction works:

● In user mode, applications operate with restricted permissions. This mode protects
the system by ensuring that applications cannot directly access critical system resources
or hardware components, which could lead to system crashes or security breaches.

● When a system call is made, the OS temporarily transfers control from user mode to
kernel mode, granting the application elevated privileges needed to perform the
requested operation. The OS then executes the system call, performs the necessary
actions, and returns the result to the application.

● After the operation is completed, the system switches back to user mode, where the
application continues its execution with limited access rights.

This transition between modes is crucial for maintaining system stability and security. It
ensures that applications can access the resources they need without compromising the
integrity of the system. For instance, if an application attempts to perform an unauthorized
operation, the OS can deny the request or handle it in a way that prevents damage to the
system.

Types of System Calls

System calls can be broadly categorized based on the type of service they provide. Common
categories include:

1. Process Control: These system calls manage processes within the OS, including
creating, terminating, and synchronizing processes.

○ Examples: fork(), exec(), exit(), and wait().

2. File Manipulation: These calls handle operations related to files, such as opening,
reading, writing, and closing files.

○ Examples: open(), read(), write(), and close().



3. Device Management: System calls in this category manage I/O devices, allowing
applications to read from and write to peripherals like keyboards, displays, and storage
devices.

○ Examples: ioctl(), read(), and write().

4. Information Maintenance: These calls provide information about system resources and
processes or allow modification of system settings.

○ Examples: getpid(), gettimeofday(), and setpriority().

5. Communication: For inter-process communication (IPC), these system calls facilitate
data exchange between processes.

○ Examples: pipe(), shmget(), and msgget().

Examples of System Calls

● fork(): This system call is used to create a new process by duplicating the existing
process. The newly created process, called the child process, receives a unique
process ID (PID) and a copy of the parent’s memory space. This is crucial for
multitasking, as it allows new processes to be created dynamically and executed
concurrently.

● exec(): The exec() system call replaces the current process image with a new program.
When a process calls exec(), it effectively runs a different application, which is essential
for dynamic program execution. This allows the OS to load and execute new applications
or utilities without creating a new process.

● open(): This call opens a file and returns a file descriptor, which serves as a handle for
future operations such as reading or writing to the file. File descriptors are essential for
the OS to keep track of files that applications access, ensuring efficient management
and protection of file resources.

● read(): The read() system call reads data from a file descriptor into a buffer, allowing
the application to access the contents of a file. This call is fundamental for applications
that need to process data stored in files, enabling efficient data retrieval and
manipulation.

● write(): This system call writes data from a buffer to a file descriptor. It is essential for
applications to store and update information. For instance, when an application saves
changes to a document or logs events to a file, it uses the write() system call to perform
these actions.

Why System Calls Are Important

System calls are vital for several reasons:



● Security and Stability: By controlling the interaction between user applications and
hardware resources, system calls ensure that only authorized operations are executed.
This protects the OS and underlying hardware from malicious or harmful operations
initiated by applications.

● Abstraction: They provide a layer of abstraction, allowing developers to perform
complex hardware tasks without needing to understand the intricate details of the
hardware. This simplifies application development and allows software to be portable
across different hardware platforms, as the OS handles the specifics.

● Resource Management: System calls enable efficient management of resources such
as CPU, memory, storage, and I/O devices, ensuring that processes receive the
necessary resources while preventing conflicts or deadlocks.

By understanding system calls, developers can leverage the OS’s capabilities to optimize
application performance and functionality. These calls are essential for process management,
file operations, and inter-process communication, illustrating the critical role the OS plays in
enabling application functionality while maintaining system integrity. System calls are vital to the
architecture of any operating system, providing a controlled and efficient interface between user
applications and the OS kernel. By managing the transition from user mode to kernel mode,
system calls not only facilitate essential tasks such as process management, memory allocation,
and file operations but also ensure system security and stability. This controlled interaction
prevents unauthorized access to critical system resources, maintaining the integrity of the
system and protecting user data. Furthermore, by abstracting the complexity of hardware-level
operations, system calls allow developers to focus on application functionality without needing
to manage the hardware directly.

From a performance standpoint, system calls enable efficient resource management, ensuring
that applications can execute operations with minimal overhead. This is particularly important in
multi-tasking environments, where multiple processes must share system resources effectively.
Understanding how system calls work is fundamental for developers, as it allows them to
optimize application performance and integrate advanced functionalities such as inter-process
communication. Ultimately, system calls are the backbone of application-OS interaction, making
them a critical element in both the design and operation of robust, secure, and efficient
computing systems.

OS Structure

The structure of an operating system (OS) defines how its internal components are
organized, enabling it to manage hardware and software resources efficiently. The design of the
OS structure directly influences its performance, scalability, security, and maintainability. At
the center of this structure is the kernel architecture, which is the core component responsible
for executing critical tasks such as memory management, process scheduling, file



management, and hardware control. The kernel serves as a bridge between software
applications and hardware resources, allowing for smooth and efficient communication that
ensures system stability and performance.

The kernel’s structure determines how well an OS can handle multitasking, resource
allocation, and security enforcement. Operating systems can be classified based on their
kernel architecture, and these classifications impact the OS’s flexibility, reliability, and efficiency.
The three primary types of kernel architectures are Monolithic Kernel, Microkernel, and
Hybrid Kernel. Each approach offers distinct advantages and trade-offs, making them suitable
for different computing environments and application requirements.

1. MONOLITHIC KERNEL

A monolithic kernel integrates all operating system services, such as device drivers, file
systems, network protocols, and process management, into a single kernel space. In this
architecture, all essential components are tightly coupled within the kernel, which allows for
direct and efficient communication between them without the need for context switching.

● Advantages:
○ The tightly integrated nature of a monolithic kernel allows for high performance,

as all services operate in kernel mode and communicate directly. This results in
low latency and efficient execution, making monolithic kernels ideal for
performance-sensitive environments like servers, supercomputers, and
real-time systems.

○ The simplicity of having all critical services in one place also means that fewer
system calls and transitions are needed, further enhancing performance.

● Disadvantages:
○ This approach can lead to complexity, as any modification, update, or bug in

one part of the kernel may affect other components and, potentially, the entire
system. Because all components share the same memory space, a failure in one
service (e.g., a device driver) can crash the entire OS.

○ Maintenance and debugging in monolithic systems are more challenging, as
fixing bugs or updating components often requires recompiling the entire kernel.
This lack of modularity can slow down the development cycle and introduce
vulnerabilities if not managed carefully.

Examples of monolithic kernel-based operating systems include Linux and early versions of
Windows (e.g., Windows 95 and 98). Despite their complexity, monolithic kernels remain



popular in environments where performance and efficiency are critical, as their streamlined
architecture provides speed and direct control over hardware.

2. MICROKERNEL

The microkernel architecture, in contrast, aims to minimize the functionalities within the kernel
space, focusing only on essential services such as inter-process communication (IPC), basic
I/O operations, and memory management. All other services, such as device drivers, file
systems, and network management, are executed in user space. This separation of
components reduces the kernel’s size and complexity, promoting modularity and fault isolation.

● Advantages:
○ The microkernel architecture significantly enhances system stability and

security. By isolating services in user space, the OS ensures that a failure or
bug in a non-critical service (e.g., a faulty device driver) does not compromise the
entire system. This isolation also improves fault tolerance, as failing
components can be restarted independently without affecting the core kernel.

○ Modularity is another key benefit. Services running in user space can be
updated or replaced without having to recompile the entire kernel, making the OS
more adaptable and easier to maintain. This flexibility is particularly
advantageous in modern computing environments where frequent updates and
security patches are necessary.

● Disadvantages:
○ The primary trade-off with microkernels is performance overhead. Since many

system services run outside the kernel space, frequent communication between
the kernel and user space is necessary. Each interaction requires a context
switch, which adds overhead and can slow down system operations, particularly
in high-performance environments.

○ Implementing a microkernel system requires meticulous coordination to manage
the communication between services efficiently. This can increase the
complexity of the overall system design and may require advanced optimization
techniques to maintain performance.

Examples of microkernel-based operating systems include MINIX, QNX, and Mach (the basis
for macOS). These systems prioritize reliability, security, and flexibility, making them suitable
for embedded systems, real-time applications, and other scenarios where fault tolerance and
modularity are more critical than raw performance.

3. HYBRID KERNEL



The hybrid kernel architecture seeks to combine the advantages of both monolithic and
microkernel designs, striking a balance between performance, modularity, and security. In a
hybrid kernel, core services like process management, memory handling, and IPC run in
kernel space to minimize overhead, while other functionalities—such as device drivers and file
systems—are allowed to operate in user space.

● Advantages:
○ By placing critical services in kernel space, the hybrid architecture achieves high

performance similar to that of a monolithic kernel, while retaining the fault
isolation and modularity benefits of a microkernel. This configuration allows
non-essential services to be isolated, ensuring that issues in these services do
not impact the kernel’s core functionality.

○ The modularity of hybrid kernels also facilitates easier maintenance and
updates, as components in user space can be modified independently of the
kernel. This design approach supports dynamic loading and unloading of
modules, making the system more flexible and scalable.

● Disadvantages:
○ Although hybrid kernels aim to offer the best of both worlds, they can still face

challenges related to complexity and performance trade-offs. Striking the right
balance between which components operate in kernel space and which operate
in user space is not always straightforward. Mismanagement of this balance can
lead to inconsistencies and may affect system reliability or performance.

○ The hybrid approach can also complicate system design and debugging since
it combines the complexities of both monolithic and microkernel architectures.

Examples of hybrid kernel-based systems include Windows NT, macOS, and modern versions
of Linux that support modularity through dynamically loaded kernel modules (DLKM).

These operating systems benefit from the performance efficiencies of monolithic kernels while
incorporating the modular flexibility and security of microkernels, making them versatile for a
wide range of applications, from enterprise servers to personal computing.

Visual Comparison of Kernel Architectures

Understanding the structure of an operating system’s kernel is essential for comprehending how
different OS designs achieve varying levels of performance, modularity, and security. Each
kernel architecture—Monolithic, Microkernel, and Hybrid—has distinct characteristics that
define how system components interact, how efficiently resources are utilized, and how faults
are managed. The organization of components in these architectures significantly impacts their
efficiency, scalability, and maintainability.



The Monolithic Kernel integrates all essential services directly into the kernel space, allowing
for fast and efficient communication but at the cost of potential system-wide failures if a
component malfunctions. On the other hand, the Microkernel minimizes the number of
components in the kernel space, focusing only on the most critical services such as
inter-process communication (IPC) and basic I/O operations, while placing the rest in user
space. This approach enhances security and fault tolerance but can introduce performance
overhead due to the need for constant context switching between user and kernel modes.
Lastly, the Hybrid Kernel combines aspects of both approaches, aiming to balance
performance and modularity by keeping critical services in kernel space while running other
components in user space. This configuration seeks to optimize both speed and fault isolation,
making it suitable for diverse computing needs.

To better understand the differences between these kernel architectures, the image below
illustrates how Monolithic, Microkernel, and Hybrid kernels are structured. It provides a visual
breakdown of how each type organizes its components, dividing responsibilities between kernel
mode and user mode, highlighting the trade-offs each design makes.

This visual breakdown emphasizes the key differences and trade-offs in terms of performance,
modularity, and security:

● Monolithic Kernel (left): In this architecture, all services are integrated into the kernel
space. This tight integration results in high performance since all components can
communicate directly, but it also means that any fault in the system can lead to complex
debugging challenges or even a complete system crash.

● Microkernel (middle): This approach retains only the most essential services in kernel
mode, such as basic IPC and virtual memory management. The majority of services,
including device drivers and file systems, are managed in user space. This separation
enhances modularity and fault isolation, allowing the OS to maintain stability even if



non-critical services fail. However, the frequent communication between user and kernel
spaces can lead to performance overhead.

● Hybrid Kernel (right): The hybrid kernel aims to combine the strengths of both the
monolithic and microkernel architectures. By running essential services in kernel mode
while placing non-essential components in user space, it achieves a balance between
high performance and modularity. This design ensures that critical processes remain
efficient while other services are isolated, reducing the risk of system-wide failures.

This comparison provides a comprehensive look at how each kernel architecture manages the
balance between performance, security, and modularity. The visual aid reinforces the
detailed descriptions by mapping out how each component operates within the system, showing
where trade-offs occur in the design process. For instance:

● In high-performance scenarios like supercomputers and servers, the Monolithic
Kernel approach may be more suitable due to its direct and efficient communication
pathways.

● For systems where reliability and security are paramount—such as embedded
systems, medical devices, or real-time applications—the Microkernel structure
offers better fault tolerance by isolating critical services.

● The Hybrid Kernel provides a flexible solution, supporting a variety of environments
from personal computing (e.g., macOS and Windows NT) to enterprise-level servers, by
maintaining the efficiency of monolithic designs while adopting the modular and
fault-tolerant aspects of microkernels.

By understanding these architectural differences and visualizing them, system designers and
developers can make more informed choices when selecting or designing an operating system
architecture tailored to specific performance and reliability requirements.

Impact of OS Structure on Modern Computing

The structure of an operating system (OS), particularly its kernel architecture, is a critical factor
that directly influences its performance, security, scalability, and modularity. As technology
evolves, the demands placed on operating systems have become more diverse and complex,
requiring specific kernel designs tailored to meet these needs. Understanding the impact of
each OS structure is essential for developing systems that are optimized for today’s computing
environments, from high-performance servers and gaming systems to safety-critical
devices and cloud-based infrastructure.

1. Monolithic Kernels in High-Performance and Speed-Critical Environments



Monolithic kernels are often the architecture of choice in scenarios where speed, resource
efficiency, and low latency are paramount. These environments include gaming systems,
real-time processing servers, and supercomputers, where every millisecond counts and the
efficiency of resource allocation is critical for optimal performance. In monolithic designs, all
essential services—such as device drivers, file management, and process scheduling—are
integrated into a single kernel space, allowing for fast, direct communication between
components.

● Gaming Systems

Modern gaming systems demand high frame rates, minimal latency, and real-time
responses to user inputs. Monolithic kernels, with their ability to manage resources
without the overhead associated with user-to-kernel mode transitions, provide the
necessary raw performance to meet these requirements. This architecture enables the
direct and efficient management of GPU resources, audio processing, and networking
components, all of which are essential for delivering a seamless gaming experience.

● High-Performance Servers

In environments such as cloud data centers and enterprise servers, performance and
scalability are key. Monolithic kernels, like those found in certain configurations of Linux,
allow for efficient I/O processing, rapid network communication, and optimized resource
scheduling, making them suitable for handling massive workloads and scalable
services. The simplicity of having tightly coupled services within the kernel also
facilitates fine-tuned optimizations specific to high-performance computing tasks.

2. Microkernels in Fault-Tolerant and Security-Critical Systems

On the other hand, microkernels are specifically designed for environments where fault
tolerance, security, and reliability are paramount, such as automotive systems, medical
devices, and industrial control systems.

These environments often demand a high level of modularity and isolation between
components, making the microkernel architecture an ideal solution. In a microkernel design,
only the most essential services—such as inter-process communication (IPC), memory
management, and basic scheduling—operate within the kernel space. By keeping these core
functions minimal, microkernels allow other components, like device drivers and file systems,
to operate in the user space, significantly enhancing system security and fault isolation.

● Safety-Critical Systems

In systems where failures could lead to safety hazards, such as automotive control units
or medical monitoring devices, the microkernel’s ability to isolate faults is invaluable.
This design ensures that if a non-essential service, like a device driver, encounters an



error, it can be restarted or replaced without disrupting the core functions of the system.
For example, in a car’s control system, if a sensor driver malfunctions, the microkernel
architecture allows the system to isolate and restart that specific component while
maintaining essential operations like engine control or braking. This level of fault
isolation enhances overall system stability, ensuring that critical tasks continue to
operate reliably, even if non-critical components fail.

● Embedded Devices and IoT Systems

Microkernels are also particularly well-suited for embedded systems and Internet of
Things (IoT) devices, which often require frequent updates and reconfigurations to
stay secure and functional. In these scenarios, the modular nature of microkernel
architectures allows developers to update or replace individual services, such as
networking modules or security protocols, without having to recompile or redeploy the
entire operating system. This capability is crucial for IoT devices that operate
autonomously in diverse environments, as it ensures that the system can adapt
dynamically to new security threats or functional requirements. The microkernel’s
flexibility and scalability are key advantages in the IoT landscape, where devices must
remain efficient, secure, and adaptable over time to accommodate changing conditions
and maintain optimal performance.

3. Hybrid Kernels for Versatility in Modern Operating Systems

Hybrid kernels combine elements of both monolithic and microkernel designs, and they have
become increasingly popular in modern, versatile operating systems likeWindows NT, macOS,
and newer versions of Linux. These architectures aim to balance the performance benefits of
monolithic designs with the modularity and fault isolation of microkernels, making them
suitable for a wide range of computing environments—from personal computing to cloud
infrastructure and server systems.

● Personal Laptops and Desktops

For general-purpose operating systems used in laptops and desktops, hybrid kernels
provide the flexibility to support a variety of applications, including productivity
software, multimedia applications, and software development tools. By running
essential services like memory management and process scheduling in kernel space,
these systems maintain high efficiency, while non-critical components are isolated in
user space to improve security and modularity.

● Cloud Infrastructure and Server Systems



In cloud environments and enterprise-level servers, hybrid kernels enable dynamic
scalability and support for diverse hardware configurations. The modularity of hybrid
designs allows systems to adapt to changing workloads by dynamically loading and
unloading kernel modules, optimizing performance without sacrificing reliability. This
approach is crucial in cloud computing, where workloads can be unpredictable, and
resource allocation needs to be efficient yet flexible.

The Evolution of Kernel Architectures in Modern Computing

The structure of an operating system, and specifically its kernel architecture, is a defining
characteristic that impacts its performance, stability, and flexibility. Each
architecture—monolithic, microkernel, and hybrid—offers unique strengths and trade-offs,
making it suitable for specific computing environments. As the computing landscape evolves,
advancements in cloud computing, Internet of Things (IoT), and edge computing demand
operating systems that are both scalable and secure, while maintaining high levels of
performance.

For example, edge computing devices that process data locally (e.g., in smart factories or
autonomous vehicles) require a combination of low latency and reliability, making hybrid
kernels an attractive option. In contrast, cloud-native applications running on massive server
clusters prioritize efficient resource management and virtualization capabilities, often leaning
on monolithic or hybrid architectures optimized for rapid, high-volume data processing.

Preparing for the Future of Operating System Design

Understanding these structures is crucial for designing and implementing systems that meet
modern performance and security demands. As technology continues to advance, there is a
growing need for next-generation OS architectures that can support the complexities of
emerging technologies.

For developers and system architects, a deep knowledge of kernel architectures not only
provides insight into the inner workings of existing operating systems but also lays the
foundation for innovation.

Developing OS architectures that can handle the dynamic needs of distributed computing,
real-time data analysis, and cyber-physical systems will be central to future advancements.
Such knowledge is essential for building systems that are adaptable, secure, and capable of
managing the vast scale and complexity of modern computing environments.



OS Layers

Operating systems are structured into distinct layers, each with specific responsibilities that
contribute to the efficient management of hardware and software resources. This layered
architecture provides a modular approach, allowing each layer to focus on its particular tasks
while interacting with other layers to ensure smooth and coherent system operations. By
dividing responsibilities across multiple layers, an OS achieves better organization,
modularity, maintenance, and resource allocation, making it adaptable and efficient for
diverse computing environments. Let’s explore each of these layers in detail:

1. Application Layer

The Application Layer is the topmost layer in the operating system architecture. This is where
user applications reside, providing the primary point of interaction between users and the
operating system. Software applications such as word processors, web browsers, games,
and productivity tools all operate within this layer, making it the most visible and directly
accessible layer for end users.

● Role and Functionality:
○ The Application Layer allows users to run software applications that perform a

variety of tasks. These applications rely on the underlying operating system to
access hardware resources like the CPU, memory, storage, and peripherals
(e.g., printers, keyboards, and mice).

○ The OS offers APIs (Application Programming Interfaces), which are sets of
functions and procedures that applications use to request services from the OS.
APIs facilitate interaction between applications and lower-level system resources
without requiring the developer to manage hardware complexities directly.
Examples of APIs include those for file management, network communication,
and graphical user interfaces (GUIs).

● Interaction with Other Layers:
○ The Application Layer interacts closely with the Resource Management Layer

through system calls and APIs. When an application needs to access hardware
or system resources (e.g., read a file or send data over a network), it uses these
APIs to make requests that the OS processes and fulfills through lower-level
layers.

○ By isolating applications from the hardware and lower-level complexities, the
Application Layer ensures that software can be developed more efficiently and
remain portable across different hardware platforms and OS versions.



2. Resource Management Layer

The Resource Management Layer is the middle layer that plays a critical role in managing the
system’s resources, such as CPU scheduling, memory allocation, and I/O operations. It acts
as the central coordinator, ensuring that all applications receive the necessary resources to
function efficiently while preventing conflicts and optimizing overall system utilization.

● Role and Functionality:

○ This layer is responsible for process management, which includes creating,
scheduling, and terminating processes. It uses scheduling algorithms like Round
Robin, First-Come-First-Served, and Priority Scheduling to determine how
the CPU is allocated to processes. This is crucial for achieving multitasking and
ensuring that system resources are distributed effectively.

○ Memory management is another key function of this layer. The OS manages
memory allocation through techniques such as paging and segmentation,
ensuring that each process has the memory space it needs while preventing
conflicts between processes. It also handles virtual memory, which allows the
system to use disk space as an extension of RAM, optimizing memory use when
physical memory is limited.

○ I/O device management is also handled within this layer. The OS manages input
and output operations, coordinating access to peripherals like keyboards,
displays, storage devices, and network interfaces. It uses device drivers,
software components that translate generic OS commands into hardware-specific
instructions, enabling seamless communication between software and hardware.

● Interaction with Other Layers:

○ The Resource Management Layer serves as an intermediary between the
Application Layer and the Hardware Layer. It translates application requests
(e.g., to open a file or send data) into instructions that the Hardware Layer can
process.

○ By managing resources centrally, this layer ensures that hardware resources are
allocated efficiently, minimizing contention and optimizing the performance of
applications and services.



3. Hardware Layer

The Hardware Layer forms the foundation of the operating system architecture, serving as the
lowest and most fundamental layer. It encompasses all the physical components of the
computer system, including the CPU, memory (RAM), storage devices (e.g., hard drives,
SSDs), and various peripherals such as keyboards, mice, printers, and monitors. This layer is
where the operating system (OS) directly interacts with hardware components, managing and
controlling them through device drivers.

● Role and Functionality

The Hardware Layer is responsible for executing the basic, low-level operations that both the
OS and applications rely on. It processes electrical signals and machine code instructions
sent by the OS to perform fundamental tasks like processing data, storing information, and
managing input/output (I/O) operations. This is the level where the OS translates high-level
commands into specific, hardware-oriented actions.

● Device Drivers

Device drivers are crucial software components operating within this layer, acting as
intermediaries between the OS and the hardware. Each piece of hardware, such as a graphics
card, network adapter, or printer, requires a dedicated driver that translates OS commands
into instructions the hardware can understand. For example:

○ When an application requests to print a document, the OS interacts with the
printer driver, which converts the high-level print command into a series of
signals that the printer interprets to perform the task.

○ Similarly, a graphics driver takes commands from the OS related to rendering
images and videos and translates them into instructions that the graphics card
can execute, ensuring proper display output on the monitor.

These drivers are essential for hardware abstraction, as they allow the OS to communicate
with a wide range of hardware devices using a consistent interface, regardless of the specific
make or model of the components.

● Interrupt Handling Mechanisms

To manage interactions with hardware efficiently, the OS relies on interrupt handling
mechanisms within the Hardware Layer. When a hardware device, such as a keyboard or
network card, needs immediate attention, it sends an interrupt signal to the CPU. The OS, in
turn, prioritizes these interrupts through its interrupt handler, ensuring that hardware events
are processed promptly. For instance:



○ When a key is pressed on the keyboard, an interrupt signal is sent to the CPU,
which the OS prioritizes, allowing the character to appear on the screen with
minimal delay.

○ Similarly, when a network card detects incoming data packets, an interrupt is
triggered to ensure the data is processed and delivered to the application quickly.

This interrupt-driven model allows the OS to manage multiple hardware devices efficiently,
responding to critical events as they occur and maintaining system responsiveness.

● Interaction with Other Layers

The Hardware Layer is tightly integrated with the Resource Management Layer, which
oversees the allocation and management of system resources. The Resource Management
Layer issues commands to the Hardware Layer to allocate CPU time, manage memory
registers, and control I/O operations. For example:

○ When the Resource Management Layer assigns memory to a process, it
interacts with the Hardware Layer to set up and manage the necessary memory
addresses and registers.

○ Similarly, when the OS schedules a process for execution, it sends commands to
the Hardware Layer to manage the CPU’s task switching, ensuring efficient
utilization of processing power.

This close collaboration between the hardware and the OS enables higher layers of the
operating system, as well as applications, to operate independently of specific hardware details.
By abstracting hardware complexities, the OS promotes compatibility and portability across
different devices and platforms, allowing software to function consistently, regardless of the
underlying hardware configuration.

In essence, the Hardware Layer is the critical foundation upon which the entire operating
system and its components are built. It not only manages the physical resources of the system
but also enables the operating system to abstract and standardize hardware interactions,
ensuring a seamless and consistent user experience across various devices and configurations.
The layered structure of an operating system provides a modular and scalable approach to
managing complex computing environments. By dividing responsibilities among distinct layers:

● The Application Layer allows users to interact with the OS and run software
applications, making use of APIs that abstract complex hardware interactions.

● The Resource Management Layer acts as the central coordinator, efficiently managing
system resources and optimizing their use based on application needs and hardware
capabilities.



● The Hardware Layer ensures the execution of commands and control of physical
components, facilitated by device drivers and managed through interrupts.

This modular organization improves maintenance and troubleshooting since each layer
operates independently. For example, issues with hardware drivers can be resolved within the
Hardware Layer without affecting application software. Likewise, updates to software
applications in the Application Layer can be made without altering the underlying resource
management mechanisms. This separation not only simplifies OS development and updates
but also enhances security, as each layer can implement distinct safeguards to protect against
malicious actions or errors.

The layered architecture also supports scalability, allowing operating systems to adapt to
different environments and hardware configurations, whether in a simple desktop setup or a
complex multi-server cloud environment. By understanding these layers and their interactions,
developers and system architects can design operating systems that are both efficient and
robust, capable of meeting the demands of modern computing environments.

Differences Between OS Architectures

Operating systems (OS) can differ significantly based on their kernel architecture, which
impacts their performance, security, usability, and flexibility. A comparative study of the
kernel structures in Linux and Windows—two of the most widely used operating
systems—highlights the strengths and trade-offs associated with different architectural designs.
These differences explain why Linux and Windows are suited for specific environments and use
cases, catering to distinct user needs and application requirements.

Comparative Studies of Kernel Structures in Linux and Windows

1. Linux: Monolithic Kernel Architecture

Linux employs a monolithic kernel architecture, where all the core functions of the operating
system—including device drivers, file systems, network protocols, and process
management—are integrated into a single, unified kernel space. This tightly coupled design
has several implications for performance, flexibility, and customizability:

● Performance and Efficiency:

○ The monolithic kernel structure of Linux allows for direct communication
between system components without the need for frequent context switching
between kernel and user spaces. This design results in low latency and high
efficiency, making Linux an ideal choice for performance-sensitive
environments like servers, real-time processing systems, and embedded
devices.



○ The integration of services within the kernel space reduces the overhead typically
associated with accessing hardware resources, enabling Linux to manage
resources efficiently. This efficiency contributes to its widespread use in cloud
computing, web hosting, and high-performance computing applications.

● Open-Source Nature and Flexibility:

○ Linux’s monolithic design is coupled with its open-source nature, making it
highly customizable. Developers can modify the kernel to suit specific hardware
or software requirements, optimizing the OS for various tasks or even creating
specialized versions for specific industries (e.g., Android for mobile devices or
Red Hat Enterprise Linux for enterprise servers).

○ The extensive community support behind Linux further enhances its
adaptability and robustness. Because the source code is publicly accessible,
developers and system administrators can contribute to its development, identify
bugs, and implement patches quickly. This collaborative model ensures that
Linux remains a secure, reliable, and up-to-date operating system.

● Use in Server Environments:

○ Due to its stability and efficient resource management, Linux is commonly
deployed in server environments. It supports a vast array of hardware
configurations and can be optimized for specific server tasks, such as database
management, web hosting, and virtualization. Additionally, Linux’s built-in
security features, like SELinux (Security-Enhanced Linux), enhance its
suitability for enterprise use by providing granular access control and robust
security mechanisms.

2. Windows: Hybrid Kernel Architecture

In contrast, Windows uses a hybrid kernel architecture that combines features of both
monolithic and microkernel designs. This approach allows Windows to benefit from the
performance efficiency of monolithic kernels by keeping core components like the file system
and device drivers in the kernel space, ensuring fast communication and responsiveness.

At the same time, it incorporates modularity and fault isolation from microkernels, enabling
certain services to run in user space. This modularity allows for easier updates and enhances
system stability, as isolated components can be managed without affecting the entire system.

By blending these elements, Windows achieves a balance between performance, usability,
and compatibility, making it a versatile operating system that supports everything from
personal computing to enterprise-level applications.



● Balance Between Performance and Modularity:

○ The hybrid kernel design in Windows enables critical system components,
such as process management and memory handling, to operate within the
kernel space for performance optimization. At the same time, other less critical
services, like certain device drivers and file system operations, are run in user
space. This structure aims to balance the efficiency of a monolithic approach
with the modularity and fault tolerance seen in microkernels.

○ By maintaining this balance, Windows can achieve high performance while also
ensuring that system crashes caused by faulty drivers or non-essential services
do not bring down the entire OS. This balance is essential for maintaining the
stability and reliability required in both personal and enterprise computing
environments.

● User-Friendliness and Compatibility:

○ One of Windows’ primary design goals is user-friendliness, which is evident in
its architecture and user interface (UI). The hybrid kernel supports a wide range
of hardware devices and peripheral components, ensuring broad compatibility
and ease of integration. This compatibility is essential for personal computing,
where users expect the OS to work seamlessly with various hardware, including
printers, webcams, gaming peripherals, and more.

○ The hybrid structure also allows Windows to support a rich array of software
applications, including legacy software. By maintaining compatibility with older
applications and hardware, Windows ensures a smooth user experience and
reduces the need for costly upgrades, which is particularly beneficial in enterprise
environments.

● Use in Enterprise and Personal Computing:

○ Windows is widely used in both personal computing and enterprise
environments due to its focus on ease of use and broad software support.

In enterprise contexts, the modular aspects of Windows’ hybrid kernel
architecture enable administrators to manage system resources and services
flexibly, supporting virtualization, cloud infrastructure, and corporate
networks effectively.

○ For personal use, Windows provides a comprehensive and intuitive user
interface, making it accessible even for non-technical users. The OS includes a
range of built-in tools and utilities designed to enhance productivity,
entertainment, and communication, aligning with the needs of home users and
professionals alike.



3. Impact of Architectural Differences on Performance, Security, and Usability

The architectural differences between Linux and Windows influence their performance,
security, and usability in distinct ways, aligning each operating system with particular use
cases and user preferences:

● Performance:

○ Linux’s monolithic kernel allows it to excel in high-performance and server
environments, where direct communication between kernel components and
the absence of frequent context switching result in minimal latency and
optimized throughput.

○ Windows’ hybrid kernel ensures efficient performance for personal and business
use by balancing direct access for critical components with fault-tolerant handling
for non-essential services. This structure allows for fast execution while
maintaining system stability, even when hardware or software faults occur.

● Security:
○ Linux, with its open-source nature and strong community support, can implement

security patches rapidly and adjust its kernel to meet specific security
requirements. It also benefits from modular security enhancements like
SELinux, which offers advanced security policies tailored for enterprise use.

○ Windows, while proprietary, also prioritizes security through its hybrid kernel. By
isolating certain components in user space, Windows reduces the impact of
potential vulnerabilities. However, the closed-source nature of Windows means
that security updates depend on Microsoft’s release schedule, which can be a
disadvantage compared to Linux’s more agile response.

● Usability and Customizability:
○ Windows is designed to be highly user-friendly, catering to a broad audience

that includes non-technical users, businesses, and IT professionals.

Its hybrid architecture supports extensive software compatibility, ensuring that
both old and new applications can run smoothly, which is particularly important in
enterprise settings where legacy systems must be maintained.

○ Linux’s flexibility makes it the OS of choice for developers, system
administrators, and organizations that require a customizable and lightweight
solution. While Linux can be more challenging for non-technical users due to its
command-line interface and less polished graphical environments in certain
distributions, its modularity and open-source community provide unmatched
opportunities for customization and optimization.



The architectural differences between Linux and Windows showcase how kernel design directly
impacts the OS’s capabilities and suitability for different computing environments. Linux’s
monolithic kernel architecture delivers high performance and adaptability, making it ideal for
servers, development environments, and specialized applications. In contrast, Windows’
hybrid kernel offers a balanced approach that emphasizes compatibility, ease of use, and
modularity, making it suitable for general-purpose computing and enterprise solutions.
Understanding these distinctions helps users and organizations select the appropriate OS
based on their specific requirements for performance, security, and usability.

RECENT RESEARCH IN OS

The field of operating systems (OS) is evolving rapidly in response to new technological
challenges, particularly in areas like security, performance optimization, and system
scalability. These challenges arise from the growing complexity of modern computing
environments, which now include cloud computing, the Internet of Things (IoT), and
cyber-physical systems. To tackle these issues, recent research has focused on developing
innovative OS architectures and mechanisms designed to enhance reliability, fault tolerance,
and resource management. Notable breakthroughs in this space include the development of
microkernels, exo-kernels, and nano-kernels, each offering a distinct approach to improving
OS efficiency and security. Microkernels prioritize modularity and fault isolation, exo-kernels
provide a customizable and minimalistic foundation for application-level control, and
nano-kernels further minimize kernel size to reduce attack surfaces and improve performance.

1. Microkernels and Their Security Advantages

Microkernels have gained significant attention in recent research due to their inherent security
and fault tolerance advantages. Unlike traditional monolithic kernels, where all services and
components operate within a single, unified space, microkernels focus on minimizing the
functionalities included in the kernel space.

They isolate only the most essential services, such as inter-process communication (IPC),
basic scheduling, and low-level I/O operations, while running other components—like device
drivers, file systems, and network protocols—in user space.

This separation significantly enhances system stability and security, as faults or crashes in
non-critical services do not directly affect the core kernel operations. Additionally, running
services in user space makes them easier to update or restart without requiring a complete
system reboot, further improving system resilience and maintainability.



This architectural shift has several important implications:

● Fault Isolation and Enhanced Stability:

○ One of the primary advantages of the microkernel architecture is its ability to
isolate faults. By running services such as device drivers, file systems, and
network protocols outside the kernel, microkernels can prevent system-wide
crashes when these components fail. For example, if a device driver encounters
an error, the OS can restart the driver without affecting the rest of the system,
ensuring continued operation. This level of fault isolation enhances system
stability and is particularly valuable in environments where reliability is critical,
such as industrial control systems or medical devices.

● Security Benefits:

○ The isolation of services in user space also reduces the attack surface available
to malicious actors. In a monolithic kernel, a vulnerability in any part of the kernel
could potentially compromise the entire system. In contrast, microkernels limit the
scope of security breaches, as each service operates independently. If one
service is compromised, it does not have access to the entire system, minimizing
the impact of security threats.

○ Research has demonstrated that microkernels, due to their minimalistic
approach, are well-suited for embedded systems and critical infrastructure,
where both high security and fault tolerance are paramount. Examples of
microkernel-based systems such as QNX and seL4 have been implemented in
these scenarios, emphasizing their use in contexts where safety and security
cannot be compromised.

2. Exo-Kernels: Direct Control for Specialized Performance

Another innovative development in OS architecture is the exo-kernel, which offers a radically
different approach to resource management. Unlike traditional kernel designs that provide a
broad abstraction layer over hardware resources, exo-kernels aim to give applications direct
access to hardware resources with minimal intervention from the OS. This architecture is
particularly suited for environments that require highly optimized and specialized
performance.

● Minimal Interface and Customization:

○ Exo-kernels provide a minimal interface that allows developers to directly
manage resources such as CPU, memory, and I/O devices. This approach
empowers applications to implement their custom resource management
policies, optimizing performance for specific tasks or workloads.



For instance, in data-intensive applications like database management systems
or scientific computing, developers can fine-tune resource allocation strategies,
bypassing the generic abstractions imposed by traditional operating systems.

○ The flexibility of exo-kernels enables the creation of application-specific
environments, where each application can run with the most efficient
configuration tailored to its unique requirements.

This level of optimization is especially valuable in cloud computing and edge
computing scenarios, where resource efficiency and speed are critical.

● Implications for Scalability and Efficiency:

○ Research in exo-kernels suggests that this architecture can significantly improve
scalability in distributed computing environments.

By minimizing the overhead typically introduced by the OS and giving
applications greater control over hardware resources, exo-kernels can enhance
the overall efficiency and responsiveness of complex, multi-node systems. This
makes them an attractive option for high-performance computing (HPC)
clusters and real-time data processing systems where low-latency performance
is critical.

3. Nano-Kernels: Extreme Modularity and Efficiency

The development of nano-kernels represents a further refinement of microkernel principles,
focusing on providing only the most essential functions necessary for basic OS operations.
Nano-kernels aim to achieve the highest level of modularity and minimalism, promoting
efficiency and security in environments where resource constraints are a critical concern.

● Focus on Core Functions:

○ Nano-kernels strip down the kernel to its bare essentials, usually implementing
only the core functions like basic IPC, process scheduling, and minimal
hardware management. By keeping the kernel footprint small, nano-kernels
reduce the overhead associated with OS operations, making them highly
efficient and responsive.

○ This minimalistic approach also reduces the attack surface, making
nano-kernels suitable for environments where security is a top priority. The
smaller and more manageable codebase is less prone to bugs and
vulnerabilities, enabling easier verification and auditing processes.



Systems based on nano-kernels are therefore ideal for embedded devices, IoT
systems, and safety-critical applications where every resource must be
utilized efficiently.

● Research and Development Focus:

○ Ongoing research in nano-kernels is exploring their potential to provide the
foundational framework for cyber-physical systems and autonomous devices.
These systems often require real-time performance and the ability to respond to
environmental inputs with minimal delay.

Nano-kernels offer the advantage of operating with extremely low overhead,
making them capable of supporting low-power and highly responsive systems,
such as those used in robotics, smart grids, and autonomous vehicles.

Future Directions and Implications for OS Design

The advancements in microkernels, exo-kernels, and nano-kernels offer new approaches to
efficiency, security, and scalability, making them critical for the future of OS design.

As computing environments continue to evolve with the growth of cloud services, edge
computing, and IoT networks, these innovative architectures are likely to become increasingly
relevant.

● Hybrid Approaches and Custom OS Development:

○ Researchers are also exploring hybrid approaches that combine the benefits of
these kernel types. For example, hybrid systems may integrate elements of
exo-kernels with microkernel-based services, achieving a balance between
performance customization and fault tolerance. Such approaches aim to offer
the best of both worlds, providing efficient resource management while
maintaining the modularity needed for secure, reliable systems.

○ The flexibility offered by these emerging architectures paves the way for custom
OS development tailored to specific industries or use cases. This is particularly
valuable in cloud-native applications, where custom operating systems can be
designed to maximize efficiency and security based on the exact needs of the
software stack and hardware configuration.

● Impact on System Security and Scalability:

○ The focus on fault isolation and modularity seen in microkernel and nano-kernel
research is instrumental in improving system security.



These developments are not only enhancing the robustness of traditional
operating systems but are also being applied to virtualization platforms and
hypervisors, which play a crucial role in modern cloud infrastructure.

○ Scalability is another major advantage offered by these new architectures. As
distributed systems grow in size and complexity, the need for modular, scalable,
and secure OS designs becomes increasingly important. Exo-kernels and
nano-kernels provide frameworks that allow for the efficient management of
resources across large-scale, distributed networks.

Recent research in operating systems, particularly in the development of microkernels,
exo-kernels, and nano-kernels, is paving the way for more efficient, secure, and scalable
computing environments. These innovative architectures address the challenges of modern
computing, such as managing increasingly complex systems and ensuring robust security.

As the field continues to advance, these breakthroughs will likely form the foundation of
next-generation operating systems, enabling the development of high-performance,
fault-tolerant, and customizable platforms that meet the evolving needs of cloud computing,
IoT, and other emerging technologies. Understanding the structure and functions of an operating
system is essential for computer science students.

By exploring system calls, kernel architectures, OS layers, and recent research, you will
gain valuable insights into how operating systems function and their role in the overall
computing environment. This knowledge will serve as a foundation for advanced studies and
practical applications in the field of computer science, preparing you for challenges in software
development, system administration, and beyond.



Self-assessment questions:
1. What are the primary functions of an operating system (OS), and how do they contribute

to the efficient operation of a computing system?

2. Explain the concept of system calls and their importance in the interaction between
applications and the OS kernel. How do system calls maintain system security and
stability?

3. Differentiate between monolithic, microkernel, and hybrid kernel architectures. What are
the advantages and disadvantages of each approach?

4. How does the OS manage memory allocation, and why is efficient memory management
critical for system performance?

5. What is the role of the resource management layer in an operating system, and how
does it interact with other layers like the application and hardware layers?

6. How does the layered structure of an operating system facilitate system maintenance,
scalability, and security?

7. In what ways do microkernels enhance system stability and security compared to
monolithic kernels? What types of systems benefit most from a microkernel architecture?

8. What are exo-kernels, and how do they differ from traditional kernel architectures in
managing hardware resources?

9. Describe how hybrid kernels balance performance and modularity. Provide examples of
operating systems that utilize hybrid kernels and discuss their advantages in modern
computing environments.

10. What are nano-kernels, and what role do they play in the development of efficient and
secure systems? Why are they particularly suitable for low-power and real-time
computing environments?

11. How does the OS handle interrupt signals from hardware devices, and why are interrupt
handling mechanisms crucial for system responsiveness and efficiency?

12. What are the benefits of using device drivers in the hardware layer, and how do they
contribute to the flexibility and compatibility of an operating system across different
hardware components?



Bibliography
1. Bhurtel, M., & Rawat, D. B. (2023). Operating System Vulnerabilities in IoT Devices.

Journal of Internet Services and Applications, 14(3), 145-161.

2. Bhurtel, M., & Rawat, D. B. (2023). Unveiling the Landscape of Operating System
Vulnerabilities. Future Internet, 15(7), 248.

3. Brookshear, J. G., & Brylow, D. (2018). Computer Science: An Overview (12th ed.).
Pearson.

4. IEEE. (2017). "Microkernels and Their Security Advantages." IEEE Security & Privacy,
15(4), 65-69.

5. Lagar-Cavilla, H. A., De Lara, E., & Warfield, A. (2021). Software-Defined Far Memory: A
Proactive Approach to Memory Management. Proceedings of the 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI).

6. Silberschatz, A., Galvin, P. B., & Gagne, G. (2018). Operating System Concepts (10th
ed.). Wiley.

7. Stallings, W. (2018). Operating Systems: Internals and Design Principles (9th ed.).
Pearson.

8. Tanenbaum, A. S., & Bos, H. (2015). Modern Operating Systems (4th ed.). Pearson.

9. Wang, L., Qin, X., Wang, Z., Liu, Y., & Chen, J. (2023). Real-Time Operating Systems for
Cyber-Physical Systems: Current Status and Future Directions. IEEE Transactions on
Computers, 72(4), 879-892.

10. Zhang, Y., Wang, X., Xu, H., & Guo, M. (2022). Machine Learning Integration in OS
Memory Management Systems. Journal of Systems and Software, 188, 111234.

https://www.mdpi.com/1999-5903/15/7/248
https://www.mdpi.com/1999-5903/15/7/248
https://ieeexplore.ieee.org/document/9361302
https://ieeexplore.ieee.org/document/9361302

