
ARM® Cortex™-M4 Processor
 Revision r0p1

Technical Reference Manual
Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved.
ARM DDI 0439D (ID061113)

ARM Cortex-M4 Processor
Technical Reference Manual

Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM® in the EU and other countries,
except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any loss or
damage arising from the use of any information in this document, or any error or omission in such information, or any
incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Product Status

The information in this document is Final (information on a developed product).

Web Address

http://www.arm.com

Change History

Date Issue Confidentiality Change

22 December 2009 A Non-Confidential, Restricted Access First release for r0p0

2 March 2010 B Non-Confidential Second release for r0p0

29 June 2010 C Non-Confidential First release for r0p1

11 June 2013 D Non-Confidential Second release for r0p1
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. ii
ID061113 Non-Confidential

Contents
ARM Cortex-M4 Processor Technical Reference
Manual

Preface
About this book ... vi
Feedback .. ix

Chapter 1 Introduction
1.1 About the processor ... 1-2
1.2 Features ... 1-3
1.3 Interfaces ... 1-4
1.4 Configurable options .. 1-5
1.5 Product documentation .. 1-6
1.6 Product revisions ... 1-9

Chapter 2 Functional Description
2.1 About the functions .. 2-2
2.2 Interfaces ... 2-5

Chapter 3 Programmers Model
3.1 About the programmers model .. 3-2
3.2 Modes of operation and execution ... 3-3
3.3 Instruction set summary ... 3-4
3.4 System address map ... 3-14
3.5 Write buffer .. 3-17
3.6 Exclusive monitor ... 3-18
3.7 Bit-banding ... 3-19
3.8 Processor core register summary .. 3-21
3.9 Exceptions ... 3-23
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. iii
ID061113 Non-Confidential

Contents
Chapter 4 System Control
4.1 About system control ... 4-2
4.2 Register summary .. 4-3
4.3 Register descriptions ... 4-5

Chapter 5 Memory Protection Unit
5.1 About the MPU .. 5-2
5.2 MPU functional description .. 5-3
5.3 MPU programmers model .. 5-4

Chapter 6 Nested Vectored Interrupt Controller
6.1 About the NVIC .. 6-2
6.2 NVIC functional description ... 6-3
6.3 NVIC programmers model ... 6-4

Chapter 7 Floating Point Unit
7.1 About the FPU ... 7-2
7.2 FPU Functional Description ... 7-3
7.3 FPU Programmers Model .. 7-9

Chapter 8 Debug
8.1 About debug .. 8-2
8.2 About the AHB-AP ... 8-6
8.3 About the Flash Patch and Breakpoint Unit (FPB) .. 8-9

Chapter 9 Data Watchpoint and Trace Unit
9.1 About the DWT .. 9-2
9.2 DWT functional description .. 9-3
9.3 DWT Programmers Model ... 9-4

Chapter 10 Instrumentation Trace Macrocell Unit
10.1 About the ITM .. 10-2
10.2 ITM functional description .. 10-3
10.3 ITM programmers model ... 10-4

Chapter 11 Trace Port Interface Unit
11.1 About the Cortex-M4 TPIU .. 11-2
11.2 TPIU functional description .. 11-3
11.3 TPIU programmers model ... 11-5

Appendix A Revisions
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. iv
ID061113 Non-Confidential

Preface

This preface introduces the Cortex-M4 Technical Reference Manual (TRM). It contains the
following sections:
• About this book on page vi.
• Feedback on page ix.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. v
ID061113 Non-Confidential

Preface
About this book
This book is for the Cortex-M4 processor.

Product revision status

The rnpn identifier indicates the revision status of the product described in this manual, where:
rn Identifies the major revision of the product.
pn Identifies the minor revision or modification status of the product.

Intended audience

This manual is written to help system designers, system integrators, verification engineers, and
software programmers who are implementing a System-on-Chip (SoC) device based on the
Cortex-M4 processor.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
Read this for a description of the components of the processor, and of the product
documentation.

Chapter 2 Functional Description
Read this for a description of the functionality of the processor.

Chapter 3 Programmers Model
Read this for a description of the processor register set, modes of operation, and
other information for programming the processor.

Chapter 4 System Control
Read this for a description of the registers and programmers model for system
control.

Chapter 5 Memory Protection Unit
Read this for a description of the Memory Protection Unit (MPU).

Chapter 6 Nested Vectored Interrupt Controller
Read this for a description of the interrupt processing and control.

Chapter 7 Floating Point Unit
Read this for a description of the Floating Point Unit (FPU)

Chapter 8 Debug
Read this for information about debugging and testing the processor.

Chapter 9 Data Watchpoint and Trace Unit
Read this for a description of the Data Watchpoint and Trace (DWT) unit.

Chapter 10 Instrumentation Trace Macrocell Unit
Read this for a description of the Instrumentation Trace Macrocell (ITM) unit.

Chapter 11 Trace Port Interface Unit
Read this for a description of the Trace Port Interface Unit (TPIU).
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. vi
ID061113 Non-Confidential

Preface
Appendix A Revisions
Read this for a description of the technical changes between released issues of this
book.

Glossary

The ARM Glossary is a list of terms used in ARM documentation, together with definitions for
those terms. The ARM Glossary does not contain terms that are industry standard unless the
ARM meaning differs from the generally accepted meaning.

See ARM Glossary, http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html.

Typographical Conventions

Conventions that this book can use are described in:
• Typographical.

Typographical

The typographical conventions are:

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes signal
names. Also used for terms in descriptive lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as commands, file
and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You can enter
the underlined text instead of the full command or option name.

monospace italic Denotes arguments to monospace text where the argument is to be
replaced by a specific value.

monospace Denotes language keywords when used outside example code.

 < and > Enclose replaceable terms for assembler syntax where they appear in code
or code fragments. For example:
ADD Rd, Rn, <op2>

Additional reading

This section lists publications by ARM and by third parties.

See Infocenter, http://infocenter.arm.com, for access to ARM documentation.

ARM publications

This book contains information that is specific to this product. See the following documents for
other relevant information:
• ARM®v7-M Architecture Reference Manual (ARM DDI 0403).
• ARM® Cortex-M4 Integration and Implementation Manual (ARM DII 0239).
• ARM® ETM-M4 Technical Reference Manual (ARM DDI 0440).
• ARM® AMBA® 3 AHB-Lite Protocol (v1.0) (ARM IHI 0033).
• ARM® AMBA™ 3 APB Protocol Specification (ARM IHI 0024).
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. vii
ID061113 Non-Confidential

Preface
• ARM® CoreSight™ Components Technical Reference Manual (ARM DDI 0314).
• ARM® Debug Interface v5 Architecture Specification (ARM IHI 0031).
• Cortex-M4 Lazy Stacking and Context Switching Application Note 298 (ARM DAI0298).

Other publications

This section lists relevant documents published by third parties:
• IEEE Standard Test Access Port and Boundary-Scan Architecture 1149.1-2001 (JTAG).
• IEEE Standard IEEE Standard for Binary Floating-Point Arithmetic 754-2008.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. viii
ID061113 Non-Confidential

Preface
Feedback
ARM welcomes feedback on this product and its documentation.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

• The product name.

• The product revision or version.

• An explanation with as much information as you can provide. Include symptoms and
diagnostic procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:
• The title
• The number, ARM DDI 0439D.
• The page numbers to which your comments apply
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note
 ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the
quality of the represented document when used with any other PDF reader.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. ix
ID061113 Non-Confidential

Chapter 1
Introduction

This chapter introduces the processor and instruction set. It contains the following sections:
• About the processor on page 1-2.
• Features on page 1-3.
• Interfaces on page 1-4.
• Configurable options on page 1-5.
• Product documentation on page 1-6.
• Product revisions on page 1-9.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 1-1
ID061113 Non-Confidential

Introduction
1.1 About the processor
The Cortex-M4 processor is a low-power processor that features low gate count, low interrupt
latency, and low-cost debug. The Cortex-M4 includes optional floating point arithmetic
functionality (see Chapter 7 Floating Point Unit). The processor intended for deeply embedded
applications that require fast interrupt response features.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 1-2
ID061113 Non-Confidential

Introduction
1.2 Features
The Cortex-M4 processor incorporates:

• A processor core.

• A Nested Vectored Interrupt Controller (NVIC) closely integrated with the processor core
to achieve low latency interrupt processing.

• Multiple high-performance bus interfaces.

• A low-cost debug solution with the optional ability to:
— Implement breakpoints and code patches.
— Implement watchpoints, tracing, and system profiling.
— Support printf() style debugging.
— Bridge to a Trace Port Analyzer (TPA).

• An optional Memory Protection Unit (MPU).

• An optional Floating Point Unit (FPU).
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 1-3
ID061113 Non-Confidential

Introduction
1.3 Interfaces
The processor has the following external interfaces:
• Multiple memory and device bus interfaces.
• ETM interface.
• Trace port interface.
• Debug port interface.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 1-4
ID061113 Non-Confidential

Introduction
1.4 Configurable options
You can configure your Cortex-M4 implementation to include the following optional
components as Table 1-1 shows:

Note
 You can only configure trace functionality in the following combinations:
• No trace functionality.
• ITM and DWT.
• ITM, DWT, and ETM.
• ITM, DWT, ETM, and HTM.

You can configure the features provided in the DWT independently.

Table 1-1 Optional implementation components

Component Description

MPU See Chapter 5 Memory Protection Unit

FPB See Chapter 8 Debug

DWT See Chapter 9 Data Watchpoint and Trace Unit

ITM See Chapter 10 Instrumentation Trace Macrocell Unit

ETM See the ETM-M4 Technical Reference Manual

AHB-AP See Chapter 8 Debug

HTM interface See AHB Trace Macrocell interface on page 2-7

TPIU See Chapter 11 Trace Port Interface Unit

WIC See Low power modes on page 6-3

Debug Port See Debug Port AHB-AP interface on page 2-7

FPU See Chapter 7 Floating Point Unit

Bit-banding See Bit-banding on page 3-19

Constant AHB control See Bus interfaces on page 2-5
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 1-5
ID061113 Non-Confidential

Introduction
1.5 Product documentation
This section describes the processor books, how they relate to the design flow, and the relevant
architectural standards and protocols.

See Additional reading on page vii for more information about the books described in this
section.

1.5.1 Documentation

The Cortex-M4 documentation is as follows:

Technical Reference Manual
The Technical Reference Manual (TRM) describes the functionality and the
effects of functional options on the behavior of the Cortex-M4 processor. It is
required at all stages of the design flow. Some behavior described in the TRM
might not be relevant because of the way that the Cortex-M4 processor is
implemented and integrated. If you are programming the Cortex-M4 processor
then contact:
• The implementer to determine:

— The build configuration of the implementation.
— What integration, if any, was performed before implementing the

processor.
• The integrator to determine the pin configuration of the SoC that you are

using.

Integration and Implementation Manual
The Integration and Implementation Manual (IIM) describes:
• The available build configuration options and related issues in selecting

them.
• How to configure the Register Transfer Level (RTL) with the build

configuration options.
• How to integrate the processor into a SoC. This includes a description of

the integration kit and describes the pins that the integrator must tie off to
configure the macrocell for the required integration.

• How to implement the processor into your design. This includes
floorplanning guidelines, Design for Test (DFT) information, and how to
perform netlist dynamic verification on the processor.

• The processes to sign off the integration and implementation of the design.
The ARM product deliverables include reference scripts and information about
using them to implement your design.
Reference methodology documentation from your EDA tools vendor
complements the IIM.
The IIM is a confidential book that is only available to licensees.

ETM-M4 Technical Reference Manual
The ETM-M4 TRM describes the functionality and behavior of the Cortex-M4
Embedded Trace Macrocell. It is required at all stages of the design flow.
Typically the ETM-M4 is integrated with the Cortex-M4 processor prior to
implementation as a single macrocell.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 1-6
ID061113 Non-Confidential

Introduction
Cortex-M4 User Guide Reference Material
This document provides reference material that ARM partners can configure and
include in a User Guide for an ARM Cortex-M4 processor. Typically:
• Each chapter in this reference material might correspond to a section in the

User Guide.
• Each top-level section in this reference material might correspond to a

chapter in the User Guide.
However, you can organize this material in any way, subject to the conditions of
the licence agreement under which ARM supplied the material.

1.5.2 Design Flow

The processor is delivered as synthesizable RTL. Before it can be used in a product, it must go
through the following process:

Implementation
The implementer configures and synthesizes the RTL.

Integration The integrator connects the implemented design into a SoC. This includes
connecting it to a memory system and peripherals.

Programming
The system programmer develops the software required to configure and
initialize the processor, and tests the required application software.

Each stage in the process can be performed by a different party. Implementation and integration
choices affect the behavior and features of the processor.

For MCUs, often a single design team integrates the processor before synthesizing the complete
design. Alternatively, the team can synthesise the processor on its own or partially integrated,
to produce a macrocell that is then integrated, possibly by a separate team.

The operation of the final device depends on:

Build configuration
The implementer chooses the options that affect how the RTL source files are
pre-processed. These options usually include or exclude logic that affects one or
more of the area, maximum frequency, and features of the resulting macrocell.

Configuration inputs
The integrator configures some features of the processor by tying inputs to
specific values. These configurations affect the start-up behavior before any
software configuration is made. They can also limit the options available to the
software.

Software configuration
The programmer configures the processor by programming particular values into
registers. This affects the behavior of the processor.

Note
 This manual refers to implementation-defined features that are applicable to build configuration
options. Reference to a feature that is included means that the appropriate build and pin
configuration options are selected. Reference to an enabled feature means one that has also been
configured by software.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 1-7
ID061113 Non-Confidential

Introduction
1.5.3 Architecture and protocol information

The processor complies with, or implements, the specifications described in:
• ARM architecture.
• Bus architecture.
• Debug.
• Embedded Trace Macrocell.

This book complements architecture reference manuals, architecture specifications, protocol
specifications, and relevant external standards. It does not duplicate information from these
sources.

ARM architecture

The processor implements the ARMv7E-M architecture profile. See the ARM®v7-M
Architecture Reference Manual.

Bus architecture

The processor provides three primary bus interfaces implementing a variant of the AMBA 3
AHB-Lite protocol. The processor implements an interface for CoreSight and other debug
components using the AMBA 3 APB protocol. See:
• The ARM AMBA 3 AHB-Lite Protocol (v1.0).
• The ARM AMBA 3 APB Protocol Specification.

Debug

The debug features of the processor implement the ARM debug interface architecture. See the
ARM Debug Interface v5 Architecture Specification.

Embedded Trace Macrocell

The trace features of the processor implement the ARM Embedded Trace Macrocell
architecture. See the ARM Embedded Trace Macrocell Architecture Specification.

Floating Point Unit

The Cortex-M4 FPU implements ARMv7E-M architecture with FPv4-SP extensions. It
provides floating-point computation functionality that is compliant with the ANSI/IEEE Std
754-2008, IEEE Standard for Binary Floating-Point Arithmetic. See the ARM®v7M Architecture
Reference Manual and Chapter 7 Floating Point Unit.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 1-8
ID061113 Non-Confidential

Introduction
1.6 Product revisions
This section describes the differences in functionality between product revisions:

• Differences in functionality between r0p0 and r0p1.

1.6.1 Differences in functionality between r0p0 and r0p1

In summary, the differences in functionality include:

• New implementation option to ensure constant AHB control during wait-stated transfers.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 1-9
ID061113 Non-Confidential

Chapter 2
Functional Description

This chapter introduces the processor and its external interfaces. It contains the following
sections:
• About the functions on page 2-2.
• Interfaces on page 2-5.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 2-1
ID061113 Non-Confidential

Functional Description
2.1 About the functions
Figure 2-1 shows the structure of the Cortex-M4 processor.

Figure 2-1 Cortex-M4 block diagram

The Cortex-M4 processor features:

• A low gate count processor core, with low latency interrupt processing that has:
— A subset of the Thumb instruction set, defined in the ARM®v7-M Architecture

Reference Manual.
— Banked Stack Pointer (SP).
— Hardware integer divide instructions, SDIV and UDIV.
— Handler and Thread modes.
— Thumb and Debug states.
— Support for interruptible-continued instructions LDM, STM, PUSH, and POP for low

interrupt latency.
— Automatic processor state saving and restoration for low latency Interrupt Service

Routine (ISR) entry and exit.
— Support for ARMv6 big-endian byte-invariant or little-endian accesses.
— Support for ARMv6 unaligned accesses.

‡

‡

Nested
Vectored
Interrupt

Controller
(NVIC)

Bus Matrix

Cortex-M4 processor

Trace Port
Interface‡ CoreSight

ROM table

Serial-Wire or
JTAG Debug

Interface ICode
AHB-Lite

instruction
interface

DCode
AHB-Lite

data
interface

System
AHB-Lite
system

interface

PPB APB
debug system

interface

Interrupts and
power control

Wake-up
Interrupt

Controller
(WIC)

Serial-Wire
or JTAG

Debug Port
 (SW-DP or
SWJ-DP)

‡
Embedded

Trace
Macrocell

(ETM)

‡

‡
Flash Patch
Breakpoint

(FPB)

‡
Memory

Protection
Unit (MPU)

‡
Data

Watchpoint
and Trace

(DWT)

‡
AHB

Access Port
(AHB-AP)

‡
Instrumentation
Trace Macrocell

(ITM)

Trace Port
Interface Unit

(TPIU)

‡ Optional component

Cortex-M4 core

‡ Floating Point
Unit (FPU)
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 2-2
ID061113 Non-Confidential

Functional Description
• Optional Floating Point Unit (FPU) providing:
— 32-bit instructions for single-precision (C float) data-processing operations.
— Combined Multiply and Accumulate instructions for increased precision (Fused

MAC).
— Hardware support for conversion, addition, subtraction, multiplication with

optional accumulate, division, and square-root.
— Hardware support for denormals and all IEEE rounding modes.
— 32 dedicated 32-bit single precision registers, also addressable as 16 double-word

registers.
— Decoupled three stage pipeline.

• Nested Vectored Interrupt Controller (NVIC) closely integrated with the processor core
to achieve low latency interrupt processing. Features include:
— External interrupts, configurable from 1 to 240.
— Bits of priority, configurable from 3 to 8.
— Dynamic reprioritization of interrupts.
— Priority grouping. This enables selection of preempting interrupt levels and non

preempting interrupt levels.
— Support for tail-chaining and late arrival of interrupts. This enables back-to-back

interrupt processing without the overhead of state saving and restoration between
interrupts.

— Processor state automatically saved on interrupt entry, and restored on interrupt exit,
with no instruction overhead.

— Optional Wake-up Interrupt Controller (WIC), providing ultra-low power sleep
mode support.

• Memory Protection Unit (MPU). An optional MPU for memory protection, including:
— Eight memory regions.
— Sub Region Disable (SRD), enabling efficient use of memory regions.
— The ability to enable a background region that implements the default memory map

attributes.

• Bus interfaces:
— Three Advanced High-performance Bus-Lite (AHB-Lite) interfaces: ICode,

DCode, and System bus interfaces.
— Private Peripheral Bus (PPB) based on Advanced Peripheral Bus (APB) interface.
— Bit-band support that includes atomic bit-band write and read operations.
— Memory access alignment.
— Write buffer for buffering of write data.
— Exclusive access transfers for multiprocessor systems.

• Low-cost debug solution that features:
— Debug access to all memory and registers in the system, including access to

memory mapped devices, access to internal core registers when the core is halted,
and access to debug control registers even while SYSRESETn is asserted.

— Serial Wire Debug Port (SW-DP) or Serial Wire JTAG Debug Port (SWJ-DP) debug
access.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 2-3
ID061113 Non-Confidential

Functional Description
— Optional Flash Patch and Breakpoint (FPB) unit for implementing breakpoints and
code patches.

— Optional Data Watchpoint and Trace (DWT) unit for implementing watchpoints,
data tracing, and system profiling.

— Optional Instrumentation Trace Macrocell (ITM) for support of printf() style
debugging.

— Optional Trace Port Interface Unit (TPIU) for bridging to a Trace Port Analyzer
(TPA), including Single Wire Output (SWO) mode.

— Optional Embedded Trace Macrocell (ETM) for instruction trace.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 2-4
ID061113 Non-Confidential

Functional Description
2.2 Interfaces
The processor contains the following external interfaces:
• Bus interfaces.
• ETM interface on page 2-7.
• AHB Trace Macrocell interface on page 2-7.
• Debug Port AHB-AP interface on page 2-7.

2.2.1 Bus interfaces

The processor contains three external Advanced High-performance Bus (AHB)-Lite bus
interfaces and one Advanced Peripheral Bus (APB) interface:
• ICode memory interface.
• DCode memory interface on page 2-6.
• System interface on page 2-6.
• Private Peripheral Bus (PPB) on page 2-6.

The processor matches the AMBA 3 specification except for maintaining control information
during waited transfers. The AMBA 3 AHB-Lite Protocol states that when the slave is
requesting wait states the master must not change the transfer type, except for the following
cases:

• On an IDLE transfer, the master can change the transfer type from IDLE to NONSEQ.

• On a BUSY transfer with a fixed length burst, the master can change the transfer type
from BUSY to SEQ.

• On a BUSY transfer with an undefined length burst, the master can change the transfer
type from BUSY to any other transfer type.

The processor does not match this definition because it might change the access type from SEQ
or NONSEQ to IDLE during a waited transfer. The processor might also change the address or
other control information and therefore request an access to a new location. The original address
that was retracted might not be requested again. This cancels the outstanding transfer that has
not occurred because the previous access is wait-stated and awaiting completion. This is done
so that the processor can have a lower interrupt latency and higher performance in wait-stated
systems by retracting accesses that are no longer required.

To achieve complete compliance with the AMBA 3 specification you can implement the design
with the AHB_CONST_CTRL parameter set to 1. This ensures that when transfers are issued
during a wait-stated response they are never retracted or modified and the original transfer is
honoured. The consequence of setting this parameter is that the performance of the core might
decrease for wait-stated systems as a result of the interrupt and branch latency increasing.

ICode memory interface

Instruction fetches from Code memory space, 0x00000000 to 0x1FFFFFFC, are performed over this
32-bit AHB-Lite bus.

The Debugger cannot access this interface. All fetches are word-wide. The number of
instructions fetched per word depends on the code running and the alignment of the code in
memory.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 2-5
ID061113 Non-Confidential

Functional Description
DCode memory interface

Data and debug accesses to Code memory space, 0x00000000 to 0x1FFFFFFF, are performed over
this 32-bit AHB-Lite bus. The Code memory space available is dependent on the
implementation. Core data accesses have a higher priority than debug accesses on this bus. This
means that debug accesses are waited until core accesses have completed when there are
simultaneous core and debug access to this bus.

Control logic in this interface converts unaligned data and debug accesses into two or three
aligned accesses, depending on the size and alignment of the unaligned access. This stalls any
subsequent data or debug access until the unaligned access has completed.

Note
 ARM strongly recommends that any external arbitration between the ICode and DCode AHB
bus interfaces ensures that DCode has a higher priority than ICode.

System interface

Instruction fetches, and data and debug accesses, to address ranges 0x20000000 to 0xDFFFFFFF and
0xE0100000 to 0xFFFFFFFF are performed over this 32-bit AHB-Lite bus.

For simultaneous accesses to this bus, the arbitration order in decreasing priority is:
• Data accesses.
• Instruction and vector fetches.
• Debug.

The system bus interface contains control logic to handle unaligned accesses, FPB remapped
accesses, bit-band accesses, and pipelined instruction fetches.

Private Peripheral Bus (PPB)

Data and debug accesses to external PPB space, 0xE0040000 to 0xE00FFFFF, are performed over
this 32-bit Advanced Peripheral Bus (APB) bus. The Trace Port Interface Unit (TPIU) and
vendor specific peripherals are on this bus.

Core data accesses have higher priority than debug accesses, so debug accesses are waited until
core accesses have completed when there are simultaneous core and debug access to this bus.
Only the address bits necessary to decode the External PPB space are supported on this
interface.

The External PPB (EPPB) space, 0xE0040000 up to 0xE0100000, is intended for
CoreSight-compatible debug and trace components, and has a number of irregular limitations
that make it less useful for regular system peripherals. ARM recommends that system
peripherals are placed in suitable Device type areas of the System bus address space, with use
of an AHB2APB protocol converter for APB-based devices.

Limitations of the EPPB space are:

• It is accessible in privileged mode only.

• It is accessed in little-endian fashion irrespective of the data endianness setting of the
processor.

• Accesses behave as Strongly Ordered.

• Unaligned accesses have Unpredictable results.

• Only 32-bit data accesses are supported.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 2-6
ID061113 Non-Confidential

Functional Description
• It is accessible from the Debug Port and the local processor, but not from any other
processor in the system.

2.2.2 ETM interface

The ETM interface enables simple connection of the ETM-M4 to the processor. It provides a
channel for instruction trace to the ETM. See the ARM Embedded Trace Macrocell Architecture
Specification.

2.2.3 AHB Trace Macrocell interface

The AHB Trace Macrocell (HTM) interface enables a simple connection of the AHB trace
macrocell to the processor. It provides a channel for the data trace to the HTM.

Your implementation must include this interface to use the HTM interface. You must set
TRCENA to 1 in the Debug Exception and Monitor Control Register (DEMCR) before you
enable the HTM port to supply trace data. See the ARM®v7-M Architecture Reference Manual.

2.2.4 Debug Port AHB-AP interface

The processor contains an Advanced High-performance Bus Access Port (AHB-AP) interface
for debug accesses. An external Debug Port (DP) component accesses this interface. The
Cortex-M4 system supports three possible DP implementations:

• The Serial Wire JTAG Debug Port (SWJ-DP). The SWJ-DP is a standard CoreSight debug
port that combines JTAG-DP and Serial Wire Debug Port (SW-DP).

• The SW-DP. This provides a two-pin interface to the AHB-AP port.

• No DP present. If no debug functionality is present within the processor, a DP is not
required.

The two DP implementations provide different mechanisms for debug access to the processor.
Your implementation must contain only one of these components.

Note
 Your implementation might contain an alternative implementer-specific DP instead of SW-DP
or SWJ-DP. See your implementer for details.

For more detailed information on the DP components, see the CoreSight Components Technical
Reference manual.

For more information on the AHB-AP, see Chapter 8 Debug.

The DP and AP together are referred to as the Debug Access Port (DAP).

For more detailed information on the debug interface, see the ARM Debug Interface v5
Architecture Specification.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 2-7
ID061113 Non-Confidential

Chapter 3
Programmers Model

This chapter describes the processor programmers model. It contains the following sections:
• About the programmers model on page 3-2.
• Modes of operation and execution on page 3-3.
• Instruction set summary on page 3-4.
• System address map on page 3-14.
• Write buffer on page 3-17.
• Bit-banding on page 3-19.
• Processor core register summary on page 3-21.
• Exceptions on page 3-23.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 3-1
ID061113 Non-Confidential

Programmers Model
3.1 About the programmers model

The ARM®v7-M Architecture Reference Manual provides a complete description of the
programmers model. This chapter gives an overview of the Cortex-M4 processor programmers
model that describes the implementation-defined options. It also contains the ARMv7-M
Thumb instructions the model uses, and their cycle counts for the processor. In addition:
• Chapter 4 summarizes the system control features of the programmers model.
• Chapter 5 summarizes the MPU features of the programmers model.
• Chapter 6 summarizes the NVIC features of the programmers model.
• Chapter 7 summarizes the FPU features of the programmers model.
• Chapter 8 summarizes the Debug features of the programmers model.
• Chapter 9 summarizes the DWT features of the programmers model.
• Chapter 10 summarizes the ITM features of the programmers model.
• Chapter 11 summarizes the TPIU features of the programmers model.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 3-2
ID061113 Non-Confidential

Programmers Model
3.2 Modes of operation and execution
This section briefly describes the modes of operation and execution of the Cortex-M4 processor.
See the ARM®v7-M Architecture Reference Manual for more information.

3.2.1 Operating modes

The processor supports two modes of operation, Thread mode and Handler mode:

• The processor enters Thread mode on Reset, or as a result of an exception return.
Privileged and Unprivileged code can run in Thread mode.

• The processor enters Handler mode as a result of an exception. All code is privileged in
Handler mode.

3.2.2 Operating states

The processor can operate in one of two operating states:

• Thumb state. This is normal execution running 16-bit and 32-bit halfword aligned Thumb
instructions.

• Debug State. This is the state when the processor is in halting debug.

3.2.3 Privileged access and user access

Code can execute as privileged or unprivileged. Unprivileged execution limits or excludes
access to some resources. Privileged execution has access to all resources. Handler mode is
always privileged. Thread mode can be privileged or unprivileged.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 3-3
ID061113 Non-Confidential

Programmers Model
3.3 Instruction set summary
This section provides information on:
• Cortex-M4 instructions.
• Load/store timings on page 3-11.
• Binary compatibility with other Cortex processors on page 3-12.

3.3.1 Cortex-M4 instructions

The processor implements the ARMv7-M Thumb instruction set. Table 3-1 shows the
Cortex-M4 instructions and their cycle counts. The cycle counts are based on a system with zero
wait states.

Within the assembler syntax, depending on the operation, the <op2> field can be replaced with
one of the following options:
• A simple register specifier, for example Rm.
• An immediate shifted register, for example Rm, LSL #4.
• A register shifted register, for example Rm, LSL Rs.
• An immediate value, for example #0xE000E000.

For brevity, not all load and store addressing modes are shown. See the ARM®v7-M Architecture
Reference Manual for more information.

Table 3-1 uses the following abbreviations in the Cycles column:

P The number of cycles required for a pipeline refill. This ranges from 1 to 3
depending on the alignment and width of the target instruction, and whether the
processor manages to speculate the address early.

B The number of cycles required to perform the barrier operation. For DSB and DMB,
the minimum number of cycles is zero. For ISB, the minimum number of cycles
is equivalent to the number required for a pipeline refill.

N The number of registers in the register list to be loaded or stored, including PC or
LR.

W The number of cycles spent waiting for an appropriate event.

Table 3-1 Cortex-M4 instruction set summary

Operation Description Assembler Cycles

Move Register MOV Rd, <op2> 1

16-bit immediate MOVW Rd, #<imm> 1

Immediate into top MOVT Rd, #<imm> 1

To PC MOV PC, Rm 1 + P

Add Add ADD Rd, Rn, <op2> 1

Add to PC ADD PC, PC, Rm 1 + P

Add with carry ADC Rd, Rn, <op2> 1

Form address ADR Rd, <label> 1
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 3-4
ID061113 Non-Confidential

Programmers Model
Subtract Subtract SUB Rd, Rn, <op2> 1

Subtract with borrow SBC Rd, Rn, <op2> 1

Reverse RSB Rd, Rn, <op2> 1

Multiply Multiply MUL Rd, Rn, Rm 1

Multiply accumulate MLA Rd, Rn, Rm 1

Multiply subtract MLS Rd, Rn, Rm 1

Long signed SMULL RdLo, RdHi, Rn, Rm 1

Long unsigned UMULL RdLo, RdHi, Rn, Rm 1

Long signed accumulate SMLAL RdLo, RdHi, Rn, Rm 1

Long unsigned accumulate UMLAL RdLo, RdHi, Rn, Rm 1

Divide Signed SDIV Rd, Rn, Rm 2 to 12a

Unsigned UDIV Rd, Rn, Rm 2 to 12a

Saturate Signed SSAT Rd, #<imm>, <op2> 1

Unsigned USAT Rd, #<imm>, <op2> 1

Compare Compare CMP Rn, <op2> 1

Negative CMN Rn, <op2> 1

Logical AND AND Rd, Rn, <op2> 1

Exclusive OR EOR Rd, Rn, <op2> 1

OR ORR Rd, Rn, <op2> 1

OR NOT ORN Rd, Rn, <op2> 1

Bit clear BIC Rd, Rn, <op2> 1

Move NOT MVN Rd, <op2> 1

AND test TST Rn, <op2> 1

Exclusive OR test TEQ Rn, <op1>

Shift Logical shift left LSL Rd, Rn, #<imm> 1

Logical shift left LSL Rd, Rn, Rs 1

Logical shift right LSR Rd, Rn, #<imm> 1

Logical shift right LSR Rd, Rn, Rs 1

Arithmetic shift right ASR Rd, Rn, #<imm> 1

Arithmetic shift right ASR Rd, Rn, Rs 1

Rotate Rotate right ROR Rd, Rn, #<imm> 1

Rotate right ROR Rd, Rn, Rs 1

With extension RRX Rd, Rn 1

Table 3-1 Cortex-M4 instruction set summary (continued)

Operation Description Assembler Cycles
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 3-5
ID061113 Non-Confidential

Programmers Model
Count Leading zeroes CLZ Rd, Rn 1

Load Word LDR Rd, [Rn, <op2>] 2b

To PC LDR PC, [Rn, <op2>] 2b + P

Halfword LDRH Rd, [Rn, <op2>] 2b

Byte LDRB Rd, [Rn, <op2>] 2b

Signed halfword LDRSH Rd, [Rn, <op2>] 2b

Signed byte LDRSB Rd, [Rn, <op2>] 2b

User word LDRT Rd, [Rn, #<imm>] 2b

User halfword LDRHT Rd, [Rn, #<imm>] 2b

User byte LDRBT Rd, [Rn, #<imm>] 2b

User signed halfword LDRSHT Rd, [Rn, #<imm>] 2b

User signed byte LDRSBT Rd, [Rn, #<imm>] 2b

PC relative LDR Rd,[PC, #<imm>] 2b

Doubleword LDRD Rd, Rd, [Rn, #<imm>] 1 + N

Multiple LDM Rn, {<reglist>} 1 + N

Multiple including PC LDM Rn, {<reglist>, PC} 1 + N + P

Store Word STR Rd, [Rn, <op2>] 2b

Halfword STRH Rd, [Rn, <op2>] 2b

Byte STRB Rd, [Rn, <op2>] 2b

Signed halfword STRSH Rd, [Rn, <op2>] 2b

Signed byte STRSB Rd, [Rn, <op2>] 2b

User word STRT Rd, [Rn, #<imm>] 2b

User halfword STRHT Rd, [Rn, #<imm>] 2b

User byte STRBT Rd, [Rn, #<imm>] 2b

User signed halfword STRSHT Rd, [Rn, #<imm>] 2b

User signed byte STRSBT Rd, [Rn, #<imm>] 2b

Doubleword STRD Rd, Rd, [Rn, #<imm>] 1 + N

Multiple STM Rn, {<reglist>} 1 + N

Push Push PUSH {<reglist>} 1 + N

Push with link register PUSH {<reglist>, LR} 1 + N

Pop Pop POP {<reglist>} 1 + N

Pop and return POP {<reglist>, PC} 1 + N + P

Table 3-1 Cortex-M4 instruction set summary (continued)

Operation Description Assembler Cycles
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 3-6
ID061113 Non-Confidential

Programmers Model
Semaphore Load exclusive LDREX Rd, [Rn, #<imm>] 2

Load exclusive half LDREXH Rd, [Rn] 2

Load exclusive byte LDREXB Rd, [Rn] 2

Store exclusive STREX Rd, Rt, [Rn, #<imm>] 2

Store exclusive half STREXH Rd, Rt, [Rn] 2

Store exclusive byte STREXB Rd, Rt, [Rn] 2

Clear exclusive monitor CLREX 1

Branch Conditional B<cc> <label> 1 or 1 + Pc

Unconditional B <label> 1 + P

With link BL <label> 1 + P

With exchange BX Rm 1 + P

With link and exchange BLX Rm 1 + P

Branch if zero CBZ Rn, <label> 1 or 1 + Pc

Branch if non-zero CBNZ Rn, <label> 1 or 1 + Pc

Byte table branch TBB [Rn, Rm] 2 + P

Halfword table branch TBH [Rn, Rm, LSL#1] 2 + P

State change Supervisor call SVC #<imm> -

If-then-else IT... <cond> 1d

Disable interrupts CPSID <flags> 1 or 2

Enable interrupts CPSIE <flags> 1 or 2

Read special register MRS Rd, <specreg> 1 or 2

Write special register MSR <specreg>, Rn 1 or 2

Breakpoint BKPT #<imm> -

Extend Signed halfword to word SXTH Rd, <op2> 1

Signed byte to word SXTB Rd, <op2> 1

Unsigned halfword UXTH Rd, <op2> 1

Unsigned byte UXTB Rd, <op2> 1

Bit field Extract unsigned UBFX Rd, Rn, #<imm>, #<imm> 1

Extract signed SBFX Rd, Rn, #<imm>, #<imm> 1

Clear BFC Rd, Rn, #<imm>, #<imm> 1

Insert BFI Rd, Rn, #<imm>, #<imm> 1

Table 3-1 Cortex-M4 instruction set summary (continued)

Operation Description Assembler Cycles
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 3-7
ID061113 Non-Confidential

Programmers Model
Table 3-2 shows the DSP instructions that the Cortex-M4 processor implements.

Reverse Bytes in word REV Rd, Rm 1

Bytes in both halfwords REV16 Rd, Rm 1

Signed bottom halfword REVSH Rd, Rm 1

Bits in word RBIT Rd, Rm 1

Hint Send event SEV 1

Wait for event WFE 1 + W

Wait for interrupt WFI 1 + W

No operation NOP 1

Barriers Instruction synchronization ISB 1 + B

Data memory DMB 1 + B

Data synchronization DSB <flags> 1 + B

a. Division operations terminate when the divide calculation completes, with the number of
cycles required dependent on the values of the input operands. Division operations are
interruptible, meaning that an operation can be abandoned when an interrupt occurs, with
worst case latency of one cycle, and restarted when the interrupt completes.

b. Neighboring load and store single instructions can pipeline their address and data phases
but in some cases such as 32-bit opcodes aligned on odd halfword boundaries they might
not pipeline optimally.

c. Conditional branch completes in a single cycle if the branch is not taken.
d. An IT instruction can be folded onto a preceding 16-bit Thumb instruction, enabling

execution in zero cycles.

Table 3-1 Cortex-M4 instruction set summary (continued)

Operation Description Assembler Cycles

Table 3-2 Cortex-M4 DSP instruction set summary

Operation Description Assembler Cycles

Multiply 32-bit multiply with 32-most-significant-bit accumulate SMMLA 1

32-bit multiply with 32-most-significant-bit subtract SMMLS 1

32-bit multiply returning 32-most-significant-bits SMMUL 1

32-bit multiply with rounded 32-most-significant-bit accumulate SMMLAR 1

32-bit multiply with rounded 32-most-significant-bit subtract SMMLSR 1

32-bit multiply returning rounded 32-most-significant-bits SMMULR 1
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 3-8
ID061113 Non-Confidential

Programmers Model
Signed
Multiply

Q setting 16-bit signed multiply with 32-bit accumulate, bottom by bottom SMLABB 1

Q setting 16-bit signed multiply with 32-bit accumulate, bottom by top SMLABT 1

16-bit signed multiply with 64-bit accumulate, bottom by bottom SMLALBB 1

16-bit signed multiply with 64-bit accumulate, bottom by top SMLALBT 1

Dual 16-bit signed multiply with single 64-bit accumulator SMLALD{X} 1

16-bit signed multiply with 64-bit accumulate, top by bottom SMLALTB 1

16-bit signed multiply with 64-bit accumulate, top by top SMLALTT 1

16-bit signed multiply yielding 32-bit result, bottom by bottom SMULBB 1

16-bit signed multiply yielding 32-bit result, bottom by top SMULBT 1

16-bit signed multiply yielding 32-bit result, top by bottom SMULTB 1

16-bit signed multiply yielding 32-bit result, top by top SMULTT 1

16-bit by 32-bit signed multiply returning 32-most-significant-bits, bottom SMULWB 1

16-bit by 32-bit signed multiply returning 32-most-significant-bits, top SMULWT 1

Dual 16-bit signed multiply returning difference SMUSD{X} 1

Q setting 16-bit signed multiply with 32-bit accumulate, top by bottom SMLATB 1

Q setting 16-bit signed multiply with 32-bit accumulate, top by top SMLATT 1

Q setting dual 16-bit signed multiply with single 32-bit accumulator SMLAD{X} 1

Q setting 16-bit by 32-bit signed multiply with 32-bit accumulate, bottom SMLAWB 1

Q setting 16-bit by 32-bit signed multiply with 32-bit accumulate, top SMLAWT 1

Q setting dual 16-bit signed multiply subtract with 32-bit accumulate SMLSD{X} 1

Q setting dual 16-bit signed multiply subtract with 64-bit accumulate SMLSLD{X} 1

Q setting sum of dual 16-bit signed multiply SMUAD{X} 1

Unsigned
Multiply

32-bit unsigned multiply with double 32-bit accumulation yielding 64-bit result UMAAL 1

Saturate Q setting dual 16-bit saturate SSAT16 1

Q setting dual 16-bit unsigned saturate USAT16 1

Table 3-2 Cortex-M4 DSP instruction set summary (continued)

Operation Description Assembler Cycles
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 3-9
ID061113 Non-Confidential

Programmers Model
Packing and
Unpacking

Pack half word top with shifted bottom PKHTB 1

Pack half word bottom with shifted top PKHBT 1

Extract 8-bits and sign extend to 32-bits SXTB 1

Dual extract 8-bits and sign extend each to 16-bits SXTB16 1

Extract 16-bits and sign extend to 32-bits SXTH 1

Extract 8-bits and zero-extend to 32-bits UXTB 1

Dual extract 8-bits and zero-extend to 16-bits UXTB16 1

Extract 16-bits and zero-extend to 32-bits UXTH 1

Extract 8-bit to 32-bit unsigned addition UXTAB 1

Dual extracted 8-bit to 16-bit unsigned addition UXTAB16 1

Extracted 16-bit to 32-bit unsigned addition UXTAH 1

Extracted 8-bit to 32-bit signed addition SXTAB 1

Dual extracted 8-bit to 16-bit signed addition SXTAB16 1

Extracted 16-bit to 32-bit signed addition SXTAH 1

Miscellaneous
Data
Processing

Select bytes based on GE bits SEL 1

Unsigned sum of quad 8-bit unsigned absolute difference USAD8 1

Unsigned sum of quad 8-bit unsigned absolute difference with 32-bit accumulate USADA8 1

Addition Dual 16-bit unsigned saturating addition UQADD16 1

Quad 8-bit unsigned saturating addition UQADD8 1

Q setting saturating add QADD 1

Q setting dual 16-bit saturating add QADD16 1

Q setting quad 8-bit saturating add QADD8 1

Q setting saturating double and add QDADD 1

GE setting quad 8-bit signed addition SADD8 1

GE setting dual 16-bit signed addition SADD16 1

Dual 16-bit signed addition with halved results SHADD16 1

Quad 8-bit signed addition with halved results SHADD8 1

GE setting dual 16-bit unsigned addition UADD16 1

GE setting quad 8-bit unsigned addition UADD8 1

Dual 16-bit unsigned addition with halved results UHADD16 1

Quad 8-bit unsigned addition with halved results UHADD8 1

Table 3-2 Cortex-M4 DSP instruction set summary (continued)

Operation Description Assembler Cycles
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 3-10
ID061113 Non-Confidential

Programmers Model
3.3.2 Load/store timings

This section describes how best to pair instructions to achieve more reductions in timing.

• STR Rx,[Ry,#imm] is always one cycle. This is because the address generation is performed
in the initial cycle, and the data store is performed at the same time as the next instruction
is executing. If the store is to the write buffer, and the write buffer is full or not enabled,
the next instruction is delayed until the store can complete. If the store is not to the write
buffer, for example to the Code segment, and that transaction stalls, the impact on timing
is only felt if another load or store operation is executed before completion.

Subtraction Q setting saturating double and subtract QDSUB 1

Dual 16-bit unsigned saturating subtraction UQSUB16 1

Quad 8-bit unsigned saturating subtraction UQSUB8 1

Q setting saturating subtract QSUB 1

Q setting dual 16-bit saturating subtract QSUB16 1

Q setting quad 8-bit saturating subtract QSUB8 1

Dual 16-bit signed subtraction with halved results SHSUB16 1

Quad 8-bit signed subtraction with halved results SHSUB8 1

GE setting dual 16-bit signed subtraction SSUB16 1

GE setting quad 8-bit signed subtraction SSUB8 1

Dual 16-bit unsigned subtraction with halved results UHSUB16 1

Quad 8-bit unsigned subtraction with halved results UHSUB8 1

GE setting dual 16-bit unsigned subtract USUB16 1

GE setting quad 8-bit unsigned subtract USUB8 1

Parallel
Addition and
Subtraction

Dual 16-bit unsigned saturating addition and subtraction with exchange UQASX 1

Dual 16-bit unsigned saturating subtraction and addition with exchange UQSAX 1

GE setting dual 16-bit addition and subtraction with exchange SASX 1

Q setting dual 16-bit add and subtract with exchange QASX 1

Q setting dual 16-bit subtract and add with exchange QSAX 1

Dual 16-bit signed addition and subtraction with halved results SHASX 1

Dual 16-bit signed subtraction and addition with halved results SHSAX 1

GE setting dual 16-bit signed subtraction and addition with exchange SSAX 1

GE setting dual 16-bit unsigned addition and subtraction with exchange UASX 1

Dual 16-bit unsigned addition and subtraction with halved results and exchange UHASX 1

Dual 16-bit unsigned subtraction and addition with halved results and exchange UHSAX 1

GE setting dual 16-bit unsigned subtract and add with exchange USAX 1

Table 3-2 Cortex-M4 DSP instruction set summary (continued)

Operation Description Assembler Cycles
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 3-11
ID061113 Non-Confidential

Programmers Model
• LDR PC,[any] is always a blocking operation. This means at least two cycles for the load,
and three cycles for the pipeline reload. So this operation takes at least five cycles, or more
if stalled on the load or the fetch.

• Any load or store that generates an address dependent on the result of a preceding data
processing operation stalls the pipeline for an additional cycle while the register bank is
updated. There is no forwarding path for this scenario.

• LDR Rx,[PC,#imm] might add a cycle because of contention with the fetch unit.

• TBB and TBH are also blocking operations. These are at least two cycles for the load, one
cycle for the add, and three cycles for the pipeline reload. This means at least six cycles,
or more if stalled on the load or the fetch.

• LDR [any] are pipelined when possible. This means that if the next instruction is an LDR or
STR, and the destination of the first LDR is not used to compute the address for the next
instruction, then one cycle is removed from the cost of the next instruction. So, an LDR
might be followed by an STR, so that the STR writes out what the LDR loaded. More multiple
LDRs can be pipelined together. Some optimized examples are:
— LDR R0,[R1]; LDR R1,[R2] - normally three cycles total
— LDR R0,[R1,R2]; STR R0,[R3,#20] - normally three cycles total
— LDR R0,[R1,R2]; STR R1,[R3,R2] - normally three cycles total
— LDR R0,[R1,R5]; LDR R1,[R2]; LDR R2,[R3,#4] - normally four cycles total.

• Other instructions cannot be pipelined after STR with register offset. STR can only be
pipelined when it follows an LDR, but nothing can be pipelined after the store. Even a
stalled STR normally only takes two cycles, because of the write buffer.

• LDREX and STREX can be pipelined exactly as LDR. Because STREX is treated more like an LDR,
it can be pipelined as explained for LDR. Equally LDREX is treated exactly as an LDR and so
can be pipelined.

• LDRD and STRD cannot be pipelined with preceding or following instructions. However, the
two words are pipelined together. So, this operation requires three cycles when not stalled.

• LDM and STM cannot be pipelined with preceding or following instructions. However, all
elements after the first are pipelined together. So, a three element LDM takes 2+1+1 or 5
cycles when not stalled. Similarly, an eight element store takes nine cycles when not
stalled. When interrupted, LDM and STM instructions continue from where they left off when
returned to. The continue operation adds one or two cycles to the first element when
started.

• Unaligned word or halfword loads or stores add penalty cycles. A byte aligned halfword
load or store adds one extra cycle to perform the operation as two bytes. A halfword
aligned word load or store adds one extra cycle to perform the operation as two halfwords.
A byte-aligned word load or store adds two extra cycles to perform the operation as a byte,
a halfword, and a byte. These numbers increase if the memory stalls. A STR or STRH cannot
delay the processor because of the write buffer.

3.3.3 Binary compatibility with other Cortex processors

The processor implements a subset of the instruction set and features provided by the
ARMv7-M architecture profile, and is binary compatible with the instruction sets and features
implemented in other Cortex-M profile processors. You can move software, including system
level software, from the Cortex-M4 processor to other Cortex-M profile processors.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 3-12
ID061113 Non-Confidential

Programmers Model
To ensure a smooth transition, ARM recommends that code designed to operate on other
Cortex-M profile processor architectures obey the following rules and configure the
Configuration and Control Register (CCR) appropriately:

• Use word transfers only to access registers in the NVIC and System Control Space (SCS).

• Treat all unused SCS registers and register fields on the processor as Do-Not-Modify.

• Configure the following fields in the CCR:
— STKALIGN bit to 1.
— UNALIGN_TRP bit to 1.
— Leave all other bits in the CCR register as their original value.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 3-13
ID061113 Non-Confidential

Programmers Model
3.4 System address map
The processor contains a bus matrix that arbitrates the processor core and optional Debug
Access Port (DAP) memory accesses to both the external memory system and to the internal
System Control Space (SCS) and debug components.

Priority is always given to the processor to ensure that any debug accesses are as non-intrusive
as possible. For a zero wait state system, all debug accesses to system memory, SCS, and debug
resources are completely non-intrusive.

Figure 3-1 shows the system address map.

Figure 3-1 System address map

Table 3-3 shows the processor interfaces that are addressed by the different memory map
regions.

System

External device

External RAM

Peripheral

SRAM

Code

0xFFFFFFFF

Private peripheral bus - External
0xE0100000

0xE0040000

0xA0000000

0x60000000

0x40000000

0x20000000

0x00000000

ROM Table

ETM
TPIU

Reserved
SCS

Reserved
FPB
DWT
ITM

External PPB
0xE0042000

0xE0041000

0xE0040000

0xE000F000

0xE000E000

0xE0003000

0xE0002000

0xE00FF000

0x40000000
Bit band region

Bit band alias32MB

1MB

31MB

0x40100000

0x42000000

0x44000000

0xE0001000

0xE0000000

Private peripheral bus - Internal

Bit band region

Bit band alias32MB

1MB

31MB

0x20000000

0x20100000

0x22000000

1.0GB

1.0GB

0.5GB

0.5GB

0.5GB

0xE0000000

0xE0100000

0xE0040000

0x24000000

Table 3-3 Memory regions

Memory Map Region

Code Instruction fetches are performed over the ICode bus. Data accesses are performed over the
DCode bus.

SRAM Instruction fetches and data accesses are performed over the system bus.

SRAM bit-band Alias region. Data accesses are aliases. Instruction accesses are not aliases.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 3-14
ID061113 Non-Confidential

Programmers Model
See the ARM®v7-M Architecture Reference Manual for more information about the memory
model.

3.4.1 Private peripheral bus

The internal Private Peripheral Bus (PPB) interface provides access to:

• The Instrumentation Trace Macrocell (ITM).

• The Data Watchpoint and Trace (DWT).

• The Flashpatch and Breakpoint (FPB).

• The System Control Space (SCS), including the Memory Protection Unit (MPU) and the
Nested Vectored Interrupt Controller (NVIC).

The external PPB interface provides access to:
• The Trace Point Interface Unit (TPIU).
• The Embedded Trace Macrocell (ETM).
• The ROM table.
• Implementation-specific areas of the PPB memory map.

3.4.2 Unaligned accesses that cross regions

The Cortex-M4 processor supports ARMv7 unaligned accesses, and performs all accesses as
single, unaligned accesses. They are converted into two or more aligned accesses by the DCode
and System bus interfaces.

Note
 All Cortex-M4 external accesses are aligned.

Unaligned support is only available for load/store singles (LDR, LDRH, STR, STRH). Load/store
double already supports word aligned accesses, but does not permit other unaligned accesses,
and generates a fault if this is attempted.

Peripheral Instruction fetches and data accesses are performed over the system bus.

Peripheral bit-band Alias region. Data accesses are aliases. Instruction accesses are not aliases.

External RAM Instruction fetches and data accesses are performed over the system bus.

External Device Instruction fetches and data accesses are performed over the system bus.

Private Peripheral Bus External and internal Private Peripheral Bus (PPB) interfaces. See Private peripheral bus.
This memory region is Execute Never (XN), and so instruction fetches are prohibited. An MPU,
if present, cannot change this.

System System segment for vendor system peripherals. This memory region is XN, and so instruction
fetches are prohibited. An MPU, if present, cannot change this.

Table 3-3 Memory regions (continued)

Memory Map Region
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 3-15
ID061113 Non-Confidential

Programmers Model
Unaligned accesses that cross memory map boundaries are architecturally Unpredictable. The
processor behavior is boundary dependent, as follows:

• DCode accesses wrap within the region. For example, an unaligned halfword access to the
last byte of Code space (0x1FFFFFFF) is converted by the DCode interface into a byte
access to 0x1FFFFFFF followed by a byte access to 0x00000000.

• System accesses that cross into PPB space do not wrap within System space. For example,
an unaligned halfword access to the last byte of System space (0xDFFFFFFF) is converted
by the System interface into a byte access to 0xDFFFFFFF followed by a byte access to
0xE0000000. 0xE0000000 is not a valid address on the System bus.

• System accesses that cross into Code space do not wrap within System space. For
example, an unaligned halfword access to the last byte of System space (0xFFFFFFFF) is
converted by the System interface into a byte access to 0xFFFFFFFF followed by a byte
access to 0x00000000. 0x00000000 is not a valid address on the System bus.

• Unaligned accesses are not supported to PPB space, and so there are no boundary crossing
cases for PPB accesses.

Unaligned accesses that cross into the bit-band alias regions are also architecturally
Unpredictable. The processor performs the access to the bit-band alias address, but this does not
result in a bit-band operation. For example, an unaligned halfword access to 0x21FFFFFF is
performed as a byte access to 0x21FFFFFF followed by a byte access to 0x22000000 (the first byte
of the bit-band alias).

Unaligned loads that match against a literal comparator in the FPB are not remapped. FPB only
remaps aligned addresses.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 3-16
ID061113 Non-Confidential

Programmers Model
3.5 Write buffer
To prevent bus wait cycles from stalling the processor during data stores, buffered stores to the
DCode and System buses go through a one-entry write buffer. If the write buffer is full,
subsequent accesses to the bus stall until the write buffer has drained. The write buffer is only
used if the bus waits the data phase of the buffered store, otherwise the transaction completes
on the bus.

DMB and DSB instructions wait for the write buffer to drain before completing. If an interrupt
comes in while DMB or DSB is waiting for the write buffer to drain, the processor returns to the
instruction following the DMB or DSB after the interrupt completes. This is because interrupt
processing acts as a memory barrier operation.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 3-17
ID061113 Non-Confidential

Programmers Model
3.6 Exclusive monitor
The Cortex-M4 processor implements a local exclusive monitor. For more information about
semaphores and the local exclusive monitor see the ARM®v7M ARM Architecture Reference
Manual.

The local monitor within the processor has been constructed so that it does not hold any physical
address, but instead treats any access as matching the address of the previous LDREX. This
means that the implemented exclusives reservation granule is the entire memory address range.

The Cortex-M4 processor does not support exclusive accesses to bit-band regions.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 3-18
ID061113 Non-Confidential

Programmers Model
3.7 Bit-banding
Bit-banding is an optional feature of the Cortex-M4 processor. Bit-banding maps a complete
word of memory onto a single bit in the bit-band region. For example, writing to one of the alias
words sets or clears the corresponding bit in the bit-band region. This enables every individual
bit in the bit-banding region to be directly accessible from a word-aligned address using a single
LDR instruction. It also enables individual bits to be toggled without performing a
read-modify-write sequence of instructions.

The processor memory map includes two bit-band regions. These occupy the lowest 1MB of the
SRAM and Peripheral memory regions respectively. These bit-band regions map each word in
an alias region of memory to a bit in a bit-band region of memory.

The System bus interface contains logic that controls bit-band accesses as follows:

• It remaps bit-band alias addresses to the bit-band region.

• For reads, it extracts the requested bit from the read byte, and returns this in the Least
Significant Bit (LSB) of the read data returned to the core.

• For writes, it converts the write to an atomic read-modify-write operation.

• The processor does not stall during bit-band operations unless it attempts to access the
System bus while the bit-band operation is being carried out.

The memory map has two 32-MB alias regions that map to two 1-MB bit-band regions:

• Accesses to the 32-MB SRAM alias region map to the 1-MB SRAM bit-band region.

• Accesses to the 32-MB peripheral alias region map to the 1-MB peripheral bit-band
region.

A mapping formula shows how to reference each word in the alias region to a corresponding bit,
or target bit, in the bit-band region. The mapping formula is:

bit_word_offset = (byte_offset x 32) + (bit_number × 4)

bit_word_addr = bit_band_base + bit_word_offset

where:

• bit_word_offset is the position of the target bit in the bit-band memory region.

• bit_word_addr is the address of the word in the alias memory region that maps to the
targeted bit.

• bit_band_base is the starting address of the alias region.

• byte_offset is the number of the byte in the bit-band region that contains the targeted bit.

• bit_number is the bit position, 0 to 7, of the targeted bit.

Figure 3-2 on page 3-20 shows examples of bit-band mapping between the SRAM bit-band
alias region and the SRAM bit-band region:

• The alias word at 0x23FFFFE0 maps to bit [0] of the bit-band byte at 0x200FFFFF: 0x23FFFFE0
= 0x22000000 + (0xFFFFF*32) + 0*4.

• The alias word at 0x23FFFFFC maps to bit [7] of the bit-band byte at 0x200FFFFF: 0x23FFFFFC
= 0x22000000 + (0xFFFFF*32) + 7*4.

• The alias word at 0x22000000 maps to bit [0] of the bit-band byte at 0x20000000: 0x22000000
= 0x22000000 + (0*32) + 0*4.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 3-19
ID061113 Non-Confidential

Programmers Model
• The alias word at 0x2200001C maps to bit [7] of the bit-band byte at 0x20000000: 0x2200001C
= 0x22000000 + (0*32) + 7*4.

Figure 3-2 Bit-band mapping

3.7.1 Directly accessing an alias region

Writing to a word in the alias region has the same effect as a read-modify-write operation on the
targeted bit in the bit-band region.

Bit [0] of the value written to a word in the alias region determines the value written to the
targeted bit in the bit-band region. Writing a value with bit [0] set writes a 1 to the bit-band bit,
and writing a value with bit [0] cleared writes a 0 to the bit-band bit.

Bits [31:1] of the alias word have no effect on the bit-band bit. Writing 0x01 has the same effect
as writing 0xFF. Writing 0x00 has the same effect as writing 0x0E.

Reading a word in the alias region returns either 0x01 or 0x00. A value of 0x01 indicates that the
targeted bit in the bit-band region is set. A value of 0x00 indicates that the targeted bit is clear.
Bits [31:1] are zero.

3.7.2 Directly accessing a bit-band region

You can directly access the bit-band region with normal reads and writes to that region.

0x23FFFFE4

0x22000004

0x23FFFFE00x23FFFFE80x23FFFFEC0x23FFFFF00x23FFFFF40x23FFFFF80x23FFFFFC

0x220000000x220000140x220000180x2200001C 0x220000080x22000010 0x2200000C

32MB alias region

0

7 0

07

0x200000000x200000010x200000020x20000003

6 5 4 3 2 1 07 6 5 4 3 2 1 7 6 5 4 3 2 1 07 6 5 4 3 2 1

07 6 5 4 3 2 1 6 5 4 3 2 107 6 5 4 3 2 1 07 6 5 4 3 2 1

0x200FFFFC0x200FFFFD0x200FFFFE0x200FFFFF

1MB SRAM bit-band region
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 3-20
ID061113 Non-Confidential

Programmers Model
3.8 Processor core register summary
The processor has the following 32-bit registers:
• 13 general-purpose registers, R0-R12.
• Stack Pointer (SP), R13 alias of banked registers, SP_process and SP_main.
• Link Register (LR), R14.
• Program Counter (PC), R15.
• Special-purpose Program Status Registers, (xPSR).

Figure 3-3 shows the processor register set.

Figure 3-3 Processor register set

The general-purpose registers R0-R12 have no special architecturally-defined uses. Most
instructions that can specify a general-purpose register can specify R0-R12.

Low registers Registers R0-R7 are accessible by all instructions that specify a
general-purpose register.

High registers Registers R8-R12 are accessible by all 32-bit instructions that specify a
general-purpose register.
Registers R8-R12 are not accessible by most 16-bit instructions.

Registers R13, R14, and R15 have the following special functions:

Stack pointer Register R13 is used as the Stack Pointer (SP). Because the SP ignores
writes to bits [1:0], it is autoaligned to a word, four-byte boundary.
Handler mode always uses SP_main, but you can configure Thread mode
to use either SP_main or SP_process.

Link register Register R14 is the subroutine Link Register (LR).
The LR receives the return address from PC when a Branch and Link (BL)
or Branch and Link with Exchange (BLX) instruction is executed.
The LR is also used for exception return.
At all other times, you can treat R14 as a general-purpose register.

Program counter Register R15 is the Program Counter (PC).

Program Status Register

R13 (SP)
R14 (LR)
R15 (PC)

R5
R6
R7

R0
R1

R3
R4

R2

R10
R11
R12

R8
R9

low registers

high registers

SP_mainSP_process

xPSR
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 3-21
ID061113 Non-Confidential

Programmers Model
Bit [0] is always 0, so instructions are always aligned to word or halfword
boundaries.

See the ARM®v7-M Architecture Reference Manual for more information.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 3-22
ID061113 Non-Confidential

Programmers Model
3.9 Exceptions
The processor and the Nested Vectored Interrupt Controller (NVIC) prioritize and handle all
exceptions. When handling exceptions:

• All exceptions are handled in Handler mode.

• Processor state is automatically stored to the stack on an exception, and automatically
restored from the stack at the end of the Interrupt Service Routine (ISR).

• The vector is fetched in parallel to the state saving, enabling efficient interrupt entry.

The processor supports tail-chaining that enables back-to-back interrupts without the overhead
of state saving and restoration.

You configure the number of interrupts, and bits of interrupt priority, during implementation.
Software can choose only to enable a subset of the configured number of interrupts, and can
choose how many bits of the configured priorities to use.

Note
 Vector table entries are compatible with interworking between ARM and Thumb instructions.
This causes bit [0] of the vector value to load into the Execution Program Status Register
(EPSR) T-bit on exception entry. All populated vectors in the vector table entries must have bit
[0] set. Creating a table entry with bit [0] clear generates an INVSTATE fault on the first
instruction of the handler corresponding to this vector.

3.9.1 Exception handling

The processor implements advanced exception and interrupt handling, as described in the
ARM®v7-M Architecture Reference Manual.

To reduce interrupt latency, the processor implements both interrupt late-arrival and interrupt
tail-chaining mechanisms, as defined by the ARMv7-M architecture:

• There is a maximum of a twelve cycle latency from asserting the interrupt to execution of
the first instruction of the ISR when the memory being accessed has no wait states being
applied. When the FPU option is implemented and a floating point context is active and
the lazy stacking is not enabled, this maximum latency is increased to twenty nine cycles.
The first instructions to be executed are fetched in parallel to the stack push.
See the Cortex-M4 Lazy Stacking and Context Switching Application Note 298 for more
information about how to use lazy stacking.

• Returns from interrupts similarly take ten cycles where the instruction being returned to
is fetched in parallel to the stack pop. If the floating point option is implemented and an
active floating point context is included in the stack frame, the return from interrupt takes
twenty-seven cycles.

• Tail chaining requires six cycles when using zero wait state memory. No stack pushes or
pops are performed and only the instruction for the next ISR is fetched.

The processor exception model has the following implementation-defined behavior in addition
to the architecturally defined behavior:
• Exceptions on stacking from HardFault to NMI lockup at NMI priority.
• Exceptions on unstacking from NMI to HardFault lockup at HardFault priority.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 3-23
ID061113 Non-Confidential

Programmers Model
To minimize interrupt latency, the processor abandons any divide instruction to take any
pending interrupt. On return from the interrupt handler, the processor restarts the divide
instruction from the beginning. The processor implements the Interruptible-continuable
Instruction field. Load multiple (LDM) operations and store multiple (STM) operations are
interruptible. The EPSR holds the information required to continue the load or store multiple
from the point where the interrupt occurred.

This means that software must not use load-multiple or store-multiple instructions to access a
device or access a memory region that is read-sensitive or sensitive to repeated writes. The
software must not use these instructions in any case where repeated reads or writes might cause
inconsistent results or unwanted side-effects.

Base register update in LDM and STM operations

There are cases when an LDM or STM updates the base register:

• When the instruction specifies base register write-back, the base register changes to the
updated address. An abort restores the original base value.

• When the base register is in the register list of an LDM, and is not the last register in the list,
the base register changes to the loaded value.

An LDM or STM is restarted rather than continued if:
• The instruction faults.
• The instruction is inside an IT.

If an LDM has completed a base load, it is continued from before the base load.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 3-24
ID061113 Non-Confidential

Chapter 4
System Control

This chapter describes the registers that program the processor. It contains the following
sections:
• About system control on page 4-2.
• Register summary on page 4-3.
• Register descriptions on page 4-5.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 4-1
ID061113 Non-Confidential

System Control
4.1 About system control
This chapter describes the registers that control the operation of the processor.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 4-2
ID061113 Non-Confidential

System Control
4.2 Register summary
Table 4-1 shows the system control registers. Registers not described in this chapter are
described in the ARM®v7-M Architecture Reference Manual

Table 4-1 System control registers

Address Name Type Reset Description

0xE000E008 ACTLR RW 0x00000000 Auxiliary Control Register, ACTLR on page 4-5

0xE000E010 STCSR RW 0x00000000 SysTick Control and Status Register

0xE000E014 STRVR RW Unknown SysTick Reload Value Register

0xE000E018 STCVR RW clear Unknown SysTick Current Value Register

0xE000E01C STCR RO STCALIB SysTick Calibration Value Register

0xE000ED00 CPUID RO 0x410FC241 CPUID Base Register, CPUID on page 4-5

0xE000ED04 ICSR RW or RO 0x00000000 Interrupt Control and State Register

0xE000ED08 VTOR RW 0x00000000 Vector Table Offset Register

0xE000ED0C AIRCR RW 0x00000000a Application Interrupt and Reset Control Register

0xE000ED10 SCR RW 0x00000000 System Control Register

0xE000ED14 CCR RWb 0x00000200 Configuration and Control Register.

0xE000ED18 SHPR1 RW 0x00000000 System Handler Priority Register 1

0xE000ED1C SHPR2 RW 0x00000000 System Handler Priority Register 2

0xE000ED20 SHPR3 RW 0x00000000 System Handler Priority Register 3

0xE000ED24 SHCSR RW 0x00000000 System Handler Control and State Register

0xE000ED28 CFSR RW 0x00000000 Configurable Fault Status Registers

0xE000ED2C HFSR RW 0x00000000 HardFault Status Register

0xE000ED30 DFSR RW 0x00000000 Debug Fault Status Register

0xE000ED34 MMFAR RW Unknown MemManage Fault Address Registerc

0xE000ED38 BFAR RW Unknown BusFault Address Registerc

0xE000ED3C AFSR RW 0x00000000 Auxiliary Fault Status Register, AFSR on page 4-6

0xE000ED40 ID_PFR0 RO 0x00000030 Processor Feature Register 0

0xE000ED44 ID_PFR1 RO 0x00000200 Processor Feature Register 1

0xE000ED48 ID_DFR0 RO 0x00100000 Debug Features Register 0d

0xE000ED4C ID_AFR0 RO 0x00000000 Auxiliary Features Register 0

0xE000ED50 ID_MMFR0 RO 0x00100030 Memory Model Feature Register 0

0xE000ED54 ID_ MMFR1 RO 0x00000000 Memory Model Feature Register 1

0xE000ED58 ID_MMFR2 RO 0x01000000 Memory Model Feature Register 2

0xE000ED5C ID_MMFR3 RO 0x00000000 Memory Model Feature Register 3
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 4-3
ID061113 Non-Confidential

System Control
0xE000ED60 ID_ISAR0 RO 0x01141110 Instruction Set Attributes Register 0

0xE000ED64 ID_ISAR1 RO 0x02112000 Instruction Set Attributes Register 1

0xE000ED68 ID_ISAR2 RO 0x21232231 Instruction Set Attributes Register 2

0xE000ED6C ID_ISAR3 RO 0x01111131 Instruction Set Attributes Register 3

0xE000ED70 ID_ISAR4 RO 0x01310132 Instruction Set Attributes Register 4

0xE000ED88 CPACR RW - Coprocessor Access Control Register

0xE000EF00 STIR WO 0x00000000 Software Triggered Interrupt Register

a. Bits [10:8] are reset to zero. The ENDIANNESS bit, bit [15], can reset to either state, depending on the
implementation.

b. The processor implements bit[9] of CCR, STKALIGN, as RW.
c. BFAR and MMFAR are the same physical register. Because of this, the BFARVALID and MMFARVALID bits are

mutually exclusive.
d. ID_DFR0 reads as 0 if no debug support is implemented.

Table 4-1 System control registers (continued)

Address Name Type Reset Description
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 4-4
ID061113 Non-Confidential

System Control
4.3 Register descriptions
This section describes the system control registers whose implementation is specific to this
processor.

4.3.1 Auxiliary Control Register, ACTLR

The ACTLR characteristics are:

Purpose Disables certain aspects of functionality within the processor.

Usage Constraints There are no usage constraints.

Configurations This register is available in all processor configurations.

Attributes See the register summary in Table 4-1 on page 4-3.

Figure 4-1 shows the ACTLR bit assignments.

Figure 4-1 ACTLR bit assignments

Table 4-2 shows the ACTLR bit assignments.

4.3.2 CPUID Base Register, CPUID

The CPUID characteristics are:

Purpose Specifies:
• The ID number of the processor core.
• The version number of the processor core.

ReservedReserved

31 3 2 1 0

DISFOLD
DISDEFWBUF
DISMCYCINT

10 9 8 7

DISFPCA
DISOOFP

Table 4-2 ACTLR bit assignments

Bits Name Function

[31:10] - Reserved.

[9] DISOOFP Disables floating point instructions completing out of order with respect to integer
instructions.

[8] DISFPCA SBZP.

[7:3] - Reserved

[2] DISFOLD Disables folding of IT instructions.

[1] DISDEFWBUF Disables write buffer use during default memory map accesses. This causes all bus faults to
be precise, but decreases the performance of the processor because stores to memory must
complete before the next instruction can be executed.

[0] DISMCYCINT Disables interruption of multi-cycle instructions. This increases the interrupt latency of the
processor because load/store and multiply/divide operations complete before interrupt
stacking occurs.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 4-5
ID061113 Non-Confidential

System Control
• The implementation details of the processor core.

Usage Constraints There are no usage constraints.

Configurations This register is available in all processor configurations.

Attributes See the register summary in Table 4-1 on page 4-3.

Figure 4-2 shows the CPUID bit assignments.

Figure 4-2 CPUID bit assignments

Table 4-3 shows the CPUID bit assignments.

4.3.3 Auxiliary Fault Status Register, AFSR

The AFSR characteristics are:

Purpose Specifies additional system fault information to software.

Usage Constraints The AFSR flags map directly onto the AUXFAULT inputs of the
processor, and a single-cycle high level on an external pin causes the
corresponding AFSR bit to become latched as one. The bit can only be
cleared by writing a one to the corresponding AFSR bit.
When an AFSR bit is written or latched as one, an exception does not
occur. To make use of AUXFAULT input signals, software must poll the
AFSR.

Configurations This register is available in all processor configurations.

Attributes See the register summary in Table 4-1 on page 4-3.

Figure 4-3 shows the AFSR bit assignments.

Figure 4-3 AFSR bit assignments

31 16 15 4 3 0

IMPLEMENTER REVISIONPARTNO

24 23 20 19

VARIANT (Constant)

Table 4-3 CPUID bit assignments

Bits NAME Function

[31:24] IMPLEMENTER Indicates implementer: 0x41 = ARM

[23:20] VARIANT Indicates processor revision: 0x0 = Revision 0

[19:16] (Constant) Reads as 0xF

[15:4] PARTNO Indicates part number: 0xC24 = Cortex-M4

[3:0] REVISION Indicates patch release: 0x1= Patch 1.

AUXFAULT

31 0
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 4-6
ID061113 Non-Confidential

System Control
Table 4-4 shows the AFSR bit assignments.

Table 4-4 AFSR bit assignments

Bits Name Function

[31:0] AUXFAULT Latched version of the AUXFAULT inputs.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 4-7
ID061113 Non-Confidential

Chapter 5
Memory Protection Unit

This chapter describes the processor Memory Protection Unit (MPU). It contains the following
sections:
• About the MPU on page 5-2.
• MPU functional description on page 5-3.
• MPU programmers model on page 5-4.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 5-1
ID061113 Non-Confidential

Memory Protection Unit
5.1 About the MPU
The MPU is an optional component for memory protection. The processor supports the standard
ARMv7 Protected Memory System Architecture model. The MPU provides full support for:
• Protection regions.
• Overlapping protection regions, with ascending region priority:

— 7 = highest priority
— 0 = lowest priority.

• Access permissions
• Exporting memory attributes to the system.

MPU mismatches and permission violations invoke the programmable-priority MemManage
fault handler. See the ARM®v7-M Architecture Reference Manual for more information.

You can use the MPU to:
• Enforce privilege rules.
• Separate processes.
• Enforce access rules.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 5-2
ID061113 Non-Confidential

Memory Protection Unit
5.2 MPU functional description
The access permission bits, TEX, C, B, AP, and XN, of the Region Access Control Register
control access to the corresponding memory region. If an access is made to an area of memory
without the required permissions, a permission fault is raised. For more information, see the
ARM®v7-M Architecture Reference Manual.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 5-3
ID061113 Non-Confidential

Memory Protection Unit
5.3 MPU programmers model

Table 5-5 shows the MPU registers. These registers are described in the ARM®v7-M
Architecture Reference Manual.

Table 5-1 MPU registers

Address Name Type Reset Description

0xE000ED90 MPU_TYPE RO 0x00000800 MPU Type Register

0xE000ED94 MPU_CTRL RW 0x00000000 MPU Control Register

0xE000ED98 MPU_RNR RW 0x00000000 MPU Region Number Register

0xE000ED9C MPU_RBAR RW 0x00000000 MPU Region Base Address Register

0xE000EDA0 MPU_RASR RW 0x00000000 MPU Region Attribute and Size Register

0xE000EDA4 MPU_RBAR_A1 0x00000000 MPU alias registers

0xE000EDA8 MPU_RASR_A1 0x00000000

0xE000EDAC MPU_RBAR_A2 0x00000000

0xE000EDB0 MPU_RASR_A2 0x00000000

0xE000EDB4 MPU_RBAR_A3 0x00000000

0xE000EDB8 MPU_RASR_A3 0x00000000
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 5-4
ID061113 Non-Confidential

Chapter 6
Nested Vectored Interrupt Controller

This chapter describes the Nested Vectored Interrupt Controller (NVIC). It contains the
following sections:
• About the NVIC on page 6-2.
• NVIC functional description on page 6-3.
• NVIC programmers model on page 6-4.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 6-1
ID061113 Non-Confidential

Nested Vectored Interrupt Controller
6.1 About the NVIC
The NVIC provides configurable interrupt handling abilities to the processor. It:
• Facilitates low-latency exception and interrupt handling.
• Controls power management.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 6-2
ID061113 Non-Confidential

Nested Vectored Interrupt Controller
6.2 NVIC functional description
The NVIC supports up to 240 interrupts each with up to 256 levels of priority. You can change
the priority of an interrupt dynamically. The NVIC and the processor core interface are closely
coupled, to enable low latency interrupt processing and efficient processing of late arriving
interrupts. The NVIC maintains knowledge of the stacked, or nested, interrupts to enable
tail-chaining of interrupts.

You can only fully access the NVIC from privileged mode, but you can cause interrupts to enter
a pending state in user mode if you enable the Configuration and Control Register. Any other
user mode access causes a bus fault.

You can access all NVIC registers using byte, halfword, and word accesses unless otherwise
stated. NVIC registers are located within the SCS.

All NVIC registers and system debug registers are little-endian regardless of the endianness
state of the processor.

Processor exception handling is described in Exceptions on page 3-23.

6.2.1 Low power modes

Your implementation can include a Wake-up Interrupt Controller (WIC). This enables the
processor and NVIC to be put into a very low-power sleep mode leaving the WIC to identify
and prioritize interrupts.

The processor fully implements the Wait For Interrupt (WFI), Wait For Event (WFE) and the Send
Event (SEV) instructions. In addition, the processor also supports the use of SLEEPONEXIT, that
causes the processor core to enter sleep mode when it returns from an exception handler to
Thread mode. See the ARM®v7-M Architecture Reference Manual for more information.

6.2.2 Level versus pulse interrupts

The processor supports both level and pulse interrupts. A level interrupt is held asserted until it
is cleared by the ISR accessing the device. A pulse interrupt is a variant of an edge model. You
must ensure that the pulse is sampled on the rising edge of the Cortex-M4 clock, FCLK, instead
of being asynchronous.

For level interrupts, if the signal is not deasserted before the return from the interrupt routine,
the interrupt again enters the pending state and re-activates. This is particularly useful for FIFO
and buffer-based devices because it ensures that they drain either by a single ISR or by repeated
invocations, with no extra work. This means that the device holds the signal in assert until the
device is empty.

A pulse interrupt can be reasserted during the ISR so that the interrupt can be in the pending
state and active at the same time. If another pulse arrives while the interrupt is still pending, the
interrupt remains pending and the ISR runs only once.

Pulse interrupts are mostly used for external signals and for rate or repeat signals.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 6-3
ID061113 Non-Confidential

Nested Vectored Interrupt Controller
6.3 NVIC programmers model
Table 6-1 shows the NVIC registers.

The following sections describe the NVIC registers whose implementation is specific to this
processor. Other registers are described in the ARM®v7M Architecture Reference Manual.

6.3.1 Interrupt Controller Type Register, ICTR

The ICTR characteristics are:

Purpose Shows the number of interrupt lines that the NVIC supports.

Usage Constraints There are no usage constraints.

Configurations This register is available in all processor configurations.

Attributes See the register summary in Table 6-1.

Figure 6-1 shows the ICTR bit assignments.

Figure 6-1 ICTR bit assignments

Table 6-1 NVIC registers

Address Name Type Reset Description

0xE000E004 ICTR RO - Interrupt Controller Type Register, ICTR

0xE000E100 -

0xE000E11C

NVIC_ISER0 -
NVIC_ISER7

RW 0x00000000 Interrupt Set-Enable Registers

0xE000E180 -

0xE000E19C

NVIC_ICER0 -
NVIC_ICER7

RW 0x00000000 Interrupt Clear-Enable Registers

0xE000E200 -

0xE000E21C

NVIC_ISPR0 -
NVIC_ISPR7

RW 0x00000000 Interrupt Set-Pending Registers

0xE000E280 -

0xE000E29C

NVIC_ICPR0 -
NVIC_ICPR7

RW 0x00000000 Interrupt Clear-Pending Registers

0xE000E300 -

0xE000E31C

NVIC_IABR0 -
NVIC_IABR7

RO 0x00000000 Interrupt Active Bit Register

0xE000E400 -
0xE000E4EC

NVIC_IPR0 -
NVIC_IPR59

RW 0x00000000 Interrupt Priority Register

Reserved

31 4 3 0

INTLINESNUM
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 6-4
ID061113 Non-Confidential

Nested Vectored Interrupt Controller
Table 6-2 shows the ICTR bit assignments.

Table 6-2 ICTR bit assignments

Bits Name Function

[31:4] - Reserved.

[3:0] INTLINESNUM Total number of interrupt lines in groups of 32:
b0000 = 0...32
b0001 = 33...64
b0010 = 65...96
b0011 = 97...128
b0100 = 129...160
b0101 = 161...192
b0110 = 193...224
b0111 = 225...256a

a. The processor supports a maximum of 240 external interrupts.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 6-5
ID061113 Non-Confidential

Chapter 7
Floating Point Unit

This chapter describes the programmers model of the Floating Point Unit (FPU). It contains the
following sections:
• About the FPU on page 7-2.
• FPU Functional Description on page 7-3.
• FPU Programmers Model on page 7-9.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 7-1
ID061113 Non-Confidential

Floating Point Unit
7.1 About the FPU
The Cortex-M4 FPU is an implementation of the single precision variant of the ARMv7-M
Floating-Point Extension (FPv4-SP). It provides floating-point computation functionality that
is compliant with the ANSI/IEEE Std 754-2008, IEEE Standard for Binary Floating-Point
Arithmetic, referred to as the IEEE 754 standard. The FPU supports all single-precision
data-processing instructions and data types described in the ARM®v7-M Architecture Reference
Manual.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 7-2
ID061113 Non-Confidential

Floating Point Unit
7.2 FPU Functional Description
The FPU fully supports single-precision add, subtract, multiply, divide, multiply and
accumulate, and square root operations. It also provides conversions between fixed-point and
floating-point data formats, and floating-point constant instructions.

The FPU functional description includes the following topics:
• FPU views of the register bank.
• Modes of operation.
• FPU instruction set on page 7-4.
• Compliance with the IEEE 754 standard on page 7-6.
• Complete implementation of the IEEE 754 standard on page 7-6.
• IEEE 754 standard implementation choices on page 7-6.
• Exceptions on page 7-8.
• Enabling the FPU on page 7-9.

7.2.1 FPU views of the register bank

The FPU provides an extension register file containing 32 single-precision registers. These can
be viewed as:
• Sixteen 64-bit doubleword registers, D0-D15.
• Thirty-two 32-bit single-word registers, S0-S31.
• A combination of registers from these views:

Figure 7-1 FPU register bank

The mapping between the registers is as follows:
• S<2n> maps to the least significant half of D<n>.
• S<2n+1> maps to the most significant half of D<n>.

For example, you can access the least significant half of the value in D6 by accessing S12, and
the most significant half of the elements by accessing S13.

7.2.2 Modes of operation

The FPU provides three modes of operation to accommodate a variety of applications:
• Full-compliance mode on page 7-4.
• Flush-to-zero mode on page 7-4.
• Default NaN mode on page 7-4.

...

D0

D1

D2

D3

D14

D15

S0
S1
S2
S3
S4
S5
S6
S7

S28
S29
S30
S31

...
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 7-3
ID061113 Non-Confidential

Floating Point Unit
Full-compliance mode

In full-compliance mode, the FPU processes all operations according to the IEEE 754 standard
in hardware.

Flush-to-zero mode

Setting the FZ bit of the Floating -point Status and Control Register FPSCR[24], enables
flush-to-zero mode. In this mode, the FPU treats all subnormal input operands of arithmetic CDP
operations as zeros in the operation. Exceptions that result from a zero operand are signaled
appropriately. VABS, VNEG, and VMOV are not considered arithmetic CDP operations and are not
affected by flush-to-zero mode. A result that is tiny, as described in the IEEE 754 standard,
where the destination precision is smaller in magnitude than the minimum normal value before
rounding, is replaced with a zero. The IDC flag, FPSCR[7], indicates when an input flush
occurs. The UFC flag, FPSCR[3], indicates when a result flush occurs.

Default NaN mode

Setting the DN bit, FPSCR[25], enables default NaN mode. In this mode, the result of any
arithmetic data processing operation that involves an input NaN, or that generates a NaN result,
returns the default NaN. Propagation of the fraction bits is maintained only by VABS, VNEG, and
VMOV operations. All other CDP operations ignore any information in the fraction bits of an input
NaN.

7.2.3 FPU instruction set

Table 7-1 shows the instruction set of the FPU.

Table 7-1 FPU instruction set

Operation Description Assembler Cycles

Absolute value of float VABS.F32 1

Addition floating point VADD.F32 1

Compare float with register or zero VCMP.F32 1

float with register or zero VCMPE.F32 1

Convert between integer, fixed-point, half-precision and float VCVT.F32 1

Divide Floating-point VDIV.F32 14

Load multiple doubles VLDM.64 1+2*N, where N is the
number of doubles.

multiple floats VLDM.32 1+N, where N is the
number of floats.

single double VLDR.64 3

single float VLDR.32 2
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 7-4
ID061113 Non-Confidential

Floating Point Unit
Move top/bottom half of double to/from core register VMOV 1

immediate/float to float-register VMOV 1

two floats/one double to/from two core registers or one
float to/from one core register

VMOV 2

floating-point control/status to core register VMRS 1

core register to floating-point control/status VMSR 1

Multiply float VMUL.F32 1

then accumulate float VMLA.F32 3

then subtract float VMLS.F32 3

then accumulate then negate float VNMLA.F32 3

then subtract then negate float VNMLS.F32 3

Multiply
(fused)

then accumulate float VFMA.F32 3

then subtract float VFMS.F32 3

then accumulate then negate float VFNMA.F32 3

then subtract then negate float VFNMS.F32 3

Negate float VNEG.F32 1

and multiply float VNMUL.F32 1

Pop double registers from stack VPOP.64 1+2*N, where N is the
number of double
registers.

float registers from stack VPOP.32 1+N where N is the
number of registers.

Push double registers to stack VPUSH.64 1+2*N, where N is the
number of double
registers.

float registers to stack VPUSH.32 1+N, where N is the
number of registers.

Square-root of float VSQRT.F32 14

Store multiple double registers VSTM.64 1+2*N, where N is the
number of doubles.

multiple float registers VSTM.32 1+N, where N is the
number of floats.

single double register VSTR.64 3

single float registers VSTR.32 2

Subtract float VSUB.F32 1

Table 7-1 FPU instruction set (continued)

Operation Description Assembler Cycles
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 7-5
ID061113 Non-Confidential

Floating Point Unit
Note
 • Integer-only instructions following VDIVR or VSQRT instructions complete out-of-order.

VDIV and VSQRT instructions take one cycle if no more floating-point instructions are
executed.

• Floating-point arithmetic data processing instructions, such as add, subtract, multiply,
divide, square-root, all forms of multiply with accumulate, in addition to conversions of
all types take one cycle longer if their result is consumed by the following instruction.

• Both fused and chained multiply with accumulate instructions consume their addend one
cycle later, so the result of an arithmetic instruction that is followed by a multiply with
accumulate instruction is consumed as the addend of the MAC instruction.

7.2.4 Compliance with the IEEE 754 standard

When Default NaN (DN) and Flush-to-Zero (FZ) modes are disabled, FPv4 functionality is
compliant with the IEEE 754 standard in hardware. No support code is required to achieve this
compliance.

See the ARM®v7-M Architecture Reference Manual for information about FP architecture
compliance with the IEEE 754 standard.

7.2.5 Complete implementation of the IEEE 754 standard

The floating point instruction set does not support all operations defined in the IEEE 754-2008
standard. Unsupported operations include, but are not limited to the following:
• Remainder.
• Round floating-point number to integer-valued floating-point number.
• Binary-to-decimal conversions.
• Decimal-to-binary conversions.
• Direct comparison of single-precision and double-precision values.

The Cortex-M4 FPU supports fused MAC operations as described in the IEEE standard. For
complete implementation of the IEEE 754-2008 standard, floating-point functionality must be
augmented with library functions.

7.2.6 IEEE 754 standard implementation choices

Some of the implementation choices permitted by the IEEE 754-2008 standard and used in the
FPv4 architecture are described in the ARM®v7-M Architecture Reference Manual.

NaN handling

All single-precision values with the maximum exponent field value and a nonzero fraction field
are valid NaNs. A most significant fraction bit of zero indicates a Signaling NaN (SNaN). A one
indicates a Quiet NaN (QNaN). Two NaN values are treated as different NaNs if they differ in
any bit. Table 7-2 shows the default NaN values.

Table 7-2 Default NaN values

Sign Fraction Fraction

0 0xFF bit [22] = 1, bits [21:0] are all zeros
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 7-6
ID061113 Non-Confidential

Floating Point Unit
Processing of input NaNs for ARM floating-point functionality and libraries is defined as
follows:

• In full-compliance mode, NaNs are handled as described in the ARM®v7-M Architecture
Reference Manual. The hardware processes the NaNs directly for arithmetic CDP
instructions. For data transfer operations, NaNs are transferred without raising the Invalid
Operation exception. For the non-arithmetic CDP instructions, VABS, VNEG, and VMOV, NaNs
are copied, with a change of sign if specified in the instructions, without causing the
Invalid Operation exception.

• In default NaN mode, arithmetic CDP instructions involving NaN operands return the
default NaN regardless of the fractions of any NaN operands. SNaNs in an arithmetic CDP
operation set the IOC flag, FPSCR[0]. NaN handling by data transfer and non-arithmetic
CDP instructions is the same as in full-compliance mode.

Table 7-3 summarizes the effects of NaN operands on instruction execution.

Comparisons

Comparison results modify the flags in the FPSCR. You can use the MVRS APSR_nzcv instruction
(formerly FMSTAT) to transfer the current flags from the FPSCR to the APSR. See the ARM®v7-M
Architecture Reference Manual for mapping of IEEE 754-2008 standard predicates to ARM
conditions. The flags used are chosen so that subsequent conditional execution of ARM
instructions can test the predicates defined in the IEEE standard.

Underflow

The FPU uses the before rounding form of tininess and the inexact result form of loss of
accuracy as described in the IEEE 754-2008 standard to generate Underflow exceptions.

In flush-to-zero mode, results that are tiny before rounding, as described in the IEEE standard,
are flushed to a zero, and the UFC flag, FPSCR[3], is set. See the ARM®v7-M Architecture
Reference Manual for information on flush-to-zero mode.

Table 7-3 QNaN and SNaN handling

Instruction type Default
NaN mode With QNaN operand With SNaN operand

Arithmetic CDP

Off The QNaN or one of the QNaN operands, if
there is more than one, is returned
according to the rules given in the
ARM®v7-M Architecture Reference
Manual.

IOCa set. The SNaN is quieted and the
result NaN is determined by the rules
given in the ARM®v7-M Architecture
Reference Manual.

On Default NaN returns. IOCa set. Default NaN returns.

Non-arithmetic CDP
Off

NaN passes to destination with sign changed as appropriate.
On

FCMP(Z) - Unordered compare. IOC set. Unordered compare.

FCMPE(Z) - IOC set. Unordered compare. IOC set. Unordered compare.

Load/store
Off

All NaNs transferred.
On

a. IOC is the Invalid Operation exception flag, FPSCR[0].
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 7-7
ID061113 Non-Confidential

Floating Point Unit
When the FPU is not in flush-to-zero mode, operations are performed on subnormal operands.
If the operation does not produce a tiny result, it returns the computed result, and the UFC flag,
FPSCR[3], is not set. The IXC flag, FPSCR[4], is set if the operation is inexact. If the operation
produces a tiny result, the result is a subnormal or zero value, and the UFC flag, FPSCR[3], is
set if the result was also inexact.

7.2.7 Exceptions

The FPU sets the cumulative exception status flag in the FPSCR register as required for each
instruction, in accordance with the FPv4 architecture. The FPU does not support exception
traps. The processor also has six output pins, FPIXC, FPUFC, FPOFC, FPDZC, FPIDC, and
FPIOC, that each reflect the status of one of the cumulative exception flags. See the Cortex-M4
Integration and Implementation Manual for a description of these outputs.

The processor can reduce the exception latency by using lazy stacking. This means that the
processor reserves space on the stack for the FP state, but does not save that state information
to the stack unless the processor executes an FPU instruction in the current exception handler.

The lazy save of the FP state is interruptible by a higher priority exception. The FP state saving
operation starts over after that exception returns.

 See the ARM®v7-M Architecture Reference Manual for more information.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 7-8
ID061113 Non-Confidential

Floating Point Unit
7.3 FPU Programmers Model
Table 7-4 shows the FP system registers in the Cortex-M4 processor, if your implementation
includes the FPU.

All Cortex-M4 FPU registers are described in the ARM®v7-M Architecture Reference Manual.

7.3.1 Enabling the FPU

Example 7-1 shows an example code sequence for enabling the FPU in both privileged and user
modes. The processor must be in privileged mode to read from and write to the CPACR.

Example 7-1 Enabling the FPU

; CPACR is located at address 0xE000ED88
LDR.W R0, =0xE000ED88
; Read CPACR
LDR R1, [R0]
; Set bits 20-23 to enable CP10 and CP11 coprocessors
ORR R1, R1, #(0xF << 20)
; Write back the modified value to the CPACR
STR R1, [R0]

Table 7-4 Cortex-M4 Floating Point system registers

Address Name Type Reset Description

0xE000EF34 FPCCR RW 0xC0000000 FP Context Control Register

0xE000EF38 FPCAR RW - FP Context Address Register

0xE000EF3C FPDSCR RW 0x00000000 FP Default Status Control Register

0xE000EF40 MVFR0 RO 0x10110021 Media and VFP Feature Register 0, MVFR0

0xE000EF44 MVFR1 RO 0x11000011 Media and VFP Feature Register 1, MVFR1
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 7-9
ID061113 Non-Confidential

Chapter 8
Debug

This chapter describes how to debug and test software running on the processor. It contains the
following sections:
• About debug on page 8-2.
• About the AHB-AP on page 8-6.
• About the Flash Patch and Breakpoint Unit (FPB) on page 8-9.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 8-1
ID061113 Non-Confidential

Debug
8.1 About debug
The processor implementation determines the debug configuration, including whether debug is
implemented. If the processor does not implement debug, no ROM table is present and the halt,
breakpoint, and watchpoint functionality is not present.

Basic debug functionality includes processor halt, single-step, processor core register access,
Vector Catch, unlimited software breakpoints, and full system memory access. See the
ARM®v7-M Architectural Reference Manual for more information. The debug option might
include:
• A breakpoint unit supporting two literal comparators and six instruction comparators, or

only two instruction comparators.
• A watchpoint unit supporting one or four watchpoints.

For processors that implement debug, ARM recommends that a debugger identify and connect
to the debug components using the CoreSight debug infrastructure.

Figure 8-1 shows the recommended flow that a debugger can follow to discover the components
in the CoreSight debug infrastructure. In this case a debugger reads the peripheral and
component ID registers for each CoreSight component in the CoreSight system.

Figure 8-1 CoreSight discovery

To identify the Cortex-M4 processor within the CoreSight system, ARM recommends that a
debugger perform the following actions:

1. Locate and identify the Cortex-M4 ROM table using its CoreSight identification. See
Table 8-1 on page 8-3 for more information.

2. Follow the pointers in that Cortex-M4 ROM table:
a. System Control Space (SCS).

CoreSight debug port

Cortex-M4 ROM table

CoreSight ID

Pointers

CoreSight access port

Base pointer

System control space

CoreSight ID

Cortex-M4 CPUID

Debug control

‡ Data watchpoint unit

CoreSight ID

Watchpoint control

‡ Optional component

Redirection from the
 ‡ System ROM table, if implemented

‡ Breakpoint unit

CoreSight ID

Breakpoint control
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 8-2
ID061113 Non-Confidential

Debug
b. Breakpoint unit (BPU).
c. Data watchpoint unit (DWT).
See Table 8-2 on page 8-4 for more information.

When a debugger identifies the SCS from its CoreSight identification, it can identify the
processor and its revision number from the CPUID register in the SCS at address 0xE000ED00.

A debugger cannot rely on the Cortex-M4 ROM table being the first ROM table encountered.
One or more system ROM tables are required between the access port and the Cortex-M4 ROM
table if other CoreSight components are in the system. If a system ROM table is present, this
can include a unique identifier for the implementation.

8.1.1 Cortex-M4 ROM table identification and entries

Table 8-1 shows the ROM table identification registers and values for debugger detection. This
permits debuggers to identify the processor and its debug capabilities.

These values for the Peripheral ID registers identify this as a generic ROM table for the
Cortex-M4 processor. Your implementation might use these registers to identify the
manufacturer and part number for the device.

The Component ID registers identify this as a CoreSight ROM table.

Note
 The Cortex-M4 ROM table only supports word size transactions.

Table 8-1 Cortex-M4 ROM table identification values

Address Register Value Description

0xE00FFFD0 Peripheral ID4 0x00000004 Component and Peripheral ID register formats in the
ARMv7-M Architectural Reference Manual

0xE00FFFD4 Peripheral ID5 0x00000000

0xE00FFFD8 Peripheral ID6 0x00000000

0xE00FFFDC Peripheral ID7 0x00000000

0xE00FFFE0 Peripheral ID0 0x000000C4

0xE00FFFE4 Peripheral ID1 0x000000B4

0xE00FFFE8 Peripheral ID2 0x0000000B

0xE00FFFEC Peripheral ID3 0x00000000

0xE00FFFF0 Component ID0 0x0000000D

0xE00FFFF4 Component ID1 0x00000010

0xE00FFFF8 Component ID2 0x00000005

0xE00FFFFC Component ID3 0x000000B1
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 8-3
ID061113 Non-Confidential

Debug
Table 8-2 shows the CoreSight components that the Cortex-M4 ROM table points to. The values
depend on the implemented debug configuration.

The ROM table entries point to the debug components of the processor. The offset for each entry
is the offset of that component from the ROM table base address, 0xE00FF000.

See the ARMv7-M Architectural Reference Manual and the ARM CoreSight Components
Technical Reference Manual for more information about the ROM table ID and component
registers, and their addresses and access types.

8.1.2 System Control Space

If debug is implemented, the processor provides debug through registers in the SCS. See:
• Debug register summary on page 8-5.
• System address map on page 3-14.

Table 8-2 Cortex-M4 ROM table components

Address Component Value Description

0xE00FF000 SCS 0xFFF0F003 See System Control Space

0xE00FF004 DWT 0xFFF02003a

a. Reads as 0xFFF02002 if no watchpoints are implemented.

See Table 9-1 on page 9-4

0xE00FF008 FPB 0xFFF03003b

b. Reads as 0xFFF03002 if no breakpoints are implemented.

See Table 8-7 on page 8-10

0xE00FF00C ITM 0xFFF01003c

c. Reads as 0xFFF01002 if no ITM is implemented.

See Table 10-1 on page 10-4

0xE00FF010 TPIU 0xFFF41003d

d. Reads as 0xFFF41002 if no TPIU is implemented.

See Table 11-1 on page 11-5.

0xE00FF014 ETM 0xFFF42003e

e. Reads as 0xFFF42002 if no ETM is implemented.

See the ETM-M4 Technical Reference Manual.

0xE00FF018 End marker 0x00000000 See DAP accessible ROM table in the ARMv7-M
Architectural Reference Manual.

0xE00FFFCC SYSTEM ACCESS 0x00000001
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 8-4
ID061113 Non-Confidential

Debug
SCS CoreSight identification

Table 8-3 shows the SCS CoreSight identification registers and values for debugger detection.
Final debugger identification of the Cortex-M4 processor is through the CPUID register in the
SCS. See CPUID Base Register, CPUID on page 4-5.

See the ARMv7-M Architectural Reference Manual and the ARM CoreSight Components
Technical Reference Manual for more information about the SCS CoreSight identification
registers, and their addresses and access types.

8.1.3 Debug register summary

Table 8-4 shows the debug registers. Each of these registers is 32 bits wide and is described in
the ARMv7-M Architectural Reference Manual.

Core debug is an optional component. If core debug is removed then halt mode debugging is not
supported, and there is no halt, stepping, or register transfer functionality. Debug monitor mode
is still supported.

Table 8-3 SCS identification values

Address Register Value Description

0xE000EFD0 Peripheral ID4 0x00000004 Component and Peripheral ID register formats in
the ARMv7-M Architectural Reference Manual.

0xE000EFE0 Peripheral ID0 0x00000000a

0x0000000Cb

a. SCS identification value for implementations without FPU.
b. SCS identification value for implementations with FPU.

0xE000EFE4 Peripheral ID1 0x000000B0

0xE000EFE8 Peripheral ID2 0x0000000B

0xE000EFEC Peripheral ID3 0x00000000

0xE000EFF0 Component ID0 0x0000000D

0xE000EFF4 Component ID1 0x000000E0

0xE000EFF8 Component ID2 0x00000005

0xE000EFFC Component ID3 0x000000B1

Table 8-4 Debug registers

Address Name Type Reset Description

0xE000ED30 DFSR RW 0x00000000a

a. Power-on reset only

Debug Fault Status Register

0xE000EDF0 DHCSR RW 0x00000000 Debug Halting Control and Status Register

0xE000EDF4 DCRSR WO - Debug Core Register Selector Register

0xE000EDF8 DCRDR RW - Debug Core Register Data Register

0xE000EDFC DEMCR RW 0x00000000 Debug Exception and Monitor Control Register
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 8-5
ID061113 Non-Confidential

Debug
8.2 About the AHB-AP
The AHB-AP is a Memory Access Port (MEM-AP) as defined in the ARM Debug Interface v5
Architecture Specification. The AHB-AP is an optional debug access port into the Cortex-M4
system, and provides access to all memory and registers in the system, including processor
registers through the SCS. System access is independent of the processor status. Either SW-DP
or SWJ-DP is used to access the AHB-AP.

The AHB-AP is a master into the Bus Matrix. Transactions are made using the AHB-AP
programmers model, which generates AHB-Lite transactions into the Bus Matrix.

8.2.1 AHB-AP transaction types

The AHB-AP does not perform back-to-back transactions on the bus, and so all transactions are
non-sequential. The AHB-AP can perform unaligned and bit-band transactions. The Bus Matrix
handles these. The AHB-AP transactions are not subject to MPU lookups. AHB-AP transactions
bypass the FPB, and so the FPB cannot remap AHB-AP transactions.

AHB-AP transactions are little-endian.

8.2.2 AHB-AP programmers model

Table 8-5 shows the AHB-AP registers. If the AHB-AP is not present, these registers read as
zero. Any register that is not specified in this table reads as zero.

The following sections describe the AHB-AP registers whose implementation is specific to this
processor. Other registers are described in the CoreSight Components Technical Reference
Manual.

AHB-AP Control and Status Word Register, CSW

The CSW characteristics are:

Purpose Configures and controls transfers through the AHB interface.

Usage constraints There are no usage constraints.

Table 8-5 AHB-AP register summary

Offseta

a. The offset given in this table is relative to the location of the AHB-AP in the DAP memory space. This
space is only visible from the access port. It is not part of the processor memory map.

Name Type Reset Description

0x00 CSW RW See register AHB-AP Control and Status Word Register, CSW

0x04 TAR RW - AHB-AP Transfer Address Register

0x0C DRW RW - AHB-AP Data Read/Write Register

0x10 BD0 RW - AHB-AP Banked Data Register0

0x14 BD1 RW - AHB-AP Banked Data Register1

0x18 BD2 RW - AHB-AP Banked Data Register2

0x1C BD3 RW - AHB-AP Banked Data Register3

0xF8 DBGDRAR RO 0xE00FF003 AHB-AP ROM Address Register

0xFC IDR RO 0x24770011 AHB-AP Identification Register
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 8-6
ID061113 Non-Confidential

Debug
Configurations This register is available in all processor configurations.

Attributes See the register summary in Table 8-5 on page 8-6.

Figure 8-2 shows the CSW bit assignments.

Figure 8-2 CSW bit assignments

Table 8-6 shows the CSW bit assignments.

11 831 29 28 2630 12 7 6 5 4 3 2 0

ModeReserved Size

25 24

TransInProg
DbgStatus

AddrInc

Hprot1

MasterType
Reserved

Reserved Reserved

Table 8-6 CSW bit assignments

Bits Name Function

[31:30] - Reserved. Read as b00.

[29] MasterTypea 0 = core.
1 = debug.
This bit must not be changed if a transaction is outstanding. A debugger must first check bit
[7], TransInProg.
Reset value = b1.
An implementation can configure this bit to be read only with a value of 1. In that case,
transactions are always indicated as debug.

[28:26] - Reserved, b000.

[25] Hprot1 User and Privilege control - HPROT[1].
Reset value = b1.

[24] - Reserved, b1.

[23:12] - Reserved, 0x000.

[11:8] Mode Mode of operation bits:
b0000 = normal download and upload mode
b0001-b1111 are reserved.
Reset value = b0000.

[7] TransInProg Transfer in progress. This field indicates if a transfer is in progress on the AHB master port.

[6] DbgStatus Indicates the status of the DAPEN port.
1 = AHB transfers permitted.
0 = AHB transfers not permitted.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 8-7
ID061113 Non-Confidential

Debug
[5:4] AddrInc Auto address increment and pack mode on Read or Write data access. Only increments if the
current transaction completes with no error.
Auto address incrementing and packed transfers are not performed on access to Banked Data
registers 0x10 - 0x1C. The status of these bits is ignored in these cases.
Increments and wraps within a 4-KB address boundary, for example from 0x1000 to 0x1FFC. If
the start is at 0x14A0, the counter increments to 0x1FFC, wraps to 0x1000, then continues
incrementing to 0x149C.
b00 = auto increment off.
b01 = increment single. Single transfer from corresponding byte lane.
b10 = increment packed.b
b11 = reserved. No transfer.
Size of address increment is defined by the Size field [2:0].
Reset value: b00.

[3] - Reserved.

[2:0] Size Size of access field:
b000 = 8 bits
b001 = 16 bits
b010 = 32 bits
b011-111 are reserved.
Reset value: b000.

a. When clear, this bit prevents the debugger from setting the C_DEBUGEN bit in the Debug Halting Control and Status
Register, and so prevents the debugger from being able to halt the processor.

b. See the definition of packed transfers in the ARM Debug Interface v5 Architecture Specification.

Table 8-6 CSW bit assignments (continued)

Bits Name Function
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 8-8
ID061113 Non-Confidential

Debug
8.3 About the Flash Patch and Breakpoint Unit (FPB)
The FPB:
• Implements hardware breakpoints.
• Patches code and data from code space to system space.

A full FPB unit contains:

• Two literal comparators for matching against literal loads from Code space, and
remapping to a corresponding area in System space.

• Six instruction comparators for matching against instruction fetches from Code space, and
remapping to a corresponding area in System space. Alternatively, you can configure the
comparators individually to return a Breakpoint Instruction (BKPT) to the processor core
on a match, to provide hardware breakpoint capability.

A reduced FPB unit contains:

• Two instruction comparators. You can configure each comparator individually to return a
Breakpoint Instruction to the processor on a match, to provide hardware breakpoint
capability.

8.3.1 FPB functional description

The FPB contains both a global enable and individual enables for the eight comparators. If the
comparison for an entry matches, the address is either:

• Remapped to the address set in the remap register plus an offset corresponding to the
comparator that matched.

• Remapped to a BKPT instruction if that feature is enabled.

The comparison happens dynamically, but the result of the comparison occurs too late to stop
the original instruction fetch or literal load taking place from the Code space. The processor
ignores this transaction however, and only the remapped transaction is used.

If an MPU is present, the MPU lookups are performed for the original address, not the remapped
address.

You can remove the FPB if no debug is required, or you can reduce the number of breakpoints
it supports to two. If the FPB supports only two breakpoints then only comparators 0 and 1 are
used, and the FPB does not support flash patching.

Note
 • Unaligned literal accesses are not remapped. The original access to the DCode bus takes

place in this case.

• Load exclusive accesses can be remapped. However, it is Unpredictable whether they are
performed as exclusive accesses or not.

• Setting the flash patch remap location to a bit-band alias is not supported and results in
Unpredictable behavior.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 8-9
ID061113 Non-Confidential

Debug
8.3.2 FPB programmers model

Table 8-7 shows the FPB registers. Depending on the implementation of your processor, some
of these registers might not be present. Any register that is configured as not present reads as
zero.

All FPB registers are described in the ARMv7-M Architecture Reference Manual.

Table 8-7 FPB register summary

Address Name Type Reset Description

0xE0002000 FP_CTRL RW 0x260 FlashPatch Control Register

0xE0002004 FP_REMAP RW - FlashPatch Remap Register

0xE0002008 FP_COMP0 RW b0a

a. For FP_COMP0 to FP_COMP7, bit 0 is reset to 0. Other bits in these registers are
not reset.

FlashPatch Comparator Register0

0xE000200C FP_COMP1 RW b0 FlashPatch Comparator Register1

0xE0002010 FP_COMP2 RW b0 FlashPatch Comparator Register2

0xE0002014 FP_COMP3 RW b0 FlashPatch Comparator Register3

0xE0002018 FP_COMP4 RW b0 FlashPatch Comparator Register4

0xE000201C FP_COMP5 RW b0 FlashPatch Comparator Register5

0xE0002020 FP_COMP6 RW b0 FlashPatch Comparator Register6

0xE0002024 FP_COMP7 RW b0 FlashPatch Comparator Register7

0xE0002FD0 PID4 RO 0x04 Peripheral identification registers

0xE0002FD4 PID5 RO 0x00

0xE0002FD8 PID6 RO 0x00

0xE0002FDC PID7 RO 0x00

0xE0002FE0 PID0 RO 0x03

0xE0002FE4 PID1 RO 0xB0

0xE0002FE8 PID2 RO 0x2B

0xE0002FEC PID3 RO 0x00

0xE0002FF0 CID0 RO 0x0D Component identification registers

0xE0002FF4 CID1 RO 0xE0

0xE0002FF8 CID2 RO 0x05

0xE0002FFC CID3 RO 0xB1
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 8-10
ID061113 Non-Confidential

Chapter 9
Data Watchpoint and Trace Unit

This chapter describes the Data Watchpoint and Trace (DWT) unit. It contains the following
sections:
• About the DWT on page 9-2.
• DWT functional description on page 9-3.
• DWT Programmers Model on page 9-4.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 9-1
ID061113 Non-Confidential

Data Watchpoint and Trace Unit
9.1 About the DWT
The DWT is an optional debug unit that provides watchpoints, data tracing, and system profiling
for the processor.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 9-2
ID061113 Non-Confidential

Data Watchpoint and Trace Unit
9.2 DWT functional description
A full DWT contains four comparators that you can configure as
• A hardware watchpoint.
• An ETM trigger.
• A PC sampler event trigger.
• A data address sampler event trigger.

The first comparator, DWT_COMP0, can also compare against the clock cycle counter,
CYCCNT. You can also use the second comparator, DWT_COMP1, as a data comparator.

A reduced DWT contains one comparator that you can use as a watchpoint or as a trigger. It does
not support data matching.

The DWT if present contains counters for:
• Clock cycles (CYCCNT).
• Folded instructions.
• Load Store Unit (LSU) Operations.
• Sleep Cycles.
• CPI, that is all instruction cycles except for the first cycle.
• Interrupt overhead.

Note
 An event is generated each time a counter overflows.

You can configure the DWT to generate PC samples at defined intervals, and to generate
interrupt event information.

The DWT provides periodic requests for protocol synchronization to the ITM and the TPIU, if
the your implementation includes the Cortex-M4 TPIU.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 9-3
ID061113 Non-Confidential

Data Watchpoint and Trace Unit
9.3 DWT Programmers Model
Table 9-1 lists the DWT registers. Depending on the implementation of your processor, some of
these registers might not be present. Any register that is configured as not present reads as zero.

Table 9-1 DWT register summary

Address Name Type Reset Description

0xE0001000 DWT_CTRL RW See a Control Register

0xE0001004 DWT_CYCCNT RW 0x00000000 Cycle Count Register

0xE0001008 DWT_CPICNT RW - CPI Count Register

0xE000100C DWT_EXCCNT RW - Exception Overhead Count Register

0xE0001010 DWT_SLEEPCNT RW - Sleep Count Register

0xE0001014 DWT_LSUCNT RW - LSU Count Register

0xE0001018 DWT_FOLDCNT RW - Folded-instruction Count Register

0xE000101C DWT_PCSR RO - Program Counter Sample Register

0xE0001020 DWT_COMP0 RW - Comparator Register0

0xE0001024 DWT_MASK0b RW - Mask Register0

0xE0001028 DWT_FUNCTION0 RW 0x00000000 Function Register0

0xE0001030 DWT_COMP1 RW - Comparator Register1

0xE0001034 DWT_MASK1b RW - Mask Register1

0xE0001038 DWT_FUNCTION1 RW 0x00000000 Function Register1

0xE0001040 DWT_COMP2 RW - Comparator Register2

0xE0001044 DWT_MASK2b RW - Mask Register2

0xE0001048 DWT_FUNCTION2 RW 0x00000000 Function Register2

0xE0001050 DWT_COMP3 RW - Comparator Register3

0xE0001054 DWT_MASK3b RW - Mask Register3

0xE0001058 DWT_FUNCTION3 RW 0x00000000 Function Register3

0xE0001FD0 PID4 RO 0x04 Peripheral identification registers

0xE0001FD4 PID5 RO 0x00

0xE0001FD8 PID6 RO 0x00

0xE0001FDC PID7 RO 0x00

0xE0001FE0 PID0 RO 0x02

0xE0001FE4 PID1 RO 0xB0

0xE0001FE8 PID2 RO 0x3B

0xE0001FEC PID3 RO 0x00
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 9-4
ID061113 Non-Confidential

Data Watchpoint and Trace Unit
DWT registers are described in the ARMv7M Architecture Reference Manual. Peripheral
Identification. Component Identification registers are described in the ARM CoreSight
Components Technical Reference Manual.

Note
 • Cycle matching functionality is only available in comparator 0.

• Data matching functionality is only available in comparator 1.

• Data value is only sampled for accesses that do not produce an MPU or bus fault. The PC
is sampled irrespective of any faults. The PC is only sampled for the first address of a
burst.

• The FUNCTION field in the DWT_FUNCTION1 register is overridden for comparators
given by DATAVADDR0 and DATAVADDR1 if DATAVMATCH is also set in
DWT_FUNCTION1. The comparators given by DATAVADDR0 and DATAVADDR1 can
then only perform address comparator matches for comparator 1 data matches.

• If the data matching functionality is not included during implementation it is not possible
to set DATAVADDR0, DATAVADDR1, or DATAVMATCH in DWT_FUNCTION1. This
means that the data matching functionality is not available in the implementation. Test the
availability of data matching by writing and reading the DATAVMATCH bit in
DWT_FUNCTION1. If this bit cannot be set then data matching is unavailable.

• ARM does not recommend PC match for watchpoints because it stops after the
instruction. It mainly guards and triggers the ETM.

0xE0001FF0 CID0 RO 0x0D Component identification registers

0xE0001FF4 CID1 RO 0xE0

0xE0001FF8 CID2 RO 0x05

0xE0001FFC CID3 RO 0xB1

a. Possible reset values are:
0x40000000 if four comparators for watchpoints and triggers are present
0x4F000000 if four comparators for watchpoints only are present
0x10000000 if only one comparator is present
0x1F000000 if one comparator for watchpoints and not triggers is present
0x00000000 if DWT is not present.

b. The maximum mask size is 32KB.

Table 9-1 DWT register summary (continued)

Address Name Type Reset Description
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 9-5
ID061113 Non-Confidential

Chapter 10
Instrumentation Trace Macrocell Unit

This chapter describes the Instrumentation Trace Macrocell (ITM) unit. It contains the
following sections:
• About the ITM on page 10-2.
• ITM functional description on page 10-3.
• ITM programmers model on page 10-4.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 10-1
ID061113 Non-Confidential

Instrumentation Trace Macrocell Unit
10.1 About the ITM
The ITM is a an optional application-driven trace source that supports printf style debugging to
trace operating system and application events, and generates diagnostic system information.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 10-2
ID061113 Non-Confidential

Instrumentation Trace Macrocell Unit
10.2 ITM functional description
The ITM generates trace information as packets. There are four sources that can generate
packets. If multiple sources generate packets at the same time, the ITM arbitrates the order in
which packets are output. The four sources in decreasing order of priority are:

• Software trace. Software can write directly to ITM stimulus registers to generate packets.

• Hardware trace. The DWT generates these packets, and the ITM outputs them.

• Time stamping. Timestamps are generated relative to packets. The ITM contains a 21-bit
counter to generate the timestamp. The Cortex-M4 clock or the bitclock rate of the Serial
Wire Viewer (SWV) output clocks the counter.

• Global system timestamping. Timestamps can optionally be generated using a
system-wide 48-bit count value. The same count value can be used to insert timestamps
in the ETM trace stream, permitting coarse-grain correlation.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 10-3
ID061113 Non-Confidential

Instrumentation Trace Macrocell Unit
10.3 ITM programmers model
Table 10-1 shows the ITM registers. Depending on the implementation of your processor, the
ITM registers might not be present. Any register that is configured as not present reads as zero.

Note
 • You must enable TRCENA of the Debug Exception and Monitor Control Register before

you program or use the ITM.

• If the ITM stream requires synchronization packets, you must configure the
synchronization packet rate in the DWT.

Note
 ITM registers are fully accessible in privileged mode. In user mode, all registers can be read,
but only the Stimulus Registers and Trace Enable Registers can be written, and only when the
corresponding Trace Privilege Register bit is set. Invalid user mode writes to the ITM registers
are discarded.

The following sections describes the ITM registers whose implementation is specific to this
processor. Other registers are described in the ARMv7-M Architectural Reference Manual.

Table 10-1 ITM register summary

Address Name Type Reset Description

0xE0000000-
0xE000007C

ITM_STIM0-
ITM_STIM31

RW - Stimulus Port Registers 0-31

0xE0000E00 ITM_TER RW 0x00000000 Trace Enable Register

0xE0000E40 ITM_TPR RW 0x00000000 ITM Trace Privilege Register, ITM_TPR on page 10-5

0xE0000E80 ITM_TCR RW 0x00000000 Trace Control Register

0xE0000FD0 PID4 RO 0x00000004 Peripheral Identification registers

0xE0000FD4 PID5 RO 0x00000000

0xE0000FD8 PID6 RO 0x00000000

0xE0000FDC PID7 RO 0x00000000

0xE0000FE0 PID0 RO 0x00000001

0xE0000FE4 PID1 RO 0x000000B0

0xE0000FE8 PID2 RO 0x0000003B

0xE0000FEC PID3 RO 0x00000000

0xE0000FF0 CID0 RO 0x0000000D Component Identification registers

0xE0000FF4 CID1 RO 0x000000E0

0xE0000FF8 CID2 RO 0x00000005

0xE0000FFC CID3 RO 0x000000B1
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 10-4
ID061113 Non-Confidential

Instrumentation Trace Macrocell Unit
10.3.1 ITM Trace Privilege Register, ITM_TPR

The ITM_TPR characteristics are:

Purpose Enables an operating system to control the stimulus ports that are
accessible by user code.

Usage constraints You can only write to this register in privileged mode.

Configurations This register is available if the ITM is configured in your implementation.

Attributes See Table 10-1 on page 10-4.

Figure 10-1 shows the ITM_TPR bit assignments.

Figure 10-1 ITM_TPR bit assignments

Table 10-2 shows the ITM_TPR bit assignments.

Reserved

31 4 3 0

PRIVMASK

Table 10-2 ITM_TPR bit assignments

Bits Name Function

[31:4] - Reserved.

[3:0] PRIVMASK Bit mask to enable tracing on ITM stimulus ports:
bit [0] = stimulus ports [7:0]
bit [1] = stimulus ports [15:8]
bit [2] = stimulus ports [23:16]
bit [3] = stimulus ports [31:24].
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 10-5
ID061113 Non-Confidential

Chapter 11
Trace Port Interface Unit

This chapter describes the Cortex-M4 TPIU, the Trace Port Interface Unit that is specific to the
Cortex-M4 processor. It contains the following sections:
• About the Cortex-M4 TPIU on page 11-2.
• TPIU functional description on page 11-3.
• TPIU programmers model on page 11-5.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 11-1
ID061113 Non-Confidential

Trace Port Interface Unit
11.1 About the Cortex-M4 TPIU
The Cortex-M4 TPIU is an optional component that acts as a bridge between the on-chip trace
data from the Embedded Trace Macrocell (ETM) and the Instrumentation Trace Macrocell
(ITM), with separate IDs, to a data stream. The TPIU encapsulates IDs where required, and the
data stream is then captured by a Trace Port Analyzer (TPA).

The Cortex-M4 TPIU is specially designed for low-cost debug. It is a special version of the
CoreSight TPIU. Your implementation can replace the Cortex-M4 TPIU with other CoreSight
components if your implementation requires the additional features of the CoreSight TPIU.

In this chapter, the term TPIU refers to the Cortex-M4 TPIU. For information about the
CoreSight TPIU, see the ARM CoreSight Components Technical Reference Manual.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 11-2
ID061113 Non-Confidential

Trace Port Interface Unit
11.2 TPIU functional description
There are two configurations of the TPIU:
• A configuration that supports ITM debug trace.
• A configuration that supports both ITM and ETM debug trace.

If your implementation requires no trace support then the TPIU might not be present.

Note
 If your Cortex-M4 system uses the optional ETM component, the TPIU configuration supports
both ITM and ETM debug trace. See the ETM-M4 Technical Reference Manual.

11.2.1 TPIU block diagrams

Figure 11-1 shows the component layout of the TPIU for both configurations.

Figure 11-1 TPIU block diagram

11.2.2 TPIU Formatter

The formatter inserts source ID signals into the data packet stream so that trace data can be
re-associated with its trace source. The formatter is always active when the Trace Port Mode is
active.

The formatting protocol is described in the CoreSight Architecture Specification. You must
enable synchronization packets in the DWT to provide synchronization for the formatter.

When the formatter is enabled, half-sync packets can be inserted if there is no data to output
after a frame has been started. Synchronization, caused by the distributed synchronization from
the DWT, ensures that any partial frame is completed, and at least one full synchronization
packet is generated.

ATB
Interface

Formatter

APB
Interface

Trace Out
(serializer)

ITM ATB Slave Port

APB Slave Port

TRACECLKIN

TRACECLK

TRACEDATA [3:0]

TRACESWO

CLK Domain TRACECLKIN Domain

† ATB
Interface

† ETM ATB Slave Port

† Optional component
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 11-3
ID061113 Non-Confidential

Trace Port Interface Unit
11.2.3 Serial Wire Output format

The TPIU can output trace data in a Serial Wire Output (SWO) format:

• TPIU_DEVID specifies the formats that are supported. See TPIU_DEVID on page 11-12.

• TPIU_SPPR specifies the SWO format in use. See the ARMv7-M Architecture Reference
Manual.

When one of the two SWO modes is selected, you can enable the TPIU to bypass the formatter
for trace output. If the formatter is bypassed, only the ITM and DWT trace source passes
through. The TPIU accepts and discards data from the ETM. This function can be used to
connect a device containing an ETM to a trace capture device that is only able to capture SWO
data.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 11-4
ID061113 Non-Confidential

Trace Port Interface Unit
11.3 TPIU programmers model
Table 11-1 provides a summary of the TPIU registers. Depending on the implementation of your
processor, the TPIU registers might not be present, or the CoreSight TPIU might be present
instead. Any register that is configured as not present reads as zero.

Table 11-1 TPIU registers

Address Name Type Reset Description

0xE0040000 TPIU_SSPSR RO 0x0xx Supported Parallel Port Size Register

0xE0040004 TPIU_CSPSR RW 0x01 Current Parallel Port Size Register

0xE0040010 TPIU_ACPR RW 0x0000 Asynchronous Clock Prescaler Register, TPIU_ACPR on page 11-6

0xE00400F0 TPIU_SPPR RW 0x01 Selected Pin Protocol Register

0xE0040300 TPIU_FFSR RO 0x08 Formatter and Flush Status Register, TPIU_FFSR on page 11-6

0xE0040304 TPIU_FFCR RW 0x102 Formatter and Flush Control Register, TPIU_FFCR on page 11-7

0xE0040308 TPIU_FSCR RO 0x00 Formatter Synchronization Counter Register

0xE0040EE8 TRIGGER RO 0x0 TRIGGER on page 11-8

0xE0040EEC FIFO data 0 RO 0x--000000 Integration ETM Data on page 11-8

0xE0040EF0 ITATBCTR2 RO 0x0 ITATBCTR2 on page 11-9

0xE0040EFC FIFO data 1 RO 0x--000000 Integration ITM Data on page 11-10

0xE0040EF8 ITATBCTR0 RO 0x0 ITATBCTR0 on page 11-11

0xE0040F00 ITCTRL RW 0x0 Integration Mode Control, TPIU_ITCTRL on page 11-11

0xE0040FA0 CLAIMSET RW 0xF Claim tag set

0xE0040FA4 CLAIMCLR RW 0x0 Claim tag clear

0xE0040FC8 DEVID RO 0xCA0/0xCA1 TPIU_DEVID on page 11-12

0xE0040FCC DEVTYPE RO 0x11 TPIU_DEVTYPE on page 11-13

0xE0040FD0 PID4 RO 0x04 Peripheral identification registers

0xE0040FD4 PID5 RO 0x00

0xE0040FD8 PID6 RO 0x00

0xE0040FDC PID7 RO 0x00

0xE0040FE0 PID0 RO 0xA1

0xE0040FE4 PID1 RO 0xB9

0xE0040FE8 PID2 RO 0x0B

0xE0040FEC PID3 RO 0x00

0xE0040FF0 CID0 RO 0x0D Component identification registers

0xE0040FF4 CID1 RO 0x90

0xE0040FF8 CID2 RO 0x05

0xE0040FFC CID3 RO 0xB1
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 11-5
ID061113 Non-Confidential

Trace Port Interface Unit
The following sections describe the TPIU registers whose implementation is specific to this
processor. The Formatter, Integration Mode Control, and Claim Tag registers are described in
the CoreSight Components Technical Reference Manual. Other registers are described in the
ARMv7-M Architecture Reference Manual.

11.3.1 Asynchronous Clock Prescaler Register, TPIU_ACPR

The TPIU_ACPR characteristics are:

Purpose Scales the baud rate of the asynchronous output.

Usage constraints There are no usage constraints.

Configurations This register is available in all processor configurations.

Attributes See Table 11-1 on page 11-5.

Figure 11-2 shows the TPIU_ACPR bit assignments.

Figure 11-2 TPIU_ACPR bit assignments

Table 11-2 shows the TPIU_ACPR bit assignments.

11.3.2 Formatter and Flush Status Register, TPIU_FFSR

The TPIU_FFSR characteristics are:

Purpose Indicates the status of the TPIU formatter.

Usage constraints There are no usage constraints.

Configurations This register is available in all processor configurations.

Attributes See Table 11-1 on page 11-5.

Figure 11-3 shows the TPIU_FFSR bit assignments.

Figure 11-3 TPIU_FFSR bit assignments

31 13 0

Reserved

12

PRESCALER

Table 11-2 TPIU_ACPR bit assignments

Bits Name Function

[31:13] - Reserved. RAZ/SBZP.

[12:0] PRESCALER Divisor for TRACECLKIN is Prescaler + 1.

31 2 0

Reserved

1

FlInProg

3

FtStopped
TCPresent
FtNonStop

4

ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 11-6
ID061113 Non-Confidential

Trace Port Interface Unit
Table 11-3 shows the TPIU_FFSR bit assignments.

11.3.3 Formatter and Flush Control Register, TPIU_FFCR

The TPIU_FFCR characteristics are:

Purpose Controls the TPIU formatter.

Usage constraints There are no usage constraints.

Configurations This register is available in all processor configurations.

Attributes See Table 11-1 on page 11-5.

Figure 11-4 shows the TPIU_FFCR bit assignments.

Figure 11-4 TPIU_FFCR bit assignments

Table 11-4 shows the TPIU_FFCR bit assignments.

The TPIU can output trace data in a Serial Wire Output (SWO) format. See Serial Wire Output
format on page 11-4.

Table 11-3 TPIU_FFSR bit assignments

Bits Name Function

[31:4] - Reserved

[3] FtNonStop Formatter cannot be stopped

[2] TCPresent This bit always reads zero

[1] FtStopped This bit always reads zero

[0] FlInProg This bit always reads zero

Reserved

31 9 8 7 2 1 0

Reserved

TrigIn EnFCont
Reserved

Table 11-4 TPIU_FFCR bit assignments

Bits Name Function

[31:9] - Reserved.

[8] TrigIn This bit Reads-As-One (RAO), specifying that triggers are inserted when a trigger pin is asserted.

[7:2] - Reserved.

[1] EnFCont Enable continuous formatting. Value can be:
0 = Continuous formatting disabled.
1 = Continuous formatting enabled.

[0] - Reserved.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 11-7
ID061113 Non-Confidential

Trace Port Interface Unit
When one of the two SWO modes is selected, bit [1] of TPIU_FFCR enables the formatter to
be bypassed. If the formatter is bypassed, only the ITM and DWT trace source passes through.
The TPIU accepts and discards data from the ETM. This function is can be used to connect a
device containing an ETM to a trace capture device that is only able to capture SWO data.
Enabling or disabling the formatter causes momentary data corruption.

Note
 If TPIU_SPPR is set to select Trace Port Mode, the formatter is automatically enabled. If you
then select one of the SWO modes, TPIU_FFCR reverts to its previously programmed value.

11.3.4 TRIGGER

The TRIGGER characteristics are:

Purpose Integration test of the TRIGGER input.

Usage constraints There are no usage constraints.

Configurations This register is available in all processor configurations.

Attributes See Table 11-1 on page 11-5.

Figure 11-5 shows the TRIGGER bit assignments.

Figure 11-5 TRIGGER bit assignments

Table 11-5 shows the TRIGGER bit assignments.

11.3.5 Integration ETM Data

The Integration ETM Data characteristics are:

Purpose Trace data integration testing.

Usage constraints You must set bit [1] of TPIU_ITCTRL to use this register. See Integration
Mode Control, TPIU_ITCTRL on page 11-11.

Configurations This register is available in all processor configurations.

Attributes See Table 11-1 on page 11-5

Figure 11-6 on page 11-9 shows the Integration ETM Data bit assignments.

Reserved

31 1 0

TRIGGER input value

Table 11-5 TRIGGER bit assignments

Bits Name Function

[31:1] - Reserved

[0] TRIGGER input value When read, this bit returns the TRIGGER input.
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 11-8
ID061113 Non-Confidential

Trace Port Interface Unit
Figure 11-6 Integration ETM Data bit assignments

Table 11-6 shows the Integration ETM Data bit assignments.

11.3.6 ITATBCTR2

The ITATBCTR2 characteristics are:

Purpose Integration test.

Usage constraints You must set bit [0] of TPIU_ITCTRL to use this register. See Integration
Mode Control, TPIU_ITCTRL on page 11-11.

Configurations This register is available in all processor configurations.

Attributes See Table 11-1 on page 11-5.

Figure 11-7 shows the ITATBCTR2 bit assignments.

Figure 11-7 ITATBCTR2 bit assignments

ETM data 2 ETM data 1 ETM data 0

31 029 2728 26 2425 23 16 15 8 7

ETM byte count
ETM ATVALID
ITM byte count
ITM ATVALID

30

Reserved

Table 11-6 Integration ETM Data bit assignments

Bits Name Function

[31:30] - Reserved

[29] ITM ATVALID input Returns the value of the ITM ATVALID signal.

[28:27] ITM byte count Number of bytes of ITM trace data since last read of Integration ITM Data Register.

[26] ETM ATVALID input Returns the value of the ETM ATVALID signal.

[25:24] ETM byte count Number of bytes of ETM trace data since last read of Integration ETM Data Register.

[23:16] ETM data 2 ETM trace data. The TPIU discards this data when the register is read.

[15:8] ETM data 1

[7:0] ETM data 0

31 0

Reserved

1

ATREADY1
ATREADY2
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 11-9
ID061113 Non-Confidential

Trace Port Interface Unit
Table 11-7 shows the ITATBCTR2 bit assignments.

11.3.7 Integration ITM Data

The Integration ITM Data characteristics are:

Purpose Trace data integration testing.

Usage constraints You must set bit [1] of TPIU_ITCTRL to use this register. See Integration
Mode Control, TPIU_ITCTRL on page 11-11.

Configurations This register is available in all processor configurations.

Attributes See Table 11-1 on page 11-5

Figure 11-8 shows the Integration ITM Data bit assignments.

Figure 11-8 Integration ITM Data bit assignments

Table 11-8 shows the Integration ITM Data bit assignments.

Table 11-7 ITATBCTR2 bit assignments

Bits Name Function

[31:1] - Reserved

[0] ATREADY1, ATREADY2 This bit sets the value of both the ETM and ITM ATREADY
outputs, if the TPIU is in integration test mode.

31 30 29 28 27 26 25 24 23 16 15 8 7 0

ITM data 2 ITM data 1 ITM data 0

ETM byte count
ETM ATVALID input
ITM byte count
ITM ATVALID input
Reserved

Table 11-8 Integration ITM Data bit assignments

Bits Name Function

[31:30] - Reserved

[29] ITM ATVALID input Returns the value of the ITM ATVALID signal.

[28:27] ITM byte count Number of bytes of ITM trace data since last read of Integration ITM Data Register.

[26] ETM ATVALID input Returns the value of the ETM ATVALID signal.

[25:24] ETM byte count Number of bytes of ETM trace data since last read of Integration ETM Data Register.

[23:16] ITM data 2 ITM trace data. The TPIU discards this data when the register is read.

[15:8] ITM data 1

[7:0] ITM data 0
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 11-10
ID061113 Non-Confidential

Trace Port Interface Unit
11.3.8 ITATBCTR0

The ITATBCTR0 characteristics are:

Purpose Integration test.

Usage constraints There are no usage constraints.

Configurations This register is available in all processor configurations.

Attributes See Table 11-1 on page 11-5.

Figure 11-9 shows the ITATBCTR0 bit assignments.

Figure 11-9 ITATBCTR0 bit assignments

Table 11-9 shows the ITATBCTR0 bit assignments.

11.3.9 Integration Mode Control, TPIU_ITCTRL

The TPIU_ITCTRL characteristics are:

Purpose Specifies normal or integration mode for the TPIU.

Usage constraints There are no usage constraints.

Configurations This register is available in all processor configurations.

Attributes See Table 11-1 on page 11-5.

Figure 11-10 shows the TPIU_ITCTRL bit assignments.

Figure 11-10 TPIU_ITCTRL bit assignments

31 0

Reserved

1

ATVALID1
ATVALID2

Table 11-9 ITATBCTR0 bit assignments

Bits Name Function

[31:1] - Reserved

[0] ATVALID1, ATVALID2 A read of this bit returns the value of ATVALIDS1 OR-ed with
ATVALIDS2.

Reserved

31 2 1 0

Mode
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 11-11
ID061113 Non-Confidential

Trace Port Interface Unit
Table 11-10 shows the TPIU_ITCTRL bit assignments.

11.3.10 TPIU_DEVID

The TPIU_DEVID characteristics are:

Purpose Indicates the functions provided by the TPIU for use in topology
detection.

Usage constraints There are no usage constraints.

Configurations This register is available in all processor configurations.

Attributes See Table 11-1 on page 11-5.

Figure 11-11 shows the TPIU_DEVID bit assignments.

Figure 11-11 TPIU_DEVID bit assignments

Table 11-11 shows the TPIU_DEVID bit assignments.

Table 11-10 TPIU_ITCTRL bit assignments

Bits Name Function

[31:2] - Reserved.

[1:0] Mode Specifies the current mode for the TPIU:
b00 Normal mode.
b01 Integration test mode.
b10 Integration data test mode.
b11 Reserved.
In integration data test mode, the trace output is disabled, and data can be read
directly from each input port using the integration data registers.

Reserved

31 12 11 10 9 8 6 5 0

Asynchronous Serial Wire Output (NRZ)
Asynchronous Serial Wire Output (Manchester)

tracedata and clock modes
Minimum buffer size

Asynchronous TRACECLKIN

4

Number of trace inputs

Table 11-11 TPIU_DEVID bit assignments

Bits Name Function

[31:12] - Reserved

[11] Asynchronous Serial Wire Output (NRZ) This bit Reads-As-One (RAO), indicating that the output is supported.

[10] Asynchronous Serial Wire Output (Manchester) This bit Reads-As-One (RAO), indicating that the output is supported.

[9] Trace data and clock modes This bit Reads-As-Zero (RAZ), indicating that trace data and clock
modes are supported
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 11-12
ID061113 Non-Confidential

Trace Port Interface Unit
11.3.11 TPIU_DEVTYPE

The Device Type Identifier Register is read-only. It provides a debugger with information about
the component when the Part Number field is not recognized. The debugger can then report this
information.

The TPIU_DEVTYPE characteristics are:

Purpose Indicates the type of functionality the component supports.

Usage Constraints There are no usage constraints.

Configurations This register is available in all processor configurations.

Attributes The Device Type reads as 0x11 and indicates this device is a trace sink and
specifically a TPIU

Figure 11-12 TPIU_DEVTYPE bit assignments

[8:6] Minimum buffer size Specifies the minimum TPIU buffer size:
b010 = 4 bytes

[5] Asynchronous TRACECLKIN Specifies whether TRACECLKIN can be asynchronous to CLK
b0 = TRACECLKIN must be synchronous to CLK
b1 = TRACECLKIN can be asynchronous to CLK

[4:0] Number of trace inputs Specifies the number of trace inputs:
b000000 = 1 input
b000001 = 2 inputs
If your implementation includes an ETM, the value of this field is
b000001.

Table 11-11 TPIU_DEVID bit assignments (continued)

Bits Name Function

Reserved

31 78 0

Sub type

4

Major type

3

ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. 11-13
ID061113 Non-Confidential

Appendix A
Revisions

This appendix describes the technical changes between released issues of this book.

Table A-1 Issue A

Change Location Affects

First release - -

Table A-2 Differences between issue A and issue B

Change Location Affects

No technical changes - -

Table A-3 Differences between issue B and issue C

Change Location Affects

Additional information on bus interfaces. Bus interfaces on page 2-5 All

Additional information on Private Peripheral Bus. Private Peripheral Bus (PPB) on page 2-6 All

Updated the Cortex-M4 instruction set cycle times. Table 3-1 on page 3-4 All

Updated assembler of the signed multiply instructions for DSP
instructions.

Table 3-2 on page 3-8 All

Updated information on Load/store timings. Load/store timings on page 3-11 All

Added information on local exclusive monitor. Exclusive monitor on page 3-18 All
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. A-1
ID061113 Non-Confidential

Revisions
Reset values updated. Table 5-1 on page 5-4 All

Updated bit order for Auxiliary Control Register. Figure 4-1 on page 4-5 All

Updated bit order for Auxiliary Control Register. Table 4-2 on page 4-5 All

Updated information for Auxiliary Fault Status Register Auxiliary Fault Status Register, AFSR on page 4-6 All

Changed address range for NVIC_IPR registers. Table 6-1 on page 6-4 All

Added Peripheral IDs 5-7. Table 8-1 on page 8-3 All

Updated reset value. Table 8-7 on page 8-10 All

Added names of TPIU registers. Reset values updated and added
TPIU_DEVTYPE.

Table 11-1 on page 11-5 All

Added TPIU_DEVTYPE bit assignments. TPIU_DEVTYPE on page 11-13 All

Table A-4 Differences between issue C and issue D

Change Location Affects

Removed references to Cortex-M4F Chapter 7 Floating Point Unit
Chapter 8 Debug

All

Updated information for DCode memory interface DCode memory interface on page 2-6 All

Updated footnotes a. and b. about division operations and Neighboring
load and store single instructions respectively.

Table 3-1 on page 3-4 All

Changed description for SMULTT signed multiply operation Table 3-2 on page 3-8 All

Changed description of Cortex-M4 compatibility Binary compatibility with other Cortex
processors on page 3-12

All

Updated information for 16-bit instruction access to registers R8-R12 Processor core register summary on page 3-21 All

Specified access permission of CCR.STKALIGN bit Table 4-1 on page 4-3 All

Defined the ACTL. DISFPCA bit as SBZP Table 4-2 on page 4-5 All

Clarified address information for NVIC_ICER0-NVIC_ICER7 registers Table 6-1 on page 6-4 All

Clarified lazy stacking information Exceptions on page 7-8 All

Clarified that the FPU in the Cortex-M4 is implementation defined FPU Programmers Model on page 7-9 All

Clarified the latency issues when the FPU option is implemented and:
• A floating point context is active and the lazy stacking is not

enabled.
• When an active floating point context is included in the stack

frame.

Exception handling on page 3-23 All

Clarified Peripheral ID0 SCS identification value for implementations
with and without FPU

Table 8-3 on page 8-5 All

Updated function information for CSW register bit[7] Table 8-6 on page 8-7 All

Added footnote that clarifies mask size of DWT_MASK0,
DWT_MASK1, DWT_MASK2, DWT_MASK3 registers.

Table 9-1 on page 9-4 All

Table A-3 Differences between issue B and issue C (continued)

Change Location Affects
ARM DDI 0439D Copyright © 2009, 2010, 2013 ARM Limited. All rights reserved. A-2
ID061113 Non-Confidential

	ARM Cortex-M4 Processor Technical Reference Manual
	Contents
	Preface
	About this book
	Product revision status
	Intended audience
	Using this book
	Glossary
	Typographical Conventions
	Additional reading

	Feedback
	Feedback on this product
	Feedback on content

	1: Introduction
	1.1 About the processor
	1.2 Features
	1.3 Interfaces
	1.4 Configurable options
	1.5 Product documentation
	1.5.1 Documentation
	1.5.2 Design Flow
	1.5.3 Architecture and protocol information

	1.6 Product revisions
	1.6.1 Differences in functionality between r0p0 and r0p1

	2: Functional Description
	2.1 About the functions
	2.2 Interfaces
	2.2.1 Bus interfaces
	2.2.2 ETM interface
	2.2.3 AHB Trace Macrocell interface
	2.2.4 Debug Port AHB-AP interface

	3: Programmers Model
	3.1 About the programmers model
	3.2 Modes of operation and execution
	3.2.1 Operating modes
	3.2.2 Operating states
	3.2.3 Privileged access and user access

	3.3 Instruction set summary
	3.3.1 Cortex-M4 instructions
	3.3.2 Load/store timings
	3.3.3 Binary compatibility with other Cortex processors

	3.4 System address map
	3.4.1 Private peripheral bus
	3.4.2 Unaligned accesses that cross regions

	3.5 Write buffer
	3.6 Exclusive monitor
	3.7 Bit-banding
	3.7.1 Directly accessing an alias region
	3.7.2 Directly accessing a bit-band region

	3.8 Processor core register summary
	3.9 Exceptions
	3.9.1 Exception handling

	4: System Control
	4.1 About system control
	4.2 Register summary
	4.3 Register descriptions
	4.3.1 Auxiliary Control Register, ACTLR
	4.3.2 CPUID Base Register, CPUID
	4.3.3 Auxiliary Fault Status Register, AFSR

	5: Memory Protection Unit
	5.1 About the MPU
	5.2 MPU functional description
	5.3 MPU programmers model

	6: Nested Vectored Interrupt Controller
	6.1 About the NVIC
	6.2 NVIC functional description
	6.2.1 Low power modes
	6.2.2 Level versus pulse interrupts

	6.3 NVIC programmers model
	6.3.1 Interrupt Controller Type Register, ICTR

	7: Floating Point Unit
	7.1 About the FPU
	7.2 FPU Functional Description
	7.2.1 FPU views of the register bank
	7.2.2 Modes of operation
	7.2.3 FPU instruction set
	7.2.4 Compliance with the IEEE 754 standard
	7.2.5 Complete implementation of the IEEE 754 standard
	7.2.6 IEEE 754 standard implementation choices
	7.2.7 Exceptions

	7.3 FPU Programmers Model
	7.3.1 Enabling the FPU

	8: Debug
	8.1 About debug
	8.1.1 Cortex-M4 ROM table identification and entries
	8.1.2 System Control Space
	8.1.3 Debug register summary

	8.2 About the AHB-AP
	8.2.1 AHB-AP transaction types
	8.2.2 AHB-AP programmers model

	8.3 About the Flash Patch and Breakpoint Unit (FPB)
	8.3.1 FPB functional description
	8.3.2 FPB programmers model

	9: Data Watchpoint and Trace Unit
	9.1 About the DWT
	9.2 DWT functional description
	9.3 DWT Programmers Model

	10: Instrumentation Trace Macrocell Unit
	10.1 About the ITM
	10.2 ITM functional description
	10.3 ITM programmers model
	10.3.1 ITM Trace Privilege Register, ITM_TPR

	11: Trace Port Interface Unit
	11.1 About the Cortex-M4 TPIU
	11.2 TPIU functional description
	11.2.1 TPIU block diagrams
	11.2.2 TPIU Formatter
	11.2.3 Serial Wire Output format

	11.3 TPIU programmers model
	11.3.1 Asynchronous Clock Prescaler Register, TPIU_ACPR
	11.3.2 Formatter and Flush Status Register, TPIU_FFSR
	11.3.3 Formatter and Flush Control Register, TPIU_FFCR
	11.3.4 TRIGGER
	11.3.5 Integration ETM Data
	11.3.6 ITATBCTR2
	11.3.7 Integration ITM Data
	11.3.8 ITATBCTR0
	11.3.9 Integration Mode Control, TPIU_ITCTRL
	11.3.10 TPIU_DEVID
	11.3.11 TPIU_DEVTYPE

	A: Revisions

