Analyze of recursive algorithms

- The most important upside of a recursive expression is the fact that it is natural and compact, without hiding the essence of algorithm through details of implementation.
- On the other hand, recursive calls must be used with care, because they also require computer resources (time and memory).
- Analysis of an recursive algorithm implies solving a system of recurrences.

Recursive relations

• When an algorithm contains a recursive call to itself, its time of execution can be described with a reaccurence.

• A *reacurrence* is an equation or inequation that describes entire time of execution of a problem of n size with the help of times of execution for input data of small size.

• There exist mathematical tools for solving reacurrence problems and for obtaining margins of algorithm performances.

Equation characteristic method

There a few types of reacurrences:
Linear homogeneous reacurrences
Linear nonhomogeneous reacurrences
Nonlinear reacurrences

We will consider linear homogeneous reacurrence of form:

$$a_0t_n + a_1t_{n-1} + \ldots + a_kt_{n-k} = 0$$
 (1)

where t_i are the values we are looking for and coefficients a_i are constants.

We will search for solutions of form:

$$t_n = x^n$$

where *x* is a constant (unknown, for now)

We try this solution (1) and obtain:

$$a_0 x^n + a_1 x^{n-1} + \dots + a_k x^{n-k} = 0$$

Solutions of this equation are either trivial(x = 0), which we are not interested in, or solutions for the equation:

$$a_0 x^k + a_1 x^{k-1} + \dots + a_k = 0$$
 (2)

which is *characteristic equation* of reacurrence (1).

Assuming that those k roots $r_1, r_2, ..., r_k$ of this characteristic equation are distinct, any linear combination

$$t_n = \sum_{i=1}^n c_i r_i^n$$

is a *solution* of reacurrence (1), where constants $c_1, c_2, ..., c_k$ are determined by initial conditions.

It must be mentioned that (1) has solutions only of this form.

Reacurrence that defines Fibonacci sequence:

$$t_n = t_{n-1} + t_{n-2}$$
 $n \ge 2$
and $t_0 = 0, t_1 = 1$

We can rewrite this reacurrence in form:

$$t_n - t_{n-1} - t_{n-2} = 0$$

which is *characteristic equation*
 $x^2 - x - 1 = 0$

with roots $r_{1,2} =$

Reacurrence that defines Fibonacci sequence:

$$t_n = t_{n-1} + t_{n-2} \qquad n \ge 2$$

and $t_0 = 0, t_1 = 1$

We can rewrite this reacurrence in form:

$$t_n - t_{n-1} - t_{n-2} = 0$$

which is chracterstic equation

$$x^2 - x - 1 = 0$$

with roots $r_{1,2} = (1 + \text{sqrt5})/2$, $(1 - \text{sqrt5})/2$

General solution is of form:

$$t_n = c_1 r_1^n + c_2 r_2^n$$

Inputting initial conditions, we obtain $c_1+c_2=0, \qquad n=0$ $r_1c_1+r_2c_2=1, \qquad n=1$ where we can determine

General solution is of form

$$t_n = c_1 r_1^n + c_2 r_2^n$$

Inputting initial conditions, we obtain $c_1+c_2=0, \qquad n=0$ $r_1c_1+r_2c_2=1, \qquad n=1$ where we can determine $c_1=1/$ sqrt5, $c_2=-1/$ sqrt5

Solve the reacurrence

$$t_n - 3t_{n-1} - 4t_{n-2} = 0,$$

where $n \ge 2$, and $t_0 = 0$, $t_1 = 1$ r1=4, r2=-1

Linear homogeneous reacurrences with multiple roots

- What do we do when characteristic equation's solution are not distinct?
- We can show that, if r a root of multiplicity m of characteristic equation, then

$$t_n = r^n, t_n = nr^n, t_n = n^2 r^n, ..., t_n = n^{m-1} r^n$$

are solutions for reaccurence (1).

- General solution for this kind of reaccurence a linear combination of these terms and of terms that came from other roots of the characteristic equation.
- Again, must be determined exactly *k* constants from initial conditions.

Solve the reaccurence

$$t_n = 5t_{n-1} - 8t_{n-2} + 4t_{n-3} ,$$

where $n \ge 3$, and $t_0 = 0$, $t_1 = 1$, $t_2 = 2$

Solve the reaccurence

$$t_n = 5t_{n-1} - 8t_{n-2} + 4t_{n-3} ,$$

where
$$n \ge 3$$
, and $t_0 = 0$, $t_1 = 1$, $t_2 = 2$
 $t_n = c_1 1^n + c_2 2^n + c_3 n 2^n$
 $c_1 = -2$, $c_2 = 2$, $c_3 = -1/2$
 $t_n = -2 (1^n) + 2 (2^n) + (-1/2)(n 2^n)$

We consider now reacurrences of more general form

 $a_0t_n + a_1t_{n-1} + \dots + a_kt_{n-k} = b^n p(n)$ (3) where *b* is a constant, and p(n) is a polynom in *n* of degree *d*.

We can show that, for solving (3), is enough to take the following characteristic equation:

 $(a_0x^k + a_1x^{k-1} + \dots + a_k)(x-b)^{d+1} = 0$ (4) Once this equation is obtained, we proceed as if in case of homogeneous reacurrences.

For example, there can be such reacurrence:

$$t_n - 2t_{n-1} = 3^n$$

In this case, b = 3 and p(n) = 1, a polynom of degree 0.

Characteristic equation is:

(x-2)(x-3) = 0 with roots $r_1 = 2, r_2 = 3$

General solution will be:

$$t_n = c_1 2^n + c_2 3^n$$

Solve reacurrences:

1.
$$t_n - 2t_{n-1} = 2^n$$

2. $t_n - 2t_{n-1} = n3^n$

3.
$$t_n - t_{n-1} = n$$

Change of variable

We will analyze reacurrences of form:

T(n) = aT(n/b) + f(n) (5)

where $a \ge 1$ and b > 1 are constants, and f(n) is an asymptotically positive function.

Lector universitar Mariana Catruc

Change of variable

Reacurrence (5) describes execution time of an algorithm that splits a problem of size n in a subproblems, each of size n/b, where a and b are positive constants.

Those *a* subproblems are solved recursively, each in time of T(n/b).

The cost of spliting a problem and combining the results of the subproblems is described by the function f(n) (Meaning, using the notation f(n)=D(n) + C(n)).

From techincal view, reacurrence is not, actually, well defined, because n/b may not be whole number.

Change of variable

Sometimes, using change of variable, we can solve reacurences of type (5).

Further, notation T(n) will be the general term of reacurrence and with t_k the term of the new reacurrence obtained using a change of variable.

Assume that, for the start, *n* is a power of *b*.

Let reacurrence T(n) = 4T(n/2) + n, n > 1 where we replace *n* with 2^k , note $t_k = T(2^k) = T(n)$ and obtain

$$t_k = 4t_{k-1} + 2^k$$
$$t_k - 4t_{k-1} = 2^k$$

Characteristic equation of this linear reacurrence is: (x-4)(x-2) = 0 with $r_1 = 4$ şi $r_2 = 2$ so, $t_k = c_1 4^k + c_2 2^k$. We replace back k with $\log_2 n$ and obtain $T(n) = c_1 4^{\log n} + c_2 2^{\log n}$ $T(n) = c_1 n^2 + c_2 n$

Solve the reacurrences 1. T(n) = 2T(n/2) + n, n > 12. T(n) = 8T(n/2) + n, n > 13. $T(n) = 9T(n/3) + n^2$, n > 14. $T(n) = 2T(n/2) + n\log n$

• Asymptotic efficiency of algorithms

•Asymptotic time of an algorithm execution

o Asymptotic notations Θ , O, o, Ω , ω