
System Requirements Analysis

Introduction to
System

Requirements

System requirements ensure alignment between
stakeholders and the technical team.

1. Structured Requirements

• System requirements shall align with stakeholder needs.
• They shall provide clarity to the development team.
• They ensure the project stays on track.

2. Key Outcomes of Analysis

• System requirements shall define clear goals and objectives.
• They help meet stakeholders' needs.
• Prevent costly revisions and rework.

3. Critical for Technical Feasibility

• System requirements shall assess whether the infrastructure can support the
system.

• They guide developers to create viable solutions.
• Provide a framework for future scalability.

ASPICE – Automotive Software Process Improvement and Capability dEtermination

1. Process Model Framework

• ASPICE shall ensure quality across the development lifecycle.
• It focuses on continuous process improvement.
• It supports compliance with industry standards.

2. Key Base Practices

• ASPICE shall ensure system requirements meet project needs.
• It shall provide structure for documenting functional and non-

functional requirements.
• Ensure that all requirements are tested and validated.

3. Capability Improvement

• ASPICE shall enhance communication between teams.
• It ensures scalable and sustainable processes.
• Leads to better project outcomes.

ASPICE connects these practices to improve process capability.

ASPICE

Structuring

TraceabilityAnalysis

Specification

ASPICE – Automotive Software Process Improvement and Capability dEtermination

ASPICE – Automotive Software Process Improvement and Capability dEtermination

System
Requirements

Analysis

The analysis process aligns system requirements with
stakeholder goals and ensures feasibility.

1. Purpose of Analysis

• The analysis shall align system outcomes with business needs.
• It reduces risks of scope creep and delays.
• Ensures that technical goals are achievable.

2. Process Outcomes

• The analysis shall deliver well-defined system requirements.
• Requirements shall be structured for implementation.
• Feasibility shall be ensured, avoiding technical debt.

3. Impact on Environment
• System requirements shall predict necessary infrastructure changes.
• They prevent unnecessary system disruptions.
• Allow planning for long-term maintenance.

BP1:
Specify System

Requirements

System requirements are classified into functional and
non-functional types to ensure clarity.

1. Defined Characteristics

• Requirements shall use ISO standards (e.g., ISO 29148) for verifiable, unambiguous
specifications.

• They shall clearly specify both functional and non-functional requirements.
• Avoid design constraints in requirement specifications.

2. Functional and Non-Functional
• System requirements shall define what the system must do (functional).
• They shall specify system properties (non-functional), like performance and

security.
• Ensure both types of requirements are clearly differentiated..

3. Verifiability and Freedom from Ambiguity
• Requirements shall be measurable and testable.
• They shall be clear and free from ambiguity.
• Ensure they are actionable and realistic.

Types of System
Requirements

Distinction between functional and non-functional
requirements.

1. Functional Requirements

• System requirements shall define specific system actions or functionalities.
• Example: The system shall allow users to reset passwords.
• Focus on the user-facing behavior of the system.

2. Non-Functional Requirements
• System requirements shall define system properties like performance, usability,

and security.
• Example: The system shall handle 10,000 concurrent users.
• Impact system quality rather than functionality.

3. Measurable and Verifiable
• Both functional and non-functional requirements shall be measurable and

verifiable.
• Ensure requirements can be tested effectively.
• Specific criteria should be set for validation.

BP2:
Structure System

Requirements

System requirements are classified into functional and
non-functional types to ensure clarity.

1. Grouping by Functionality

• Requirements shall be structured by functionality to ensure clarity.
• Grouping helps align system objectives.
• Structure requirements to meet project or stakeholder needs.

2. Prioritization by Needs
• Prioritize requirements according to stakeholder or project needs.
• Ensure high-priority functionalities are addressed first.
• Use prioritization to meet critical milestones.

3. Variants and Release Scope
• Requirements shall be grouped according to system variants or release scope.
• Align them with project phases for easier implementation.
• Ensure the system can evolve with future releases.

Examples of
Structuring

System
Requirements

System requirements can be grouped to match project
phases or critical functionalities

1. Functionality Grouping Example

• Group system requirements related to user authentication into a single
functionality group.

• Example: Login, password reset, and two-factor authentication are grouped under
"User Authentication.“

• This ensures clarity and avoids duplication of requirements across other groups.

2. Release-Based Structuring
• System requirements can be grouped by release cycles, separating MVP from

future features.
• Example: Basic login functionality is developed in the MVP, while advanced

security features are reserved for later releases.
• Prioritizing based on release cycles ensures critical functionalities are delivered

first.

3. Clarity in Grouping
• Well-structured requirements ensure smoother implementation and reduce

redundancy.
• Grouping allows teams to focus on specific feature sets without confusion.
• It simplifies traceability and ensures all related requirements are tracked together.

BP3:
Analyze System

Requirements

Analyzing system requirements ensures their technical
feasibility and alignment with project goals

1. Correctness and Feasibility

• System requirements shall be analyzed for technical feasibility.
• Ensure they are implementable and aligned with project goals.
• Avoid conflicting requirements that hinder progress.

2. Interdependencies
• Analyze how system requirements affect each other.
• Ensure no conflicts between requirements.
• Clarify interdependencies for successful implementation.

3. Impact on Estimates
• Analyzing requirements helps provide accurate project estimates.
• Requirements shall be realistic within time and cost constraints.
• Accurate estimates prevent resource misallocation.

Examples of
Analyzing System

Requirements

Analyzing requirements helps prevent conflicts and
ensures correct implementation

1. Feasibility Example

• A performance requirement shall be analyzed to ensure it aligns with available
hardware capacity.

• Example: A system must support 10,000 concurrent users, but current hardware
only supports 5,000.

• Identify if hardware upgrades are required or if performance optimizations can be
made.

2. Dependency Analysis Example
• A user interface requirement may depend on a security module that must be

developed first.
• Example: Implementing multi-factor authentication requires the security module to

be developed.
• Identify dependencies early to avoid delays in implementation.

3. Correctness Check
• Requirements must be checked for correctness and alignment with business rules.
• Example: A functional requirement may conflict with an existing business logic,

causing discrepancies.
• Analyzing requirements for correctness ensures they align with overall project

goals.

BP4:
Analyze Impact on

the System
Context

System requirements impact multiple elements in the
operating environment

1. System Context Analysis

• Analyze how system requirements impact the broader system environment.
• Identify potential dependencies and constraints.
• Prevent disruption to the system during integration.

2. Contextual Dependencies
• System requirements shall consider the full operating context.
• Analyze impacts on related systems or infrastructure.
• Adjust system architecture as needed.

3. Plan for Adaptation
• Ensure the system context can adapt to new requirements.
• Plan for future modifications and enhancements.
• Minimize negative impacts on other system components.

Examples of
Impact on System

Context Analysis

Understanding the system context helps identify
impacts on key components.

1. Example: Network Impact

• System requirements for enhanced security may impact network performance.
• Example: Adding encrypted communication for sensitive data increases bandwidth

use.
• Ensure that network infrastructure can handle the additional load.

2. Example: Hardware Impact
• System performance requirements often necessitate hardware upgrades.
• Example: The system shall process 10,000 transactions per second, requiring a

faster processor.
• Evaluate the existing hardware to ensure compatibility.

3. Example: Software Impact
• Introducing new software features can impact third-party integrations.
• Example: Implementing a new API requires compatibility with the CRM system.
• Check for software compatibility issues before deployment.

BP5:
Ensure Consistency

and
Establish Bidirectional

Traceability

Bidirectional traceability ensures consistency across
stakeholder and system needs.

1. Consistency in Requirements

• System requirements shall remain consistent with stakeholder needs.
• Ensure alignment between technical and stakeholder objectives.
• Avoid conflicts that may arise from changing requirements.

2. Bidirectional Traceability
• Maintain bidirectional traceability between stakeholder and system requirements.
• Ensure all system requirements trace back to stakeholder inputs.
• Trace changes in system requirements back to the source.

3. Change Management
• Traceability shall support effective change management.
• Identify impacts of requirement changes on the system.
• Ensure traceability at every level to prevent misalignment.

Example of
Ensure Consistency

and Establish
Bidirectional

Traceability

Traceability ensures that every stakeholder need is
reflected in the system design

1. Example: Traceability of Functional Requirements

• A user story about login functionality traces to system requirements specifying
authentication methods.

• Example: "As a user, I want to reset my password"
→ "The system shall allow password reset via email.“

• Traceability ensures this user need is fully implemented.

2. Example: Traceability of Non-Functional Requirements
• A stakeholder requirement for security traces to system requirements defining

encryption standards.
• Example: "The system shall encrypt all user data" links to stakeholder needs for

data privacy.
• Traceability guarantees these requirements are met.

3. Example: Managing Change Impact
• A change in user experience requirements triggers updates in system requirements

for UI and performance.
• Example: "The system shall allow for quick password reset" changes to "The system

shall reset passwords within 30 seconds.“
• Bidirectional traceability ensures change impacts are tracked.

BP6:
Communicate Agreed
System Requirements
and Impact on System

Context

Communicating the impact of system requirements on
the environment ensures stakeholder alignment

1. Clear Communication with Stakeholders

• System requirements shall be clearly communicated to stakeholders.
• Ensure all stakeholders understand the impact of system requirements.
• Confirm agreements on system requirements before implementation.

2. System Context Impact Analysis
• Communicate how system requirements will affect the operating environment.
• Ensure stakeholders are informed of potential impacts on system performance.
• Adjust system plans based on feedback from stakeholders.

3. Agreements Documentation
• Document stakeholder agreements on system requirements and their impact.
• Keep records of all approved requirements and their impacts.
• Ensure these documents are accessible for future reference.

Example of
Communicate

Agreed System
Requirements and
Impact on System

Context

Communicating and documenting system impacts
ensure alignment and understanding.

1. Example: Communication of Performance Requirements

• Communicate how a system performance requirement affects network
infrastructure and server capacity.

• Example: "The system shall support 10,000 concurrent users" requires network
upgrades to support additional bandwidth.

• Ensure these impacts are communicated early to avoid bottlenecks.

2. Example: Documenting Security Impact
• Document how new security requirements will impact the system's authentication

flow.
• Example: "The system shall enforce multi-factor authentication" affects login and

user sessions.
• Ensure stakeholders are aware of the added complexity.

3. Example: Alignment of New Features
• Communicate how adding new features might impact existing ones.
• Example: "The system shall introduce a new payment gateway" must be

compatible with the existing system.
• Inform stakeholders of potential challenges with backward compatibility.

Summary and
Q&A

System requirements, traceability, and communication
are essential for project success

1. System Requirements are Critical

• Align system requirements with stakeholder needs for successful project outcomes.
• Well-structured, clear requirements prevent project delays and errors.

2. Traceability is Key
• Bidirectional traceability helps track changes and maintain consistency.
• Tools like Jira and Confluence simplify managing traceability across the project.

3. Effective Communication is Vital
• Clearly communicate system requirements and their impacts to stakeholders.
• Early management of impacts ensures smoother integration and fewer issues.

	Slide 1: System Requirements Analysis
	Slide 2: Introduction to System Requirements
	Slide 3
	Slide 4
	Slide 5
	Slide 6: System Requirements Analysis
	Slide 7: BP1: Specify System Requirements
	Slide 8: Types of System Requirements
	Slide 9: BP2: Structure System Requirements
	Slide 10: Examples of Structuring System Requirements
	Slide 11: BP3: Analyze System Requirements
	Slide 12: Examples of Analyzing System Requirements
	Slide 13: BP4: Analyze Impact on the System Context
	Slide 14: Examples of Impact on System Context Analysis
	Slide 15: BP5: Ensure Consistency and Establish Bidirectional Traceability
	Slide 16: Example of Ensure Consistency and Establish Bidirectional Traceability
	Slide 17: BP6: Communicate Agreed System Requirements and Impact on System Context
	Slide 18: Example of Communicate Agreed System Requirements and Impact on System Context
	Slide 19: Summary and Q&A

