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Analyze of recursive algorithms 
 

 The most important upside of a recursive 

expression is the fact that it is natural and compact, 

without hiding the essence of algorithm through 

details of implementation. 

  On the other hand, recursive calls must be used 

with care, because they also require computer 

resources (time and memory). 

 Analysis of an recursive algorithm implies 

solving a system of recurrences. 
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Recursive relations 

 When an algorithm contains a recursive call to itself, its 

time of execution can be described with a reaccurence. 

 A reacurrence is an equation or inequation that describes 

entire time of execution of a problem of n size with the help 

of times of execution for input data of small size. 

 There exist mathematical tools for solving reacurrence 

problems and for obtaining margins of algorithm 

performances. 
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Equation characteristic method 
 

There a few types of reacurrences: 

 Linear homogeneous reacurrences 

 Linear nonhomogeneous reacurrences 

 Nonlinear reacurrences 



Analiza şi proiectarea algoritmilor 

Lector universitar Mariana Catruc 4 

 

 

 

 
 

Linear homogeneous reacurrences 
 

We will consider linear homogeneous reacurrence of form: 

 
a0tn + a1tn-1 + …+ aktn-k = 0 (1) 

where ti are the values we are looking for and coefficients ai 

are constants. 

We will search for solutions of form: 

tn = xn
 

where x is a constant (unknown, for now) 
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Linear homogeneous reacurrences 
 

 
 

We try this solution (1) and obtain: 

a0x
n + a1x

n-1 + ... + akx
n-k = 0 

Solutions of this equation are either trivial(x = 0), which 

we are not interested in, or solutions for the equation: 

a0x
k + a1x

k-1 + ... + ak = 0 (2) 
which is characteristic equation of reacurrence (1). 
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Linear homogeneous reacurrences 
 

Assuming that those k roots r1, r2, ..., rk of this characteristic 

equation are distinct, any linear combination 

 

 

 

is a solution of reacurrence (1), where constants c1, c2, ..., ck 

are determined by initial conditions. 

 
It must be mentioned that (1) has solutions only of this form. 
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Example 
 

Reacurrence that defines Fibonacci sequence: 

tn = tn-1 + tn-2 n  2 

and t0 = 0, t1 = 1 

We can rewrite this reacurrence in form: 

tn - tn-1 - tn-2 = 0 

which is characteristic equation 

x2 - x - 1 = 0 

with roots r1,2 = 
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Example 
 

Reacurrence that defines Fibonacci sequence: 

tn = tn-1 + tn-2 n  2 

and t0 = 0, t1=1 

We can rewrite this reacurrence in form: 

tn - tn-1 - tn-2 = 0 

which is chracterstic equation 

x2 - x - 1 = 0 

with roots r1,2 = (1+sqrt5)/2, (1- sqrt5)/2 
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Example 
 

General solution is of form: 
 

 

Inputting initial conditions, we obtain 

c1+c2 = 0, n = 0 

r1c1 + r2c2 = 1, n = 1 

where we can determine
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Example 
 

General solution is of form 
 

 

Inputting initial conditions, we obtain 

c1+c2 = 0, n = 0 

r1c1 + r2c2 = 1, n = 1 

where we can determine c1=1/sqrt5, c2 =-1/sqrt5 
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Example 
 

Solve the reacurrence 

 
tn  3tn-1  4tn-2 = 0, 

 
where n  2, and t0 = 0, t1 = 1 

r1= 4, r2=-1 
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Linear homogeneous reacurrences 

with multiple roots 
 
 

 What do we do when characteristic equation’s solution are not 

distinct? 

 We can show that, if r a root of multiplicity m of 

characteristic equation, then 

tn = rn, tn = nrn, tn = n2rn, ..., tn = nm-1rn
 

are solutions for reaccurence (). 

 General solution for this kind of reaccurence a linear combination 

of these terms and of terms that came from other roots of the 

characteristic equation. 

 Again, must be determined exactly k constants from initial conditions. 
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Example 
 

 
 

Solve the reaccurence 

 
tn = 5tn-1 - 8tn-2 + 4tn-3 , 

 
where n  3, and t0 = 0, t1 = 1, t2 = 2 
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Example 
 

 
 

Solve the reaccurence 

 
tn = 5tn-1 - 8tn-2 + 4tn-3 , 

 
where n  3, and t0 = 0, t1 = 1, t2 = 2 

tn = c11
n  c22

n  c3n2n 

c1 = -2, c2 =2 , c3 =-1/2 

tn = -2 (1n   2 (2n   (-1/2)(n2n 
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Linear nonhomogeneous reacurrences 

We consider now reacurrences of more 

general form 

a0tn + a1tn-1 + ... + aktn-k = bnp(n) (3) 

where b is a constant, and p(n) is a 

polynom in n of degree d. 
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Linear nonhomogeneous reacurrences 

We can show that, for solving (3), is 

enough to take the following characteristic 

equation: 

(a0x
k + a1x

k-1 + … + ak)(x-b)d+1 = 0 (4) 

Once this equation is obtained, we 

proceed as if in case of homogeneous 

reacurrences. 
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Linear nonhomogeneous reacurrences 

For example, there can be such reacurrence: 

tn - 2tn-1 = 3n 

In this case, b = 3 and p(n) = 1, a polynom of 

degree 0. 

Characteristic equation is: 

(x-2)(x-3) = 0 with roots r1 = 2, r2 = 3 

General solution will be: 

tn = c12
n  c23

n
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Linear nonhomogeneous reacurrences 

Solve reacurrences: 

1. tn - 2tn-1 = 2n 

2. tn - 2tn-1 = n3n 

3. tn - tn-1 = n 
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Change of variable 

We will analyze reacurrences of form: 

 
T(n)= aT(n/b)+ f(n) (5) 

 
where a 1 and b>1 are constants, and 

f(n)  is an asymptotically positive function. 
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Change of variable 
Reacurrence (5) describes execution time of an algorithm 

that splits a problem of size n in a subproblems, each of size 

n/b, where a and b are positive constants. 

Those a subproblems are solved recursively, each in time of 

T(n/b). 

The cost of spliting a problem and combining the results of 

the subproblems is described by the fucntion f(n) (Meaning, 

using the notation f(n)=D(n) + C(n)). 

From techincal view, reacurrence is not, actually, well 

defined, because n/b may not be whole number. 
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Change of variable 

Sometimes, using change of variable, we can 

solve reacurences of type (5). 

Further, notation T(n) will be the general term 

of reacurrence and with tk the term of the new 

reacurrence obtained using a change of variable. 

Assume that, for the start, n is a power of b. 
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Example 
 

Let reacurrence T(n) = 4T(n/2) + n, n > 1 where we 

replace n with 2k, note tk = T(2k) = T(n) and obtain 

tk = 4tk-1 + 2k
 

tk - 4tk-1 = 2k
 

Characteristic equation of this linear reacurrence is: 

(x-4)(x-2) = 0 with r1 = 4 şi r2 = 2 so, 

tk = c14
k + c22

k. 

We replace back k with log2 n and obtain 

T(n) = c14
logn + c22

logn 

T(n) = c1n
2 + c2n 
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Example 
 

Solve the reacurrences 

1. T(n) = 2T(n/2) + n, n > 1 

2. T(n) = 8T(n/2) + n, n > 1 

3. T(n) = 9T(n/3) + n2, n > 1 

4. T(n)= 2T(n/2) + nlogn 
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Individual work 
 

 Asymptotic efficiency of algorithms 

 
 Asymptotic time of an algorithm 

execution 

 
 Asymptotic notations Θ, O , o , Ω, ω 
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