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1 The purpose of the analysis 

Complexity analysis of an algorithm has the purpose of establishment of necessary resources for 

algorithm execution on a machine. By resources we mean: 

 

 Memory space needed for storing the data that the algorithm is processing. 

 Time that is required for execution of all processings specified in algorithm. 

 

This analysis is useful for establishing whether an algorithm uses decent amount of resources for 

solving a problem. If not, the algorithm, even if it is correct, is not considered efficient and cannot 

be applied in practice. Complexity analysis, or Algorithm efficiency analysis, is used for 

comparating algorithms with purpose of choosing the most efficient one. 

In most algorithms, the volume of necessary resources depends on size of the problem. The size 

is usually determined by the volume of input data required by the problem. If one numeric value n 

is processed (for example, we verify is n is a prime number), then the size is considered the number 

of bits used for representing n, meaning [𝒍𝒐𝒈𝟐𝒙] + 1. If data that must be processed are organised 

in an array then the size of the problem can be the number of components of the array(for example, 

for determining the minimal value from an array with n elements, or finding the value of a polynom 

of order n,then the size of the problem is considered n). There are situations when the volume of 

input data is specified by more values (for example, for processing a matrix with m rows and n 

columns). In those cases the size of the problem will their respective values (for example, (m,n)). 

Sometimes, for establishing the size of the problem, we must keep in mind the processings that 

will be applied upon our data. For example, if proccesing of a text is made based on number of 

words, then the size of the problem will be determined by the number of words, while as it is made 

on characters then the size of the problem will be the number of characters.  

  Memory storage is influenced by how the data is represented. For example, a matrix with whole 

numbers with 100 rows and 100 column of which only 50 are not null(rare matrix), can be 

represented as: (i) bidimensional array 100 × 100 (10000 whole values); (ii) onedimensional array 

where are stored only those 50 notnull values and their coresponded indexes (150 whole values). 

Choosing a more efficient way of representing the data can influence upon processing complexity. 



For example, algorithm of adding 2 rare matrixes becomes more complicated if the matrixes are 

represented as onedimensional arrays. In general, obtaining efficient algorithms, from the point of 

view of execution time, require increasing the memory storage of data. 

 

2 Execution time 

From now on, we will use T(n) for execution time of an algorithm designated for solving a problem 

with n size. To estimate the execution time, we need to establish a calculation model  and measure 

unit. We will consider one calculation model(called calculation machine with random acces), 

characterised by: 

 Processings are done in sequential mode. 

 Elementary operations are done in constant time, no matter the value of operands. 

 Time for accesing information doesn’t depend on its position (there are no differences 

between processing the first element or the last element of an array). 

 

Establishing a measure unit means establishing what are the elementary operation and consider 

their execution time as measure unit. Doing so, time of execution will be determined by the number 

of executed elementary operations. Elementary operations are: arithmetic operations (add, subtract, 

multiply, divide), comparations and logical operations(negation, conjunction, disjunction). 

Sometimes, it is enough to count only some type of elementary operations, called basic operations 

(for example, in case of a searching or sorting algorithm we can count only the operations of 

comparison) and consider that their time of execution is unitary.  

Time of execution of an algorithm is obtained by adding times of execution of all processings. 

Example 1. Consider the problem: ∑ 𝒊𝒏
𝒊=𝟏 . Size of that problem is n. Solving algorithm can be 

described as: 

 

Execution time of the algorithm can be determined by cost table: 



 

Summing up the execution times of elementary processings we obtain T(n) = n(c3 + c4 + c5) + c1 + 

c2 + c3 = k1n + k2, meaning that execution time linearly depends on problem’s size. Elementary 

operations’s cost only influence constants that interfere in function T(n). 

Example 2. Consider the problem of finding the product of 2 matrixes: matrix A of size m × n and 

matrix B of size n × p. In this case, problem’s size is determined by 3 values: (m ,n, p). Algorithm 

ca be described as: 

 

 

The cost of processings on the lines 1, 2 and 4 represent the counter management cost and will 

be treated globally. Assuming that all arithmetic and comparation operations have unitary cost, the 

table of cost becomes: 

 

Time of execution in this case is: T(m, n, p) = 4mnp + 5mp + 4m + 2. 

On practice, it is not necessary for such detailed analysis. It is enough to find the base operation 

and estimate its number of repetitions. Base operation is considered the operation that has the most 

contribution on algorithm execution time and is the operation that appears in the innermost loop. 

In the above example, base operation can be considered the multiplication operation. In that 

algorithm’s execution cost will be: T(m, n, p) = mnp. 

Example 3. Consider the problem of determining the minimal value from an array x[1..n]. The 

size of that problem is given by n, which is the number of elements in the array. Algorithm is: 



 

 

Table of processings cost: 

 

Unlike previous examples, time of execution cannot be calculated explicitly because number of 

repetitions of processing numbered as 4 depends on values that are stored in the array. 

If the minimal value of the array is located on the first position, then processing 4 will not be 

executed a single time, and 𝝉(𝒏) = 𝟎. This is considered the most favorable case. 

If array’s elements are sorted in descending order then processing 4 will be executed at every 

itteration, meaning 𝝉(𝒏) = 𝒏 − 𝟏. This is the most unfavorable case.  

Time of execution can be put between 2 limits: 3n ≤ T(n) ≤ 4n-1. 

 In this case, it is easy to observe that the base operation is comparison operation between variable 

m and array’s elements. In this case, the cost of algorithm would be: T(n) = n – 1. 

 

Example 4. Consider the problem of finding a value v in an array x[1..n]. Size of the problem is, 

again, given by n. 

 

Considering processing of unitary cost, we obtain: 



 

In case where v’s value is in the array, we denote with k first position on which it is located. We 

obtain: 

 

 

The most favorable case is when the value is located on the first position of the array, in which 

case 𝑻(𝒏) = 𝟑(τ1(n)+1)+𝝉𝟏(𝒏) + 𝝉𝟐(𝒏) + 𝝉𝟑(𝒏) + 𝟐 = 𝟔 + 𝟏 + 𝟏 + 𝟎 + 𝟐 = 𝟏𝟎 

The most unfavorable case is when the value is not located in array: 𝑻(𝒏) = 𝟑(𝒏 + 𝟏) + 𝒏 +

𝟎 + 𝒏 + 𝟐 = 𝟓(𝒏 + 𝟏). 

Importance of the unfavorable case.  For appreciation an algorithm we are interested in the 

unfavorable case because it shows the greatest time of execution relative to any input data of fixed 

size. 

The most favorable case is useful for checking inefficient algorithms (for example, if an algorithm 

has a very large cost in its favorable case, then it cannot be considered acceptable solution). 

Average time of execution. Sometimes, extreme cases (of most favorable or unfavorable) are 

met rarely. In these cases a useful measure for algorithm complexity is average time of execution.  It 

represents an average value of execution times, calculated in relation to the probability distribution 

corresponding to the input data space. If ν(n) represents of possible variants, Pk is the probability of 

apparition of case k and Tk(n) is the thime of execution coressponding to case k, then average time 

is given by relation: 

 

In case when are cases are equally possible, (Pk = 1 / ν(n)) we obtain 𝑻𝒎(𝒏) = ∑ 𝑻𝒌(𝒏)/𝝂(𝒏).
𝝂(𝒏)
𝒌=𝟏  

Example. Consider again the problem of searching of a value v in an array x[1..n] (example 4). 

To simplify the analysis, we will consider that all elements of the array are distinct. To calculate the 



average time of execution we have to make assumptions about the distribution of the input data. 

Let’s assume that value of v can be located on any of the array’s positions or outside of it with 

equal probability. The amount of total cases is v(n) = n + 1 (n cases where the value is situated in 

the bounds of the array and one case when v is not in the array) results that the probability of each 

case is 1/(n + 1). Corresponding time to the case when v is on position k is 𝑻𝒌 = 𝟓(𝒌 + 𝟏) and for 

the case when the values is outside the array is 𝑻𝒏+𝟏 = 𝟓(𝒏 + 𝟏) results that the average time of 

execution is: 

 

The main difficulty in establishing the average time consists in establishing the distribution 

corresponding to the input data space. For example, we can assume:  

P(v is in array) = P(v is not in the array) = 0.5 and in case if it is in the array, it can be found on 

any of the n positions with the same probability: P(v is on position k) = 1/n. In that case, average 

time is: 

 

It is observed that the average execution time depends on the assumptions made on the 

distribution of the input data and that it is not a simple arithmetic mean of the times corresponding 

to the extreme cases (the most favorable and the most unfavorable). 

Due to the difficulties that can intervene in the estimation of the average time and due to the fact 

that in many situations it differs from the time in the unfavorable case only by the values of the 

constants involved in the analysis rule, it refers to the estimation of the time in the unfavorable case. 

The average time has significance when, for the problem under study, the unfavorable case occurs 

rarely. 

 

3 Order of growth 

In order to appreciate the efficiency of an algorithm, knowledge of the detailed expression of the 

execution time is not required. Rather, it interests how the execution time increases with the increase 

in the size of the problem. A useful measure in this regard is the order of growth. It is determined 

by the dominant term in the expression of execution time. When the size of the problem is large the 

value of the dominant term significantly exceeds the values of the other terms so that the latter can 

be neglected.  

Examples. If 𝑇(𝑛) = 𝑎𝑛 + 𝑏 (𝑎 > 0) when the size of the problem increases by k times and the 

dominant term in the execution time increases by the same number of times so that 𝑇(𝑘𝑛) =

(𝑘𝑎)𝑛 + 𝑏. In this case it is a linear order of increase. If 𝑇(𝑛) = 𝑎𝑛2 + 𝑏𝑛 + 𝑐 (𝑎 > 0) then 

𝑇(𝑘𝑛) = (𝑘2𝑎)𝑛2 + (𝑘𝑏)𝑛 + 𝑐, so the dominant term increases 𝑘2 times, which is why we say it is 

a quadratic order of growth.  



If 𝑇(𝑛) = 𝑎𝑙𝑔𝑛 then 𝑇(𝑘𝑛) = 𝑎𝑙𝑔𝑛 + 𝑎𝑙𝑔𝑘, that is, the dominant term does not change, the 

execution time increasing by a constant (with respect to n). In previous relationships and in all that 

will follow by lg we denote the logarithm in base 2 (since the transition from one base to another is 

equivalent to multiplication by a constant that depends only on the bases involved and in establishing 

the order of increase the constants are ignored in the analysis of efficiency the base of the logarithms 

is not relevant). A small logarithic order of growth represents good behavior. If instead 𝑇(𝑛) =

𝑎2𝑛 then 𝑇(𝑘𝑛) = 𝑎(2𝑛)𝑘 that is, the order of growth is exponential. 

Since the problem of efficiency becomes critical for large-scale problems, the complexity analysis 

is done for the case when n is large (theoretically it is considered that 𝑛 → ∞), in this way 

considering only the behavior of the dominant term . This type of analysis is called asymptotic 

analysis. In asymptotic analysis one algorithm is considered to be more efficient than another if the 

order of increase of the execution time of the first is less than that of the second. The relationship 

between growth orders is only meaningful for problems of large size. If we consider the times 

𝑇1(𝑛) = 10𝑛 + 10 and 𝑇2(𝑛) = 𝑛2 then it is easily observed that 𝑇1(𝑛) > 𝑇2(𝑛)for n ≤ 10, 

although the order of increase of T1 is obviously lower than that of T2. Therefore, an asymptotic 

algorithm more efficient than another is the best option only for large-scale problems. 

 

4 Asymptotic notations 

To facilitate the asymptotic analysis and to allow the grouping of algorithms in classes according 

to the order of increasing execution time, some classes of functions and associated notations have 

been introduced. 

Notation Θ. For a function g :  𝑁 → 𝑅+, 𝛩(𝑔(𝑛)) represents the set of functions: 

(1) 

 

About execution time of some algorithm, T(n), we say that it is Θ(g(n)) if T(n) 𝜖 Θ(g(n)). 

Through notation abuse in algorithmics it is used to write T(n) = Θ(g(n)). From intuitive point of 

view, f(n) 𝜖 Θ(g(n)) means that f(n) and g(n) are equivalent asymptotic. In another words, 

lim𝑛→∞
𝑓(𝑛)

𝑔(𝑛)
= 𝑘, k being a value strictly positive. 

In figure 1 is ilustrated relationship between function f and g (for f(n)= n2 + 5nlgn + 10 and 

g(n)=n2) when f(n) 𝜖 Θ(g(n)) for various domains of n (n 𝜖 {1, … ,5}, 𝑛 𝜖{1, … ,50}, 𝑛 𝜖 {1, … ,500}). 

For inferior margin was used c1 = 1 and for superior c2 = 4. 

 



 

Figure 1. Function graphics, f (continuos line), c1g c2g (dotted line) 

Example. For example 1 of section 2 (calculate sum) we obtained 𝑇(𝑛) = 𝑘1𝑛 + 𝑘2 (𝑘1 > 0,

𝑘2 > 0) thus for 𝑐1 = 𝑘1, 𝑐2 = 𝑘1 + 1 and 𝑛0 > 𝑘2 we obtain 𝑐1𝑛 ≤ 𝑇(𝑛) ≤ 𝑐2𝑛 𝑓𝑜𝑟 𝑛 ≥ 𝑛0,

meaning 𝑇(𝑛) = 𝛩(𝑛). 

For example 3 (determine minimal) we obtained 3𝑛 ≤ 𝑇(𝑛) ≤ 4𝑛 − 1 thus 𝑇(𝑛) = 𝛩(𝑛). In 

general, we can demonstrate that if 𝑇(𝑛) = 𝑎𝑘𝑛𝑘 + 𝑎𝑘−1𝑛𝑘−1 + ⋯ + 𝑎1𝑛 + 𝑎0, 𝑎𝑘 >

0 then 𝑇(𝑛) = 𝛩(𝑛𝑘). From lim𝑛→∞ 𝑇(𝑛)/𝑛𝑘 = 𝑎𝑘 result that there exists 𝜀 >

0 and 𝑛0(𝜀)with property that |
𝑇(𝑛)

𝑛𝑘 − 𝑎𝑘| ≤ 𝜀 for any 𝑛 ≥ 𝑛0(𝜀). So  

 

meaning that for 𝑐1 = 𝑎𝑘 − 𝜀, 𝑐2 = 𝑎𝑘 + 𝜀 and 𝑛0 = 𝑛0(𝜀) we obtain inequalities from (1). 

 

Notation O. For a function g :  𝑁 → 𝑅+, 𝑂(𝑔(𝑛)) represents the set of functions: 

 

This class of function allows describing of an algorithm’s behaviour in case of the most 

unfavorable case without reffering to other situations. Because, usually, we are interest in 

algorithm’s behaviour for random data input, it is enough to specify a superior margin for the time 

of execution. Intuitive,  f(n) 𝜖 O(g(n)) means that f(n) grows asimptotically as much as fast as g(n). 

In other words, lim𝑛→∞
𝑓(𝑛)

𝑔(𝑛)
≤ 𝑘, k being a value strictly positive. 

From definitions of 𝛩 and O results that 𝛩(𝑔(𝑛)) ⊂ 𝑂(𝑔(𝑛)). Thus if T(n) = 𝛩(g(n)) then T(n) 

= O(g(n)). 

Using the definition of O we can easily verify if 𝑔1(𝑛) < 𝑔2(𝑛) for 𝑛 ≥ 𝑛0 and 

𝑓(𝑛) 𝜖 𝑂(𝑔1(𝑛)) then 𝑓(𝑛) 𝜖 𝑂(𝑔2(𝑛)). Thus if 𝑇(𝑛) = 𝑂(𝑛) then 𝑇(𝑛) = 𝑂(𝑛𝑑) for any 𝑑 ≥ 1 

In general, if 𝑇(𝑛) ≤ 𝑎𝑘𝑛𝑘 + 𝑎𝑘−1𝑛𝑘−1 + ⋯ + 𝑎1𝑛 + 𝑎0,  𝑎𝑘 > 0 then 𝑇(𝑛) =

𝑂(𝑑) for any 𝑑 ≥ 𝑘.  

 

Notation Ω. For a function g :  𝑁 → 𝑅+, Ω(𝑔(𝑛)) represents the set of functions: 

 

Is a measurement for growth order of execution time in the most favorable case. Intuitive, 



𝑓(𝑛) 𝜖 Ω(g(n)) means that f(n) grows asymptotically at least as fast as g(n), meaning 

𝐥𝐢𝐦
𝑛→∞

𝑓(𝑛)/𝑔(𝑛) ≥ 𝑘, k being a value strictly positive.  

From definitions we can see that 𝛩(𝑔(𝑛)) ⊂ 𝑂(𝑔(𝑛)). Relation between the three mentioned 

classes is: 𝛩(𝑔(𝑛)) = 𝑂(𝑔(𝑛)) ∩  Ω(𝑔(𝑛)). 

 

Asymptotic analysis of fundamental structures. We consider the problem of determining the order 

of complexity in the most unfavorable case for algorithmic structures: sequential, alternative and 

repetitive.  

We assume that the sequential structure is constituted by the processes A1,.....,Ak and each of 

these has the order of complexity 𝑂(𝑔𝑖(𝑛)). Then the structure will have the order of complexity 

𝑂(max {𝑔1(𝑛), … 𝑔𝑘(𝑛)}).  

If the condition of an alternative structure has constant cost and the processing corresponding to 

the two variants have the orders of complexity 𝑂(𝑔1(𝑛)) respectively 𝑂(𝑔2(𝑛)) then the cost of the 

alternative structure will be 𝑂(max {𝑔1(𝑛), 𝑔2(𝑛)}). In the case of a repetitive structure to determine 

the order of complexity in the worst case is considered the maximum number of iterations. If this is 

n and if in the body of the cycle processing is of constant cost then the order O(n) is obtained.  

In the case of a double cycle, if for both the inner and outer cycle the limits vary between 1 and 

n then a quadratic complexity, O(n2), is usually obtained. However, if the boundaries of the inner 

cycle change it is possible to obtain another order. Let's consider the following processing: 

 

As for each value of i we obtain m = 3𝑖  results that time of execution is of form:  

𝑇(𝑛) = 1 + ∑ (3𝑖 + 1) 𝜖 𝛩(3𝑛)
𝑛

𝑖=1
 

  

Complexity classes. In algorithm hierarchy we keep in mind following properties of function that 

interfere most often: 

 

 

 

 

 

 

 



Complexity class Order (most defavorble case) Examples 

Logarithmic 𝑂(𝑙𝑔𝑛) Binary seach 

Linear 𝑂(𝑛) Sequential search 

 𝑂(𝑛𝑙𝑔𝑛) Merge sort 

Quadratic 𝑂(𝑛2) Insertion sort 

Cubic 𝑂(𝑛3) Product of 2 square matrixes of 

order n 

Exponential 𝑂(2𝑛) Processing all subsets of a set 

with n elements 

Factorial 𝑂(𝑛!) Processing all permutations of 

a set with n elements 

 

 

 

5 Phases of complexity analysis 

In complexity analysis we go through following phases: 

1. We establish the size of the problem. 

2. We find the base operation. 

3. We verify if number of executions of base operation depends only on problem’s size. If yes, that 

number is to be determined. If no, we analyze the most favorable case, most unfavorable case 

and (if it is possible) average case. 

4. We establish the complexity class the algorithm belongs to. 

 

6 Empirical analysis of the complexity of algorithms 

Motivation. Mathematical analysis of the complexity of algorithms can be difficult in the case of 

algorithms that are not simple, especially if it is an average case analysis. An alternative to analysis 

the mathematics of complexity is empirical analysis.  

It can be useful for: (i) to obtain preliminary information on the complexity class of an algorithm; 

(ii) to compare the efficiency of two (or more) algorithms intended to solve the same problem; (iii) 

to compare the efficiency of several implementations of the same algorithm; (iv) to obtain 

information on the effectiveness of implementing an algorithm on a given computer.  

Stages of empirical analysis. In the empirical analysis of an algorithm, the following are usually 

followed stages: 

1. We determine the purpose of the analysis. 

2. We choose efficiency metric that we will use (number of executions of one/some operations 

or execution time of the entire algorithm or just a portition of the algorithm) 

3. We establish input data properties with respect to data we will analyse (data size or specific 

properties)/ 



4. We implement the algorithm in a programming language. 

5. We generate more data input sets. 

6. We execute the program for each input set. 

7. We analyse the obtained data. 

 

The choice of efficiency measure depends on the purpose of the analysis. If, for example, it is 

intended to obtain information on the complexity class or even to verify the accuracy of a theoretical 

estimate then it is appropriate to use the number of operations performed. If, however, the purpose 

is to evaluate the behavior of the implementation of an algorithm then the execution time is 

appropriate.  

To perform an empirical analysis, not a single set of input data is sufficient, but several, which 

highlight the different characteristics of the algorithm. It is generally good to choose dates of 

different sizes so that the beach of all sizes that will appear in practice is covered. On the other hand 

it also has important to analyze the different values or configurations of the input data. If an algorithm 

is analyzed that checks whether a number is prime or not and testing is done only for numbers that 

are not prime or only for numbers that are prime then no relevant result will be obtained. The same 

can happen for an algorithm whose behavior depends on the degree of sorting of an array (if either 

only the array almost sorted by the desired criterion is chosen or arrays ordered in reverse the analysis 

will not be relevant).  

For Empirical Analysis when implementing the algorithm in a programming language, sequences 

whose purpose is to monitor the execution will have to be introduced. If the efficiency metric is the 

number of executions of an operation then a counter is used that increments after each execution of 

that operation. If the metric is the execution time then the moment of entry into the analyzed 

sequence and the moment of exit must be recorded. Most languages of programming provides 

functions for measuring the elapsed time between two moments. It is important, especially if several 

tasks are active on the computer, to count only the time affected by the execution of the analyzed 

program. Especially if it is a question of time measurement it is advisable to run the test program 

several times and calculate the average value of times.  

When generating input data sets the aim is to obtain data typical of the usual runs (not just 

exceptions). For this purpose, data is often generated in a random manner. In reality it is a pseudo-

randomness because it is simulated by deterministic techniques.  

After the execution of the program for the test data, the results are recorded and for the purpose 

of the analysis either synthetic quantities (mean, standard deviation, etc.) are calculated or pairs of 

shape points (problem size, efficiency measure) are graphically represented. 

7 Exercises. 

1. Establish complexity order for the following algorithm that processes n data volume: 



 

2. Establish complexity order for the following algorithm that processes n data volume: 

 

3. Establish complexity order for the following algorithm that processes n data volume: 

 

4. Consider the next two algorithms for finding the power of a number: 

 

Establish complexity order considering that all arithmetic operations have the same cost. 

 

5. Show that ∑ 𝑖𝑘𝑛
𝑖=1 𝜖 𝛩(𝑛𝑘+1). 

6. What relation there is between 𝛩(𝐥𝐨𝐠𝑎 𝑛) 𝑎𝑛𝑑 𝛩(𝐥𝐨𝐠𝑏 𝑛). 

7. Suggest an algorithm of complexity 𝛩(𝑛2) and one of complexity 𝛩(𝑛) for evaluating a 

polynom of order n. 
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	Example 2. Consider the problem of finding the product of 2 matrixes: matrix A of size m × n and matrix B of size n × p. In this case, problem’s size is determined by 3 values: (m ,n, p). Algorithm ca be described as:
	The cost of processings on the lines 1, 2 and 4 represent the counter management cost and will be treated globally. Assuming that all arithmetic and comparation operations have unitary cost, the table of cost becomes:
	Time of execution in this case is: T(m, n, p) = 4mnp + 5mp + 4m + 2.
	On practice, it is not necessary for such detailed analysis. It is enough to find the base operation and estimate its number of repetitions. Base operation is considered the operation that has the most contribution on algorithm execution time and is t...
	In the above example, base operation can be considered the multiplication operation. In that algorithm’s execution cost will be: T(m, n, p) = mnp.
	Example 3. Consider the problem of determining the minimal value from an array x[1..n]. The size of that problem is given by n, which is the number of elements in the array. Algorithm is:
	Table of processings cost:
	Unlike previous examples, time of execution cannot be calculated explicitly because number of repetitions of processing numbered as 4 depends on values that are stored in the array.
	If the minimal value of the array is located on the first position, then processing 4 will not be executed a single time, and 𝝉,𝒏.=𝟎. This is considered the most favorable case.
	If array’s elements are sorted in descending order then processing 4 will be executed at every itteration, meaning 𝝉,𝒏.=𝒏−𝟏. This is the most unfavorable case.
	Time of execution can be put between 2 limits: 3n ≤ T(n) ≤ 4n-1.
	In this case, it is easy to observe that the base operation is comparison operation between variable m and array’s elements. In this case, the cost of algorithm would be: T(n) = n – 1.
	Example 4. Consider the problem of finding a value v in an array x[1..n]. Size of the problem is, again, given by n.
	Considering processing of unitary cost, we obtain:
	In case where v’s value is in the array, we denote with k first position on which it is located. We obtain:
	The most favorable case is when the value is located on the first position of the array, in which case 𝑻,𝒏.=𝟑(τ1(n)+1)+𝝉𝟏,𝒏.+𝝉𝟐,𝒏.+𝝉𝟑,𝒏.+𝟐=𝟔+𝟏+𝟏+𝟎+𝟐=𝟏𝟎
	The most unfavorable case is when the value is not located in array: 𝑻,𝒏.=𝟑,𝒏+𝟏.+𝒏+𝟎+𝒏+𝟐=𝟓(𝒏+𝟏).
	Importance of the unfavorable case.  For appreciation an algorithm we are interested in the unfavorable case because it shows the greatest time of execution relative to any input data of fixed size.
	The most favorable case is useful for checking inefficient algorithms (for example, if an algorithm has a very large cost in its favorable case, then it cannot be considered acceptable solution).
	Average time of execution. Sometimes, extreme cases (of most favorable or unfavorable) are met rarely. In these cases a useful measure for algorithm complexity is average time of execution.  It represents an average value of execution times, calculate...
	In case when are cases are equally possible, (Pk = 1 / ν(n)) we obtain ,𝑻-𝒎.,𝒏.=,𝒌=𝟏-𝝂(𝒏)-,𝑻-𝒌.,𝒏./𝝂,𝒏... Example. Consider again the problem of searching of a value v in an array x[1..n] (example 4).
	To simplify the analysis, we will consider that all elements of the array are distinct. To calculate the average time of execution we have to make assumptions about the distribution of the input data.
	Let’s assume that value of v can be located on any of the array’s positions or outside of it with equal probability. The amount of total cases is v(n) = n + 1 (n cases where the value is situated in the bounds of the array and one case when v is not i...
	The main difficulty in establishing the average time consists in establishing the distribution corresponding to the input data space. For example, we can assume:
	P(v is in array) = P(v is not in the array) = 0.5 and in case if it is in the array, it can be found on any of the n positions with the same probability: P(v is on position k) = 1/n. In that case, average time is:
	It is observed that the average execution time depends on the assumptions made on the distribution of the input data and that it is not a simple arithmetic mean of the times corresponding to the extreme cases (the most favorable and the most unfavorab...
	Due to the difficulties that can intervene in the estimation of the average time and due to the fact that in many situations it differs from the time in the unfavorable case only by the values of the constants involved in the analysis rule, it refers ...
	3 Order of growth
	In order to appreciate the efficiency of an algorithm, knowledge of the detailed expression of the execution time is not required. Rather, it interests how the execution time increases with the increase in the size of the problem. A useful measure in ...
	Examples. If 𝑇,𝑛.=𝑎𝑛+𝑏 (𝑎>0) when the size of the problem increases by k times and the dominant term in the execution time increases by the same number of times so that 𝑇,𝑘𝑛.=,𝑘𝑎.𝑛+𝑏. In this case it is a linear order of increase. If 𝑇,�..
	If 𝑇,𝑛.=𝑎𝑙𝑔𝑛 then 𝑇,𝑘𝑛.=𝑎𝑙𝑔𝑛+𝑎𝑙𝑔𝑘, that is, the dominant term does not change, the execution time increasing by a constant (with respect to n). In previous relationships and in all that will follow by lg we denote the logarithm in bas...
	Since the problem of efficiency becomes critical for large-scale problems, the complexity analysis is done for the case when n is large (theoretically it is considered that 𝑛→∞), in this way considering only the behavior of the dominant term . This t...
	4 Asymptotic notations
	To facilitate the asymptotic analysis and to allow the grouping of algorithms in classes according to the order of increasing execution time, some classes of functions and associated notations have been introduced.
	Notation Θ. For a function g :  𝑁 →,𝑅-+., 𝛩(𝑔,𝑛.) represents the set of functions:
	(1)
	About execution time of some algorithm, T(n), we say that it is Θ(g(n)) if T(n) 𝜖 Θ(g(n)).
	Through notation abuse in algorithmics it is used to write T(n) = Θ(g(n)). From intuitive point of view, f(n) 𝜖 Θ(g(n)) means that f(n) and g(n) are equivalent asymptotic. In another words, ,,lim-𝑛→∞.-,𝑓,𝑛.-𝑔,𝑛..=𝑘., k being a value strictly po...
	In figure 1 is ilustrated relationship between function f and g (for f(n)= n2 + 5nlgn + 10 and g(n)=n2) when f(n) 𝜖 Θ(g(n)) for various domains of n (n 𝜖 ,1,…,5.,  𝑛 𝜖,1,…,50., 𝑛 𝜖 {1,…,500}). For inferior margin was used c1 = 1 and for superior...
	Figure 1. Function graphics, f (continuos line), c1g c2g (dotted line)
	Example. For example 1 of section 2 (calculate sum) we obtained 𝑇,𝑛.=,𝑘-1.𝑛+,𝑘-2. (,𝑘-1.>0,  ,𝑘-2.>0) thus for ,𝑐-1.=,𝑘-1.,  ,𝑐-2.=,𝑘-1.+1 and ,𝑛-0.>,𝑘-2. we obtain ,𝑐-1.𝑛 ≤𝑇,𝑛.≤,𝑐-2.𝑛 𝑓𝑜𝑟 𝑛 ≥,𝑛-0.,  meaning 𝑇,𝑛.=𝛩,𝑛..
	For example 3 (determine minimal) we obtained 3𝑛≤𝑇,𝑛.≤4𝑛−1 thus 𝑇,𝑛.=𝛩,𝑛.. In general, we can demonstrate that if 𝑇,𝑛.=,𝑎-𝑘.,𝑛-𝑘.+,𝑎-𝑘−1.,𝑛-𝑘−1.+…+,𝑎-1.𝑛+,𝑎-0., ,𝑎-𝑘.>0 then 𝑇,𝑛.=𝛩(,𝑛-𝑘.). From ,,lim-𝑛→∞.-𝑇(𝑛)/,𝑛-𝑘..=,...
	meaning that for ,𝑐-1.=,𝑎-𝑘.−𝜀, ,𝑐-2.=,𝑎-𝑘.+𝜀 and ,𝑛-0.=,𝑛-0.(𝜀) we obtain inequalities from (1).
	Notation O. For a function g :  𝑁 →,𝑅-+., 𝑂(𝑔,𝑛.) represents the set of functions:
	This class of function allows describing of an algorithm’s behaviour in case of the most unfavorable case without reffering to other situations. Because, usually, we are interest in algorithm’s behaviour for random data input, it is enough to specify ...
	From definitions of 𝛩 and O results that 𝛩,𝑔,𝑛..⊂𝑂,𝑔,𝑛... Thus if T(n) = 𝛩(g(n)) then T(n) = O(g(n)).
	Using the definition of O we can easily verify if ,𝑔-1.,𝑛.<,𝑔-2.,𝑛. for 𝑛≥,𝑛-0. and 𝑓,𝑛. 𝜖 𝑂,,𝑔-1.,𝑛.. then 𝑓,𝑛. 𝜖 𝑂,,𝑔-2.,𝑛... Thus if 𝑇,𝑛.=𝑂,𝑛. then 𝑇,𝑛.=𝑂,,𝑛-𝑑.. for any 𝑑≥1
	In general, if 𝑇,𝑛.≤,𝑎-𝑘.,𝑛-𝑘.+,𝑎-𝑘−1.,𝑛-𝑘−1.+…+,𝑎-1.𝑛+,𝑎-0.,  , 𝑎-𝑘.>0 then 𝑇,𝑛.=𝑂,𝑑. for any 𝑑≥𝑘.
	Notation Ω. For a function g :  𝑁 →,𝑅-+.,  Ω(𝑔,𝑛.) represents the set of functions:
	Is a measurement for growth order of execution time in the most favorable case. Intuitive, 𝑓,𝑛. 𝜖 Ω,g,n.. means that f(n) grows asymptotically at least as fast as g(n), meaning ,,𝐥𝐢𝐦-𝑛→∞.-𝑓(𝑛)/𝑔,𝑛.≥𝑘., k being a value strictly positive.
	From definitions we can see that 𝛩,𝑔,𝑛..⊂𝑂(𝑔(𝑛)). Relation between the three mentioned classes is: 𝛩,𝑔,𝑛..=𝑂,𝑔,𝑛..∩ Ω,𝑔,𝑛...
	Asymptotic analysis of fundamental structures. We consider the problem of determining the order of complexity in the most unfavorable case for algorithmic structures: sequential, alternative and repetitive.
	We assume that the sequential structure is constituted by the processes A1,.....,Ak and each of these has the order of complexity 𝑂(,𝑔-𝑖.(𝑛)). Then the structure will have the order of complexity 𝑂(max{,𝑔-1.,𝑛.,…,𝑔-𝑘.(𝑛)}).
	If the condition of an alternative structure has constant cost and the processing corresponding to the two variants have the orders of complexity 𝑂(,𝑔-1.(𝑛)) respectively 𝑂(,𝑔-2.(𝑛)) then the cost of the alternative structure will be 𝑂(max{,𝑔...
	In the case of a double cycle, if for both the inner and outer cycle the limits vary between 1 and n then a quadratic complexity, O(n2), is usually obtained. However, if the boundaries of the inner cycle change it is possible to obtain another order. ...
	As for each value of i we obtain m = ,3-𝑖. results that time of execution is of form:
	𝑇,𝑛.=1+,𝑖=1-𝑛-,,3-𝑖.+1. 𝜖 𝛩(,3-𝑛.).
	Complexity classes. In algorithm hierarchy we keep in mind following properties of function that interfere most often:
	5 Phases of complexity analysis
	In complexity analysis we go through following phases:
	1. We establish the size of the problem.
	2. We find the base operation.
	3. We verify if number of executions of base operation depends only on problem’s size. If yes, that number is to be determined. If no, we analyze the most favorable case, most unfavorable case and (if it is possible) average case.
	4. We establish the complexity class the algorithm belongs to.
	6 Empirical analysis of the complexity of algorithms
	Motivation. Mathematical analysis of the complexity of algorithms can be difficult in the case of algorithms that are not simple, especially if it is an average case analysis. An alternative to analysis the mathematics of complexity is empirical analy...
	It can be useful for: (i) to obtain preliminary information on the complexity class of an algorithm; (ii) to compare the efficiency of two (or more) algorithms intended to solve the same problem; (iii) to compare the efficiency of several implementati...
	Stages of empirical analysis. In the empirical analysis of an algorithm, the following are usually followed stages:
	1. We determine the purpose of the analysis.
	2. We choose efficiency metric that we will use (number of executions of one/some operations or execution time of the entire algorithm or just a portition of the algorithm)
	3. We establish input data properties with respect to data we will analyse (data size or specific properties)/
	4. We implement the algorithm in a programming language.
	5. We generate more data input sets.
	6. We execute the program for each input set.
	7. We analyse the obtained data.
	The choice of efficiency measure depends on the purpose of the analysis. If, for example, it is intended to obtain information on the complexity class or even to verify the accuracy of a theoretical estimate then it is appropriate to use the number of...
	To perform an empirical analysis, not a single set of input data is sufficient, but several, which highlight the different characteristics of the algorithm. It is generally good to choose dates of different sizes so that the beach of all sizes that wi...
	For Empirical Analysis when implementing the algorithm in a programming language, sequences whose purpose is to monitor the execution will have to be introduced. If the efficiency metric is the number of executions of an operation then a counter is us...
	When generating input data sets the aim is to obtain data typical of the usual runs (not just exceptions). For this purpose, data is often generated in a random manner. In reality it is a pseudo-randomness because it is simulated by deterministic tech...
	After the execution of the program for the test data, the results are recorded and for the purpose of the analysis either synthetic quantities (mean, standard deviation, etc.) are calculated or pairs of shape points (problem size, efficiency measure) ...
	7 Exercises.
	1. Establish complexity order for the following algorithm that processes n data volume:
	2. Establish complexity order for the following algorithm that processes n data volume:
	3. Establish complexity order for the following algorithm that processes n data volume:
	4. Consider the next two algorithms for finding the power of a number:
	Establish complexity order considering that all arithmetic operations have the same cost.
	5. Show that ,𝑖=1-𝑛-,𝑖-𝑘..𝜖 𝛩(,𝑛-𝑘+1.).
	6. What relation there is between 𝛩,,,𝐥𝐨𝐠-𝑎.-𝑛.. 𝑎𝑛𝑑 𝛩(,,𝐥𝐨𝐠-𝑏.-𝑛.).
	7. Suggest an algorithm of complexity 𝛩,,𝑛-2.. and one of complexity 𝛩,𝑛. for evaluating a polynom of order n.

