Writing Good requirements techniques

Writing clear and testable requirements ensures that
the system can be properly validated

1. Why Good Requirements Matter:

* Prevents misunderstandings and ensures all stakeholders are on the same page.

* Reduces project risk by ensuring that developers, testers, and designers know
exactly what is expected.

* Makes requirements testable, traceable, and verifiable.

I ntrOd u Ctl O n to 2. Common Pitfalls in Requirements Writing: ?
Writi ng GOOd * Ambiguity: Vague terms that can be interpreted in multiple ways (e.g., “fast,”

“user-friendly”).

Req u i re m e ntS * Incomplete requirements: Missing critical information (e.g., conditions under

which a function should occur).

T h - * Non-testable requirements: Requirements that cannot be verified through tests or
eC ni q u eS measurable criteria.

3. Techniques for Writing Good Requirements: £

* Use clear and concise language to ensure understanding.

* Write testable requirements: Every requirement must be verifiable through
inspection or tests.

* Ensure traceability: Requirements should be linked to higher-level business needs
or stakeholder requirements.

Bad Example Good Example

1. The system should be fast. 1. The system shall respond to user inputs within 2 seconds.
2. The Ul must be user-friendly. 2. The Ul shall allow users to navigate between screens with fewer than 3 clicks.
3. The app should work offline. 3. The app shall retain core functionality (viewing documents) when offline.

4. The system shall handle up to 10,000 concurrent users without performance

4. The system should be scalable. degradation.

5. The data must be secure. 5. All user data shall be encrypted using 256-bit AES encryption.
6. The system should handle large files. 6. The system shall process files up to 2GB without performance degradation.

7. The system should support different formats. 7. The system shall support uploading and processing files in .pdf, .docx, and .txt

formats.
8. The system should allow customization. 8. The system shall allow users to customize their dashboard layout with widgets.
9. The software should be easy to maintain. 9. The software shall include detailed inline documentation for developers.
10. The website should load quickly. 10. The website shall load within 3 seconds on a 5Mbps internet connection.

Requirement
Traceability

Stakeholder
Reqguirements to
System
Requirements

User stories are mapped to system requirements,
ensuring traceability from stakeholder needs to
system implementation

1. User Story Format:

"As a [user], | want [feature], so that [benefit]."

Captures user needs: Focuses on the user’s perspective and goals.
Easy to understand: Written in plain language for clarity and simplicity.
Focus on benefits: Helps identify the value provided to the user.

2. System Requirement Format: g

* Defines how the system shall implement the user need in a technical manner.

* Technical language: Specifies what the system must technically do to fulfill the
user story.

* Measurable outcomes: Ensures the system's behavior is testable and verifiable.

* System constraints: Captures any conditions or performance limitations

3. Ensuring Traceability:

* Traceability Matrix: Link user stories to system requirements for traceability.

* Requirement tracking tools: Use tools like Jira or Confluence to track requirements
in real-time.

* End-to-end visibility: Ensures stakeholder needs are mapped and implemented in
system design.

User Story (Stakeholder Requirement) System Requirement (Technical Language)

User Story 1: "As a customer, | want to filter
products by price so that | can find the best
deals."

System Requirement 1: "The system shall provide a filter function that allows
users to sort products by price range (min to max) in real-time."

User Story 2: "As an admin, | want to create and
manage user accounts so that | can control
access to the system."

System Requirement 2: "The system shall provide an interface for admin users to
create, edit, and delete user accounts with role-based access control."

User Story 3: "As a user, | want to receive a System Requirement 3: "The system shall automatically generate and send an
confirmation email after placing an order so that | order confirmation email to the user's registered email address within 30
know it was successful." seconds of order completion."

User Story 4: "As a shopper, | want to save items System Requirement 4: "The system shall allow users to add products to a
to a wishlist so that | can review them later." wishlist, stored in the database, accessible from their account on future logins."

User Story 5: "As a user, | want to reset my

password if | forget it so that | can regain access to
my account."

System Requirement 5: "The system shall provide a password recovery option,
sending a one-time link to reset the user's password, valid for 30 minutes."

Functional requirements focus on the system’s behavior,
while non-functional requirements define its properties

1. Functional System Requirements: g

* Reflect system behavior: Specify what the system should do in response to inputs
or events.

* User-focused: Relate to specific functionalities required by stakeholders or users.

* Testable and measurable: Can be verified through actions, tests, or simulations.

 Example: "The system shall allow users to log in using their email and password."

¢

2. Non-Functional System Requirements: L N

Fu n Cti O n a l a n d * Describe system properties: Specify how the system is in terms of performance,

security, and usability.
N O n _ Fu n CtiO n a l « System quality attributes: Focus on aspects like reliability, performance, and
security that impact how the system operates.
SySte m * Typically not user-facing: Concerned with system attributes that affect its

background operations or performance.
Requirements

 Example: "The system shall store passwords securely using 256-bit encryption."

3. Ensuring Completeness:

* Functional: Captures required system actions and interactions based on user
needs.

* Non-functional: Defines the system’s operational properties

 Complement each other: Functional and non-functional requirements work
together to ensure the system behaves as expected and operates efficiently.

Functional Requirement Non-Functional Requirement

FR1: "The system shall allow users to upload
images to their profile."

NFR1: "The system shall store images with a maximum file size of 5SMB."

FR2: "The system shall generate a report

. o NFR2: "The system shall have an availability of 99.9% uptime."
summarizing user activity.

FR3: "The system shall allow users to reset their

passwords.” NFR3: "All passwords shall be stored securely using 256-bit encryption.”

FR4: "The system shall enable users to search for NFR4: "The system shall support up to 10,000 concurrent users without

products by category." degradation in performance."
FR5: "The system shall provide users with the NFR5: "The system shall ensure that all downloadable invoices are generated
ability to download invoices in PDF format." within 5 seconds."

FR6: "The system shall allow administrators to NFR6: "The system shall ensure role assignments are fully logged and auditable
assign roles to users." for 5 years."

MASTER templates provide a structured approach to writing

Mustergultige system requirements, ensuring consistency and traceabilit
Anforderungen - die y L ’ g y y

SOPHIST
Templates fur
Requirements

1. Purpose of MASTER Templates:

* Standardize writing: Ensures uniformity in structuring requirements, making them
easy to understand and implement.

* Improve traceability: Facilitates the tracing of requirements from high-level
stakeholder needs down to specific system actions or properties.

MASTE R * Enhance clarity and testability: Each template ensures that requirements are
Requirements

written in a clear, testable format.

2. Types of MASTER Templates:

Te I l p late * Functional MASTER: Defines what the system must do under specific conditions.
. * Property MASTER: Specifies the properties or attributes the system must have.
Ove rview * Process MASTER: Describes how certain processes or activities must be carried out

within the system.

3. Usage of MASTER Templates:

Exemplary « Consistency across teams: Ensures that different teams working on the same
requirements - the system maintain a consistent structure in how requirements are written.
SOPHIST Scalability: MASTER templates can be applied to both small-scale and large-scale
temp[ates for systems, ensuring scalability.

requirements * Testability and traceability: By using these templates, every requirement can be
tested and traced back to its source, improving system validation.

Functional Requirements MASTER Template

SHALL)
For example: The document editor shall
PROVIDE <actor>
[<condition>] — <system> SHOULD WITH THE <process verb> —<object> provide the user with the ab,[,ty to create new
ABILITY TO
documents.
WILL BE ABLE TO

« Condition: Shall be specified with the ConditionMASTER, LogicMASTER, EventMASTER or TimeMASTER templates.
« System: Represents the system or component that should provide the functionality.
. Liability: Modal verbs are used to express liability:
o Shall: Statementis legal binding and mandatory.
o Should: Statementis desired, but not mandatory.
o Will: Statement is recommended, but not mandatory.
o Activity type: The different types of system activities are the following [RdS14a]:
o Independent system action: (-) The system performs the process by itself.
o Userinteraction: (PROVIDE <actor> WITH THE ABILITY TO) The system provides the user with some process functionality.
o Interface requirement: (BE ABLE TO) The system performs the process dependent on a third factor.

Process verb: Represents the process: procedures (functionality) and actions to be provided by the system

MASTER Template - Functional Requirements Example

SHALL =

PROVIDE <actor> <condition>, <system>, SHALL/SHOULD/WILL,
[<condition>] — <system> SHOULD WITH THE <process verb> —<object> .
<actor>, <process verb>, and <object>

ABILITY TO

WILL BE ABLE TO

<When a user enters valid login credentials>, the <authentication system> SHALL <authenticate> the <user> and grant access to their
profile.

<When a user clicks "Add to Cart">, the <e-commerce platform> SHALL <add> the <selected product> to the <shopping cart>.

<If the temperature exceeds 75°C>, the <server cooling system> SHALL <activate> the <cooling mechanism> to reduce the temperatur:
<When a user submits the contact form>, the <website backend> SHALL <send> the <form data> to the <support team> for follow-up.
<If an invalid credit card is provided>, the <payment gateway> SHALL <display> an <error message> to the <user>.

<Upon exceeding the cloud storage limit>, the <cloud storage system> SHALL <notify> the <user> and <restrict> further <uploads>.
<When the system detects 15 minutes of user inactivity>, the <banking application> SHALL <log out> the <user> for security purposes.

<Upon receiving a maintenance request>, the <facility management system> SHALL <assigh> the <request> to the <appropriate
technician>.

Property Requirements MASTER Template

SHALL
: vl For example: The design of the website
[<condition>] —<characteristic> — :::tt:j;c: SHOULD BE — ::q::sl;fiz:‘f] — <value> p . g
P should be responsive.
WILL

o Characteristic: Defines the property of the subject matter (e.g., speed, size).
o Thisisthe key attribute of the system that needs to be defined.

« Subject Matter: Represents the system, sub-system, or component that has the property.
. Identifies the part of the system to which the characteristic applies.

. Liability: Uses modal verbs (SHALL, SHOULD, WILL) to express the level of obligation.
o Shall: Legal binding and mandatory.
e Should: Desired but not mandatory.
« Will: Recommended but not binding.

« Qualifying Expression: Specifies the range or limits of the property.
. Describes constraints like "greater than," "less than," etc.

« Value: The specific value associated with the characteristic.

« Thisis connected through the verb "to BE.

MASTER Template - Property Requirements Example

SHALL

<condition>, <characteristic>, <subject matter>,
e {isHouLD —) Be - IRV g SHALL/SHOULD/WILL, <qualifying expression>, and
<value>

[<condition>] —<characteristic> —

WILL

<When operating at full load>, the <processor>SHALL BE <clock speed> <at least 3.2 GHz>.

<In temperatures above 35°C>, the <battery> SHALL BE <operating capacity> <at least 80%> of its normal capacity.
<During regular operation>, the <display> SHALL BE <brightness level> <adjustable from 100 nits to 500 nits>.

<Under heavy usage>, the <system memory> SHOULD BE <response time> <less than 10 milliseconds>.

<In power-saving mode>, the <screen> WILL BE <refresh rate> <limited to 30Hz> to conserve energy.

<When connected to a high-speed network>, the <network adapter> SHALL BE <data transfer rate> <at least 1 Gbps>.
<At startup>, the <operating system> SHALL BE <boot time><no more than 20 seconds>.

<Under normal usage conditions>, the <hard drive> SHALL BE <noise level> <less than 30 dB>.

<During playback of 4K video content>, the <graphics card> SHALL BE <frame rate> <at least 60 frames per second>.

Environmental Requirements MASTER Template

SHALL The fixed values are designed in a way that make the
requirement belongs to the system and not the environment

< j < ifyi
subject SHOULD BE | [<qualifying

. — <value>
matter> expression>]

[<condition>] —<characteristic> —

For example: The charger of the device shall be designed in a way
WILL the system can be operated in a range 100-240V/50-60Hz.

. Component of Subject Matter: Specifies which component of the system the environment requirement applies to.
. Identifies which part of the system needs to operate in a specific environment.
. Liability: Expressed through modal verbs (SHALL, SHOULD, WILL) to define the level of obligation.
o Shall: Binding and mandatory.
« Should: Desired but not mandatory.
« Will: Recommended but not binding.
. Designed in a Way: Indicates how the component should be designed to meet environmental conditions.
. Ensures that the design accounts for the environment in which the system operates.
. Condition: Describes the environmental condition under which the component operates.
. E.g., temperature, humidity, or power range.
. Characteristic: Defines the characteristic the system must meet under these conditions.
. Describes system properties that must be maintained in the environment.
. Qualifying Expression and Value: Specifies measurable expressions (e.g., voltage range, operating temperature).

. Quantifies the environmental requirement.

MASTER Template - Property Requirements Example

SHALL

- — <condition>, <characteristic>, <subject matter>,
condition>] — <characteristic> — = - <quai.yinq — <value - - .
eeondtermAeeharaceriET matters NTIPOMPT7 BE [erpressions [SHALL/SHOULD/WILL, BE <qualifying expression>,
WILL <value>

<When the system is exposed to temperatures below 0°C>, the <heating unit> SHALL <be desighed in a way> that the system <can be
operated> at <optimal efficiency>.

<In the event of power failure>, the <backup generator> SHALL <be desighed in a way> to <operate> the system <for at least 4
hours>.

<When exposed to direct sunlight>, the <solar panel system> SHALL <be designhed in a way> that it <can be operated> in
temperatures of <up to 50°C>.

<If the system is exposed to dust and particles>, the <air filtration system> SHALL <be desighed in a way> that it <can be operated>
without performance degradation.

<When operating at high altitudes (above 3000 meters)>, the <pressure-sensitive components> SHALL <be desighed in a way> that
they <can be operated> without pressure-related failures.

<In environments with high electromagnetic interference (EMI)>, the <communication system> SHALL <be desighed in a way> that it
<can be operated> with minimal signal disruption.

Process Requirements MASTER Template

Process requirements are related to activities or legal-

SHALL contractual requirements, as well as non-functional
<process verb> <object> requ irements.
[<condition>]— <actor> SHOULD [+ <details on — [+ <detailed definition
process verb>] of object>]
For example: The software developers should work
WILL

according to the Personal Software Process (PSP).

« Condition: Describes when the process requirement is relevant.
o Specifies the trigger for the process (e.g., during development).
« Actor: Represents the actor responsible for performing the process.
. Unlike other templates, the focus is on who performs the process, not the system.
« Liability: Uses modal verbs (SHALL, SHOULD, WILL) to indicate the level of obligation.
« Shall: Binding and mandatory.
o Should: Desired but not mandatory.
« Will: Recommended but not binding.
. Process Verb: Describes the action or process the actor is responsible for performing.
« This mayinclude additional details about the process.
« Object: Specifies the target or result of the process.

. Provides a detailed definition of the object or result expected from the process.

MASTER Template - Process Requirements Example

SHALL

g— — <condition>, <characteristic>, <subject matter>,
matter> \7[*UP 77 eressionsy [SHALL/SHOULD/WILL, BE <qualifying expression>,
WILL <value>

[<condition>] — <characteristic> —

<When a customer places an order>, the <warehouse operator> SHALL <pick> the <items from stock> and <prepare them for
shipping>.

<If a system error is detected>, the <monitoring service> SHALL <log> the <error> and <notify the system administrator>.

<If the software update is approved>, the <IT administrator> WILL <deploy> the <update> to all <company devices>.

<When a customer calls support>, the <call agent> SHALL <log> the <call details> and <create a support ticket>.

<When a purchase order is created>, the <purchasing manager> SHALL <review> the <order> and <approve or request changes>.
<If the contract is sighed>, the <legal department> WILL <file> the <contract> and <update the company's legal records>.

<When a customer request is received>, the <customer service representative> SHOULD <respond> to the <request> within <24
hours>.

<When the monthly payroll period ends>, the <payroll specialist> SHALL <calculate> the <salaries> and <process employee
payments>.

Conditions MASTER Template

<logical
expression>

Process requirements are related to activities or legal-

IF . .
contractual requirements, as well as non-functional

ASSOONAS —— <event> <:::'n":|:":s'lt:' requirements.
ASLONG AS —— <time period> For example: If the server could not found what was
requested.
. Condition Types:
« |IF: Represents logical expressions that trigger a requirement based on a logical condition.

« AS SOON AS: Triggers the requirement immediately when a specific event occurs.
« ASLONG AS: Specifies that the requirement applies for the duration of a given time period or event.
« Logical Expressions: Defines a condition based on a logical comparison or evaluation.
. Example: If the user provides invalid input, the system must display an error message.
. Event-based Conditions: Triggered by an event such as an action by the user or an external system event.
. Example: As soon as the user clicks “Submit”, the system shall process the form.
« Time-based Conditions: Apply while the system is in a specific state or during a defined time period.

. Example: As long as the user is logged in, the system must display real-time notifications.

MASTER Template — Condition Examples

o exprasion> <condition>, <logical expression/event/time period>,
S <system>, SHALL/SHOULD/WILL, <main clause>
requirements-
AS SOON AS — <event> R PTR
AS LONG AS —— <time period>

<IF the user enters an invalid password>, the <system> SHALL <display an error message>.

<AS SOON AS the temperature sensor detects a rise above 30°C>, the <cooling system> SHALL <activate to maintain
safe operating conditions>.

<AS LONG AS the user remains inactive for 15 minutes>, the <system> SHALL <prompt the user to resume or log out>.
<IF the system detects a network connection failure>, the <system> SHALL <switch to offline mode>.

<AS SOON AS the battery charge falls below 20%>, the <device> SHALL <reduce performance to conserve energy>.
<IF the user cancels the operation>, the <system> SHALL <revert all changes made during the session>.

<AS SOON AS the motion sensor detects movement>, the <security system> SHALL <trigger the alarm and notify the
security team>.

Logical Conditions MASTER Template

<compared
object>

<qualifying ex-

pression> <value>

— IS

F P <objact> .The logical statement is made through a compared
> s < object, an actor or a system

THE FUNCTION

<actor> <function>

« If Condition: Specifies the condition or trigger for the logical statement.
. E.g., "lIf the system reaches a certain temperature.”
« Compared Object/System/Actor: The subject of the logical comparison.
« Specifies whether the object, system, or actor is involved in the logical condition.
. Process Verb: Describes the system or actor’s action or state.
« Defines the functionality or state that the logical condition affects.
« Qualifying Expression: Defines the range or expression for comparison (e.g., equal to, greater than).
« Specifies how the logical condition is evaluated.
« Value: The measurable value for the comparison.

« E.g.,"The temperature must be greater than 75°C."

MASTER Template — Logical Conditions Examples

<compared

object> IS

—— Aty InI ST — <value> <compared object>, <system>, IS, <qualifying
expression>, <value>, <process verb>, <object>, and

IF <system> <object> <function>
> <process verb> <
<actor> THE FUNCTION

<function>

<IF the temperature sensor> IS <greater than 50°C>, the <cooling system> SHALL <activate> and <reduce the
temperature>.

<IF the battery> IS <less than 10%>, the <system> SHALL <dim the display> to <preserve battery life>.

<IF the internet connection> IS <unavailable>, the <system> SHALL <switch to offline mode> to <allow limited
functionality>.

<IF the user> IS <an administrator>, the <system> SHALL <grant access> to <configuration settings>.
<IF the file size> IS <greater than 100 MB>, the <system> SHALL <compress the file> before <uploading>.

<IF the network> IS <experiencing latency>, the <system> SHALL <reduce video quality> to <maintain a stable
connection>.

<IF the storage capacity> IS <below 5%>, the <system> SHALL <notify the user> to <free up space>

Event-Driven Requirements MASTER Template

THE EVENT

<event> HAPPENS

cactors cobject> The term event summarizes the possible events that
actor objec

> <process verb> < may affect the system
<system>

AS SOON AS

THE FUNCTION
<function>

. Event: Describes the triggering event that initiates the requirement.
. E.g., "As soon as a user logs in."
o Actor/System: Defines who or what is involved when the event happens.
« Specifies the actor or system component that responds to the event.
. Happens: Marks the point at which the event occurs.
. Indicates the moment when the event is recognized by the system.
. Process Verb: Describes the action or function that takes place once the event occurs.
. E.g., "Log the user activity."
« Object: Specifies the target or result of the process.

. Describes the object or function affected by the event.

MASTER Template — Event-Driven Requirements Examples

THE EVENT
<event>

<actor> <object>
> <process verb> <
<system> THE FUNCTION

<function>

HAPPENS

<AS SOON AS the event happens>, <actor/system>,

AS SOON AS <process verb>, <object>, and <function>:

<AS SOON AS the user presses the power button>, the <system> SHALL <start> the <boot process> and <load the operating
system>.

<AS SOON AS the temperature exceeds 75°C>, the <cooling system> SHALL <activate> and <reduce the temperature> to prevent
overheating.

<AS SOON AS the user submits the form>, the <backend system> SHALL <validate> the <input data> and <store it in the
database>.

<AS SOON AS the motion sensor detects movement>, the <security system> SHALL <trigger> the <alarm> and <notify the security
team>.

<AS SOON AS the door is unlocked>, the <access control system> SHALL <log> the <entry event> and <activate the door
mechanism>.

<AS SOON AS the battery level drops below 10%>, the <system> SHALL <dim the display> and <limit background processes> to
conserve battery.

Time-Based Requirements MASTER Template

THE/AN

<object>
> - | INTHE STATE
<state>
AS LONG AS <system>
SPn— Is used to specify a certain period of time when a
o L <orocess vres | \omretion system or object may have temporary behaviors.
\ <object> Both, conditions and requirements, end at the same
time
<system> | —— <process verb> |___[THE FUNCTION

<function>

« AslLongAs: Specifies the duration or condition under which the requirement applies.
. E.g., "As long as the system is in standby mode."
« Actor/System: Defines who or what is involved during the specified time period.
. Identifies the actor or system affected by the time constraint.
. Is in State: Describes the system or actor’s state during the time period.
« Specifies the condition that must be met (e.g., in a specific mode or state).
. Process Verb: Describes the action that occurs during the specified time.
. E.g., "Monitor system performance."
. Object/Function: Specifies the object or function affected by the process during the specified time period.

. Describes the target or result of the time-bound action.

MASTER Template — Time-Based Requirements Examples

IN THE STATE

Sobject> <AS LONG AS the object/system/actor is in a specific
> ST sstate> state>, <system>, <process verb>, <function>

AS LONG AS <system>
THE FUNCTION

/ <function>
<actor> — <process verb>

\ <object>

THE FUNCTION
<system> —— <process verb> —— <function>

<AS LONG AS the user is logged in>, the <system> SHALL <display> real-time <notifications>.

<AS LONG AS the temperature sensor is in the "overheat" state>, the <cooling system> SHALL <operate> to <reduce the
temperature>.

<AS LONG AS the battery level is below 20%>, the <system> SHALL <limit background processes> to <conserve battery life>.
<AS LONG AS the device is connected to Wi-Fi>, the <system> SHALL <sync> all <data> to the cloud.

<AS LONG AS the vehicle is moving>, the <infotainment system> SHALL <restrict access> to certain <features> for safety reasons.
<AS LONG AS the file transfer is in progress>, the <system> SHALL <display> the <transfer status> to the user.

<AS LONG AS the door lock is in the "unlocked" state>, the <security system> SHALL <track> all <entry events>.

EARS methodology, helping writers select the appropriate
Easy template for each situation

Approach to -

Syntax * Simplifies the process of writing requirements by providing predefined templates
for different types of system behaviors.

* Reduces ambiguity and ensures that requirements are easily understandable by all
stakeholders.

EA RS * Writing requirements using structured syntax ensures consistency across the

project.

Re q u I re m e nts 2. Types of EARS Requirements: 1
Te m p late * Generic Requirements: Cover basic, unconditional system behaviors.

* Ubiquitous Requirements: Apply under all conditions, without the need for

O : triggers.
Ve rVI eW * Event-Driven Requirements: Triggered when a specific event occurs.

 Example: "WHEN the door is opened, the system shall activate the alarm."

N
3. Benefits of EARS: @

e Ensures that all requirements are written in a clear, testable, and verifiable format.
* Helps avoid common issues such as vague or incomplete requirements.
* A well-structured requirement is easier to validate through testing.

Generic requirement syntax in the EARS system, with
Easy preconditions and triggers that lead to a system response

Approach to
ReqUIrementS * Precondition: Defines necessary conditions to invoke the requirement.
Syntax * Specifies what must be true before the system response is activated

* Trigger: Describes the event that initiates the requirement.
* Specifies what causes the system to act.

« System Response: Represents the system behavior that occurs once the

EA RS precondition and trigger are met.

* Defines how the system reacts to the trigger event.

Generic

Requirement

Generic Requirement Syntax:

<optional preconditions> <optional trigger> the <system name> shall <system
response>

EARS - Generic Requirements Examples

<optional preconditions> <optional trigger> the
<system name> shall <system response>:

<If the user is logged in>, the <system> shall <display personalized content>.

<If the temperature exceeds 40°C>, the <cooling system> shall <activate>.

<If the power button is pressed>, the <system> shall <shut down> safely.

<If the file is not found>, the <system> shall <return an error message>.

<If the user requests a password reset>, the <system> shall <send an email with reset instructions>.
<When the user clicks "Submit">, the <system> shall <validate the form data>.

<If no network connection is available>, the <system> shall <switch to offline mode>.

<If the battery level drops below 20%>, the <device> shall <enter power-saving mode>.

<If the sensor detects motion>, the <alarm system> shall <trigger the security alarm>.

<When the vehicle is in reverse>, the <backup camera> shall <activate>.

Easy
Approach to
Requirements
Syntax

EARS

Ubiquitous
Requirement

Ubiquitous requirement in the EARS system, defining a
fundamental property of the system without conditions or
trigger

« No Preconditions or Triggers: Ubiquitous requirements define
fundamental properties of the system.
These requirements always apply and are not dependent on external
events or conditions.
* Format: Simple structure <system name> shall <system response>.
The requirement is always true for the system, without any specific
conditions.
 Example:
"The software shall be written in Java."

Ubiquitous Requirement Syntax:

<system name> shall <system response>

EARS - Ubiquitous Requirements Examples

<system name> shall <system response>

The <software application> shall <be written in Java>.

The <security system> shall <encrypt all data> stored on the server.

The <user interface> shall <provide a login screen>when the application starts.
The <website> shall <comply with accessibility standards>.

The <operating system> shall <allow users to manage files> using a file explorer.
The <device> shall <connect to Wi-Fi> if available.

The <software> shall <log all user activities> for auditing purposes.

The <server> shall <perform daily backups> of all critical data.

The <system> shall <provide multi-language support> for users.

The <application> shall <store user preferences> locally on the device.

Easy
Approach to
Requirements
Syntax

EARS

Event-Driven
Requirement

For Event-driven requirements in the EARS
system responds to specific events

« Triggered by Events: Event-driven requirements are activated only when a
specific event or trigger occurs.
This type of requirement relies on the occurrence of an event to initiate
a system response.
* Format: Uses the WHEN keyword to define the trigger.
Structure: WHEN <optional preconditions> <optional trigger> the
<system name> shall <system response>.
 Example:
"When a DVD is inserted into the DVD player, the OS shall spin up the
optical drive."

Event-Driven Requirement Syntax:

WHEN <optional preconditions> <optional trigger> the <system name> shall <system
response>

EARS - Event-driven Requirements Examples

WHEN <trigger> the <system name> shall
<system response>

WHEN a user presses the power button, the device shall shut down safely.

WHEN the door sensor detects that the door is opened, the security system shall trigger the alarm.
WHEN the vehicle is placed in reverse gear, the backup camera shall activate.

WHEN the battery level falls below 20%, the device shall enter power-saving mode.

WHEN the user clicks the "Submit" button, the web application shall validate the form data.
WHEN the network connection is lost, the system shall switch to offline mode.

WHEN the user logs out, the system shall clear all session data.

WHEN a motion sensor detects movement, the security camera shall start recording.

WHEN a USB device is connected, the operating system shall mount the device and allow file access.

Easy
Approach to
Requirements
Syntax

EARS

Unwanted
Behaviors

Unwanted behavior requirement in the EARS system,
capturing how the system responds to failures or
disturbances

« Capturing Failures: Unwanted behaviours, such as failures, disturbances,
or deviations, need specific responses.
« These requirements focus on system reactions to abnormal
conditions.
« Format: Uses the IF/THEN keywords to define conditions and the system's
response.
« Structure: IF <optional preconditions> <optional trigger>, THEN the
<system name> shall <system response>.
« Example:
« "IF a system error occurs, THEN the system shall log the error and
notify the user.

Unwanted Behaviors Requirement Syntax:

IF <optional preconditions> <optional trigger>, THEN the <system name> shall <system
response>.

EARS - Unwanted Behaviors Requirements Examples

IF <optional preconditions> <optional trigger>, THEN
the <system name> shall <system response>.

IF the user has attempted to log in three times with incorrect credentials, THEN the system shall lock the account and notify
the security team.

IF the server temperature exceeds 85°C, THEN the system shall shut down to prevent damage.
IF the user's session times out, THEN the system shall log the user out and redirect them to the login page.

IF the network connection is lost during data transmission, THEN the system shall pause the transmission and attempt to
reconnect.

IF the disk space falls below 10%, THEN the system shall notify the administrator and limit further data storage.
IF the vehicle detects a loss of traction, THEN the system shall activate the anti-lock braking system (ABS).

IF the user cancels a transaction before completion, THEN the system shall revert all changes and display a cancellation
confirmation.

IF the power supply drops below 90%, THEN the system shall switch to backup power and log the event.

IF the door is left open for more than 5 minutes, THEN the security system shall send a notification and activate a warning light.

Optional requirement in the EARS system, defining how the

Easy system responds when a certain feature is included
Approach to : : _ — _
Requirements . Trlggergd by Features: Optional requirements are only valid if a certain
Svnt feature is present.
yntax « These requirements depend on specific system configurations or
capabilities.
« Format: Uses the WHERE keyword to define the condition based on a
feature.

« Structure: WHERE <feature is included> the <system name> shall

EA RS <system response>.

] « Example:
O ptl Onal « "Where an HDMI port is present, the software shall allow the user to

g select HD content for viewing."
Requirements

Optional Requirement Syntax:

WHERE <feature is included> the <system name> shall <system response>

EARS - Optional Requirements Examples

WHERE <feature is included> the <system name> shall
<system response>

WHERE a GPS module is included, the system shall provide real-time location tracking.

WHERE a backup battery is present, the system shall switch to battery power during a power outage.
WHERE a high-resolution display is available, the system shall allow 4K video playback.

WHERE a fingerprint scanner is integrated, the system shall use biometric authentication for login.
WHERE a Wi-Fi connection is detected, the system shall automatically sync data to the cloud.
WHERE an HDMI port is available, the system shall support external monitor connections.

WHERE the vehicle is equipped with sensors, the system shall provide lane departure warnings.
WHERE a dedicated graphics card is installed, the system shall enable advanced rendering features.
WHERE the device supports Bluetooth, the system shall allow wireless connection to peripherals.

WHERE a security camera is available, the system shall offer real-time video streaming.

Easy
Approach to
Requirements
Syntax

EARS

Complex
Requirements

Optional requirement in the EARS system, defining how the
system responds when a certain feature is included

« Combining Conditions: Complex requirements are created by combining
multiple conditions.
« These requirements are more intricate and may involve multiple
events, states, or actions.
« Keywords: The combination of WHEN, IF, THEN, WHILE, and WHERE
allows for detailed conditional requirements.
« Use these keywords to define the sequence and interaction of
multiple conditions.
« Example:
« "When the landing gear button is depressed once, if the software
detects that the landing gear does not lock into position, then the
software shall sound an alarm."

EARS - Optional Requirements Examples

multiple conditions using keywords like IF, WHEN, WHILE, THEN, and WHERE:
WHEN the user presses the start button, IF the battery level is above 20%, THEN the system shall initiate boot-up.
IF the temperature exceeds 50°C, AND the fan is not running, THEN the cooling system shall activate.
WHEN the sensor detects motion, AND the light level is below 30%, THEN the system shall turn on the lights.

IF the user logs in with admin credentials, AND the two-factor authentication is enabled, THEN the system shall send a
verification code.

WHILE the user is uploading files, IF the network connection is lost, THEN the system shall pause the upload and retry when the
connection is restored.

WHEN the vehicle is moving, IF the driver opens a door, THEN the system shall trigger an alert and lock the door.

IF the user is inactive for 10 minutes, AND the session is notin a critical operation, THEN the system shall log the user out
automatically.

WHEN the temperature is below freezing, AND the engine is running, THEN the system shall activate the engine heater.

IF the fire alarm is triggered, AND the emergency exits are blocked, THEN the system shall alert emergency responders and
unlock alternative exits.

Writing requirements with templates contribute to project
success by providing clear, testable, and traceable
requirements

1. MASTER Templates 1

e Structured for system-level requirements.
* Ensures traceability and consistency.
e Testable and measurable for validation.

Summary and

2. EARS Templates (,i
Q &A Simplifies writing for different system behaviors.

 Reduces ambiguity with predefined structures.

* Focuses on clear and concise requirements.

3. Writing Good Requirements 'V 4

* Use clear and unambiguous language.
* Ensure every requirement is testable.
* Maintain traceability to goals and objectives.

	Slide 1: Writing Good requirements techniques
	Slide 2: Introduction to Writing Good Requirements Techniques
	Slide 3
	Slide 4: Requirement Traceability Stakeholder Requirements to System Requirements
	Slide 5
	Slide 6: Functional and Non-Functional System Requirements
	Slide 7
	Slide 8: MASTER Requirements Template Overview
	Slide 9: Functional Requirements MASTER Template
	Slide 10: MASTER Template - Functional Requirements Example
	Slide 11: Property Requirements MASTER Template
	Slide 12: MASTER Template - Property Requirements Example
	Slide 13: Environmental Requirements MASTER Template
	Slide 14: MASTER Template - Property Requirements Example
	Slide 15: Process Requirements MASTER Template
	Slide 16: MASTER Template - Process Requirements Example
	Slide 17: Conditions MASTER Template
	Slide 18: MASTER Template – Condition Examples
	Slide 19: Logical Conditions MASTER Template
	Slide 20: MASTER Template – Logical Conditions Examples
	Slide 21: Event-Driven Requirements MASTER Template
	Slide 22: MASTER Template – Event-Driven Requirements Examples
	Slide 23: Time-Based Requirements MASTER Template
	Slide 24: MASTER Template – Time-Based Requirements Examples
	Slide 25: EARS Requirements Template Overview
	Slide 26: EARS Generic Requirement
	Slide 27: EARS - Generic Requirements Examples
	Slide 28: EARS Ubiquitous Requirement
	Slide 29: EARS - Ubiquitous Requirements Examples
	Slide 30: EARS Event-Driven Requirement
	Slide 31: EARS - Event-driven Requirements Examples
	Slide 32: EARS Unwanted Behaviors
	Slide 33: EARS - Unwanted Behaviors Requirements Examples
	Slide 34: EARS Optional Requirements
	Slide 35: EARS – Optional Requirements Examples
	Slide 36: EARS Complex Requirements
	Slide 37: EARS – Optional Requirements Examples
	Slide 38: Summary and Q&A

