
Stakeholder Requirement Management

Introduction to
Stakeholder

Requirement
Management

Managing stakeholder requirements ensures that the needs
of users are correctly reflected in the system's design

1. Stakeholder Requirements as the Foundation

• Stakeholder requirements form the basis for system design, influencing project
goals and objectives.

• They help define what success looks like for both users and stakeholders involved
in the project.

2. Importance of Clear Communication and Documentation

• Stakeholder requirements form the basis for system design, influencing project
goals and objectives.

• They help define what success looks like for both users and stakeholders involved
in the project.

3. Meeting Business and User Expectations

• Properly managed stakeholder requirements lead to a system that meets both
business goals and user satisfaction.

• This alignment is crucial for achieving successful project outcomes and ensuring
stakeholder buy-in.

Converting
Elicitation

Results

into

Stakeholder
Requirements

Elicitation results are converted into actionable stakeholder
requirements,

which provide clear direction for system development

1. Gathering Raw Data from Elicitation Techniques

• Elicitation techniques like interviews, workshops, surveys, and observation yield
valuable but unstructured information.

• This raw data includes insights into stakeholder needs, pain points, and goals.

2. Organizing Data into User Stories and Job Stories

• Stakeholder requirements form the basis for system design, influencing project
goals and objectives.

• They help define what success looks like for both users and stakeholders involved
in the project.

3. Prioritizing and Refining

• Use techniques like MoSCoW prioritization (Must have, Should have, Could have,
Won’t have) to determine which stakeholder requirements are most critical.

• Stakeholders and teams can collaboratively refine these stories to ensure they align
with business goals and user needs.

What are User
Stories and Job

Stories?

User stories and job stories serve different but
complementary purposes in capturing stakeholder

requirements

1. User Stories

• Focus on what the user wants to achieve, such as desired features or tasks.
• Example format: "As a [user], I want [action/feature], so that [benefit]."

2. Job Stories

• Provide richer context by capturing both the motivation and situation: "When
[situation], I want to [motivation], so I can [outcome].“

• Job stories explain the "why" behind the user's actions and help developers
understand the context.

3. Aligning Solutions with User Needs

• Both approaches ensure that technical solutions are built with user and
stakeholder needs in mind.

• This helps teams deliver relevant and usable systems, increasing project success
rates.

Key differences between User Stories and Job Stories

Aspect User Stories Job Stories

Focus What the user wants to achieve. The situation (when) and motivation (why) behind the user’s
action.

Structure "As a [user], I want [action/feature], so that [benefit]." "When [situation], I want to [motivation], so I can [expected
outcome]."

Goal Describes a specific user need or feature, focusing on
functionality.

Explores the user’s context and motivation, focusing on real-
world situations and needs.

Context
Provided

Limited context, primarily focused on the user’s goal or
desired feature.

Provides rich context, including the user's environment and
reasoning behind the action.

Use Case Ideal for capturing functional requirements that describe
what the user expects from the system.

Ideal for situations where understanding user behavior,
context, or motivation is critical.

Example "As a student, I want to view my grades online, so I can
track my academic progress."

"When the semester ends, I want to view my grades online, so I
can understand my academic performance."

Level of Detail Typically provides less detail about why or when the
feature is needed.

Offers more detail by explaining the situation and why the
feature is important for the user.

Benefit to
Development
Teams

Helps teams focus on specific user needs and desired
features.

Helps teams understand the broader context and motivation
behind user actions, leading to better prioritization and design.

When to Use Use when a clear goal or feature needs to be captured. Use when more context or motivation is needed to fully
understand the user’s requirement.

Prioritization Easier to prioritize based on the desired feature or
functionality.

Provides insights for prioritization based on the user’s
situation, urgency, or motivation.

Examples of User Stories and Job Stories

User Stories Job Stories

"As a customer, I want to add items to my shopping cart, so I can
purchase them later."

"When I’m browsing products, I want to add items to my shopping cart,
so I can easily review them before purchasing."

"As a user, I want to receive order confirmation emails, so I know my
order was successful."

"When I complete a purchase, I want to receive an order confirmation,
so I know it was successful."

"As a customer, I want to track my order, so I know when it will arrive." "When waiting for a delivery, I want to track my order in real-time, so I
can know exactly when it will arrive."

"As a user, I want to reset my password, so I can regain access to my
account."

"When I forget my password, I want to reset it easily, so I can quickly
regain access to my account."

"As a shopper, I want to filter products by price, so I can find items
within my budget."

"When I’m shopping for a specific budget, I want to filter items by
price, so I can easily find affordable options."

"As a user, I want to view product reviews, so I can make informed
purchase decisions."

"When deciding on a product, I want to view customer reviews, so I can
make an informed purchase decision."

"As a customer, I want to save my payment information, so I can
checkout faster in the future."

"When I’m frequently shopping, I want to save my payment details, so I
can speed up the checkout process."

"As an admin, I want to generate monthly sales reports, so I can track
our revenue growth."

"When it’s the end of the month, I want to generate a sales report, so I
can analyze the revenue growth for that period."

"As a user, I want to receive notifications about discounts, so I can
take advantage of them."

"When there are new discounts available, I want to be notified
immediately, so I can take advantage of the savings."

"As a user, I want to browse product categories, so I can find specific
types of items more easily."

"When I’m shopping for specific items, I want to browse product
categories, so I can quickly find what I’m looking for."

Structuring
Requirements in

User Stories

A well-structured user story captures the user’s needs
in a simple, actionable format

1. Standard Structure of User Stories

• User stories follow a format: "As a [user], I want [action/feature], so that [benefit].“
• This ensures that each story is focused on user goals and outcomes.

2. Clarity and Simplicity
• Each user story should be written clearly and concisely, avoiding technical jargon.
• User stories should focus on the user's perspective and needs.

3. Breaking Down Complex Requirements
• User stories help decompose complex requirements into manageable, actionable

tasks.
• This makes it easier for development teams to prioritize and deliver features in an

agile environment.

Good vs Bad
Examples of User

Stories

Good user stories provide specific details and context,
while bad user stories are vague and lack clarity

Good Example:
• "As a customer, I want to receive an order confirmation email, so I know my order

was placed successfully."

Bad Example:
• "The system should send an email."

2. Good User Stories Are Specific and Actionable
• They clearly describe the user’s goal, making it easier for the development team to

implement the right features.
• Good stories focus on user needs and how the system will deliver a benefit.

3. Vague Stories Lead to Ambiguity
• Poorly written stories leave too much room for interpretation, leading to potential

misunderstandings and incorrect implementations.

Good vs Bad
Examples of User

Stories 2

Good user stories provide clear motivation and context,
while bad user stories lack actionable details

Good Example:
• "As a frequent traveler, I want to save my frequent destinations, so that I can

quickly select them when booking.“

Bad Example:
• "The system should save destinations."

2. Good User Stories Provide Full Context
• These stories give developers the necessary detail to implement the feature

effectively, focusing on how the user will benefit.
• They also make it easier to prioritize tasks based on user impact.

3. Vague User Stories Leave Gaps
• Bad stories do not provide enough detail or context, making it difficult for

development teams to understand what’s expected.
• These gaps can lead to features that don’t meet the actual user needs or goals.

Examples of User Stories and Job Stories

Good User Story Bad User Story

"As a customer, I want to receive an order confirmation email, so I know my order was
placed successfully." "The system should send an email."

"As a user, I want to reset my password, so I can regain access to my account securely." "The system should allow password reset."

"As a frequent traveler, I want to save my frequent destinations, so I can quickly select
them when booking." "The system should save destinations."

"As an admin, I want to generate weekly sales reports, so I can track revenue trends." "The system should create reports."

"As a project manager, I want to assign tasks to my team, so I can track progress." "The system should handle task assignment."

"As a shopper, I want to filter products by price, so I can find items within my budget." "The system should provide a filter."

"As a customer, I want to track my order, so I know when my package will arrive." "The system should show order status."

"As a user, I want to be notified of new messages, so I can respond quickly." "The system should send notifications."

"As a job applicant, I want to upload my resume, so that recruiters can review my
qualifications." "The system should upload documents."

"As a user, I want to see my recent activities, so I can easily pick up where I left off." "The system should show recent activities."

Structuring
Requirements in

Job Stories

Job stories help teams understand the context behind
the requirement and why it is important to the user

1. Job Story Structure

• Job stories add context to the user’s situation: "When [situation], I want to
[motivation], so I can [outcome].“

• This structure helps teams understand the conditions under which the user
interacts with the system.

2. Revealing Motivation and Situational Context
• Job stories focus not only on the user’s actions but also why and when the action

occurs.
• This added context helps guide development teams in designing appropriate

solutions.

3. Useful in Complex Scenarios
• Job stories are especially valuable in scenarios where environmental or situational

factors significantly influence user behavior.
• They can lead to more user-centered design decisions.

Good vs Bad
Examples of Job

Stories

Good job stories capture the user’s context and motivation, while
bad job stories are vague and lack the 'why' behind the action

Good Example:
• "When I’m tracking a package, I want to see real-time updates, so I can know when

my delivery will arrive.“

Bad Example:
• "The system should show package tracking."

2. Good Job Stories Focus on the Situation
• They emphasize the user’s motivation and provide insights into when and why the

user will interact with the system.
• This extra context helps developers understand the broader picture.

3. Vague Job Stories Lead to Confusion
• Job stories without clear motivation leave developers guessing about the

importance and priority of a feature.
• Missing context can result in misaligned implementations that don't fully address

user needs..

Good vs Bad
Examples of Job

Stories 2

Good job stories provide context and motivation, helping
teams understand the importance of the requirement

Good Example:
• ""When I’m working on a tight deadline, I want the system to notify me of critical

tasks, so I can focus on urgent issues."

Bad Example:
• "The system should notify about tasks."

2. Good Job Stories Add Depth
• They help teams understand the urgency and specific needs that the user faces in

certain situations.
• Job stories provide more realistic scenarios for developers to consider when

designing solutions.

3. Vague Job Stories Cause Misalignment
• Without understanding the user’s situation or motivation, teams may design

features that don’t fully support the user’s real-world needs.
• Lack of situational context can also affect prioritization.

Examples of User Stories and Job Stories

Good Job Story Bad Job Story

"When I’m placing an order, I want to receive a confirmation email, so I know my
purchase was successful." "The system should send confirmation emails."

"When I forget my password, I want to be able to reset it, so I can quickly regain access to
my account." "The system should reset passwords."

"When I’m traveling, I want to save my frequently visited destinations, so I can easily
book future trips." "The system should save destinations."

"When I’m analyzing sales data, I want to generate reports weekly, so I can track revenue
trends." "The system should generate reports."

"When I’m managing a project, I want to assign tasks to team members, so I can track
progress and ensure completion." "The system should assign tasks."

"When I’m shopping, I want to filter items by price, so I can find products within my
budget." "The system should provide filters."

"When I’m waiting for a delivery, I want to track my package in real-time, so I know when it
will arrive." "The system should show package tracking."

"When I’m receiving important messages, I want to be notified instantly, so I can respond
promptly." "The system should send notifications."

"When I’m applying for jobs, I want to upload my resume, so employers can easily review
my qualifications." "The system should allow document uploads."

"When I’m revisiting the app, I want to see my recent activities, so I can pick up where I
left off without hassle." "The system should display recent activities."

Organizing User
Stories and Job

Stories into
Chapters

Organizing stories into chapters provides structure and
helps teams focus on specific areas of the system

1. Grouping Stories by Features or Goals
• Organizing user stories and job stories into thematic chapters (e.g., account

management, notifications) helps create a clear structure.

2. Clarity and Focus for Development Teams
• Grouping stories into chapters ensures teams can focus on one feature or module

at a time, preventing overlapping work and confusion.

3. Easier Tracking and Progress Monitoring
• A well-organized structure allows stakeholders and project managers to track

progress on specific system modules or features more efficiently.

3. Grouping Example
• Group 1: "Order Management“
• Group 2: "User Profile Management“
• Group 3: "Notification System"

Organizing User
Stories and Job

Stories into
Chapters

Organizing stories into chapters provides structure and
helps teams focus on specific areas of the system

1. Grouping Stories by Features or Goals
• Organizing user stories and job stories into thematic chapters (e.g., account

management, notifications) helps create a clear structure.

2. Clarity and Focus for Development Teams
• Grouping stories into chapters ensures teams can focus on one feature or module

at a time, preventing overlapping work and confusion.

3. Easier Tracking and Progress Monitoring
• A well-organized structure allows stakeholders and project managers to track

progress on specific system modules or features more efficiently.

3. Grouping Example
• Group 1: "Order Management“
• Group 2: "User Profile Management“
• Group 3: "Notification System"

Using ChatGPT for
Requirement

Extraction

AI tools can assist in extracting and organizing requirements
from raw stakeholder feedback, helping streamline the

elicitation process.

1. AI for Analyzing Transcripts and Documents
• ChatGPT can analyze transcripts or documents to extract key requirements, reducing

manual effort.

2. Identifying Themes and Patterns

• AI tools can help identify patterns or common themes across multiple stakeholder
inputs, ensuring major requirements are not missed.

3. Speed and Efficiency
• Using AI like ChatGPT for extraction speeds up the elicitation process, allowing teams

to focus more on analysis and refinement.

Steps
• Step 1: "Upload stakeholder interview

transcript“
• Step 2: "ChatGPT analyzes and extracts key

requirements“
• Step 3: "ChatGPT refines and organizes

requirements into user stories or job stories"

Process
• Input: "Raw Elicitation Data“
• Process: "ChatGPT Analysis and

Refinement“
• Output: "User Stories and Job

Stories"

Using AI Tools to
Augment

Requirements

Using AI tools to augment requirements can help improve
clarity, completeness, and consistency across the project

1. Refining Vague Requirements

• AI tools can refine vague requirements by suggesting more specific, actionable
alternatives.

2. Identifying Gaps and Inconsistencies

• AI can detect gaps or inconsistencies in requirements, helping teams ensure that
the full scope is covered.

3. Generating Variations for Different Scenarios
• AI tools can suggest different variations of requirements to address edge cases or

alternative user scenarios.

Example of
Requirement

Augmentation with
AI tools

AI tool can help refine vague requirements into clear,
actionable user stories or job stories

1. Initial Requirement:

• "The system should allow users to upload documents."

2. Refined by AI tool

• "As a user, I want to upload documents up to 10 MB in size, so that I can store
important files securely in the system.

3. AI Augmentation Enhances Clarity
• AI tools helps teams refine vague or incomplete requirements, transforming them

into clear, detailed stories.

Using AI tools for
Requirement

Validation

AI tools can help validate requirements, ensuring that
they are clear, complete, and ready for implementation.

1. Reviewing for Clarity and Consistency

• AI Tools can review stakeholder requirements to ensure they are clear, consistent,
and actionable.

2. Ensuring Alignment with Stakeholder Needs

• AI tools can validate that requirements are aligned with stakeholder expectations
and project goals.

3. Suggestions for Refinement
• AI tools can suggest refinements or improvements, ensuring that the requirements

are detailed enough for implementation and validation

Process
• Step 1: "Input stakeholder requirements“
• Step 2: "ChatGPT reviews for clarity and completeness“
• Step 3: "ChatGPT suggests refinements"

Best Practices for
Organizing and

Managing
Requirements

Using best practices for managing requirements helps
ensure that stakeholder needs are addressed consistently

throughout the project

1. Use of Tools like Jira or Confluence

• Leverage tools like Jira or Confluence to track and organize user stories, job stories,
and overall stakeholder requirements.

2. Regular Reviews and Stakeholder Involvement

• Establish frequent review cycles with stakeholders to validate and refine
requirements as the project evolves.

3. Version Control and Traceability
• AI tools can suggest different variations of requirements to address edge cases or

alternative user scenarios.

Process
• Step 1: "Organize requirements in a tool (e.g., Jira)“
• Step 2: "Review regularly with stakeholders“
• Step 3: "Refine based on feedback"

Using Atlassian
Tools for

Requirement
Management

Jira and Confluence work together to ensure that
requirements are tracked, documented, and easily

accessible throughout the project lifecycle

1. Use of Tools like Jira or Confluence

• Jira helps manage and track user stories, job stories, and tasks, ensuring they are
organized and aligned with project goals.

2. Collaborative Documentation in Confluence

• Confluence provides a collaborative space for documenting requirements,
capturing feedback, and discussing changes with stakeholders.

3. Integrating Jira and Confluence
• Integrating Jira and Confluence creates a seamless workflow, linking tasks with

related documentation, providing full traceability from requirement to delivery.

Jira and Confluence Tools

Summary and
Q&A

Stakeholder requirement management is key to project
success, and using the right tools and techniques ensures

clarity, collaboration, and alignment with stakeholder needs.

1. Organizing Requirements into User Stories and Job Stories

• Structuring stakeholder requirements into clear user and job stories ensures
development teams can align their work with user needs.

2. Good vs Bad Examples to Ensure Clarity

• Using good and bad examples helps highlight the importance of clarity in
requirement writing, improving communication and reducing errors.

2. Using AI for Requirement Extraction and Augmentation

• AI tools assist in extracting and refining requirements, streamlining the process
and improving accuracy.

2. Managing Requirements with Atlassian Tools (Jira & Confluence)

• Atlassian tools like Jira and Confluence facilitate effective requirement
tracking, documentation, and collaboration across teams.

2. Best Practices for Organizing and Managing Stakeholder Requirements

• Following best practices, including regular reviews, traceability, and
documentation, ensures successful requirement management throughout the
project lifecycle.

	Slide 1: Stakeholder Requirement Management
	Slide 2: Introduction to Stakeholder Requirement Management
	Slide 3: Converting Elicitation Results into Stakeholder Requirements
	Slide 4: What are User Stories and Job Stories?
	Slide 5
	Slide 6
	Slide 7: Structuring Requirements in User Stories
	Slide 8: Good vs Bad Examples of User Stories
	Slide 9: Good vs Bad Examples of User Stories 2
	Slide 10
	Slide 11: Structuring Requirements in Job Stories
	Slide 12: Good vs Bad Examples of Job Stories
	Slide 13: Good vs Bad Examples of Job Stories 2
	Slide 14
	Slide 15: Organizing User Stories and Job Stories into Chapters
	Slide 16: Organizing User Stories and Job Stories into Chapters
	Slide 17: Using ChatGPT for Requirement Extraction
	Slide 18: Using AI Tools to Augment Requirements
	Slide 19: Example of Requirement Augmentation with AI tools
	Slide 20: Using AI tools for Requirement Validation
	Slide 21: Best Practices for Organizing and Managing Requirements
	Slide 22: Using Atlassian Tools for Requirement Management
	Slide 23
	Slide 24: Summary and Q&A

