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ALGORITHM ANALYSIS 

Objective  

Study and analyze different algorithms for determining Fibonacci n-th term. 

Tasks: 

1. Implement at least 3 algorithms for determining Fibonacci n-th term; 

2. Decide properties of input format that will be used for algorithm analysis; 

3. Decide the comparison metric for the algorithms; 

4. Analyze empirically the algorithms; 

5. Present the results of the obtained data; 

6. Deduce conclusions of the laboratory.  

Theoretical Notes: 

An alternative to mathematical analysis of complexity is empirical analysis. 

This may be useful for: obtaining preliminary information on the complexity class of an 

algorithm; comparing the efficiency of two (or more) algorithms for solving the same problems; 

comparing the efficiency of several implementations of the same algorithm; obtaining information on the 

efficiency of implementing an algorithm on a particular computer. 

In the empirical analysis of an algorithm, the following steps are usually followed: 

1. The purpose of the analysis is established. 

2. Choose the efficiency metric to be used (number of executions of an operation (s) or time 

execution of all or part of the algorithm. 

3. The properties of the input data in relation to which the analysis is performed are established 

(data size or specific properties). 

4. The algorithm is implemented in a programming language. 

5. Generating multiple sets of input data. 

6. Run the program for each input data set. 

7. The obtained data are analyzed. 

The choice of the efficiency measure depends on the purpose of the analysis. If, for example, the 

aim is to obtain information on the complexity class or even checking the accuracy of a theoretical 

estimate then it is appropriate to use the number of operations performed. But if the goal is to assess the 

behavior of the implementation of an algorithm then execution time is appropriate. 

After the execution of the program with the test data, the results are recorded and, for the purpose 

of the analysis, either synthetic quantities (mean, standard deviation, etc.) are calculated or a graph with 

appropriate pairs of points (i.e. problem size, efficiency measure) is plotted. 
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Introduction: 

The Fibonacci sequence is the series of numbers where each number is the sum of the two 

preceding numbers. For example: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, … 

Mathematically we can describe this as: xn= xn-1 + xn-2. 

Many sources claim this sequence was first discovered or "invented" by Leonardo Fibonacci. The 

Italian mathematician, who was born around A.D. 1170, was initially known as Leonardo of Pisa. In the 

19th century, historians came up with the nickname Fibonacci (roughly meaning "son of the Bonacci 

clan") to distinguish the mathematician from another famous Leonardo of Pisa. 

There are others who say he did not. Keith Devlin, the author of Finding Fibonacci: The Quest to 

Rediscover the Forgotten Mathematical Genius Who Changed the World, says there are ancient Sanskrit 

texts that use the Hindu-Arabic numeral system - predating Leonardo of Pisa by centuries. 

But, in 1202 Leonardo of Pisa published a mathematical text, Liber Abaci. It was a “cookbook” written 

for tradespeople on how to do calculations. The text laid out the Hindu-Arabic arithmetic useful for 

tracking profits, losses, remaining loan balances, etc, introducing the Fibonacci sequence to the Western 

world. 

Traditionally, the sequence was determined just by adding two predecessors to obtain a new 

number, however, with the evolution of computer science and algorithmics, several distinct methods for 

determination have been uncovered. The methods can be grouped in 4 categories, Recursive Methods, 

Dynamic Programming Methods, Matrix Power Methods, and Benet Formula Methods. All those can be 

implemented naively or with a certain degree of optimization, that boosts their performance during 

analysis. 

As mentioned previously, the performance of an algorithm can be analyzed mathematically 

(derived through mathematical reasoning) or empirically (based on experimental observations).  

Within this laboratory, we will be analyzing the 4 naïve algorithms empirically.    

Comparison Metric:  

The comparison metric for this laboratory work will be considered the time of execution of each 

algorithm (T(n)) 

Input Format: 

As input, each algorithm will receive two series of numbers that will contain the order of the 

Fibonacci terms being looked up. The first series will have a more limited scope, (5, 7, 10, 12, 15, 17, 20, 

22, 25, 27, 30, 32, 35, 37, 40, 42, 45), to accommodate the recursive method, while the second series will 

have a bigger scope to be able to compare the other algorithms between themselves (501, 631, 794, 1000, 

1259, 1585, 1995, 2512, 3162, 3981, 5012, 6310, 7943, 10000, 12589, 15849). 
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    IMPLEMENTATION 

 All four algorithms will be implemented in their naïve form in python an analyzed empirically 

based on the time required for their completion. While the general trend of the results may be similar to 

other experimental observations, the particular efficiency in rapport with input will vary depending o 

memory of the device used. 

The error margin determined will constitute 2.5 seconds as per experimental measurement. 

Recursive Method: 

The recursive method, also considered the most inefficient method, follows a straightforward 

approach of computing the n-th term by computing it’s predecessors first, and then adding them. 

However, the method does it by calling upon itself a number of times and repeating the same operation, 

for the same term, at least twice, occupying additional memory and, in theory, doubling it’s execution 

time.  

Algorithm Description: 

The naïve recursive Fibonacci method follows the algorithm as shown in the next pseudocode: 

Fibonacci(n): 

  if n <= 1: 

   return n 

  otherwise: 

   return Fibonacci(n-1) + Fibonacci(n-2) 

Implementation: 

  

Figure 2 Fibonacci recursion in Python 

Results: 

Figure 1 Fibonacci Recursion 
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After running the function for each n Fibonacci term proposed in the list from the first Input 

Format and saving the time for each n, we obtained the following results: 

Figure 3 Results for first set of inputs 

In Figure 3 is represented the table of results for the first set of inputs. The highest line(the name 

of the columns) denotes the Fibonacci n-th term for which the functions were run. Starting from the 

second row, we get the number of seconds that elapsed from when the function was run till when the 

function was executed. We may notice that the only function whose time was growing for this few n 

terms was the Recursive Method Fibonacci function.  

 

Figure 4 Graph of Recursive Fibonacci Function 

Not only that, but also in the graph in Figure 4 that shows the growth of the time needed for the 

operations, we may easily see the spike in time complexity that happens after the 42nd term, leading us to 

deduce that the Time Complexity is exponential. T(2𝑛). 

Dynamic Programming Method: 

The Dynamic Programming method, similar to the recursive method, takes the straightforward 

approach of calculating the n-th term. However, instead of calling the function upon itself, from top down 
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it operates based on an array data structure that holds the previously computed terms, eliminating the need 

to recompute them.  

Algorithm Description: 

The naïve DP algorithm for Fibonacci n-th term follows the pseudocode: 

Fibonacci(n): 

Array A; 

  A[0]<-0; 

  A[1]<-1; 

  for i <- 2 to n – 1 do 

   A[i]<-A[i-1]+A[i-2]; 

  return A[n-1] 

Implementation: 

 

Figure 5 Fibonacci DP in Python 

Results: 

After the execution of the function for each n Fibonacci term mentioned in the second set of Input 

Format we obtain the following results: 

 

Figure 6 Fibonacci DP Results 
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With the Dynamic Programming Method (first row, row[0]) showing excellent results with a time 

complexity denoted in a corresponding graph of T(n), 

  

Figure 7 Fibonacci DP Graph 

Matrix Power Method: 

The Matrix Power method of determining the n-th Fibonacci number is based on, as expected, the 

multiple multiplication of a naïve Matrix (
0 1
1 1

) with itself. 

Algorithm Description: 

 It is known that  

(
0 1
1 1

) (
𝑎

𝑏
) = (

𝑏

𝑎 + 𝑏
) 

This property of Matrix multiplication can be used to represent  

(
0 1
1 1

) (
𝐹0
𝐹1
) = (

𝐹1
𝐹2
) 

And similarly: 

(
0 1
1 1

) (
𝐹1
𝐹2
) = (

0 1
1 1

)
2

(
𝐹0
𝐹1
) = (

𝐹2
𝐹3
) 

Which turns into the general: 

(
0 1
1 1

)
𝑛

(
𝐹0
𝐹1
) = (

𝐹𝑛
𝐹𝑛−1

) 

 This set of operation can be described in pseudocode as follows: 
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 Fibonacci(n): 

  F<- [] 

vec <- [[0], [1]] 

  Matrix <- [[0, 1],[1, 1]] 

  F <-power(Matrix, n) 

  F <- F * vec 

  Return F[0][0] 

Implementation: 

The implementation of the driving function in Python is as follows: 

 

Figure 8 Fibonacci Matrix Power Method in Python 

With additional miscellaneous functions: 

 

Figure 9 Power Function Python 

 

 

 

 

 

 

 

 



 

10 

Where the power function (Figure 8) handles the part of raising the Matrix to the power n, while 

the multiplying function (Figure 9) handles the matrix multiplication with itself. 

 

Figure 10 Multiply Function Python 

Results: 

After the execution of the function for each n Fibonacci term mentioned in the second set of Input 

Format we obtain the following results: 

With the naïve Matrix method (indicated in last row, row[2]), although being slower than the 

Binet and Dynamic Programming one, still performing pretty well, with the form f the graph indicating a 

pretty solid T(n) time complexity. 

Figure 11 Matrix Method Fibonacci Results 

Figure 12 Matrix Method Fibonacci graph 



 

11 

Binet Formula Method: 

The Binet Formula Method is another unconventional way of calculating the n-th term of the 

Fibonacci series, as it operates using the Golden Ratio formula, or phi. However, due to its nature of 

requiring the usage of decimal numbers, at some point, the rounding error of python that accumulates, 

begins affecting the results significantly. The observation of error starting with around 70-th number 

making it unusable in practice, despite its speed.    

 

Algorithm Description: 

 The set of operation for the Binet Formula Method can be described in pseudocode as follows: 

 Fibonacci(n): 

  phi <- (1 + sqrt(5)) 

  phi1 <-(1 – sqrt(5)) 

  return pow(phi, n)- pow(phi1, n)/(pow(2, n)*sqrt(5)) 

 

Implementation: 

The implementation of the function in Python is as follows, with some alterations that would 

increase the number of terms that could be obtain through it: 

 

Figure 13 Fibonacci Binet Formula Method in Python 

Results: 

Although the most performant with its time, as shown in the table of results, in row [1], 

 

Figure 14 Fibonacci Binet Formula Method results 
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And as shown in its performance graph, 

The Binet Formula Function is not accurate enough to be considered within the analysed limits 

and is recommended to be used for Fibonacci terms up to 80. At least in its naïve form in python, as 

further modification and change of language may extend its usability further. 

  

Figure 15 Fibonacci Binet formula Method 
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CONCLUSION 
Through Empirical Analysis, within this paper, four classes of methods have been tested in their 

efficiency at both their providing of accurate results, as well as at the time complexity required for their 

execution, to delimit the scopes within which each could be used, as well as possible improvements that 

could be further done to make them more feasible. 

The Recursive method, being the easiest to write, but also the most difficult to execute with an 

exponential time complexity, can be used for smaller order numbers, such as numbers of order up to 30 

with no additional strain on the computing machine and no need for testing of patience. 

The Binet method, the easiest to execute with an almost constant time complexity, could be used 

when computing numbers of order up to 80, after the recursive method becomes unfeasible. However, its 

results are recommended to be verified depending on the language used, as there could rounding errors due 

to its formula that uses the Golden Ratio. 

The Dynamic Programming and Matrix Multiplication Methods can be used to compute Fibonacci 

numbers further then the ones specified above, both of them presenting exact results and showing a linear 

complexity in their naivety that could be, with additional tricks and optimisations, reduced to logarithmic.   

 

 

 

 


